A program generator

man-
machine
communication

A person-to-computer communication system for application
program writing by nonprogrammers is discussed.

Called A Program Generator (APG), the interface system is
built upon the authors’ previous developments of a tutorial sys-
tem that is briefly discussed.

Principles and applications of APG are presented and illustrated
in terms of actual applications.

by W. D. Hagamen, D. J. Linden, K. F. Mai, S. M. Newell,
and J. C. Weber

Computers are machines that play a unique role in modern tech-
nology in that they tend to amplify man’s mental power rather
than his physical power. If they are to be considered an “intel-
lectual appendage,” why are they so difficult to use? Note that
we are not asking why it is difficult to understand how they
work, but merely why there is a communication gap between
man and machine. This question recalls some words written by
one of the authors over thirty years ago, while trying to explain
why knowledge of the human brain lagged so far behind the
physical sciences: “Something in the Mind’s Complexity, does
not like to admit its Simplicity.”"

In this paper we use our medical environment as an example of
man-machine communication. Here we find that there are three
alternative ways of bridging the communications barrier as we
have observed it.

e Teach the physician and medical administrator the language
of the machine, i.e., teach them to become programmers. We
have not been too successful with this approach.

Provide them with their personal interpreter or programmer.
Not only is this expensive, but it also serves to remove them
from direct control over what they want to accomplish.
Teach the machine to speak the language of the physician,
1.e., English.

We have chosen to teach the machine to speak the language of
the physician. Techniques for our man-machine dialogues form

the main theme of this paper.

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

An instructional language we developed,”” called A Tutorial
System (ATS), was—in many respects — a precursor of A Pro-
gram Generator (APG) that we present in this paper. ATS con-
sists of two parts: (1) The author interrogation program, which
asks questions of the author of a particular computer-mediated
tutorial. The answers to these questions are stored as program
data. (2) This program data drives the program that supervises
the tutorials, and makes each tutorial unique.

The tutorial supervisor (TUTOR) does not accumulate file data,
except for a minimal amount of information regarding the nature
of the interaction with the student. Instead, it first evaluates the
syntax of the student’s input to determine whether he is answer-
ing a question, making a comment, or asking a question. It then
evaluates the meaning of the student’s input and responds ap-
propriately. This response is determined by a combination of the
factual and logical data that the author provides (program data)
and by TUTOR’s access to the rules of human discourse.

Another way of saying this is that TUTOR performs the primary
function of carrying on a normal conversation. Certain basic
rules of human discourse are built into the function of the super-
visor, which are then applied to the program data supplied by
the author and to the input from the students to create a consid-
erable aura of intelligent verbal behavior.

ATS can, for example, select the most appropriate answer to a
student’s question, based on its available stored information,
even though the question had not been anticipated by the au-

thor. It can recognize and deal with such things as ambiguous
and conflicting input (questions or answers), and handle negat-
ing words. The use of personal pronouns (it, he, they) is accept-
able, and meaning is assigned to these woids azceriding to the
coniext of the discussion. It also has the abiiny, to about the
extent that people have it, to interpret correctly the intended
meaning of misspelled words.

On the basis of experience with ATS and TUTOR, we have in-
corporated these fairly powerful features of human-machine
communication into a noninstructional application. In the new
system, a modified version of TUTOR performs the front-end
function of user data input, which we designate and later define
as ENTER.

The ability to interpret misspelled words is made use of in EN-
TER when the user is referring to items on a list. This ability is
also used in the various output functions when the user has to
refer to predefined text, When the program can silently correct
the user’s occasional errors, it makes his job easier.

- 1975 A PROGRAM GENERATOR

A
Tutorial
System

use of the
program
generator

For the most part, the other features mentioned, which are es-
sential to a free-format tutorial discussion, are not really needed
in medical application programs, the primary function of which
is to store and access data. The reason they are not needed re-
lates to the distinction to be drawn between filling out a ques-
tionnaire and producing a free-format composition.

A program generator

The data processing needs of Cornell University Medical Col-
lege, and an increasing percentage of those of its affiliated hospi-
tals, currently are being served by using APL. To facilitate both
the writing and subsequent maintenance of the large number of
application programs involved, a conversational interface has
been developed that automatically generates and documents the
application programs, and permits their subsequent maintenance
or modification in an equally conversational mode. These opera-
tions are performed using A Program Generator (APG) which is
discussed in this paper.

APG has been designed to enable people with analytical habits of
thought, who know what they want to do, to write application
programs by answering a series of questions in English, with
adequate default options at every point. Thus the user does not
have to be a computer programmer.

Although the stereotyped conversation imposed by APG might
be considered to be a programming language in its own right, it
differs from other languages in the very important respect that the

program generator interrogates the user. Thus the initiative is
assumed by the program, not by the user. Neither does he have
to compose a series of declarative statements that often require
complicated rules of syntax, nor does he assume responsibility
for the resulting product’s functional cohesion.

Despite such considerations, the average physician or medical
administrator is no more inclined to write his own computer ap-
plications than he is to type his own letters. Even though the
programmer uses a typewriter-like terminal, the analogy goes
still deeper. The person who wants a letter written usually
knows what he wants to say. He also has a working knowledge
of the capabilities of a typewriter, although his secretary is more
skilled in its use. However, just as one dislikes being burdened
with details of spelling, punctuation, grammar, and format, so
with the program generator one does not want to be concerned
with similar details of validity checks, sequence, and format.
Nevertheless, the ultimate user is brought closer to the actual
process of program design. He proofreads and edits the results,
and quickly learns what computers can and cannot do effectively.

HAGAMEN, LINDEN, MA], NEWELL, AND WEBER IBM SYST I

Perhaps the most tangible benefit of giving the user these in-
sights into the nature of data processing is the awareness that
the greatest costs are incurred with data input. Thus it behooves
the user to make as much use of these data as possible. The
standard advice we give someone after receiving their initial
specifications for a program is “dream a little.”

APG does not produce APL code. Rather, the generator asks the
programmer a series of questions, the answers to which are
stored as data. These data drive the basic ApL functions com-
mon to all programs, and thereby make each program unique.
To avoid confusing these data with those that are subsequently
entered via the application program itself, we shall refer to the
data that drive the programs as program data. Information en-
tered through the application programs is called file data.

We use the term data-driven programs to describe the distinction
between special-purpose programs that are individually coded
for each application and general-purpose programs that are mod-
ified by a series of stored instructions for each application. This
distinction should be familiar to any computer professional. The
analogy is similar to the distinction between a hard-wired pro-
gram and the stored computer program, which provides the ba-
sis for modern data processing. Just as computers are capable of
performing only a limited number of simple operations, and it is
the sequence of these operations that is controlled by a stored
set of instructions or program data, so application programs per-
form a limited number of functions that are controlled by a se-
ries of stored instructions.

Quite apart from APG, we have our own text editing and format-
ting package’ which receives wide use within the Cornell Univer-
sity-N.Y. Hospital Medical Center for activities that range from
writing letters to printing books. Many of the features of this
program have been incorporated into APG. Two of these seem
worthy of mention.

On the input side, there is what we call a “user-defined short-
hand,” which may be used whenever character data are asked
for. The user simply types in an asterisk followed by any ab-
breviation that seems intuitively appropriate. The person is
asked, on completion of the entry, to specify the meaning of any
newly entered abbreviations. Thus *ENT could be used to stand
for “otorhinolaryngology.” The entry is not only printed out as
“otorhinolaryngology,” but it is also stored that way in the file.
This is important so that one user is not restricted to another
person’s convention. Such abbreviations are not limited to single
words, but they can represent text of any length. Thus *NYH
might represent “The New York Hospital.” This user-defined
shorthand conserves considerable input time in such situations

1975 A PROGRAM GENERATOR

data-
driven
programs

text
processing

efficiency
of data-
driven
programs

as the biographic section of a personnel file, which includes
many repetitions of long names of institutions attended, medical
specialties, and addresses. It also tends to reduce the incidence
of typing errors.

