

’ Load Indicators, is a control program service providing low-
overhead console functions for observing various aspects of load
on the system in real time. The second, known as VM/Monitor,
is a general purpose control program service for collecting a
wide range of data relating to most aspects of performance
measurement. The first two services are known collectively as
the VM/370 Measurement Facility and are used via the INDICATE
MONITOR console functions. The third service is an optional
data reduction system known as Statistics Generating Package
for VM/370, or vM/sGP. It is available as an Installed User Pro-
gram. VMlsGP consists of a data selection and reporting language,
a translator, and a library of reduction programs to handle most
classes of VM/Monitor output.

The purpose of Load Indicators is to provide the users, analysts,
and the operator with the means to observe the load conditions
on the system, to varying degrees depending on necessity and
the levels of authority granted them, such that they may base
their respective dealings with the system on data obtained in real
time, not on guesswork. In the case of performance problems,
real-time data may be of limited usefulness and may only serve
to confirm that a problem exists. There may be no way of under-
standing, from a small amount of on-line data, the exact nature
of the problem, how it arose, or how it may be resolved.

vM/Monitor provides a general-purpose mechanism for collect-
ing a large variety of data on magnetic tape for later reduction
and analysis. In most cases, data collection takes place with in-
significant overhead and, thus, minimal impact on the system
being monitored. (Reduction of the data may, of course, consti-
tute a significant load but may be done with batch facilities.)
Therefore, together with a reduction facility, permanent records
of summarized measurements of load and performance may be
maintained, and problems may be thoroughly analyzed and re-
solved with definitive results. Less critical concerns such as
characteristics of user load and ways of improving them may be
studied at leisure but in great detail if necessary. The great flexi-
bility of V M ~ S G P may be employed to massage the raw data into
forms most acceptable by management or which carry the great-
est impact for the given circumstances. It is impossible to pre-
dict all the ways in which it may be desirable to present data, and
so in place of a fixed set of report generating programs, VM/SGP
provides a reduction language allowing each user to tailor re-
ports to his own liking.

The facilities described have, to a large extent, been devel-
oped from the experience gained in measurement of the virtual
storage systems, CP-67 and ~ s s l 3 6 0 , and the batch system,
LASPIOSIMVT, at the computing center of the Thomas J . Watson
Research Center.”’

NO. 2 * 1975 v ~ / 3 7 0 PERFORMANCE MEASUREMENT 135

USER INTERFACE

ARRIVAL OF REQUESTS
TERMINAL I/O

OUTPUT OF RESULTS

SCHEDULING

ALLOCATION OF MAIN
STORAGE TO PROCESS

USER REQUESTS
IN SOME PRIORITIZED

ORDER

DISPATCHING

ALLOCATION OF CPU
AND GENERATION OF

SOFTWARE & HARDWARE
UTILIZATIONS

MANAGEMENT

SYSTEM

PERFORMANCE
QUESTIONS

ANALYST
DESIGN

PERFORMANCE
QUESTIONS

PERFORMANCE
QUESTIONS

b

Table 1 A categorized list of questions relating to the performance and utilization of a VM/370 system

I Types of questions Questions Comments

Type 1: User-Level What is the mean utilization and contention The first requirement is easily met by a
Questions for major resources? And therefore what control program console function, and with

sort of response should I expect in my experience a user may soon learn to relate
forthcoming terminal session? During ex- response time to observed load conditions
ecution, what are my storage and CPU for his particular application. The second
requirements, and how may I reduce these requirement may be met in a limited fash-
requirements to improve my performance? ion by giving the user the ability to examine

at will the total resources used by his pro-
gram at any point in time, but the detailed
tracing of the user’s execution character-
istics using a systems analyst tool may pro-
vide the only complete answer.

I

Type 2: System Is system overloaded or performing in These questions may be answered by ob-
Operator-Level some anomalous fashion? Is any one user servation of control program load monitor-
Questions contributing in an exceptional way to the ing figures and use of further on-line diag-

situation? Can I take effective corrective nostic aids. The effectiveness of corrective
action? action will then depend largely on the con-

trol facilities of the Scheduler and Dis-
patcher. System analysts may need to be
consulted on interpretation of data.

Type 3: System What are the work demands being placed
Analyst-Level on the system? What are “think times”
Questions and system response times, and how are

they related to the observed utilizations
and performance of the system? How well
are resource allocation algorithms work-
ing? Can they be improved and can the
system be tuned for the observed loads?
Can I measure improvements in perfor-
mance that may result? Are there any per-
formance bottlenecks in the system or are
there any anomalous performance situa-
tions that may require detailed analysis
before diagnosis is possible?

These questions may be best answered by
software monitoring with sampling and
trace capability. Analysis of such data
requires detailed knowledge of the control
program internals. With experience, a
knowledgeable systems analyst may be
able to diagnose bottlenecks or anomalous
performance situations with simple on-line
diagnostic aids, and the ability to take im-
mediate corrective action may outweigh
the hazards associated with a certam de-
gree of guesswork.

Type 4: Design Can 1 gather data characterizing the loads These questions may be answered by a
Analyst-Level put on the system by various categories of software monitor with detailed trace cap-
Questions users? Similarly, can I collect data on the ability. Analysis of such data requires de-

overall utilization of the hardware and per- tailed knowledge of the control program
formance of the software, thus providing internals.
a load profile of the system as a whole?
Can I trace the execution of a particular
program running in virtual storage and find
out how reordering and restructuring of the
program may lead to faster execution with
less paging? How does the design of the
system page replacement algorithm affect
the performance of individual programs,
and which is more important to the overall
performance of the system, the algorithm
or individual program design?

