The transactions in a retail system are a comprehensive set of
store applications. These applications include point-of-sale oper-

ations and back-room activities. Store performance is described

by the throughput rate of transactions and the delay in the pro-

cessing of any particular transaction. Two techniques of perfor-

mance analysis are discussed: analytic evaluation and store
simulation. An important consideration is the annual operating

cycle of the store that indicates the amount and types of de-

mands on the system.

Design and performance considerations for the Retail Store
System

by M. A. Berk, C. W. Dunbar, and G. C. Hobson

The functional requirements and load demands placed on the
Retail Store System vary widely not only across different retail
establishments, but also within a given retail establishment. Var-
iability across retail establishments is easily understood in terms
of store size, type of merchandise sold, terminal placement (i.e.,
distributed throughout the store, centralized, or front-end
checkout), use of distributed functional capability (e.g., mer-
chandise ticket preparation functions spread among the store,
warehouse, and host processor locations), and the general busi-
ness and operational philosophy implemented within each es-
tablishment.

Seasonal variation within each retail establishment will cause
variability of function and load on the system. Change in the
importance of various functions is directly related to the regular
merchandising cycle of ordering, receiving and marking, and sale
of merchandise. Ordering in many cases occurs months ahead of
receipt of merchandise. To minimize inventory, peak receiving
precedes the spring and winter holiday sales periods. Thus, dif-
ferent elements of the cycle peak at different times of the year.

Therefore, to predict the performance of the system, careful at-
tention must be given to the general environment of the retail
establishment and the anticipated load variability on the system
due to seasonal variation. To provide adequate system perfor-
mance with the variability anticipated, the basic system was de-
signed flexibly to fit the fluctuating requirements of each installa-
tion, in particular by providing system generation options that
affect the allocation of storage and the allocation of microcode
and data on the disk.

BERK, DUNBAR, AND HOBSON IBM SYST J

Both the variability in function and load and the design flexibili-
ty of the system complicate the performance analysis that is es-
sential to provide an installed system that will adequately satisfy
the store’s requirements. A series of analytic and simulative
tools have been developed to support the performance analysis
portions of the system design process.

The intent of this paper is to provide insight into the process of
system design and performance analysis for the Retail Store
System and to discuss the techniques developed for perfor-
mance analysis.

System environment

The Retail Store System provides the capability to control oper-
ations in a retail store from the time merchandise is ordered
through the time that the merchandise is sold and customers’
accounts are sent out for payment. The following store opera-
tions are typical functions in the Retail Store System:

Sale of merchandise.

Credit authorization of customer charges.

Capture of customer charges for billing.

Capture of merchandise sales for subsequent analysis and
inventory control.

Stock inquiry and reservation of warehouse inventory.
Purchase order creation.

Check of merchandise received against the original purchase
order.

Preparation of merchandise tickets.

Invoice validation against merchandise received.

To meet the requirements for the selling floor, credit office, re-
ceiving room, and store management, a family of terminals, a
store controller, and a central processor are provided.' Prior to
discussing system design concepts and performance analysis, a
brief discussion of the functions in the system is helpful in under-
standing the need for flexibility in its design.

The point-of-sale terminal performs such cash register functions
as automatic accumulation of totals, calculation of change due,
printing of cash receipts and sales checks, printing a journal of all
sales transactions, and maintaining audit controls. In addition,
the point-of-sale terminal performs calculations including multi-
plication, division, automatic tax calculations, discount calcula-
tions, and group pricing. As an interactive terminal, the point-of-
sale terminal is used for on-line credit authorization. This inter-
active ability also allows automatic price look-up (where the

No. 1 - 1975 RETAIL STORE PERFORMANCE

store controller supplies the point-of-sale terminal with the price
of an item upon receipt of the stock number) and flexible inter-
active functions, e.g., warehouse stock inquiry.

The ticket unit operates on-line to the store controller, receiving
ticket-preparation or ticket-reading requests from user-written
programs within the store controller or at the host processor. In
addition to program-requested ticketing, ticketing control is
provided from the display station.

