
A n  experimental  algorithm  for  optimizing  program  placement  in 
virtual  storage  systems  is  described.  Interprogram  linkages  are 
monitored  and  subsequently  analyzed for  frequency  and  proxim- 
ity.  The  algorithm  evaluates  this  information  within  the  context 
of a paging  environment.  Program  lists  that  define  the  optimum 
program  placements are then  generated.  Performance  gains are 
also  discussed. 

Optimizing  program  placement in 
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virtual  systems 

As virtual storage systems' enjoy increasing acceptance  and 
usage,  the optimization of program execution  for  this  environ- 
ment becomes  more  and  more  important. Many facets of this 
general topic  have  already been explored,  such as internal struc- 
turing of programs and  function grouping based upon frequency 
of use.2 

An earlier study by Hatfield and  Gerald3  presented  an  excellent 
general  approach  to  the problem of intraprogram  structure in a 
virtual  storage  environment. By way of contrast,  the  present 
study has as its genesis a very specific interprogram optimiza- 
tion problem related  to a given software  environment  and  de- 
rived from the  development of os/vsz. Therefore,  the following 
discussion gives particular  attention to concerns of the practical- 
ity, usability, and feasibility of the  solution. 

This  paper  describes  an  experimental  approach  to solving one 
particular  aspect of the virtual storage optimization problem. 
The topic under  consideration is the question of where  and how 
programs should be placed within virtual storage, with no direct 
concern  for  either  the  internal  structure or  the  data references of 
each program. The approach in this  paper is not as sophisticated 
as some others  currently  available,  nor do  the experimental  re- 
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sults indicate that  performance  improvements may be as great, 
but it does offer a simplified way of improving program execution. 

Virtual storage may be characterized in many ways.' For  the 
purposes of this  paper, it is considered  to  appear  as an address 
space  that  has no direct or fixed relationship to  the  address 
space  represented by the actual storage  size of the  computer.4 
Virtual  storage typically provides to  the  user  an  address  space 
that  is, in fact, larger than  the  storage  capacity of the  computer. 
This size disparity provides tremendous flexibility and  func- 
tional capability to  the  user.  However, it also requires  that at 
least  part of the user's address  space be retained on a  direct- 
access  device  to be brought into  the real storage of the  computer 
only when necessary.  Clearly,  the  part of the  user program cur- 
rently executing must be in real storage. 

Whenever  a  reference is made to  part of a program that is not in 
real storage,  the  user program must  be  interrupted until the ref- 
erenced  entity is brought into  the  computer's  storage. The unit 
brought into real storage is typically called a puge,  and  the  inter- 
ruption of the  user program is called a pugefuult .  This terminol- 
ogy reflects the  fact  that  the virtual address  space is divided into 
fixed-size units (pages) and only those pages currently involved 
in program execution need to be in real storage. The overhead in 
time and  central  processor utilization for page-fault resolution 
represents a principal cost  factor in virtual storage  systems. 
Therefore,  most efforts to optimize use of the virtual storage 
environment  address  this problem in one way or  another. 

It is obvious  that  a major source of page faults can be the link- 
age of one program to  another.  For  example, if program A pass- 
es control to program B, a page fault will occur unless program 
B is in real  storage.  This paper investigates an algorithm for 
ensuring that  such page faults  are held to a minimum. Optimiza- 
tion to minimize other  sources of page faults, although a broad 
and significant topic, is not  considered  here. The algorithm will 
be  discussed in terms of its implementation within a single, spe- 
cific virtual storage  system-the IBM operating system oS/VS2.4-7 
The implementation was within the  context of the first release  of 
oslvsz, that  is,  osivs2.1.  However,  the general concept  and al- 
gorithm have  a  direct application in any virtual storage  system. 

A significant feature of the oslvs2.l system is the link pack area 
(LPA).  This consists of a portion of virtual address  space, nor- 
mally one to two megabytes in size, which contains  both  system- 
and user-supplied programs. Due  to the large number  and vari- 
ety of programs within the LPA, one may expect  the bulk  of pro- 
gram linkages to involve programs within the LPA. Accordingly, 
it was decided  that  the prime objective would be the optimum 
placement of programs within the LPA. This  placement,  or pack- 
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therefore, easily monitored.  In  addition,  such monitoring will 
normally encompass all the  interprogram linkages within the 
LPA . 

The third and final phase of the algorithm is the pack phase. In 
this  phase, the  output of the  previous  phases is analyzed,  and an 
optimum LPA structure is developed. The  output of this final 
phase  consists of sets of program names, indicating which pro- 
grams are  to be placed together in a page (or  pages) of virtual 
storage. 

The  data collected during the  trace  phase is purely sequential, linkage 
and it must undergo additional processing before it can be used. affinity 
Typically,  the  trace  data at this point reflects the activity within 
a multiprogramming environment. To derive usable linkage se- 
quences, it is necessary  to  sort  the  trace  data on a task basis. 
Thus, the final form of the input is multiple, disjoint sets of link- 
age  data, time-ordered on  a task basis (see Figure 3 ) .  These  sets 
may now be  analyzed, selecting the  sets in any order, to under- 
stand  the linkage affinity that  one program has  for  another. 