Type 5 : Installation Is the configuration optimum for the ob- These questions may be answered by a
Management-Level served loads? In fact, are utilizations and software sampling monitor or, to some
Questions responses acceptable? What are the usage extent, by a hardware monitor. System

growth rates and what are the expected analysts may need to be consulted on in-
configuration extensions likely to be? terpretation of data.

NO. 2 1975 ~ ~ 1 3 7 0 PERFORMANCE MEASUREMENT 137

The components of the V M / ~ ~ O control program as depicted in
Figure 1 may need further explanation:

User interface. Input data collected at this interface is the pri-
mary source of information defining the load on the system; out-
put data is the system response. These data (when identified by
the user’s identification (userid) and time of day) are essential
to an understanding of the relationship between user activity and
system performance, and are of interest to psychologists as well
as system analysts.

Scheduling. For installations with small amounts of main stor-
age, the scheduler is effectively a funnel, and contention for
main storage is handled in some priority order according to in-
stallation-defined biases. Contention of this kind may be the
primary cause of delays to responses, and an understanding of
the conditions of the various queues in the scheduler is a pre-
requisite to understanding the performance of the system.

Dispatching. Once the scheduler has chosen the (multipro-
gramming) set of users to occupy main storage, the dispatcher
will prepare the users and give them the CPU in some priority
order calculated by the scheduler. For installations with large
amounts of main storage, there is no funneling effect in the
scheduler, and the task of scheduling is reduced to that of deter-
mining dispatch priority in order to share the CPU in some equi-
table way among the users. Under these circumstances, the
responsiveness of the system is more related to expansion fac-
tors3 in execution because of the sharing of system resources (and
possible contention for them). Observable conditions of hard-
ware and software utilization are generated by the activities of
the multiprogramming set of users. Their density of privileged
instruction execution helps determine the ratio between problem
time and supervisor overhead for simulation of the virtual ma-
chine environment. Their use of virtual storage space deter-
mines the system paging activity and associated overhead. The
I/O subset of executed privileged instructions, together with the
I/O activity due to paging, determine the utilization and possible
contention for channels, control units, and devices.

Implementation

The V M / ~ ~ O Measurement Facility may be thought of in terms
of function being provided at four user levels and is described
in the following sections. Since the system analyst and liesign
analyst both use the same service, the measurement facilities
available to them are covered in this same section.

138 CALLAWAY IBM SYST J

Performance has been defined as the way in which a system user level-
meets the throughput and response expectations of a user.4 Con- the INDICATE
sequently, it is important, for two reasons, that a user of an command
interactive system should have some means of assessing the
current load and contention on a system that he is about to use.
Primarily, he should be able to plan his terminal session to
match the indicated load, thus making most productive use of his
time. Secondarily, his expectations should not be disappointed,
such that performance from his point of view may seem to
be poor. (It has been shown that degradation in the response of
a system results also in degradation of user think time.5) It is
generally agreed that programmer productivity is more impor-
tant than numerically high and efficient utilization of computing
resources. On this basis, the small amount of overhead required
to support the INDICATE function is easily justified.

INDICATE is a console function with two options available to the
general user of a VM/370 system.' (Other options available to the
operator and systems analyst if authorized are described in a
later section.) The first option (and also the default option) is
INDICATE LOAD. Its response provides a smoothed measure of
the utilization and contention for the major resources of the
CPU and main storage. More specifically, INDICATE LOAD gives
a measure of CPU utilization and the level of multiprogramming
(the degree to which the CPU is being shared, and therefore an
indicator of possible program execution stretchout due to time-
sharing alone), INDICATE LOAD also gives a measure of ma
storage utilization and contention for that resource as indicatc
by the scheduler queues. (Long lists of users waiting to Lt:
allocated space in main storage represent long delays before any
of the CPU is received by a particular user.)

A sample reply to INDICATE LOAD might be as follows:

CPU - 100% Q1 - 05 Q2 - 02 STORAGE - 42% RATIO - 1.0

The smoothed value of CPU utilization is updated every 30 sec-
onds and has a time constant on the order of five minutes. Its
value is obtained from the total wait state times maintained by
the control program and is computed from interval mean wait
time. Its maximum value is 100 percent.

The contention for the CPU is represented by the smoothed val-
ues of the number of users in Q1 and Q2. The actual counts of
users in queue, maintained by the scheduler, represent, for Q 1 ,
users engaged in trivial interactive work, and for Q2, users en-
gaged in longer batch-type tasks. Users about to begin nontrivial
computations, such as large compilations, will estimate system
response based on the Q2 (and not Q 1) value in conjunction
with the remaining response variables. A user planning more
interactive use of the system will estimate system response

NO. 2 - 1975 V M / 3 7 0 PERFORMANCE MEASUREMENT 139

based on the Q 1 (and not Q2) value in conjunction with the
remaining response variables.

The smoothed value of storage utilization is updated immedi-
ately prior to a user being dropped from queue, and thus its time
constant varies with the rate of queue manipulation activity. Its
value is obtained by sampling, not by integration, and is thus
more accurate under heavy activity than under light activity.
The value of STORAGE in the reply is computed from the sum of
the estimated working set sizes of the users resident in main
storage as a fraction of the number of main storage page frames
available for user paging. Its maximum value may exceed 100
percent when the control program occasionally overcommits
storage.

RATIO (an abbreviation of scheduler contention ratio) is arbi-
trarily defined as follows:

RATIO = (E -k M) / M

where E = total current eligible users (waiting for response but
not currently receiving resources) and A4 = Q 1 + Q2 = number
of users in multiprogramming set (resident in high-speed storage
receiving resources).