The display station is used for general keyboard communication
within the store system (as opposed to the specific function of
the point-of-sale terminal). It may be used on the selling floor for
data entry and information retrieval, in the back room for in-
voicing, receiving, ticketing, etc., or as an administrative device
in the office environment. It also serves as the main on-line com-
munication device for user-written programs.

The store controller is the center of the Retail Store System. It
performs the functions of terminal control, transaction logging,
credit checking, and departmental totals updating. It also acts as
the communications controller for all attached terminals and the
message router for sending inquiries to, and receiving responses
from, the host processor. In addition to these standard basic
functions, it can also execute user application programs written
at the central computer location, thus achieving flexibility for
certain store functions.

The System/ 370 host processor is necessary to the installation
and operation of the Retail Store System. At the host processor,
user programs can be written to interactively communicate with
the store controller for stock inquiry and reservation pro-
grams, positive credit checking, and interactive merchandise-
processing applications such as purchase order entry or receipt
data entry. Other user-written application programs can be exe-
cuted at the host processor, using data collected in the store
controller and transmitted to the host processor in a batch mode.
The host processor also generates and maintains the store sys-
tem in the store controllers. Basic system generation functions
such as controller disk and storage allocation are performed by
the host processor under a set of programs referred to as subsys-
tem support services. Additionally, user programs designed for
execution in the store controller are translated from macroin-
structions, written under the subsystem program preparation
support, to object code executable in the store controller and
then transmitted to the appropriate store controller.

Performance objectives

System functions are divided between two areas: the selling
floor and the back room.

BERK, DUNBAR, AND HOBSON IBM SYST J

The performance objective of the point-of-sale terminal is to
provide cash register functions and complete point-of-sale data
capture on the selling floor without limiting the input rate of the
operator by responses from the system. Meeting this objective
causes the throughput at any terminal to be limited only by oper-
ator capability. The system is said to be “operator bound” when
this objective is achieved.

For the functions that require the operator to wait for a response
before continuing, such as price look-up and negative or restric-
tive credit checking, response time objectives developed from
human factors studies have been established.”

In back-room operations, the performance objective of the ticket
unit is to provide the capability to make or read tickets at a rate
that will handle the throughput requirements of the specific re-
tailer, whether the retailer has centralized or decentralized re-
ceiving of merchandise. The performance objective of the dis-
play station is to provide the capability to interact with user pro-
grams and complex data entry and inquiry routines, providing
acceptable response times for these functions. Response time
criteria have been developed from human factbrs studies.

Specific performance objectives are generated for each installa-
tion by combining the general objectives stated above with the
specific attributes and requirements of the installation. This
permits appropriate cost/performance tradeoffs to be examined
for each installation.

System generation

The system designer exerts control over system performance by
(1) allocation of system functions between the controller and
host processor and (2) preferential allocation of available stor-
age and disk resources within the store controller to functions
of assigned priority. These allocations permit cost/performance
tradeoffs among controller resources, communications facilities,
and the host, reflecting the inherent flexibility of a system de-
signed with distributed intelligence. The specific requirements of
the various merchandise-processing applications and their data
bases, the complexity of processing requirements for local re-
ports, and available transmission time all influence the allocations.

Once functional allocation is established, controller performance
depends on the priorities assigned in storage and disk allocation
during the system generation by the subsystem support services.
The user specifies the selection of standard functions, the pres-
ence and priority of his programmed functions, and his disk re-
quirements in terms of record organization, access technique, and

< 1975 RETAIL STORE PERFORMANCE

selling
floor

back
room

storage
allocation

number of records. The creation phase of the subsystem support
services generates up to five different storage configurations
(maps) for selective Initial Microcode Loads (IMLs) at the con-
troller. For example, the user could generate a storage map ori-
ented toward point-of-sale for daytime operation and batch pro-
gram processing for nighttime operation. He could alternatively
set different priorities for ticketing operations dependent on an-
ticipated concurrent point-of-sale activity.