On the output side we find significant use of a hyphenation algo-
rithm that automatically hyphenates words according to the
rules of common English usage, for purposes of right justifica-
tion of formatted text. Hyphenation is particularly useful where
the column width is narrow.

The ease of using APG derives not so much from its natural lan-
guage communication as from the interrogative nature of the
dialogue. The user, rather than being required to structure and
sequence a series of statements, is asked explicit questions that
have adequate default options at every point. Clearly defined
options appeal to most users.

The programming field abounds with languages that require a
series of procedural statements in pseudo-English, such as COB-
oL. To encourage such verbosity would be to abuse the power
and brevity of APL. The pressure is still on the user to learn the
rules of syntax of the language, and to compose his statements
to produce a functional whole. The goal we set for ourselves,
and feel we have achieved, is quite different, i.e., to guide the
user every step of the way.

We have little doubt that our use of a general-purpose program
for writing application programs can reduce programming and
maintenance costs and provide a satisfactory level of quality. A
natural question, however, might be, to what extent (if any)
must we lose efficiency of data input, data storage, and process-
ing time because of the generality of the data-driven functions?
Optimal conditions for one application may not be optimal for
all applications.

APG is general purpose only to the extent that it contains the
basic functions necessary for any application. The functions have
been fine tuned to the best of our ability. However, the program
data that drive these functions make each program unique and
special purpose in every sense of those words.

Selective branching and a multiplicity of validity checks increase
the efficiency of data input. The facility for variable-length rec-
ords and for combining consecutive data fields into the minimum
number of integers offers the maximum degree of data compac-
tion. The ability of the user to override such features by storing
each data element separately and even redundantly (in attribute
blocks), permits him to make the optimal tradeoffs between

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

storage requirements on the one hand and access and CPU times
on the other.

The response times in the particular APL environment in which
we work are well within the range required for terminal-based
applications. This includes the interrogation of large files. Vol-
ume reports are produced on a high-speed line printer.

System environment and experience

Since this experimental computing system involves one of the
most extensive uses of APL within a medical environment, it
seems appropriate to include a brief description of the computing
facilities and the scope of the applications. The computer is an
IBM System/370 Model 145 with APL files and microcoded as-
sistance. Thus there is no problem with workspace size. Not only
are the program data and file data stored in files, but the myriad
of APL functions that comprise the program generator are also
stored. When any of the named top-level functions is executed, it
automatically reads into the workspace all the necessary sub-
functions and program data and expunges unnecessary functions
and data.

We variably use a typewriter terminal, CRT, paper tape (for lab-
oratory instruments), and cards for data input—depending on
the application. Also used are a high-speed line printer for vol-
ume outputs and the typewriter terminals or CRTs for other
types of displays.

Most of the program data are stored outside the programmer’s
workspace, in a file area set aside for this purpose. What re-
mains in the workspace is basically a series of descriptors that
define the contents of the program data to the programmer func-
tions.

Since application programs vary greatly in size, we have found it
useful to allow the programmer functions to define their own
storage areas dynamically, rather than define fixed area for each
application ahead of time. In our present implementation, each
program is initialized with an external storage area of approxi-
mately 4K bytes, and this is added to as needed from a file pool
shared by all the APG programs on the system.

Control of access to both program data and file data is provided
by reference to the user’s APL account number. Program data
may be modified only from the sign-on number by which it was
originally entered. Furthermore, file data may only be modified
or displayed from sign-on numbers for which authorization has
been entered from the programmer’s user number.

No. 2 - 1975 A PROGRAM GENERATOR

file
management

programming
times

Communication between separate APG programs is automated
so that one program may make use of information entered into
the system from another, either to modify its behavior (e.g.,
branching) or to update its own file data. All such uses of multi-
ple files depend on access authorization, which can only be giv-
en from the user number that originally establishes each file.

Overall control of the APG system is vested in one account
number, which may execute functions to allow entry of a new
program into the system and monitor each program’s use of stor-
age area for accounting purposes.

We were given three major accounting-type programs written in
COBOL. These are planned to be converted to APL. The only
reason for mentioning the existence of these programs is that we
use conversational APL programs to interrogate the COBOL files.
Whether one is talking about APL or COBOL files, he finds that
the need for volume reports is significantly reduced by the facil-
ity of being able to interrogate the files in a conversational man-
ner to obtain current information whenever it is needed.

The time required to produce the average application program
using APG is less than ten percent of that required to write the
same program by hand. However, the greatest single benefit is
the automatic detailed documentation and subsequent ease of
program maintenance, utilizing the various editing functions.

When we first, naively, became involved in providing a program-
ming service, we saw no problem in writing special-purpose pro-
grams. Each application offered new challenges, and often new
solutions for previous problems. Because of the conciseness of
the APL language, our programming times and costs were a frac-
tion of previously estimated costs.

The ten-percent time estimate did not include the time required
for documentation. Adequate documentation of APL programs is
regarded as time-consuming work and has typically not been
done. When one is on top of each program, this causes no prob-
lems. However, a year and twenty to forty application pro-
grams later —especially when some of the people involved are
no longer with us—program maintenance and modification be-
come a very real problem.

Program generator concepts

APG consists of the following two major classes of APL func-
tions:

o Programmer functions that create program data.

s User functions that collect, process and output file data.

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

Table 1 Programmer and user functions

Purpose of Programmer User
Sfunctions functions functions

Data input GENENTER
GENBRANCH
GENFILE
GENDISPLAY
Editing GENEDIT
EDITFILE
Data output GENREPORT REPORT
GENSUMMARY SUMMARY
GENDISPLAYSUM
GENSTATS STATS
SEARCH

The programmer and user functions may in turn be broken down
into the following three general categories:

o Functions that relate to data input and file organization.
¢ Functions that edit either program or file data.
* Functions that relate to data output.

Since programmer and user functions often perform parallel
tasks, it is appropriate to assign similar names to related pairs of
functions.

Table 1 contains the function names called directly either by the
person who creates an application program or by the user of an
application program.

GENENTER creates most of the program data related to subse-
quent file data input, storage, and retrieval. More specifically,
this function determines how the questions to be asked in ENTER
and EDIT appear to the user; validity checks to be imposed on
the data: where the data are to be stored; names to be assigned
to units of data; and how the output data are formatted.

GENBRANCH defines conditions under which a question, or se-
ries of questions, will be skipped or repeated in ENTER and
EDIT.

GENFILE establishes file organization.
GENDISPLAY prints the documentation of the program data as
defined by the three functions GENENTER, GENBRANCH, and

GENFILE.

GENEDIT is used to make changes in the program data previously
defined by GENENTER, GENBRANCH, or GENFILE.

NO. 2 + 1975 A PROGRAM GENERATOR

programmer
and user
functions

brief
and
verbose
modes

ENTER is executed by the user of an application program to in-
put the data constituting new records.

EDIT is used to change {(or add to) records previously entered
by the user.

Four user functions produce four different types of data output.
Three of these user functions require the prior execution of a
parallel programmer function to provide the program data to
drive them.

REPORT provides the output of the answers to specified ques-
tions in tabular format. Fields to be printed, sequence of sorting,
criteria for data selection, and totals are defined by the prior
execution of the GENREPORT function.

SUMMARY composes and prints file data in prose form, ac-
cording to rules of structure defined in GENSUMMARY. GEN-
DISPLAYSUM displays (documents) the program data that drive
SUMMARY, and GENEDITSUM permits modification of this pro-
gram data,

STATS prints cumulative statistics stored in counters. The op-
tions for selection, sorting, totals, and formatting are similar to
those in GENREPORT. However, because the data are stored in a
separate part of the file (counters), a separate programmer func-
tion —called GENSTATS —is used to specify these options.