The smoothing effect for Q 1, Q2, STORAGE, and RATIO is
achieved by the following calculation:

VALUE(,,,) = I / 16(15 X VALUE(,,,,) + VALUE(CURRENT))

RATIO is also evaluated prior to a queue drop, and its resulting
time constant is variable. When E = 0, then RATIO = 1.0, all
active users are resident in high-speed storage, and the scheduler
discrimination controls and user priorities are not in use. When
E M , and RATIO = 2.0, users begin to spend significant amounts
of time in the scheduler eligible list, the user priorities and in-
teractive and paging biases are in effect, and various rates of
iteration through the queues will be experienced; throughput
for users with' the larger working set sizes will be noticeably
degraded. When RATIO is greater than 3.0, some users perform-
ing nontrivial computations would be wise to seek alternative
work activities or suffer low productivity. With the interactive
bias applied, trivial interactions should not be so noticeably
affected by the RATIO value.

A secund option of the INDICATE command is available to the
general user; it is INDICATE USER. The purpose of this option is
to allow a user to find out more about the activity of his virtual
machine in terms of the resources used and occupied and events

PAGES: RES - 045 WS - 025 READS = 000 1 14
WRITES = 000067 DISK - 0128 DRUM - 0000
VTIME = 000:01 TTIME = 000:09 S I 0 = 000032
RDR - 000000 PRT - 000000 PCH - 000000

The first line of the response gives all data from the user’s vir-
tual machine control block (VMBLOK) relevant to his paging ac-
tivity and resource occupancy. RES is a snapshot of the current
number of user’s virtual storage pages resident in main storage,
and ws is a snapshot of the most recent system estimate of the
user’s working set size. READS is the total number of pages read
for this user since he logged on or since the last ACNT command.
(When the operator issues ACNT, the account command, most
major resources used by each active virtual machine up to that
point in time are punched onto account cdrds and the VMBLOK
fields from which they were derived are reset to zero or an
initial value). WRITES is the total number of pages written over
the same time period. DISK is a snapshot of the current number
of virtual pages allocated on system disk paging space for this
user, and DRUM is the number allocated on system drum paging
space. (RES, ws, DISK, and DRUM are not reset by the ACNT
command.)

The second line of data gives user CPU usage and accumulated
I /O activity counts. VTIME is total virtual time since logon or
since the last ACNT command. TTIME is the total virtual time
plus simulation time for the user for the same time period. SIO is
the total number of nonspooled I /O requests issued by the user
over the same time period. RDR, PRT, and PCH are counts of the
total numbers of virtual cards read, virtual lines printed, and vir-
tual cards punched over the same time period.

By recording the system response to the INDICATE USER com-
mand at frequent intervals throughout the execution of his pro-
gram, the user may obtain a picture of his execution character-
istics in the virtual machine environment.

When an interactive system is overloaded and responds poorly, load monitoring
the operator is often subjected to calls and messages from ir- and diagnosis
ritated users. It is, therefore, prudent to provide the operator
with definitive indications of overload conditions and with facil-
ities for determining which users are contributing most to the
~ituation.~ The operator may then ask the dominating users to
postpone or moderate their activities until the response to the
INDICATE command shows that a lighter load is being handled, or
he may lower their priority. Furthermore, a persistently over-
loaded system is probably undesirable from an installation
management point of view as well as from a programmer produc-
tivity point of view. There should therefore be simple ways of
communicating to management just how often a system is in such
a state, so that adjustments in configuration or reduction in user
load may be planned.

NO. 2 . 1975 V M / 3 7 0 PERFORMANCE MEASUREMENT I4 I

Two possibilities exist for the monitoring of overload conditions,
using the VM/370 Measurement Facility. First, by periodically
comparing the response to the INDICATE LOAD command with
some arbitrarily defined limits for the configuration, overload
may be detected in real time and reported accordingly. The al-
ternative is to use VM/Monitor to collect utilization data and to
tailor a reduction report, using the same overload criteria, to
summarize the amount of time spent in overload. The first method
is more appropriate for use by the operator; the second would
be used by the system analyst and will be discussed further in
a later section.

An installation may therefore provide its operators with arbitrar-
ily defined overload criteria and request that periodic checks be
made using the INDICATE LOAD command. VM/Monitor data
has been used to determine these overload criteria for the
V M / ~ ~ O system running on a two-megabyte System/370 Model
158 at the Thomas J . Watson Research Center (see Appendix
A) . Once a persistent overload condition is identified, a number
of steps may be taken to clarify the situation, using some addi-
tional options of the INDICATE command. These options should
be available to the operator and system analyst and may be used
as follows:

Use INDICATE QUEUES to find out who the current active users
are and how much real main storage (one major resource) they
occupy. (The reply to this command contains a good deal more
data and a full explanation will be given in a later section.)

Use the INDICATE USER command to display the resources used
by each of the active users. (The operator should have the
authority to look at the resource usage fields in the VMBLOK of
any user on the system.) Determine if anyone is receiving a dis-
proportionate share of the CPU -the other major resource besides
main storage. The task of determining what resources the active
users have received over a given interval is best handled by
creating spool files of the above responses at the beginning and
end of the interval, and then reading them into a program. This
program, running in the user’s virtual machine, then calculates
the resources used by these tasks active over the whole period,
that is, the long-running Q2 users. Such a program would also
be widely used by the system analyst while looking for ex-
ceptional users in real time.