This process will determine which of the microcode modules will
be resident in storage and which microcode modules will be
transient (residing on disk). Preferably, the most frequently
executed modules should be resident. However, there is always
some balancing required to provide satisfactory system per-
formance.

When storage allocation is complete, the transient modules are
stored in a library on disk. The transient modules will be moved
into transient areas of storage as they are needed for execution.
The time required to load microcode modules is added to the
execution time of a transient function, thus increasing the re-
sponse time when a transient function is used.

An algorithm for allocating storage is shown in Figure 1. The
basic system microcode modules are allocated first. Function-
dependent microcode modules are allocated next. Thus alloca-
tion is dependent on the particular functions included in this IML.
If user programs are to be executed, supporting microcode
modules will receive space allocation next. The last basic alloca-
tion is for buffer pools and transient areas. The amount of stor-
age allocated for these functions is determined by the store con-
figuration and the amount of traffic predicted for the store by the
user. If available storage has not been completely allocated, fur-
ther allocations are now made of additional microcode modules
in a prespecified sequence. Finally, if storage still remains after
assignment of all specified microcode modules, the balance is
distributed to the buffer pools.

The disk is divided into two areas, a drum-like area under fixed
heads and an area under a movable head. Files are allocated to
minimize expected disk service time. Disk performance is af-
fected by the allocation of files to tracks under fixed heads and
the allocation and organization of files to tracks under the mov-
able head. The former is generally pre-established. The files un-
der the movable head are allocated during the subsystem sup-
port services creation phase.

The number of files required and the size of each file will affect
its location on the disk, which will affect the average number of
cylinders traversed for disk access, influencing disk utilization.

BERK, DUNBAR, AND HOBSON IBM SYST J

Figure 1 Storage allocation

BASIC SYSTEM
MICROCQDE
ALLOCATED

]

FUNCTION-DEPENDENT
MICROCODE
ALLOCATED

USER
PROGRAMS
?

MICROCODE FOR USER
PROGRAM EXECUTION
ALLOCATED

= —

BUFFER POOLS AND ADDITIONAL
TRANSIENT AREAS MICROCODE MODULES BALANCE TO
ALLOCATED ALLOCATED BUFFER POOLS

UNALLOCATED UNALLOCATED
STORAGE STORAGE
REMAINING REMAINING
? ?

The disk is divided into 256-byte sectors. Each track contains disk
60 sectors and each cylinder contains two tracks. A disk con- allocation
taining either 5 or 9.3 megabytes may be used.

Three types of files are required for the Retail Store System:

1. System files contain the system storage maps for each IML,
microcode libraries, diagnostics, and maintenance files. These
files are normally assigned to prespecified areas of the disk.

. Retail data files contain price look-up records, negative/re-
strictive credit records, batch print records, ticket unit re-
cords, and sales transaction log data for which the user speci-
fies the number of logical records and the number of files re-
quired.

. User files include the customer program library and data files
required for user programs.

Three types of data organization are provided:

. Sequential organization supports either fixed length or vari-
able length logical records containing from one to 256 bytes.

. Keyed organization supports either fixed length or variable
length logical records containing from one to 254 bytes. A
key is the argument for all file accessing. Record expansion
is accommodated by using packing factors when calculating
file size.

1975 RETAIL STORE PERFORMANCE

Figure 2 Disk allocation without second technique

HIGH ACTIVITY FILES

4 N
FILE
I ,

SALES TRANSACTION
LOGFILE
~ CENTER
USED DURING PEAK PERIOD

SYSTEM
FILES

3. Partitioned organization provides a means of maintaining
microcode modules and user programs.

The file names and sizes are placed into a table, which the user
has ordered by frequency of use as part of his store environ-
ment. The table is used to construct a disk map.

Disk service time consists of three components: seek time (disk
arm movement), rotational delay (wait time for addressed sec-
tor to be positioned under read/ write heads), and data transfer
time (256 bytes from controller to disk or disk to controller).
The only component that can be controlled is seek time, which
is dependent on the number of cylinders over which the arm
must move from file to file which, in turn, depends on the file
allocation. On each system generation, two allocation tech-
niques are used.