SEARCH permits the user to select from the file all information
that satisfies any criteria he can state in terms of answers to spe-
cific questions.

Functions related to data input

If a person is unfamiliar with any of the programmer or user
functions, explicit instructions are required to indicate his op-
tions at every point. However, after one has used a program a
sufficient number of times, such repetitious printing of these op-
tions consumes unnecessary time. Thus there is a brief and a ver-
bose mode for displaying the text (options) associated with each
question in every programmer and user function.

One can switch from brief to verbose mode, or vice versa, sim-
ply by typing x whenever the keyboard unlocks. The program
continues in that mode until an x is typed again.

In the Appendices, examples of terminal interaction are de-
scribed and shown. Outputs from the computer begin at the left
margin of the page, and inputs from the terminal are indented six

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

spaces, so that the reader may easily distinguish machine from
user.

The examples show the use of the program generator to write a
program called GRANTS AND CONTRACTS. This is a program
currently used by Cornell University Medical College for the
management of Federal and Foundation research funds.

There are two basic modes of operation of the program genera-
tor. In the example shown in Appendix 1, the user has typed the
name of the function GENENTER, to which the system responds
that this is Question 1. The system asks the user to respond to
the message LT:. Since this is too cryptic for him, the user types
x to signal a more explicit statement of what is expected. The
instruction is repeated in its verbose form: Long text:. The user
answers this, and —still in verbose mode —is asked to respond to
Brief text:. If the user had wanted the brief and verbose text to
be identical, he could have entered a carriage return, which
would have caused the long text to be copied as the brief text. If
he had wanted the brief text to be omitted and replaced by the
question number, which is always displayed in ENTER and EDIT,
he could have entered a space before the carriage return. If a
user of ENTER or EDIT is in verbose mode, the GRANT ID NO:
tells him what he is expected to enter. If he is in brief mode, he
sees only 1D:.

The first question in any application program has certain special
restrictions. It must be a number—preferably a unique num-
ber—that is used for the identification of logical records. In
Appendix 1, the number is the grant identification number.
Otherwise, it could have been a social security number, patient
history number, item number, or sequential identification
number, depending on the nature of the application and the
judgement of the programmer.

Because this was the first question, the facts that it requires
numeric input, consists of one entry, and contains no decimals
are stated for the user. He is then asked for maximum and mini-
mum values, which serve as validity checks on the file data input
via ENTER.

GENENTER proceeds to Question 2, still in verbose mode, and
continues in that mode until the user again types x. Since the
user has progressed past the first question, he has options in
addition to entering long text. By typing ¢, he may define a ques-
tion as a calculation. Such questions do not require any input
from the keyboard, and, therefore, need no brief or long text to
tell the user what to do. Instead, the user does not have to do
anything. The file data are obtained by performing calculations
that have been defined by the programmer on any fields from

No. 2 -+ 1975 A PROGRAM GENERATOR

any questions already answered. The other option is to type r
for repeat, which means that he wants to copy some question
that already exists. Repeat is used when subsequent editing of
such a question would be quicker than specifying the entire
question. The user exists from GENENTER by entering a carriage
return in lieu of Long text, ¢, or r.

For all questions except Q1, GENENTER asks for the data type.
For purposes of the user interfacing with the program, we cur-
rently distinguish five types of data: binary, numeric, date,
character, and list. Actually, all file data are converted to APL
integer data before being written into the file.

Binary data are those that may be selected by numeric code
from a predefined list of options, and they are binary in the
sense that an option is either present or absent, as indicated by
the numbers entered. Data such as primary diagnoses, complica-
tions, and associated conditions are often treated as binary data.
Apparently unrelated items such as sex, marital status, and eth-
nic group can be handled as a single question, since GENENTER
asks whether the data should be divided into mandatory or ex-
clusive sets. A mandatory set is one from which at least one
choice must be made. An exclusive set is one from which only
one choice may be made. These restrictions are then imposed as
validity checks on the entering data. Such data are binary in the
additional sense that they can be represented as a binary string.
Such strings are then converted to the minimum number of APL
integers necessary to contain the information, i.e., thirty bits are
represented as a single base ten integer. (We reserve the thirty-

first bit for another purpose.) Appendix 2 shows one use of the
binary data type in the GRANTS AND CONTRACTS program.

GENENTER begins execution with the next sequential question
number. Appendix 2 starts with Q2. Two formatting symbols are
used for defining the long text. The ¢ indicates a carriage return.
The s is replaced by a space when printing by the user functions
ENTER and EDIT. Actually, s is an s overstruck with an upper case
F. The convention of using s is used here for exposition so that it
may be visualized without an APL Selectric ® Typing Element.

List data are similar to binary data, but differ in the following
respects. The user may enter either a name (character data)
from a predefined list or the corresponding numeric code. At the
programmer’s option, a user may add to the number of items on
the list. List data have the added advantage that where the num-
ber of options is very large, partial display of the list is permitted,
rather than requiring that all information be contained in the
verbose text. An example of list data is given in Appendix 3.

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER iBM SYST J

Character data (illustrated in Appendix 4) are APL literal data.
Here we ask the maximum number of characters allowed and
whether an empty vector is permitted. As with all types of data,
character data are converted to APL integers before being
stored.

Dates are treated as separate data types for formatting purposes.
Special functions are used for calculating time differences in
days, weeks, months, or years between two dates or with re-
spect to dates available from the system. Again GENENTER asks
for the number of entries required and the earliest (minimum)
and latest (maximum) values permitted. Appendix 5 shows an
example of dates taken from the GRANTS AND CONTRACTS pro-
gram, in which we have ajready defined Q5 and Q6.

Numeric questions are asked by GENENTER to determine the
number of entries (numbers required), maximum and minimum
values permitted for each entry, number of decimal places to be
stored, and whether (when there is more than one entry) certain
of these may be encoded together for purposes of data com-
paction, i.e., represented as a single integer in a different base
numbering system. An example of a numeric question is shown in
Appendix 6.

Calculations between fields are performed in ENTER (or EDIT)
and therefore have to be specified in GENENTER. In ENTER, cal-
culations replace questions, i.e., they represent questions for
which the input is internally, rather than externally, supplied.
Interfield calculations are contrasted here with calculations per-
formed on individual fields, e.g., selection and sorting, which are
performed in the functions related to data output.

A calculation means any operation that can be performed on any
number of fields from any number of questions, as long as these
questions have already been answered. Many of the common
calculations such as summation, multiplication, percentage, and
averaging, as well as certain calculations involving dates, have
been anticipated. In these instances, the user simply indicates
the desired calculation, and the fields in which questions should
constitute the input. He answers questions regarding the field
width, decimal positions, heading, and whether the result should
be stored in a sorting block. An example of an interfield cal-
culation is shown in Appendix 7.

GENENTER requires the definition of three types of names. One
type is mentioned under “list data,” i.e., the literal text that
comprises the lists. Another is the heading that should be dis-
played in the output program whenever that field is printed. The
third is any text associated with the various options in a binary
type question, again for display purposes. In Q2 of Appendix 2,

No. 2 - 1975 A PROGRAM GENERATOR

print

format and
name
specification
calculations

sorting
blocks and
logical
records

selective
branching

the heading is GRANT TYPE, the texts associated with the three
answers are NEW, RENEW, and CONT.