If any user appears to be receiving an inappropriately large
share of the resources, inform installation management. A study
of that user’s application may reveal ways of reducing its load
or, in general, improving its performance in the virtual machine
environment. Alternatively, it may be apparent that the ap-
plication is more suitably run on a batch system and not on a

142 CALLAWAY IBM SYST J

time-sharing system, since with the former the large resources re-
quired to run may be scheduled appropriately with less noticable
impact on other users. It may be desirable to run certain applica-
tions during low load or nonprime shift periods (with time-shar-
ing, each user wants to get his work done in prime shift, often
treating the computing resources as infinite and ignoring result-
ing load conditions and inefficiencies).

If RATIO is greater than 1.0 and the discrimination abilities of
the biased scheduler are in effect, then user directory priorities
may be changed to force the more demanding users into the
background. The INDICATE LOAD response will not show any
relief of the overload condition; however, certain users may be
now cycling through the scheduler lists at a slower rate than
others, and more reasonable expansion factors should be experi-
enced by the less-demanding users. The INDICATE USER com-
mand should reflect the change in resource usage of the various
users.

Early use of experimental versions of the VM/370 Measurement
Facility confirmed the desirability of being able to study the var-
ious aspects of a load both in snapshot, or summary, fashion in
real time and in detail off-line at leisure. Several options of the
INDICATE command provide some on-line diagnostic capability
for the system analyst. These options enable him to check for
obvious bottlenecks without having to resort to more lengthy
and detailed analysis. VMlMonitor provides the ability for
more thorough and detailed analysis off-line when considerable
thought and planning are required to massage many types of
data into the form necessary to either solve a problem or present
an argument in a convincing manner based on data. The experi-
ence gained in the development and use of these tools has led
to the VM/370 Measurement Facility now generally available.
Considerable experience has been gained in the performance
analysis of VM/370 systems based on sampled data obtained by
a virtual machine. The general principles of analysis are well-
documented in Reference 8.

A system analyst, when confronted with a load situation re-
quiring some analysis, would first ensure that the VM/Monitor
data collection tool had been started appropriately and then
would proceed to attempt to understand the problem on-line
using the INDICATE command.’ If the problem cannot be solved
on-line or simply goes away, then vM/Monitor will have cap-
tured all the relevant data for later analysis.

Next, the INDICATE LOAD option would be issued to obtain Val-
ues for the current utilization and contention for the CPU and
main storage. Additionally the QUEUES option of the INDICATE
command would provide a sample of the current active users,

NO. 2 . 1975 ~ ~ / 3 7 0 PERFORMANCE MEASUREMENT

their userids (user identifications), their execution status, the
amount of main storage occupied, and the current working set
estimate. This command should be issued several times so that
only persistent conditions may be acted upon. Alternatively,
the resources used by the continually active users over some
interval (say, one minute) may be determined by processing
spool files of the responses to the INDICATE commands as
mentioned previously.

A sample response to the INDICATE QUEUES command is as fol-
lows (page frame counts are given in hexadecimal) :

useridA Q1 PC 001 lo10 useridB Q2 RU 045/025
useridC Q2 IO 055/024 useridD E2 -- 000/045
useridE El -- 000/010

This response indicates that there are five active virtual ma-
chines, three of which occupy main storage (one in the interac-
tive queue (QI) and two in the more compute-bound queue
(Q2)) . UseridA, in Q1, has so far brought in one page, has a
working set estimate of 10 pages and is currently in page wait
(PG) state. UseridB, in Q2, is executing and is the current RUNU-
SER (RU) ; he has 45' pages in main storage and has a working
set size estimate of 25 pages. UseridC, in Q2 also, is currently
in I/O wait state (IO) with 55 pages resident and a working set of
24 pages. UseridD and useridE are waiting in the eligibleJists of
Q1 and Q2 respectively, have no pages resident, are waiting for
the CPU (--) , and have the indicated working set size estimates.
An additional status flag, PS, indicates that a virtual machine
has issued an enabled wait PSW (program status word). This
PSW wait state may be indicative of I /O contention.

If the CPU is the only bottleneck, then RATIO will be 1.0 (all ac-
tive users resident in main storage), and the majority of active
users will be waiting for execution, as indicated by the '--' status
flag, and, of course, CPU utilization will be close to 100 percent.

If main storage is the bottleneck, then RATIO will be greater then
1.0 and a corresponding proportion of the active users will be
displayed in the scheduler eligible lists. Storage utilization will
be relatively high (except on small systems with low levels of
multiprogramming). If response is sporadically poor, then it is
likely that one or more users have working set estimates com-
parable with the number of pageable page frames, and under
storage contention conditions, are periodically blocking the
scheduler eligible lists.

If I /O is the bottleneck, then a significant number of the multi-
programming set in each sample will be displayed in I/O wait or

should be employed to display the real devices being waited on.
If more than one user is waiting persistently on the same device,
then the contention condition is clear.

A sample reply to the INDICATE r/o command, displaying such a
condition might be as follows:

useridA 2 12 useridB 2 10 useridC 2 12 useridD 2 12

In this example, three out of four users currently in I/O wait
state are queued on the same device.

If paging is the bottleneck, then a significant number of the mul-
tiprogramming set in each sample will be in the page wait state
(PGWAIT) , and the PAGING option of the INDICATE command
should be employed for further analysis. This option displays
user paging space residency counts and is only relevant when the
installation is equipped with drums as primary paging devices and
with other direct-access facilities as secondary paging devices.
When the primary device is full and performance is degraded by
users spilling over to the slower devices, the INDICATE PAGING
ALL command will show which users are occupying space on
which device. Consider, for example, a virtual machine running
a large operating system that was allocated large amounts of
primary paging space at IPL (initial program load) time, but then
became inactive. This user is occupying a critical resource but is
not putting it to good use, and, in fact, may be contributing sig-
nificantly to system performance degradation. (The INDICATE
PAGING WAIT option displays the same data but only for those
users in the multiprogramming set currently in PGWAIT). The
form of each entry in the reply to an INDICATE PAGING com-
mand is simply:

useridA 128/000

where 128 is the number of pages resident on drum and 000 is
the number on disk.