The first technique is based on frequency of use. The customer
assigns appropriate priorities to his files, which are then allocat-
ed in order of decreasing priority to an increasing distance from
the center of the disk.

The second technique takes advantage of the infrequent use of
large sequential files, (e.g., sales transaction file), which are split
into two segments. The two segments are allocated on opposite
sides of the disk with the sequential access method reading from
or writing to an outside track when the file is opened. Subsequent
accesses will be progressively toward the center, allowing the
disk arm to be stationed near the middle of the disk when the file
is half full. This is the time of day when the store expects its
highest frequency of use from the sales transaction file. The
number of cylinders over which the disk arm must travel from
file to file is bounded by a progressively smaller number. Figure
2 shows a disk allocation without the second technique, and Fig-
ure 3 shows a disk allocation using the second technique.

The algorithm for allocating files starts with the system files
which are assigned fixed locations on the disk. The next files to
be allocated are the large, infrequently used sequential files de-
scribed in technique 2. The remaining files are allocated based
on the priority given by the customer described in technique 1.

BERK, DUNBAR, AND HOBSON IBM SYST J

Figure 3 Disk allocation using second technique

HIGH ACTIVITY FILES

SALES SALES
SYSTEM TRANSACTION TRANSACTION RAS
FILES LOG FILE LOG FILE FILE
{SEGMENT 1) (SEGMENT 2)

VL CENTER

USED DURING PEAK PERIOD

The allocation starts at the outside and moves toward the center
in a balanced fashion as shown in Figure 4. At the end of the
allocation process, the files are shifted to close up any unallocat-
ed space as shown in Figure 5, moving unused space out of the
high-traffic disk center.

Performance projection techniques

The following analytic and simulative system performance
projection techniques were developed concurrently with the
actual system design to measure its ability to satisfy the range of
operational environments anticipated.

Alternate designs could be modeled to evaluate the adequacy of
system resources prior to final commitment to a specific design.
Then, before installing a particular system, alternate configura-
tions could be evaluated and a preferred cost/performance bal-
ance established. Therefore, the same models initially used for
system development could be utilized to evaluate particular in-
stallations.

The analytic techniques were designed to provide a rapid evalu-
ation of system capacity versus projected load. Simulation tech-
niques were developed to provide detailed insight into the inter-
nal characteristics of system operation. Both techniques were
designed to accommodate the broad usage of functional applica-
tions and configuration choices anticipated.

Simulation techniques provide comprehensive determination of
resource utilization, response time projections, and other per-
formance attributes of the system, but the design detail included
in these models requires large amounts of computer time to simu-
late much smaller segments of system elapsed time. While the
results of analytic techniques provide less detail, they suffice for
purposes of configuration evaluation. The analytic model is ex-
ecuted interactively on a terminal-based system and requires
relatively small amounts of computer time for execution.

In general, the system developer requires the detail provided by
the simulation model output in choosing a design. The system

No. 1 + 1975 RETAIL STORE PERFORMANCE

environment
statement

Figure 4 Movement of allocation

SYSTEM SALES TRANSACTION SALES TRANSACTION [RAS
FILES FILE (SEGMENT 1) FILE (SEGMENT 2) FILE

~
CENTER
THE NEXT FILE GOES
TO THAT SIDE OF
CENTER WHERE THERE
IS MORE SPACE

Figure 5 End of allocation process

SYSTEM SALES TRANSACTION SALES TRANSACTION | RAS
FILES FILE (SEGMENT 1) FILE (SEGMENT 2) FILE

~
CENTER

FREE SPACE

SYSTEM SALES TRANSACTION SALES TRANSACTION
FILES FILE (SEGMENT 1) FILE (SEGMENT 2)

FREE SPACE

designer evaluating configurations for installation recommenda-
tion generally needs only the level of information provided by
the analytic model. However, it was convenient to select some
features from each model for both purposes. Analytic tech-
niques are required to emulate the storage and disk allocation
algorithms implemented within the subsystem support services
prior to performance evaluation by either modeling technique.
Therefore, the analytic tool is used to generate a specific storage
map and disk map as basic input to the simulation model or for
further evaluation within the analytic model. Conversely, direct
projection of controller utilization and certain component re-
sponse times by analytic means is extremely complex. In those
cases, a set of simulation runs could be executed and data points
interpolated for use in the analytic model.