The formatting of each output field is also determined at this
time. Numeric data are always flush right. However, literal
text—whether a heading, element of a list, or text associated
with the binary choices —may be flush left or right or may be
centered in the print field. The width of each column is calculat-
ed as the greater of the length of the heading or the width of the
input field. Column width is presented to the user, who is asked
whether it is acceptable. A no answer requires that the user
specify the width that is desired. If the heading exceeds the
width of the input field, giving a smaller width causes the head-
ing to be formatted on more than one line. It may be desirable to
print literal data themselves on more than one line. The average
name in a list of people may be only fifteen characters. One name
of thirty characters, however, would make the field unnecessarily
wide. Thus if the width were specified as fifteen, longer names
would be displayed on two lines, without splitting the words.

GENENTER also asks for each question whether the user wants
the data to be stored in a sorting block, which refers to how data
are stored in a file. All APL data types (binary, integer, decimal,
and literal) are first converted to the integer type before being
written into the file. Thus each logical record consists of a series
of numbers. Successive logical records are concatenated without
demarcation. All the normal processes of seiection, sorting, pro-
ducing totals, etc. may be performed on the data stored in this
fashion. However, if it is known ahead of time that such func-
tions are to be performed frequently, having the fields stored in a
separate block or series of blocks speeds the process. This rep-
resents redundant storage, i.e., data are stored in the logical
vectors and in the sorting blocks.

GENBRANCH is the second programmer function that is related
to data input. This used to be part of GENENTER, but it was
found that most people were not in a position to use it fully until
they had finished their program and had seen the documentation.

Selective branching may occur on the basis of the presence or
the absence of data in any field. Quantitative conditions may be
defined explicitly or by range.

Branching most frequently consists of skipping a set of ques-
tions. In Q3 of Appendix 8, if the grant had not been funded, Q8
and Q11 - 14 would have been omitted since they pertain only to
grants already funded.

Branching (illustrated in Appendix 9) may also consist of ad-
ding questions, which means repeating certain questions because

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER 1IBM SYST J

questions that do not exist cannot be addressed. Questions are
automatically repeated if an error check occurs as a result of the
parameters defined in GENENTER, e.g., too large or too small a
number. However, selective branching may be used to correct
other errors detected as a result of calculations in some other
part of the program. Text may be defined for every branch. Thus
the reason the question is repeated is stated for the user of EN-
TER Or EDIT.

Before file data can be entered, the person who is writing the
program must execute GENFILE. The program already knows
the number of possible entries in a logical record, and how many
sorting blocks and counters one has requested. Thus a file that
consists of fixed-length records can be constructed simply by
asking for an estimate of the number of logical records anti-
cipated. (This number may be changed at a later date.) All de-
tails of the file organization become part of the documentation.
The user is also asked whether he wants an actual, or a simulated
file. (A simulated file resides in the workspace.) Very few of our
applications fit in an APL workspace, but the simulated file is a
very useful feature in the early stages of testing an application
program.

The user is also asked whether he wants fixed- or variable-
length records. A variable-length record is one in which any
unused space is compressed out before being filed. When read
back into the workspace, the logical record is restored to its
original length.

ENTER and EDIT have built into them the option of typing u (for
unknown), which distinguishes in the file data between the ab-
sence of something —as might be indicated by a 0 —and informa-
tion not available or not tested. The u is stored in the file as the
largest four-byte number (2*31)-1, which is used for no other
purpose. This unique integer is also inserted automatically into
the logical record where questions were skipped, and into those
parts of character data fields that contain only spaces. The u or
“not applicable” data are compressed out with variable-length
records.

The average data compaction that results from the use of vari-
able-length records in our applications is over fifty percent. Giv-
en this situation, one might wonder why the user is even given
the option of fixed-length records. The reasons are that some
applications are by their nature relatively fixed and that the
compression and subsequent expansion increases the apparent
1/0 time.

ENTER is executed by the user of an application program to in-
put file data. Each time ENTER is used, a new logical record is

NO. 2 ¢ 1975 A PROGRAM GENERATOR

GENFILE
and
variable
length
records

added to the file. All validity checks defined in GENENTER are
imposed on the entering data, and the specified calculations are
performed automatically. If, because of selective branching or
entering the u option, any data necessary for a calculation are
absent, the calculation is not performed, i.e., its result is unspec-
ified (u). However, this is not the case with user-defined calcula-
tions (FNI, FN2, etc.) because the programmer may want to
make use of the u variable in the calculation.

Editing functions

The essential difference between ENTER and EDIT is that ENTER
adds a new logical record each time it is executed, whereas EDIT
modifies logical records already in the file. EDIT asks which logi-
cal records to edit—accessed by means of the 1D number—and
which questions to change. EDIT simply writes over existing
data. Note also that EDIT may be used in lieu of ENTER to add
data to an existing record. If, for example, data are being en-
tered about patients on periodic visits, ENTER is used only for
the initial visit. Questions relating to subsequent visits are
skipped as defined in GENBRANCH. These data are then added
for subsequent visits by using EDIT.

GENEDIT is used to modify program data. Not only does it edit
data produced by GENENTER, but it also changes conditional
branches. It is possible to add new questions, erase questions,
and to change the sequence of questions. By design, GENEDIT
modifies only the sequence in which questions are asked. It does
not change the position of the data in the logical vector, nor does

it affect selective branches already established, i.e., the program
automatically changes the numbers associated with these pro-
gram links so that they perform the functions originally intended.
The QN numbers shown on the right of the first line of the display
for each question are included so the user can monitor the
changes that have been made.

EDITFILE is executed when the user gets a message to do so,
which occurs under either of the following conditions: (1) If
questions have been added via GENEDIT after file data already
exist, then the length of each logical vector must be increased,
i.e., the file must be expanded. This is done by EDITFILE, and u
data are inserted into the newly created slots. (2) If the user
adds data to a file that has variable-length records, the new
data will have to be stored in a new place because the existing
logical record does not have enough room for it. This occurs
automatically, and the old record is wiped out. In time, the file
becomes filled, because of the unused space where erased rec-
ords were focated. EDITFILE also compresses out these empty
spaces.

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

Functions related to data output

The reports we are called upon to produce fall into four general
categories. In the first of these, the selected fields represent the
columns, and the selected logical records represent the rows.
The user function that prints the file data is called REPORT. The
function that creates the program data to drive REPORT is calied
GENREPORT, and is illustrated in Appendix 10.

In Appendix 10 one can see the use of both the numbers associ-
ated with each field, and assigned text (e.g., NEW) to indicate se-
quences and selections. Logical expressions such as SINCE and
GREATER THAN are comparable to reserved words in COBOL.

The numbers in parentheses under Options represent the field
widths plus one space to aid the user in estimating the number of
fields that fit on a page. If the number of fields needed exceeds
the number that fit on a page, the user is told the number of
spaces, and he is required to deiete one or more fields. The
number of spaces between fields is a global variable.

When REPORT is subsequently executed, it first asks a question:

report
Continuous or manual printing ¢/m?
m

At this point the keyboard unlocks to permit the alignment of
the paper. A carriage return causes printing to start. Manual
rather than continuous printing means the program pauses after
fifty-four lines, or after each DEPT, whichever occurs first. If
additional lines are required on a given page, one will be printed
for each space that is entered before the carriage return. Each
page begins with the report header lines. The DEPT, or whatever
category has been selected, has the statement “‘(continued)”
appended, where appropriate. A sample tabular report is shown
in Figure 1.

A quite different type of report is one that generates formatted
prose from the file data. An example of formatted prose is a pa-
tient discharge summary shown in Figure 2. Such summaries are
required as a permanent part of every patient’s hospital record.
Preparation of discharge summaries is a time-consuming and
costly chore for the physician; consequently, the summaries are
not always written in sufficient detail. Thus this service not only
frees the physician’s time, but the quality of the summaries is
improved.