In addition to the above, the system analyst has the authority
to use the INDICATE USER option, specifying the userid of the
virtual machine whose resource usage he wishes to study in
more detail in relation to the problem at hand.

VMIMonitor and VMISGP

The vM/Monitor and VM/SGP tools provide a general purpose
data collection mechanism and a general purpose data reduction
language and report generator, which has been used to build a
library of reduction programs in common format. The data col-
lection tool runs as a privileged component of the control pro-
gram, providing trace and sampling data using the MONITOR

NO. 2 * 1975 v ~ / 3 7 0 PERFORMANCE MEASUREMENT

CALL instruction and facilities for specifying timing interruptions.
The monitor call instruction available on System/370 CPUS
greatly facilitates the collection of event-driven trace information.
By imbedding monitor calls at strategic places throughout the
control program of VM/370, critical transient performance infor-
mation may be gathered, such as the way in which user working
set sizes are estimated, and the scheduler queues may be manipu-
lated to establish an optimal level of multiprogramming for the
given system. A monitor call instruction may be used to specify
a class number in the range zero to 15 and a code number com-
puted from base and displacement fields. The monitor call in-
struction is fully described in the System/370 Principles of
Operation." The implementation of VM/Monito$ takes advan-
tage of this structure by categorizing data collection by func-
tion into separate classes with each class identified by a suitable
keyword.

The execution of a monitor call gives rise to a program
interruption (code hexadecimal 40) if that class of monitor
interruption is enabled. The classes of monitor call interruptions
enabled at any time are defined by the contents of a 16-bit mask
field in one of the control registers. Thus, a simple set of
commands is implemented to permit an operator to define the
contents of that control register via selection of the appropriate
keywords and thereby enabling data collection of the type best
suited to solve the problem in mind at the time. The operator
command MONITOR ENABLE followed by a string of keywords
results in the storing of a mask field that is loaded into the
control register later when data collection is actually initiated
with the MONITOR START command. The command MONITOR
DISPLAY is provided to remind the operator which classes of
data collection have been implemented and what are the
corresponding keywords. Modifications to the program
interruption handler have been made to divert supervisor state
monitor call interruptions to a new program that performs the
functions of decoding, data collection, and data output. (Prob-
lem state monitor calls are simulated and reflected back to the
issuing virtual machine.)

The class and code numbers of the monitor interruption are
placed by the hardware in reserved locations in page zero of
main storage. Thus the monitor interruption decoder simply uses
these stored values to index into branch tables and reach data
collection routines unique to any particular interruption.
Additional subroutines provide means for creating standard
header records and handling the buffering and output of the data.
I/O supervisor facilities are utilized to actually perform the
output and handle any error conditions. A tape drive is used as
the recording medium since large volumes of data may be
collected when using trace techniques. The actual initiation or

CALLAWAY IBM SYST J

termination of data collection is controlled by the MONITOR
START or STOP commands with an additional parameter with
which to specify the address of a tape drive (which is reserved
for the system for the duration of the data collection session).
Sampling data collection is implemented by the specification of a
timer interruption and an interruption return address via the
control program timer request block facility. This procedure
provides a means of passing control to a given data collection
subroutine at precise intervals of time. The subroutine then acts
as though a particular class and code of monitor call has been
executed and samples all relevant system event counters and
accumulators, thus generating a record of sampled statistics
relevant to the utilization and performance of the system.

All records created by the collector are prefixed with a header
section containing the class and code of monitor call and the
time of day of the occurrence of the interruption. All records are
in standard variable length format and are blocked in a page size
of 4096 bytes. The time stamp provides a simple mechanism for
measuring the elapsed time between the occurrence of any two
events, and, in fact, has been used for measuring control
program overheads directly. A typical monitor tape generated in
the above manner usually contains a mixture of variable length
records of different classes and codes both sampled and traced.
The general purpose design of the collector ensures that
extensions to its data collection capabilities can be very simply
achieved by the astute placing of monitor call instructions in the
V M / ~ ~ O control program, and by definitions of new classes of
monitor calls or additions to existing ones.

The classes of data collection implemented and the uses to
which they may be put are as follows:

The PERFORM class provides sampled data only, which when
reduced, yields summaries of the overall utilizations of the CPU
and main storage, of paging statistics, privileged operation usage
statistics, and various interruption and call statistics.

The SCHEDULE class provides trace data to monitor the flow of
work through the scheduler. It shows how working set sizes are
estimated (by displaying the values of variables from which they
were computed) and thus how the level of multiprogramming is
established. By revealing user execution characteristics in queue
and the resulting scheduler priorities, the trace shows how the
discrimination facilities of the scheduler affect the service rates
of different kinds of users under storage-bound conditions.
Anomalous conditions of low CPU and main storage utilizations
with high contention for main storage have yielded to analysis
using the SCHEDULE class of data, resulting in a number of im-
provements to the system. (See Appendix B.)

NO. 2 . 1975 VM/370 PERFORMANCE MEASUREMENT

The RESPONSE class provides trace data relating to all terminal
transactions with the system. With this class of data, the impor-
tant relationship between user activity and system scheduling
activity and resulting system performance may be accurately
established. These data have been most usually required when
an unexpected situation in the control program scheduler queues
has required a knowledge of exactly what the users were doing
for full understanding and problem diagnosis. The data may also
be used together with SCHEDULE data to obtain user think
times, system response times and expansion factors, and for full
analysis of command language usage.