The concept of a linkage affinity is fundamental  to utilization of 
the  trace  data in the pack phase. For a given task,  the  trace  data 
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Figure 3 Trace  output sorted by task 
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may show the following linkage sequence: Prbgram A - 
Program B - Program C - Program D - Program E -”-+ Program F - . . . 
I t  is clear  that  Program A has a linkage affinity for  Program B. I t  
is also true  that some lesser affinity exists  between Program A 
and Program C,  between Program A and  Program D, etc. For 
simplicity, the affinity of Program A to Program B will hence- 
forth be denoted as (A, B ). For  the oslvs2. 1 implementation of 
the algorithm, affinity values were assigned as follows: 

( A ,  B )  = 5 ;  ( A ,  C )  = 4; ( A ,  D) = 3;  ( A ,  E )  = 2; ( A ,  F )  = 1. 

It can  be  seen  that interprogram affinities were  considered only 
to  a level of five, i.e., (A,  G ) ,  (A, H ) ,  and so forth  are insignifi- 
cant. The actual affinity values chosen were equally arbitrary, 
but they proved  to be workable values. Clearly,  the  set of values 
that was used is among the simplest possible combinations,  and 
the values were  chosen primarily for  their simplicity. The favor- 
able  results  obtained with the algorithm may not reflect its full 
potential  since only limited experimentation was done with alter- 
native  values. The levels of affinity to be considered  and  the 
affinity values selected in no way detract from the generality of 
the algorithm. 
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Figure 5 Affiniiy submatrix 
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If a given program in a linkage sequence  does  not  reside in the 
LPA,  any couplet of which it  is a part is simply disregarded. 
Hence, if Program C were  not in the LPA in the  above  example, 
no matrix element involving C would exist. All other  increment 
values would remain unchanged. All trace  data involving non- 
LPA programs is thus purged as  the affinity matrix is built. 

An  obvious simplification of the affinity matrix is to ( 1 ) discard 
all entries of the form (A, A)  since the affinity  of a program for 
itself is  of no interest and (2)  combine all entries of the  form  (B, 
A )  with (A, B )  since it makes no difference whether A estab- 
lishes  a linkage to B or vice versa.  In this latter  case, only the 
frequency  and proximity of the A and B linkages are important. 

An  actual implementation of the algorithm would normally nev- 
er build the full affinity matrix, although it has .been described 
here  for generality. The resultant  submatrix is shown in Figure 5. 

Before the  actual  preparation of program packing lists,  the  sub- 
matrix must be simplified further.  This simplification process 
recognizes several  fundamental  considerations. These consider- 
ations  reflect  the  requirements of the oslvs2.1 environment. The 
rules should also apply in large part to any virtual storage  situa- 
tion. 
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. If a program is greater than a page in size,  then it should be 
positioned on a page boundary.  This rule allows the program- 
mer some capability to  anticipate page faults  and  to  structure 
his program internally in an optimum fashion. Otherwise,  the 
point in the program at which a page boundary is crossed will 
be totally unpredictable to the program. The implication of 
this  requirement is that no affinities should be considered 
between programs when both are larger than a page in size. 
Obviously,  such  a combination would not reduce  the  number 
of pages required  for  the  two programs if both programs are 
constrained  to  a page boundary. The corresponding  entries in 
the submatrix are therefore  deleted. 

. If any program is an  exact multiple of the page size, then it 
cannot be combined with any other program within a page. 
Accordingly, all matrix entries involving such programs are 
deleted. 

. It is allowable to combine  a program greater  than  a page in 
size with one of less  than page size.  However,  for any two 
programs,  their combination in a single page (or pages)  must 
require  fewer pages than they would require separately. For 
example,  a program requiring one  and  three  fourths pages 
should never be combined with one requiring three  fourths of 
a page. To do so would involve three  pages, exactly what 
would be required if no effort at combination was  made. 

Furthermore, program placement in the LPA should be such 
that no program spans  a page boundary unless its size is in 
fact  greater than a page. To violate this assumption would 
greatly increase  the page-fault rate during execution of such 
programs. Not only would the program be  highly susceptible 
to page faults, but it  would also be unable to  predict  the point 
within the program at which the page boundary would fall. 
The program structure,  therefore, could not be optimized 
around  the location of this  boundary. Phrased in different 
terms, this consideration  states  that  for  any  two  programs, 
their individual sizes modulo page size may not  produce a 
sum that  exceeds  a page in size. The affinity submatrix  is, 
therefore, purged of any such  combinations. 

If the value of any entry in the affinity submatrix is less than 
an  arbitrary value, it  is deleted. For the  purposes of this im- 
plementation,  that  arbitrary value was zero.  That is, all re- 
maining submatrix  elements  were  considered.  Figure 6 sum- 
marizes the key operations in first constructing  the affinity 
matrix and  then deriving the affinity submatrix. 

should be pointed out  that  the  restrictive  nature of these rules 
3es not in fact preclude dense packing of the LPA. Even though 
m e  affinities cannot be translated  into program packing lists, 
ther  affinities  will normally exist  and can be used to fill out 
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each  list. Also, as will be noted  later, when the  actual LPA is 
constructed,  the affinity-based packing of the LPA is followed by 
a  space reclamation phase that effectively eliminates any unused 
spaces. 