GENSUMMARY prepares the program data to run SUMMARY. It
may be helpful to think of a summary as a string of predefined

NOo. 2 - 1975 A. PROGRAM GENERATOR

REPORT
and
GENREPORT

formatted
prose

Figure 1 Tabular report format

GRANTS AND CONTRACTS
06/27/74% NEW SINCE 01/01/74
ANATO

PRINCIPAL GRANT PERCENT
INVESTIGATOR STATUS AGENCY PURPOSE FUNDED TOTAL

Able, M. FUNDED NFME STUD-TEACHNG 70 34953.00
Baker, J. FUNDED NIH GEN-RESEARCH 100 702493.00
Baker, J. PENDNG HEW INST-TRAING 1214531.00
Baker, J. REJCTD NSF GEN-RESEARCH 102705.00
Jones, S. PENDNG NIMH GEN-RESEARCH 9725.00
Smith, R. FUNDED NIH RES-TRAINING 99705.37

FUNDED 3 837151.37
PENDNG 2 1224256.00
REJCTD 1 102705.00

TOTAL 6 2164112.37

text containing vacant slots to be filled with file data during exe-
cution of SUMMARY. However, to give syntactic and semantic
integrity, multiple conditions must be defined to modify the pre-
defined text, as well as the file data.

It is important to realize that GENSUMMARY need be executed
only once to create a general-purpose SUMMARY for each medi-
cal discipline. Once created, SUMMARY may be used for thou-
sands of patients. If modifications are desired, on the basis of
experience with the program, they may be made easily with
GENEDITSUM.

SUMMARY operates on units called paragraphs and entries. A
paragraph is defined as a unit for formatting purposes. Each time
a new paragraph is defined, GENSUMMARY asks a series of ques-
tions. Is the format columnar or paragraph? If columnar, it asks
how many columns, the width of each, and the space between
columns. In either case, GENSUMMARY has to know the print
width, indentation for the initial line (which can be zero, or a
negative or positive number of spaces), and the formatting sym-
bol that indicates whether the paragraph or column should be
centered, flush left or right, or both, i.e., variable spacing with
automatic hyphenation. It also asks for the number of lines. A
line is a unit of text followed by a formatting symbol.

The sUMMARY for obstetrical patients happens to consist of
fourteen paragraphs. Everything under DISCHARGE NOTE could
have been one paragraph consisting of four lines (formatting
symbols), since each has the same format (a negative indenta-
tion of three characters). However, mainly for ease of editing
the program data, it has been divided into three paragraphs.

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

Figure 2 Example of formatted prose

09/29/73w 10/16/73T SP1 O0BS Smi th, Mary
23 years 1234567
ADMITTED: 09/24/73 DISCHARGED: 09/29/73

PRIMARY DIAGNOSIS: Full term operative delivery.
ASSOCIATED CONDITIONS: none.

OPERATIONS AND/OR PROCEDURES: Right mediolateral episiotomy
and repair. Llow-mid Dewees forceps extraction; position:
left occiput anterior.

SURGEON: Jones DATE: 09/25/73 ANESTHESIA: Local, nitrous oxide
and oxygen.

COMPLICATIONS: Fetal distress -- cause: unknown.

CONDITION ON DISCHARGE: Patient: well.
Infant's Hist. No.: unavailable
Condition: well
Sex: female
Weight: 2660 grams

DISCHARGE NOTE:

1. REASON FOR ENTERING HOSPITAL: This 23 year old registered,
black, married female, G2, PO, AB1l, LCO, presented in early
labor, without vaginal bleeding, with intact membranes, at
39 wks gestation. Her past history included cone biopsy,
anemia and hyperemesis.

PERTINENT PHYSICAL, X-RAY, AND LAB FINDINGS: Admission BP:
115/75; cervix 2 cm dilated, B80% effaced; uterus: 40 wks
gestational size; regular; adnexa clear; presentation:
vertex; engagement: engaged; station on admission +1;
nitrazine: neg; FH: normal; no edema; reflexes: normal. No
significant x-ray findings. HCT on admission: 33.3%; HCT on
discharge: 31.5%; blood type: 0 pos; not immunized; VDRL:
neg; FTA: not done; sonogram: 20 wks; placental location by
sono: anterior; liver values normal.

COURSE IN HOSPITAL: Labor was characterized by fetal dis-
tress. The membranes were artificially ruptured during la-
bor. She underwent the operative delivery stated above. The
indication was fetal distress. Labor stimulated with
pitocin; indication: insufficiently strong labor., Total la-
bor: 14 hrs; second stage: 2 hrs. She subsequently ex-
perienced no problems. The infant had an apgar of 8 at 1
minute and 9 at 5 minutes, and subsequently did well during
the mother's stay. The patient's specific therapy included
pitocin and ergotrate.

D1SCHARGE INSTRUCTIONS:
Disposition: To family plan. clinic in 4 weeks.
Medications: 1. Ferrous sulfate 300 mg p.o. t.i.
2. NYH Vitamins 1 p.o. daily 100
Send copy to: 1. A. B. Jones
Signed: M.D.
Name of physician: A. B. Jones

Thus DISCHARGE NOTE: and the text starting with 1 constitute
the two lines of this paragraph. The two succeeding paragraphs
each consist of one line.

The basic unit within a paragraph is called an entry. For each
entry, GENSUMMARY provides six primary options: OUT,
QTEXT, BRANCH, DROP, SKIP, and FN (meaning the definition of
a special APL function to perform any calculations omitted in
GENENTER).

1975 A PROGRAM GENERATOR

QTEXT permits the following definitions: LTEXT (which precedes
the file data); RTEXT (which follows the file data); the file data
fields (if any) to be called; conditions for printing the concatena-
tion of LTEXT, DATA, RTEXT; and what should be printed if the
data are null (when the set is not mandatory).

In Figure 2, the third paragraph is an example of QTEXT. The
ASSOCIATED CONDITIONS: is the LTEXT, and the period (.) is
the RTEXT. The input question on which the associated data are
based is a binary one, with no mandatory sets. There happen to
be eighteen choices, including that of other or free text option.
The user of GENSUMMARY indicates that if none of these choices
were stored, the word none would be printed as DATA. In other
situations, the absence of data could result in the suppression of
printing of the whole sequence of LTEXT. DATA. and RTEXT.
When there are several associated conditions, these are concat-
enated together and separated by commas—unless some other
delimiter is indicated —and the last two elements in the string
are separated by and. The text associated with each data field is
created by GENENTER and stored as program data. None of the
options under QTEXT is mandatory. Thus DISCHARGE NOTE: is
both an entry and a line, and consists of only LTEXT.

BRANCH supplies the program data that permits SUMMARY to
skip over (not print) any number of specified entries. The condi-
tions for branching can be defined as any logical or numeric rela-
tion between any of the data elements in a patient’s record. If
the primary diagnosis were not some form of delivery, then no
information about an infant would be printed.

A DROP entry is not illustrated in the obstetrical SUMMARY, but
is frequently used in those from other services. It means to drop
a specified number of characters from the beginning or end of a
piece of text. It is usually associated with conditional branch.
Consider an example such as: “She experienced diabetes as a
complication.” If there were more than one complication, the
“a” would have to be dropped, and an “s” concatenated to
“complication.”

A SKIP entry simply means a blank line; SUMMARY inserts an
extra formatting symbol for each such entry. This is not only
used where one wants a blank line between paragraphs, but may
also be used in columnar format where the number of items is
not equal for each column. Medications: is one column, and the
number and each medication represents a second column. In
column one, the user of GENSUMMARY must supply a SKIP en-
try for each medication after the first. The program keeps track
of this so imbalances cannot occur.

The special function (FN) entry provides the means of perform-
ing calculations that could have been done in ENTER. An exam-

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

ple would be calculating the duration of stay from the dates of
admission and discharge. We usually prefer to perform such cal-
culation in ENTER and store the result as data. However, the
option of specifying calculations is provided in GENSUMMARY.
It was not used in this instance.