The DASTAP class provides sampled data on the activity counts
of all DASDS and tape devices on-line a i the time the monitor is
started. The associated data reduction provides time-stamped
IIO activity summaries which may be correlated with the PER-
FORM class reports on system utilization and performance. In
fact, one reduction program in the library combines summaries
from both PERFORM and DASTAP Classes.

The SEEKS class of data collection traces every start llo request
for a DASD device. Together with data reduction, this class
provides the ability to study disk arm contention problems and
possible bottlenecks in the paths to the devices.

The USER class of data provides sample information about the
amount of resources each virtual machine on the system was
using. This information may play a supporting role to the PER-
FORM-class when it is felt that one or more users are dominating
the system or getting an unfair share of resources. This class has
most often been used when a system has had so much high-speed
storage that all users were resident, the scheduler discrimination
facilities were not utilized, and the dispatcher alone attempted
to distribute the CPU utilization.

The INSTSIM class of data collection traces every privileged in-
struction simulation. When a programming system is running in
the virtual machine environment, the single most significant
source of overhead may be privileged instruction simulation.
The INSTSIM class provides the ability to derive information on
the frequency of use and virtual storage location for each privi-
leged instruction type encountered. This information is useful in
optimizing the performance of a programming system in a virtual
machine environment, particularly when an operating system is
involved that usually runs on its own real hardware.

The SYSPROF class of data coljection is a separately controlled
extension to the SCHEDULE class. I t provides more detailed in-
formation on the overall performance characteristics of a sys-
tem, and is intended for future study of installed systems.

148 CALLAWAY IBM SYST J

Measurement support for the study of the execution characteris-
tics of virtual machines is provided by the SCHEDULE and IN-
STSIM traces. The scheduler drop queue records yield informa-
tion concerning number of page frames read, stolen, resident, and
referenced while in queue and the resulting projected working
set size, also the amount of simulation and problem program the
CPU received during that time. The number of I/O operations to
both DASDS and spooling devices are also recorded, the latter in
terms of lines printed and cards read and punched. Typical user
profile type of data may be gathered during user benchmark ses-
sions, thus displaying his activity in that special environment.

The major requirement for a general purpose data reduction fa-
cility is met by the adaptation of the Statistics Generation Pack-
age (SGP) for use under CMs with vM/Monitor data. This version,
known as VMISGP, is available as an Installed User Program
(IUP)." (SGP is a Field Developed Program for use with os and
OS/VS SMF data.) This adaptation makes available the high-level
selection and report generation language that is a key feature of
S G P . ~ Thus, by knowing the symbolic names of the data items
available from VM/Monitor and by being familiar with the syn-
tax of the SGP language (very similar to P L h) , a system analyst
is able to generate fairly sophisticated data reduction programs,
tailored precisely to suit his own requirements. The production
of such programs typically takes as little as half an hour, depend-
ing on the load on the V M / ~ ~ O system being used. Three phases
are involved in the production: the creation of the selection and
report generation requests, the translation of the source into
PL/I source, and the compilation of the source using the PL/I
Optimizing Compiler. All aspects of reduction program produc-
tion and use are supported with CMS EXEC files to smooth and
facilitate the work. Working with these facilities, a library of
programs has been built up and used to answer a large range of
questions relating to the performance and tuning of the VM/370
system.

Some examples of the use of VM/Monitor, both independently
and in conjunction with the INDICATE command, are given in
Appendix C.

Reduction of the data obtained with the collection tool described
previously may be performed to provide information to manage-
ment. The main function is to produce a one-line summary re-
port of each day's activity. This report may be used to construct
weekly and monthly reports of the utilization and contention for
the major resources of the system. The daily report includes
means for the following variables: CPU utilization, problem time,
idle time, page wait time and I /O wait time, number of users
logged on, users in eligible lists, users in dispatch queues (level
of multiprogramming), and main storage utilization. Finally, the

v ~ / 3 7 0 PERFORMANCE MEASUREMENT

tion for the C P U and main storage at this upper limit would then
provide overload criteria in terms of the response to the INDI-
CATE LOAD command.

The expansion factor of a job is defined as the ratio between the
elapsed time of the job when the system resources are being
shared by many such users, and the elapsed time of the same job
when no other users are competing for resources. The wide
range of jobs performed on the subject system made the direct
measurement of their expansion factors a difficult task indeed.
Therefore, it was thought that a good estimate of job expansion
factors could be obtained by measuring the average time slice
expansion factor in terms of the elapsed time between consecu-
tive time slices and the total CPU time received during a time
slice. Since it takes proportionately longer to accrue a time
slice’s worth of the CPU as the load on a system increases, there
should be a direct relationship between that effect and the total
job expahsion factor.

The expansion factor curves displayed in Figure 2 are obtained
from the vM/Monitor trace of scheduler activity. They are plots
of the expansion factors in execution times for empirically segre-
gated [lo-bound and compute-bound Q2 users against the total
number of active users (where the latter are those users con-
tending for main storage at each point in time). Each point on
the curve represents the mean expansion factor for all observa-
tions at that level of active users. An observation is made when
a user is involuntarily dropped from Q2 because he is “time-
slice ended” (i.e., he has not finished his current command and
wishes to continue immediately). At that point, the ratio is cal-
culated between the time that has elapsed since he last became
eligible for Q2 and the total amount of the CPU he received in
that time.