The remainder of the discussion will concentrate on the analytic
techniques applied, emphasizing those that may be of general
use beyond the retail system.

The environment statement provides basic input to the analytic
model in a form similar to the input requested by the subsystem
support services at the time of system generation. The user de-
fines his hardware configuration, choice of system functions to
be included, and characteristics of user-written programs to be
executed. The user will also specify certain options that will
determine the specific set of microcode modules assigned to re-
sident storage during the storage allocation process. Where sys-
tem-generated files are to be included by selection of system

BERK, DUNBAR, AND HOBSON IBM SYST J

functions, the user need only specify variable characteristics
such as number of records. The major file characteristics are
prestored in the model. When the user defines his own files for
execution, all characteristics must be specified. These character-
istics include record size, number of records per file, file organi-
zation, and access technique.

The user is also asked to specify the traffic generated by each
terminal and/or function and for characteristics of certain func-
tions needed for detailed evaluation. As an example, the user is
asked for information in ticketing dealing with the number of
identical tickets per batch and for selection of ticket bursting
characteristics by batch, line item, or purchase order. In point-of-
sale operation, the user is asked for transaction distribution by
transaction type, number of items sold per transaction, etc.

In essence, the environment statement is a comprehensive state-
ment of system configuration and events anticipated in a specific
operational period of the store. All information requested in the
environment statement is stored for subsequent model usage.
Evaluation of alternate configurations and/or alternate opera-
tional periods of the store are implemented by modifying the
appropriate sections of the environment statement and re-exe-
cuting the model.

These sections of the analytic model calculate and allocate
space according to input contained in the environment state-
ment. The algorithm used is identical to the subsystem support
services algorithm used during the actual system generation pro-
cess. The model calculates the amount of storage required for
each component allocated to resident storage and provides other
generation detail required as input to the simulation model. The
model also provides a listing of specific file size and location by
file name. This information also provides direct input to the sim-
ulation model. The resultant storage and disk maps are stored
within the model for use in the subsequent performance analysis.

Disk utilization for a given store environment is an important
measure of the adequacy of the system to meet the concurrent
application and traffic demands. In the design process, environ-
ment statements reflecting different seasonal peaks and func-
tional mixes are evaluated to determine if a suitable performance
level can be achieved in each case. The disk utilization and a
summary of the disk activity for each file will indicate either sat-
isfactory performance or the desirability of either reconfigura-
tion or job rescheduling. The latter is primarily directed to back-
room activity, since sales floor activity is determined by envi-
ronmental circumstances.

- 1975 RETAIL STORE PERFORMANCE

storage
and disk
allocation

disk
utilization

Disk utilization is defined as the long-run proportion of time that
the disk is being accessed. Disk access time includes movable
head seek time and record search and read/write-check times
under both fixed and movable heads.

Criteria used in setting limits for acceptable disk utilization are
related to the queuing characteristics of the system that yield the
response times to disk activity. The queuing characteristics of
the disk are best examined by simulation.

Disk utilization is calculated by summing the individual contri-
buting disk utilization of each system function. For example, if a
function that uses an average of 45 milliseconds of disk time per
access 1s being executed and the traffic rate generates 10 access-
es per second, the contribution to disk utilization of that func-
tion would be 45 percent. The general equation can be written
as:

Us= 2 Sdi Tsi
ier
where

U, = disk utilization

§, = mean number of accesses per second for the ith function
1

T, = mean service time per access for the ith function
1

I = the set of functions associated with the given store environ-
ment

However, the mean service time is dependent upon many fac-
tors including:

File allocation under fixed and movable heads.
File size and allocation under the movable head.
Distribution of read and write accesses.

Storage allocation.

Traffic.