Substituting the correct personal pronoun for the patient is
achieved by supplying both entries, and branching to the appro-
priate one on the basis of the information contained in the field
related to the sex of patient. The facility to substitute an for a
when the following text begins with a vowel is supplied automat-
ically.

Cumulative statistics should not be confused with analysis of
statistical data. Rather, they represent simple frequency counts
or tabulations, with appropriate totals and groupings. These sta-
tistics deal with such things as the number of patients who had
certain diseases, procedures, and complications. The statistics
serve the functions of summaries for internal use and govern-
mental reporting. They also provide the basis for, rather than
summaries of, research projects.

GENSTATS asks for the specification of the options for selection,
sorting, totals, and formatting in a manner similar to GENRE-
PORT. However, because the data are stored in a separate part
of the file (counters), a separate programmer function is needed.
STATS is the user function that prints the cumulative statistics
stored in the counters.

It is important to realize that STATS and SUMMARY usually go
together; i.e., if a clinical service has one program, it usually has
both. They access the same data base. We tend to look upon the
cumulative statistics as providing a service primarily for the
department and certain physicians who are interested in clinical
research. The discharge summaries are also a service for the
hospital. More importantly, by saving time, they insure the co-
operation of the physicians who may see no immediate rewards
from the tabulations, but who have to provide the input.

Since the two programs go together, one may conceive statistics
as being a long vector of counters. Every time patient data are en-
tered into the system, the appropriate counters are incremented.
The counters are defined in GENENTER as calculations, and
the locations of the counters in the file are documented in the
GENDISPLAY. The counters are cumulative, but there are paral-
lel vectors for weekly, monthly, and yearly reports. Each report
is printed and initialized at the appropriate interval. The raw
data, however, that form the basis for the discharge summaries
are kept only for about six months, at which time they are stored
in tape archives.

No. 2 - 1975 A PROGRAM GENERATOR

cumulative
statistics

file
searching

Probably the greatest single benefit that accrues from perma-
nently storing raw clinical data in a file, be this on disk or tape,
is the ability to request correlations of information that were not
originally anticipated. This facility provides a powerful tool for
clinical research, peer review, and overall management of the
clinical department.

Clinical research often consists of studying the charts of patients
with certain combinations of clinical features. For example,
someone may want to study the effects of treatment on the in-
fants born to all patients with a history of conditions A or B dur-
ing the first trimester of pregnancy. The basis of such searches is
the ANDing and ORing of various parameters. The usual desired
output is a list of history numbers that direct one to the patient
charts in the records room.

Peer review is the evaluation of the quality of medical care
provided by individual physicians. The criteria for data selection
include such things as procedures or treatments used, the in-
dications for such treatment, and the effect on the patient. The
output of these searches usually is a list of names of physicians.
Finally, a conversational function, called SEARCH, permits the
selective interrogations of files. SEARCH is illustrated in Appen-
dix 11.

Concluding remarks

We believe that the data processing needs of a major medical
center do not differ fundamentally from those of government or
industry. Experience in our environment is that data processing

is playing an increasingly prominent role in the full spectrum of
services. Not only is the number of applications increasing, but
they are also becoming more diverse and imaginative as users
become more directly involved in the process.

A Tutorial System (ATS) was the first program that provided a
flexible intellectual tool for our medical teaching staff.

A Program Generator (APG), derived in part from ATS, is de-
signed to provide the same facility in clinical, research, and ad-
ministrative operations. A version of APG has been operational
since about October, 1973. It has been used for every applica-
tion since that time because of the speed of programming, the
automatic documentation, and the ease of program maintenance.
To date we have provided a full range of administrative pro-
grams including accounting, ordering and billing, payroll, and
personnel. The persons who request these application programs
are increasingly being brought into direct control of the final
product as they see the program generator being used. The ulti-
mate goal is for the programming staff to provide advice only.

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

APG was developed to facilitate medical application program-
ming as well as to involve both the physician and medical ad-
ministrator more directly in the decision-making processes. Initial
programming time has decreased by a factor of ten, and —because
of automatic documentation and editing functions —the cost of
program maintenance or modification has decreased even more.
Ease of programming derives not so much from the use of a
natural language interface as from the interrogative form of
man-machine communication. Rather than being required to
structure and sequence a series of statements, the user is asked
explicit questions, with adequate default options at every point.

The precursor of a fully automated medical records system in-
cluding clinical laboratories is now operational. We expect this
system to grow in breadth, depth, and utility as we increasingly
provide a data processing facility that allows flexible definition
and redefinition of the requirements for medical records by the
clinical staff and administration.

Cornell University Medical College has a free-access policy for
computer usage by faculty and students. An increasing amount
of teaching and clinical and laboratory research is being per-
formed with the assistance of the data processing facility. We
have begun an educational program to orient both students and
staff toward using the computer in helping to solve their every-
day problems in teaching, research, and clinical practice.

Such data-driven APL programs are used to meet the data pro-
cessing needs of Cornell University Medical College and many
of those of its affiliated hospitals.

ACKNOWLEDGMENTS

This research was begun while Dr. Hagamen was a Visiting
Fellow at the IBM Systems Research Institute. The work was
supported in part by Grant Nos. 50-68 and 67 —-73 from the Na-
tional Fund for Medical Education, Grant No. 1 008 PE 00480
from the Department of Health, Education and Welfare, and
Grant No. MH25621 from the National Institutes of Mental
Health. The computing facilities of the Integrated Data System
Laboratory, the 1BM Systems Research Institute, and the Phila-
delphia Scientific Center were made available to the authors as
Research Fellows of the Systems Research Institute. The au-
thors wish to acknowiedge the assistance of Mr. S. W. Dunwell,
and Drs. K. E. Iverson and E. S. Kopley. We also wish to thank
the SRI students who offered constructive suggestions during the
early development of the program generator.

CITED REFERENCES

1. W. D. Hagamen, The Functioning Brain of Man, Chas. Pfizer & Co., Inc.,
New York, N.Y. 10017 (1966).

NO. 2 - 1975 A PROGRAM GENERATOR

2. W.D. Hagamen, D. J. Linden, H. S. Long, and J. C. Weber, “Encoding ver-
bal information as unique numbers,” IBM Systems Journal 11, No. 4, 278 -
315 (1972).

. W. D. Hagamen, D. Linden, M. Leppo, W. Bell, and J. C. Weber, “ATS in
exposition,” Computers in Biology and Medicine 3, No. 3 205-226, Pergamon
Press, Elmsford, New York (1973).

. D.J. Linden, W. D. Hagamen, and J. C. Weber, CORTEX —An APL Text
Editing System, Cornell University Medical College, New York, New York
(1973).

Appendix 1: Brief and verbose modes

genenter

Q1 ***kxxrkhrkrrhnd

LT:
x

Long text:
GRANT 1D NO:

Brief text:
1D

01: numeric input

01l: 1 entry

Q1: no decimals

Give max value permitted
999999999

Give min value permitted
10000000

Print format y/n?

y

Entry 1 Heading:
1D

Print width 9 y/n?

y
Width 9

Q2 **kkkkrxkrrdkxs
Long text (or c=calculation, r=repeat):

Appendix 2: Binary data

genenter
Q2 **k*xhkkkkrxxkhk*
Long text (or c=calculation, r=repeat):
GRANT TYPE:¢
ss 1=NEW¢
ss 2=RENEWAL¢
ss 3=CONTINUATION
Brief text:
GT:
Data type: binary, numeric, date, character, list
b

How many choices?
3
ls 0 permitted y/n?
n
Define exclusive sets, from which only one choice
is permitted (0=none)
13
Define mandatory sets, from which at least one choice
is required (0O=none)
13
Print format y/n?

y
Heading 1:
GRANT TYPE

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

Text for each choice:
1

NEW
2
RENEW
3
CONT
Print width 10 y/n?

n
Specify desired width:
5

Width 5
Do you wish to store this input in a sorting block y/n?
Yy

03 Fkdkmrdkkddddhddkn
Long text (or c=calculation, r=repeat):

Appendix 3: List data

genenter
0F kkdkdrkkdhhdkhkk

Long text (or c=calculation, r=repeat):
GRANT STATUS:
Brief text:
GS:
Data type: binary, numeric, date, character, list

How many entries?
1
Give list separated by / . Additions can be made later
(p=previous list):
FUNDED/PENDNG/REJCTD
Max number of characters - up to 20
6

Print format y/n?