The sequence of events in such a cycle is: the user is added to
the eligible list for Q2 waiting to continue execution where he
left off at the end of the last time slice. While resident in an eligi-
ble list, the user is receiving absolutely no resources, just accu-
mulating the elapsed time factor in the ratio. When there is
enough main storage space available, the user is added to Q2
and will begin to receive utilization of the CPU in a quantum by
quantum manner determined by the dispatcher or the occur-
rence of page exceptions or I/O waits. At this point in the cycle,
the user is accumulating amounts of the CPU, but elapsed time is
advancing faster because he is idle while other members of the
multiprogramming set execute and because he falls into the wait
state for paging or an I /O operation. Finally, when he has accu-
mulated a certain maximum amount of the CPU while in Q2, he
is “time-slice ended” and the scheduler drops him from the
queue. The ratio is therefore a time-slice-based expansion fac-

NO. 2 * 1975 v ~ / 3 7 0 PERFORMANCE MEASUREMENT I5 I

These examples of expansion factor curves are taken from six
hours of prime shift operation of the machine just described with
as many as 88 users logged on under a wide range of load condi-
tions. A number of interesting observations may be made about
the two expansion factor curves.

The origin of the “C” plot confirms that when one compute-
bound user is executing alone in the system he fully utilizes the
CPU and his expansion factor is one.

The origin of the “I” plot indicates that one I/o-bound user run-
ning alone had an expansion factor of four since his I/O wait time
is included; he thus utilized about 25 percent of the CPU.

The slope of the “I” plot is lower than that of the “C” plot, con-
firming that the Dispatcher favors rlo-bound users by giving
them higher priority than the more compute-bound users.

Data not shown indicates that the two megabytes of main stor-
age yielded an average of 350 pageable pages and a mean level
of multiprogramming (Q 1 + Q2) of 10. Thus, for all plot posi-
tions above about 10, the eligible lists become progressively
more loaded (INDICATE LOAD RATIO value greater then 1.0).
Points below this value occur with no contention for storage,
points above occur with progressively more contention.

The “P” plot for compute-bound users indicates the expected
degradation in the problem state because of increased paging
overhead. However, by the time storage is fully utilized and the
eligible lists have first come into use, the maximum degradation
has occurred. Thus, the following deductions may be made
about paging overheads above and below the point where stor-
age is just filled (when the sum of the working set sizes of the
active users equals the number of pageable pages on the system,
and RATIO equals 1 .O) . When RATIO is greater than 1 .O, each
nontrivial user, as he receives consecutive time slices, cycles
through the eligible list and has to completely restore his work-
ing set to main storage before continuing normal speed of execu-
tion. In fact, it appears that he is experiencing the maximum
degradation in problem time ratio to total time, due to paging.
No matter how much higher the level of active users moves
beyond this point, the paging overhead for the user will not in-
crease further; we effectively have a swapping system. At levels
of activity below the loading of the eligible lists, the paging over-
head required to maintain each user’s working set gradually in-
creases until storage is filled.

The deductions presented above are supported by studying the
changes in system problem state and paging rates as the number
of active users increases. The degradation in system problem

NO. 2 * 1975 ~ ~ / 3 7 0 PERFORMANCE MEASUREMENT

time and rise in system paging rate as the number of active users
increases is displayed in the sample plots of Figure 3. Recall
that the problem time ratios in the previous plots were accumu-
lated from user drop queue records. The problem time displayed
below is a total system value; it is accumulated by the control
program and sampled every 60 seconds by vM/Monitor. Note
that the maximum fall in problem time and the greatest slope in
the paging rate curve have occurred at the level of 14 active
users. Beyond this level, we have a well-behaved swapping sys-
tem where further increases in expansion factors are due to
more and more time spent in the scheduler eligible lists.

Returning to the previous plots, observe that for the rlo-bound
user, the “P” plot is level. This indicates that rlo simulation is
the dominant portion of overhead (average 5 5 percent CPU per
time slice) and that any changes in paging overhead are insignifi-
cant.

Finally, returning to the question of criteria for overload, there
are no knees or discontinuities on the previously discussed plots
that could provide us with suitable cut-off points since it would
be impractical to run below the point of maximum paging over-
head. Thus, we are left with an arbitrary decision to be made in
terms of what the maximum expansion factors are to which we
should expose the users. Users themselves have indicated that
they are prepared to force the system to indefinitely high expan-
sion factors just to feel that they are getting something done
rather than nothing at all. This could simply be a matter of igno-
rance, but in any case, the system should be protected from such
misuse (and maybe users should be protected from themselves).

Which controls are available to prevent, for example, expansion
factors from exceeding 20? From the expansion factor plots this
corresponds to an active user count of about 20. Since the mean
value of Q 1 + Q2 has been found to be about 10, the loading of
the eligible lists (E l + E2) is about 10, and RATIO = (10 +
10) / 10 = 2.0. Therefore, if we define overload as occurring
when expansion factors exceed 20 for Q2 users, then the corre-
sponding INDICATE LOAD response for the operator or system
analyst to look out for is the following:

CPU - 100% Q1 + Q2 - 10 STORAGE - 100% RATIO - 2.0

The active-user/logged-user plot in Figure 4 provides us with
one simple but not fully satisfactory choice for control. The plot
indicates that on the average a user population count of 65 will
yield an active user count average of 20 and, hence, an average
expansion factor of 20. Thus, by restricting access to the system
to about 65 users, we might hold the expansion factors within
the desired bound. Three problems can be immediately associ-