Function mix.

The most difficult component of the mean service time to calcu-
late is the average seek time encountered in movable head ac-
cesses. Head movement across the disk is determined by the size
of, and relative activity to, each individual file (e.g., transaction
log, credit authorization records, price look-up records, library,
etc.) and the actual location of the file on the disk. Relative file
activity is determined by the transaction mix (i.e., the distribu-
tion of cash sales, charge sales, price look-up items/transaction,
voids, etc.). File size is determined within the system generation
process and is based on the store environment statement. In

BERK, DUNBAR, AND HOBSON IBM SYST J

essence, the specific file allocation on the disk and the transac-
tion mix determine the average seek time. It is important to note
that while the transaction rate affects the total disk activity in
terms of accesses per second, it does not affect the average seek
time. The average seek time would be affected only by a change
in transaction mix (assuming a given system file allocation).

To calculate the average total seek time the weighted seek time
for each file is separately calculated and then summed.

Weighted seek time 7, = W,
=1

The weighted seek time for file i, W,, is found by computing the
sum of the time 7,; to traverse the distance between the file i and
all other files j weighted by the probability of actually making
that transition, p, ;, and multiplying this sum by the probability of
being at that file, P,.

i
We assume p, ;to be independent of /, hence equal to Pj and esti-
mate P, by

P,=35,/8,
where

§, = accesses per second to the ith file
S, = total accesses per second on the movable head

1;; 1s calculated by assuming head movement between the mid-
points of file i and the midpoint of file j. In the case where i =,
I, is calculated by assuming head movement over one-third of
the file if that file is organized for keyed or partitioned access.
No head movement is assumed (7, = 0) if the file is organized
for sequential access. 7, ; Is calculated from the acceleration /ve-
locity curve of the access mechanism.

The read and write access time to records under the movable
head can be calculated as follows:

Movable read time ¢, =t, + 1, + ¢,
Movable write time ¢, = ¢, + ¢, + ¢, + 2t,

where

t, = latency
t, = rotational delay
t, = time to read or write one sector

The read and write access time to the fixed heads can be calcu-
lated as follows:

Fixed read time 7, =1, + 1,
Fixed write time f,, =1, + 1, + 21,

No. 1 - 1975 RETAIL STORE PERFORMANCE

The only variable in the above equations is ¢,,. All other param-
eters are constants and are determined by the characteristics of
the disk hardware. Once the store environment is specified and
the disk map generated, ¢, is calculated and remains a constant.

The next step in the calculation of disk utilization is the counting
and listing of all disk accesses in the transactions executed.
While the microcode or user program specifies all data accesses,
additional system-initiated accesses will occur and must be in-
cluded. The most prevalent will be disk accesses due to load
transient microcode modules or customer programs. The storage
map must be reviewed to determine which microcode modules
have been fixed in storage and which modules are transient. The
most frequently accessed microcode modules are stored in the
library placed under fixed heads. Therefore, suitable fixed head
read accesses must be included for those transactions utilizing
transient modules. User programs are generally stored in a pro-
gram library placed under the movable head. Therefore, suitable
movable head read accesses must be included. Additional ac-
cesses will be encountered also due to synonyms in keyed files.
These will be significant only if the packing density of keyed
files is high,

To complete the calculation of disk utilization, the system trans-
action rate is translated into accesses per second for each type
of disk access by multiplying the number of accesses per trans-
action for each data, microcode, or user program access by the
appropriate transaction (message) rate. The total disk utiliza-
tion U, is

U,=A,,1,.+ At ALt + Ayt

mrmr mw” mw Srofr Sw'fw

where

= mean number of movable head read accesses per second
= mean number of movable head write accesses per second
= mean number of fixed head read accesses per second

e = Mean number of fixed head write accesses per second

It is important to note that the calculations above assume that
the transaction rate is independent of system response time and
throughput. This is generally true for point-of-sale functions and
conversational back-room activity. This, in essence, is an alter-
nate statement of the overall performance objective of the sys-
tem (i.e., that the system be “‘operator bound”). However, in
batch-oriented functions such as ticketing and batch print, disk
utilization (and other resource utilization) is dependent upon
system response time and resulting device throughput. This will
be discussed later.