Yy
Entry 1 Heading:
GRANT STATUS
Print width 12 y/n?

n
Specify desired width:
6

Width 6
Do you wish to store this input in a sorting block y/n?

QU Frdddkdkkrdkkdkdhkn
Long text (or c=calculation, r=repeat):

Appendix 4: Character data

genenter
QU Hkkdemkkdkkhhdin
Long text (or c=calculation, r=repeat):
PRINCIPAL INVESTIGATOR:
Brief text:
PI:
Data type: binary, numeric, date, character, list
c
What is the maximum number of characters permitted?

Is an empty vector permissible y/n?
n

Print format y/n?
Yy

Heading:

PRINCIPAL INVESTIGATOR
Print width 24 y/n?

n
Specify desired width:
12

Width 12
Do you wish to store this input in a sorting block y/n?
Yy

Q5 dkkkdedkkkdkdkdhkkk
Long text (or c=calculation, r=repeat):

1975 A PROGRAM GENERATOR

Appendix 5: Dates

genenter
Q7 w*kkrkxkkdkrhdkdnsk
Long text (or c=calculation, r=repeat):
PROPOSED STARTING DATE:
Brief text:
PSD:
Data type: binary, numeric, date, character, list
d
How many entries?

Give latest date permitted (n=no limit, c=current):

n

Give earliest date permitted (n=no 1imit, c=current):
c

Print format y/n?

y
Entry 1 Heading:]
PROPOSED STARTING DATE
Print width 22 y/n?

n
Specify desired width:
8

width 8

Do you wish to store this input in a sorting block y/n?
n

Q8 *kkxdhkhdkekdkrhsk

Long text (or c=calculation, r=repeat):

Appendix 6: Numeric questions

genenter
Q10 *dstrkkderrnkthn
long text (or c=calculation, r=repeat):
AMOUNT REQUESTED:
Brief text:
AR:
Data type: binary, numeric, date, character, list
n
How many entries?

How many decimal places shall be stored?
2

Give max value permitted
10000000

Give min value permitted
5000

Print format y/n?

Yy
Entry 1 Headling:
AMOUNT REQUESTED
Print width 16 y/n?

n
Specify desired width:
11
Width 11
Do you wish to store this input in a sorting block y/n?
n
Q1] *ddwedkdhhdhkdkdsk

Long text (or c=calculation, r=repeat):

Appendix 7: Interfield calculation

genenter

Q13 **dkkrkdkhkrrhhhnn

long text (or c=calculation, r=repeat):
c

Take input from which Q's?
11 12

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

Q11 has 10 entries
Which entries go into this calculation?
6

0P CODE?
l=counter
2=sum
3=difference
b=product
S=quotient
6=average
7=percent
8=equality
Khkhkkhk ki
26=FN1, etc.
8
Give the length of the result to be stored in V
0

Comment ?
Checks calculated total (Ql2)¢
against entered total (Q11)
Q1Y xrkddrddkksdssk

Long text (or c=calculation, r=repeat):

The purpose of the calculation in Appendix 7 is to check on the
accuracy of previously entered data. If the two figures are not
identical, the data must be reentered. The result is not stored in
the logical vector (V), but is used later to effect a branch back
to question 11. For this reason, questions normally asked re-
garding decimal positions and print format are omitted.

The list of possible calculations is infinite. Therefore, it is not de-
sirable to store functions that are seldom used. We presently
store twenty-five such calculations, eight of which are shown in the
(abbreviated) OP CODE in Appendix 7. If the needed calculation
is not on the list, the user writes his own APL function. The only
restrictions are that the functions be named EN1, FN2, etc., have
an explicit output that represents the result of the calculation,
and create no global variables. Each such user-defined func-
tion is appended as the last line of the function CALCULATE.
Fields that are defined as inputs for the functions become their
right arguments. The user indicates FN1 by entering OP CODE
26, FN2 by OP CODE 27, etc.

Fields involved in the calculation, as well as the OP CODE, are
included automatically in the documentation. With a user-de-
fined calculation, the OP CODE reads FN 1, FN2, etc. The purpose
of the comment is to describe the function FN.

Appendix 8: Documentation

The following is a display of the documentation of the GRANTS
AND CONTRACTS program we have been generating. All four-
teen questions are shown, even though we have illustrated only
seven questions with GENENTER. The V referred to under Stor-
age: is the vector of integers that represent the logical record.

- 1975 A PROGRAM GENERATOR

gendisplay
Title: GRANTS AND CONTRACTS
Total entries (characters & numbers): 80
Input bytes: 256
Stored bytes: 152 (including Sorting Rlocks)
Total number of Questions: 1k
Questions whose answers affect Branching: 3 13
Calculations: 12-14
Binary Questions: 2
Numeric Questions: 1 10 11
Date Questions: 7 8
Character Questions: 4
List Questions: 3 56 9
Questions stored in Sorting Rlocks: 2-6 8 9 12

File organization:

Rsecurity: 123456789 Wsecurity: 987654321
Queuing code: grantcon

Block 1 of this file is block 1 of the dataspace
File size: 107 blocks

index: blocks 1-8

Records: blocks 9-59

Record length: Variable up to 26

File capacity: from 1004 to 2048 records
Counter: none

Sorting: blocks 60-107

QLakhkkdknrnkhhhehnrrtrnrns(QN1)
Long text:
GRANT 1D NO:
Brief text:
ID:
Input: 1 numeric entry; no decimals.
Max. value = 999999999
Min. value = 10000000
No encoding
Storage: V(1)
8ranching: none
Print format:
1. IDL: 999999999 Width 9

Q2*************************(QNZ)
Long text:
GRANT TYPE:¢
ss1=NEW¢
sS2=RENEWAL¢
553=CONTINUATION
Brief text:
GT:
Input: 3 binary choices; zero NOT permitted.
Exclusive sets: 1-3
Mandatory sets: 1-3
Storage: V(2)= (Base 2) encode choices 1-3
Input also stored in sorting block
Branching: none
Print format:
1. GRANT TYPE1l Width 5
1 NEWL
2 RENEWL
3 CONTL

Q3kkkdhkdknkxkkkkxkenaxrrerrx(QN3)
Long text:

GRANT STATUS:
Brief text:

GS:
Input: 1 item from list 3
Max. size of entry on list = 10 characters
Storage: V(3)
Input also stored in sorting block
Branching:
1. Answer # 1

Branch text: none.