154 CALLAWAY IBM SYST J

INDICATE command showed a CPU utilization of 10 percent, a
main storage utilization of 15 percent, and a Scheduler Conten-
tion RATIO of over 3.0 indicating that there were twice as many
users in the eligible lists as there were in the multiprogramming
set. After 10 minutes or so the problem disappeared and normal
service continued. The question was: how could the utilization
be so low under such high-contention conditions? Later analysis
of the measurement data selected 15 minutes on either side of
the time of the reported problem and revealed the following situ-
ation. For a period of ten minutes, the CPU and main storage uti-
lizations were indeed low with one user in Q2 the whole time
and various users in Q1, one at a time, as they continued trivial-
type interactions with the system. The number of users eligible
for Q2 ranged from four to six. The bottleneck “freed” up when
the one Q2 user dropped from queue. He had been occupying
only four page frames of high-speed storage. The, top priority
eligible user for Q2 was immediately added to Q2, his storage
requirements being equal to the number of available pageable
page frames on the system. Since he was the top priority eligible
user, he could not be skipped over even though users below him
required less storage, and he was effectively blocking the sched-
uler. The question to be answered therefore was how could one
user occupy a small part of storage for so long while apparently
doing nothing.

The scheduler trace revealed that he had entered Q2 1.1 minutes
ago, had only received four seconds of c p u time, and was in the
I/O wait state for most of the time. Finally, the transaction trace
from the RESPONSE class was consulted. These data reveal every
input to the system and output from the system. The data is
stamped with the time and user identification for easy matching
with the scheduler trace. It was found that the user who occu-
pied storage for 11 minutes was executing a small MEC pro-
cedure which read data from tape. The tape driv,e was attached
to the virtual machine but no reel was mounted; consequently,
the read diagnose command issued by the CMS virtual machine
resulted in an intervention-required message being sent to the
operator and the user being set in the r/o wait state but not
dropped from queue. The operator was unfortunately busy with
other tasks and didn’t get the reel mounted for some time, and it
wasn’t until the time that the reel was mounted that the blockage
in the scheduler queues was relieved. As a consequence of this
diagnosis, the usual procedures for problem identification and
resolution were expedited.

Appendix C: More examples

This appendix documents in detail some of the ways in which
the INDICATE command together with VM/Monitor and VM/SGP

NO. 2 1975 v ~ / 3 7 0 PERFORMANCE MEASUREMENT

have been used to improve the running and use of the VM/370
~ystems. '~

INDICATE has frequently been used to check out load situations
when 100 percent CPU utilization figures have been noticed for
extended periods of time. On the occasions where one user can
be shown to be receiving the major share of the CPU, corrective
action may be taken. For example, a CMS user was found to be
looping in a problem program bug, using up all spare CPU cycles
and causing poor response for nontrivial users. When the user
failed to respond to messages and telephone calls, he was re-
moved from the system with a FORCE command and system per-
formance and responsiveness immediately improved. When
there are several users contributing to persistent compute-bound
conditions, more detailed analysis has been found necessary
using VM/Monitor. In fact, there is continued monitoring of
exceptional use of the system, since it may be considerably eas-
ier to use a time-sharing system rather than a batch system, even
when the latter service is provided on a machine well-suited to
heavy compute-bound jobs. In cases where a time-sharing user
executes very long compute-bound jobs, consultants may advise
on use of the alternative systems or the use of the shipping facil-
ities between the systems.

VM/Monitor has been used to study the characteristics of cer-
tain programming systems running in the virtual machine envi-
ronment, with the intention of providing data to justify the use of
the environment on the given real machine configuration. Paging
characteristics were of particular interest in studying the
Scratchpad ~ y s t e m , ~ since it causes very little privileged instruc-
tion simulation under V M / ~ ~ O and suffers its major source of
overhead in paging. In fact, it was found in running a 768K ver-
sion of Scratchpad on a 5 12K real V M / ~ ~ O system, that paging
overhead accounted for more than 50 percent use of the CPU.
Since Scratchpad problem solving is usually a compute-bound
operation, this loss of CPU cycles to paging operations on a
small system almost dictates the use of a large, main storage
system.

INDICATE and VM/Monitor have been used together to debug
communications types of virtual machines. An early version of
an IBM 2780 communications virtual machine was found to loop
endlessly with high priority in the trivial interactive portion of
the dispatchable list while waiting to receive data from a remote
location. The virtual machine was repeating a start I/O, looking
for the condition signifying the arrival of data; the designer did
not realize that such activity in connection with a 270x device
would be considered high priority by the scheduler and could
utilize 40 percent of the CPU of a Model 145 effectively doing no
useful work. Two such machines working on separate lines were

158 CALLAWAY IBM SYST 1 I

8. Y. Bard, Prrformunce Analysis of V“/370 Sys fems , Cambridge Scientific
Center Report G320-2102, IBM Corporation, Cambridge, Massachusetts
(October 1974).

9. VMl370 System Programmer’s Guide, Form No. GC20-1807-3 for Release
2 PLC 13, IBM Corporation, Data Processing Division, White Plains,
New York.

10. I B M System1370 Principles of Operation, Form No. GA22-7000, IBM
Corporation, Data Processing Division, White Plains, New York.

11. V M l S C P Program Description unci Operations Manual, Form No. SH20-
1550, IBM Corporation, Data Processing Division, White Plains, New
York. Plotting facility is not available with the VM/SGP IUP.

12. S. J . Boies, User Behavior on an Interactive Computer System, Research
Report RC 4169, IBM Corporation, Thomas J . Watson Research Center,
Yorktown Heights, New York (August 23, 1972).

13. W. S. Hobgood, “Evaluation of an interactive-batch system network,” IBM
Systems Journal 11, No. I , 2- 15 (1972).

Reprint Form No. (3321-5008

IBM SYST J 160 CALLAWAY