BERK. DUNBAR., AND HOBSON IBM SYST J

Store loop utilization is another measure in evaluating a system
configuration. As in the evaluation of disk utilization, store envi-
ronments are analyzed. In this case, the analysis determines the
level of usage of each of the three store loops. The model calcu-
lates the activity on each store loop and indicates the contribu-
ting utilization of each terminal (or set of terminals). The utili-
zation of the system can be adjusted by modifying the number of
store loops, by reconfiguring terminals in varying combinations
among the store loops, or by job rescheduling.

Store loop utilization is defined as the long-run proportion of
time that data is being transmitted. An alternate definition which
is equivalent to the basic definition is as follows:
R
U,=—="
s RT

where

U, = store loop utilization
R, = aggregate data rate (characters per second)
R, = maximum transmission rate (characters per second)

In the general case:

1 n
USZR_ZRDi

T i=1

where R, is the contributing data rate of the ith terminal on the
store loop.

In calculating the data rate, control characters must be added to
actual information characters transmitted and received. The
contributing data rate is calculated by dividing the total number
of transmitted and received characters generated during the
transaction by the transaction period.

The definition of controller utilization is simply the long-run ra-
tio of the average time used for instruction execution in a time
interval to the total time interval. Analytic calculation of con-
troller utilization is extremely difficult because of the complex
microprogram data flow and multiple priority interruption design
of the controller. Controller utilization can best be obtained by
simulation. To maximize the usability of the analytic model,
simulation runs are made for several store environments felt to
provide a broad range of controller stress conditions. Controller
utilization can then be interpolated for the specific store environ-
ment being evaluated by the analytic model.

The disk, store loop. and controller utilizations affect the re-
sponse time to transaction-generated messages. One or more

queues are associated with each of the aforementioned re-

No. 1 - 1975 RETAIL STORE PERFORMANCE

store loop
utilization

controller
utilization

response
time

sources since each resource is shared by all message segments
being processed within the system. Since the data flow is de-
signed to optimize multithread processing, complex queuing
structures are encountered in many points of the system.

Response time is determined primarily by the time spent waiting
in queues associated with each resource and the time spent in
execution within the resource (e.g., disk record access, store
loop transmission). The time spent waiting in queues is the ma-
jor component contributing to the variation in response times.
The variability of the resource service time is related to the
function being executed and the nature of the physical resource
involved. Disk service time can be expected to vary consider-
ably due to the random file processing under both the fixed and
movable heads. Variability in store loop service time is generally
small since the transmitted message sizes do not vary widely.
Controller service time varies widely due to a broad range of
path length variability and the priority interruption design of the
controller hardware.

Priorities for all functions are equal in terms of disk processing
and store loop transmission output. The disk queue is disci-
plined in a FIFO (first-in, first out) sequence. Input store loop
priorities are established by the relative position of the terminal
on the physical loop. Controller processing priorities are estab-
lished in both hardware and microcode. The hardware priorities
are ordered to assure timely data service for portions of the data
flow with minimal buffering capacity. The microcode priorities
are ordered to minimize the response time to point-of-sale-re-
lated messages.

The queuing characteristics of the disk may be calculated simply
from basic single-server queuing equations due to the FIFO
structure.” Simulation studies confirm the reasonableness of
these assumptions. The nature of the polling and message concat-
enation technique used on the store loop and the complex hard-
ware and microcode interruption structures of the controller
render direct analytic queuing calculations impractical for these
resources.

A hybrid technique consisting of both simulative and analytic
steps is used to provide response time estimation for the store
loop and controller. A range of store environments is studied in
the simulation model and the resultant utilization and response
time components for various message segments are noted. The
response time component of the controller is derived in terms of
controller utilization and priority. The response time component
of the store loop is derived in terms of the store loop utilization.
The derived curves are then analytically described and used for
analytic calculations. The response time for a given message is

BERK, DUNBAR, AND HOBSON IBM SYST J

calculated by summing all resource queuing and service times
encountered in the system data flow in processing that specific
message. In executing the calculation, average queuing time for
each resource is combined with the actual time required to ser-
vice that specific message type.