Skip Q's 8 11-14

Print format:
1. GRANT STATUS1: (list reference) Width 6

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER

IBM SYST J

Qu*************************(QNH)
Long text:
PRINCIPAL INVESTIGATOR:
Brief text:
Pl:
Input: 24 characters; empty vector NOT permitted.
Storage: V(4-8)
Input also stored in sorting block
Branching: none
Print format:
PRINCIPAL INVESTIGATOR1: (literal text) Width 12

Q5 *kkrkhkxkhrkhxrrkrthnrrxx*((QN5)
Long text:
DEPT:
Brief text: SAME
Input: 1 item from list 5
Max. size of entry on list = 5 characters
Storage: V(9)
Input also stored in sorting block
Branching: none
Print format:
1. DEPTY: (list reference) Width 5

QO**xkhkdehkdkhhkhhhhtnrnkxr (QNG)
Long text:
AGENCY:
Rrief text: SAME
Input: 1 item from list &
Max. size of entry on list = 5 characters
Storage: V(10)
Input also stored in sorting block
Branching: none
Print format:
1. AGENCY1l: (1ist reference) Width 6

Q7 **xxkxrsrrrhrrsrkxxntrxxrx (QNT)
Long text:
PROPOSED STARTING DATE:
Brief text:
PSD:
Input: 1 date (M,D,Y)
Latest date: no limit
Farliest date: CURRENT
Encoded storage:
V(11)= (Base 10000 100 100) encode Y,M,D
Branching: none
Print format:
1. PROPOSED STARTING DATEl: MM/DD/YY Width 8

Q8wtxxkkkkkrknrrneknrrnxrkktnt (QNS)
Long text:
STARTING DATE:
Brief text:
SD:
Input: 1 date (M,D,Y)
Latest date: no limit
Farliest date: CURRENT
Encoded storage:

V(12)= (Base 10000 100 100) encode Y,M,D
Input also stored in sorting block
Branching: none
Print format:

1. STARTING DATEl: MM/DD/YY Width 8

Qg*************************(QNg)
Long text:
PURPOSE:
Brief text: SAME
Input: 1 item from Tist 9
Max. size of entry on list = 15 characters
Storage: V(13)
Input also stored in sorting block
Branching: none
Print format:
1. PURPOSEl: (list reference) Width 12

1975 A PROGRAM GENERATOR

Di0**xxxtxsrrrnrrrrnrrxrrxxx(QNLD)
Long text:
AMOUNT REQUESTED:
Brief text:
AMOUNT:
Input: 1 numeric entry; 2 decimal places
Max. value = 10000000.00
Min. value = 5000.00
No encoding
Storage: V(14)
Branching: none
Print format:
1. AMOUNT REQUESTEDr: 10000000.00 Width 11

Qllerdrrxrrrnrerxrrrrrrssxxx(ONII)
Long text:
ssSALARYS
ssWAGESe
ssEQUIPE
ssOTHER EXPENSES¢
ssINDIRECT CHARGES¢
ssTOTALe
$S2ND-YRe¢
$s3PD-YR¢
sshTH=-YR¢
s5sOTHER YEARS
Brief text: NONE
Input: 10 numeric entries; 2 decimal places
Max. values = 2000000.00 5000000.00 1000000.00 1000000.00
2000000.00 10000000.00 2000000.00 2000000.00 2000000.00
6000000.00
Min. value = 0.00
No encoding
Storage: V(15~24)
Branching: none
Print format:
1. SALARYr: 2000000.00 (entry 1) Width 10
- WAGESr: 5000000.00 (entry 2) 4Width 10

2

3. EQUIPr: 1000000.00 (entry 3) Width 10

4. OTHER EXPENSESr: 1000000.00 (entry 4) Width 10
5. INDIRECT CHARGESr: 2000000.00 (entry 5) Width 10
6. TOTALr: 10000000.00 (entry 6) Width 11
7
8
9
1

2ND-YRr: 2000000.00 (entry 7) Width 10
3RD-YRr: 2000000.00 (entry 8) Width 10

. bLTH-YRr: 2000000.00 (entry 9) Width 10

0. OTHER YEARSr: 6000000.00 (entry 10) Width 10

(VAT ETE TN ax kb kk xRk kxkkwcx (QNI12)
Calculation:
Input:
Q11 entrics -5
Operation: sum
Result: 1 element; 2 decimal places
Storage: V(25)
Input also stored in sorting block
Branching: none
Print format:
1. TOTALr: Width 11

Qliskeknkkrkrhkrkerrtxxrrrxx(QN13)
Calculation:
Checks calculated total (Q12)¢
against entered total (Q1l1)
Input:
Q11 entry 6
Q12 entry 1
Operation: equality
Result: 0§ elements
Result not stored
Branching:
1. Answer = 0
Branch text:
Total does not check. Re-enter Q11.
Add Q11
Print format: not defined

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER IBM SYST J

Qlbxrdkxrhkrerrdkhrrdrerkrenxrs (ON1L)
Calculation:
Input:
Q10 entry 1
Q12 entry 1
Operation: percent
Result: 1 element; no decimals.
Storage: V(26)
Branching: none
Print format:
1. PERCENT FUNDEDr: Width 7

The text formatting symbols are shown in GENDISPLAY, but not
in ENTER or EDIT. The reason for this is that the symbols as well
as the text may be changed in GENEDIT. In addition to ¢ for car-
riage return and s for space, ¢, 1 and r stand for centered, flush
left, and flush right, respectively. Flush left is the default option.
As previously indicated, these symbols are actually the letter
over-struck with an upper case F. They are shown here with the
APL underline, so they will be more readable.

Appendix 9: Selective branching

genbranch
Which Q°?

Yy
Answers defined explicitly or by range: e/r?
e

Which answers cause the branching?

in PRESENCE of answer;
in ABSENCE of answer.

occurs
occurs

p/a? p=branch
a=branch

to be added?

a
Which Q's are
0

Which Q's are
8 11 12
Branch text

More branches

n
Which Q7
13

*Calculation»

0K y/n?

Yy
Answers defined explicitly or by range:

e
Which answers

p/a? p=branch
a=branch

p
Which Q's are
Which Q's are
0
Branch text
Total

More branches

n
Which Q?
0

does not check.

to be skipped?
13 14

for 03 y/n?

e/r?
cause the branching?

in PRESENCE of answer;
in ABSENCE of answer.

occurs
occurs

to be added?
to be skipped?

Re-enter Ql1.
for 013 y/n?

A PROGRAM GENERATOR

search

What do you want to search for? (s=stop)
INFANT WEIGHT

Max., value (u=unlimited):
2500

Min. value:

0
and/or? (s=stop)

a
INDUCED LABOR

Max. value (u=unlimited):
5

Min. value?

and/or? (s=stop)

s
Press RETURN to begin

Appendix 10: GENREPORT

genreport
Enter what you want printed in print sequence.
Options y/n?

y
1=1D (10)
2=GRANT TYPE (6)
3=GRANT STATUS (7)
4=PRINCIPAL INVESTIGATOR (13)
5=DEPT (6)
6=AGENCY (7)
7=PROPOSED STARTING DATE (9)
8=STARTING DATE (9)
9=PURPOSE (13)
10=AMOUNT REQUESTED (12)
11=SALARY (11)
12=WAGES (11)
13=EQUIP (11)
14=0THER EXPENSES (11)
15=INDIRECT CHARGES (11)
16=TOTAL (12)
17=2ND-YR (11)
18=3RD-YR (11)
19=4TH-YR (11)
20=0THER YEARS (11)
21=TOTAL (12)
22=PERCENT FUNDED (8)

First will be heading and produce total:
54 369 22 21

Which should produce subtotals (0=none):
3

Total (O=none):

Average (0=none):
22

Enter sort sequence (s=same as print):
s

Selections (0=none):
27

Selections for each choice:

NEW
SINCE 1/1/74

Appendix 11: SEARCH

search
What do you want to search for? (s=stop)
INFANT WEIGHT

HAGAMEN, LINDEN, MAI, NEWELL, AND WEBER

IBM SYST J

Max., value (u=unlimited):

2500
Min., value:

and/or? (s=stop)

a
INDUCED LABOR

Max. value (usunlimited):
5

Min, value?
and/or? (s=stop)

s
Press RETURN to begin

Reprint Form No. G321-5007

A PROGRAM GENERATOR

133