Throughput and response time are inextricably related in batch-
oriented functions. Throughput can be evaluated both with re-
spect to a single terminal and to the total system. If a given func-
tion being executed at a terminal is single thread, i.e., there is no
overlap between actions at the terminal and system message
processing, throughput is inversely proportional to the response
time. In many cases, however, terminal function is overlapped
with system message processing. In essence, the achievement of
the “operator-bound” performance objective is dependent upon
a large degree of overlap between the salesclerks’ actions and
system message processing. The system is designed such that
the response time is generally smaller than the parallel time ex-
pected for the salesclerk to complete the operation. In this case,
throughput is determined primarily by the operator, hence the
term “‘operator bound.”

In the case of batch operations at a terminal, e.g., batch printing
and ticketing operations, the degree of overlap may vary consid-
erably. Ticketing throughput will be determined by both system
response time and the mechanical capabilities of the ticket unit.
The latter capability will control the situation when many identi-
cal tickets are being made; the response time will control the
situation when many different tickets are made.

Calculation of ticketing throughput demonstrates a challenging
problem in those cases where throughput is limited by response
time. As discussed earlier, response time is dependent on disk,
store loop, and controller utilizations. Conversely, the calcula-
tion of each of these utilizations requires knowledge of transac-
tion rates which depend on throughput. This leads to an iterative
calculation in which initial estimates need to be made for each
resource utilizatton. Response time calculations are then made
based on the assumed utilizations, and finally throughput is cal-
culated to revise the utilizations for each of the resources. The
iterative process is repeated until the utilizations converge. The
analytic model calculates throughput on the basis of the pro-
cedures described.

The relationship between single terminal throughput and aggre-
gate system throughput is determined by the terminal applica-
tion and the degree of system overlap provided. In the case of
point-of-sale, the aggregate transaction throughput is simply the
individual terminal throughput multiplied by the number of ter-
minals. In ticketing applications where throughput is determined

1975 RETAIL STORE PERFORMANCE

throughput

80

by system loading characteristics, increases in system load will
cause a reduction in throughput due to the resultant response
time increase. The analytic model reflects these factors in the
throughput calculations.

Summary

The ability to make performance projections for the retail sys-
tem requires a detailed knowledge of the range of retail functions
that are executed within the system and a detailed knowledge of
the internal design of the system. It is essential that the perfor-
mance of the system be evaluated over a range of environmental
assumptions anticipated in the annual operating cycle of the
store.

Analytic and simulative techniques have been developed con-
currently to evaluate performance. The two techniques are mu-
tually dependent. The analytic model provides storage map and
disk map input to the simulation model. Simulation studies are
required to derive response time curves for input to analytic cal-
culations. The resulting hybrid technique provides a very power-
ful set of tools and permits the use of the analytic tool as the
primary evaluation technique for configuration evaluation. The
simulation tool is the primary evaluation technique used in the
system design and development process.

With complex system designs and continually changing environ-
ments, performance evaluation techniques are essential to deter-
mine limitations of system capacity. These tools are beneficial

during the system development cycle and are basic to the sys-
tem design and installation process.

CITED REFERENCES

1. P. V. McEnroe, H. T. Huth, E. A. Moore, and W. W. Morris, 111, “Overview
of the Supermarket System and the Retail Store System,” in this issue.

2. D. C. Antonelli, “The role of the operator in the Supermarket and Retail Store
Systems,” in this issue.

3. IBM 3650 Retail Store System [ntroduction, GA27-3075, IBM Corporation,
Data Processing Division, White Plains, New York (1973).

4. D.R. Cox and W. L. Smith, Queues, 54, John Wiley & Sons, Inc., New York,
New York (1961).

Reprint Form No. G321-5005

BERK, DUNBAR, AND HOBSON IBM SYST J