The algorithm now enters  an  iterative  process  whereby  the affin- 
ity submatrix is searched and program packing lists are de- 
veloped. The largest value in the affinity submatrix is now locat- 
ed and  deleted.  Either of two  situations may prevail: 

1.  Neither of the programs associated with the  selected matrix 
element has yet been added  to a packing list.  This is obvious- 
ly the situation on the initial scan of the  matrix. 

2. (a) both programs are already in packing lists or  (b) one  and 
only one program is already in a packing list. 

In Case 1 ,  processing is fairly straightforward. The earlier 
purges of the affinity matrix have  guaranteed  that  the program 
pair can, in fact, be packed successfully in one  or more pages. 
Hence, a program packing list is established for  these  two pro- 
grams. Also, the  space remaining in the page (or pages)  to be 
occupied by the programs in this packing list is calculated.  This 
calculation is performed by taking the program sizes modulo the 
page size, summing these  values,  and  subtracting  the sum from 
the page size. In the  event  that this remaining space is smaller 
than any as-yet-unpacked LPA program, then  this program pack- 
ing list is complete. If the list is, in fact,  complete, matrix ele- 
ments involving elements of this list are purged to avoid their 
further  consideration. 

Case 2 represents  the more complex  situation. It may be viewed 
more simply by considering two  subcases.  In  Case 2a, both pro- 
grams  have already been included on program packing lists. All 
matrix interactions between members of the  two program lists 
are now deleted. No benefit will result from future  consider- 
ations of affinities between elements of the  lists. I f  both lists 
contain programs that  are  greater  than  a page in size,  then no 
combination is possible, as discussed  earlier. 

A further  test is required before the  two program lists can be 
merged. Just  as noted earlier  for  two programs,  it is not  desir- 
able to combine program lists unless they require  fewer pages 
together  than singly. That is, the sizes of the  two program lists 
modulo page size should not yield a sum greater  than page size. 

If the preceding tests  are met successfully,  the  two lists are 
merged to form a single program packing list. The space remain- 
ing  in the page (or  pages) to be occupied by the members of this 
list is now recalculated. As before,  a  space  remainder smaller 
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The final test  requires  that  the  unassociated program fit  in the 
page(s)  to be occupied by the list members. Note  that the pro- 
gram may be larger than a page, in which case  its  size modulo the 
page size is considered. 

As usual,  the addition of the  unassociated program to  the list 
causes  a recalculation of the  space remaining in the  page(s)  as- 
sociated with the  list. 

resultant The algorithm continues  to cycle through  the affinity matrix until 
LPA all entries  have been deleted. The end  product is a set of pro- 

gram packing lists  that may be used to optimize the placement of 
LPA modules in virtual storage.  Each list is an  entity  and may be 
considered in any  order relative to the  other lists. For  the 
oslvsZ.1 implementation,  the  format of these lists matches  ex- 
actly  that of the lists used to build the LPA at system initializa- 
tion time.5’ Hence,  the algorithm output is simply and directly 
used to structure  the LPA. The algorithm operation of actually 
building the packing lists is summarized in Figure 7 .  Only the 
key functions  are  shown. 

In Figure 8, the  resultant LPA can be seen, given a particular  set 
of program packing lists. It should be  noted  that,  for  conve- 
nience,  any program greater than a page in size appears  as  the 
first element in the list. This facilitates its  placement  on  a page 
boundary, as shown. In the oslvs2.1 environment,  the loading of 
programs named in a list is done in the  order of their  appearance 
in that list. The first program is assigned the lowest virtual ad- 
dress in the page or block of pages for  that  list,  and succeeding 
programs in the list are assigned progressively higher addresses. 
Each  successive list is associated with a progressively lower 
block of address  space. 

Another  notable  feature of the oslvs2.1 implementation involves 
those LPA programs for which no significant affinities were re- 
corded.  Such programs are used to fill in the  unused  spaces in 
the LPA. The assignment of available space is made on  the basis 
of program size, with the largest programs considered first. This 
process allows efficient space utilization in conjunction with 
affinity-based program packing. 

It is reasonable  to  assume  that  variations in work loads would 
tend  to involve different sets of LPA programs but would not 
drastically affect the linkage patterns between particular pro- 
grams. In this  sense,  the packing lists  generated  from different 
trace  runs would  be additions  to,  rather  than  replacements  for, 
existing lists. The oslvs2.1 implementation adopted  a flexible 
approach in this area,  however, by allowing for  the definition of 
multiple sets of program packing lists. If  it is determined that 
different work loads generate significantly distinct LPA struc- 
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igure 8 LPA structuring bused on program  packing lists 

ROGRAM  PACKING LISTS VIRTUAL STORAGE 
(A  D F) F 

,c.n " I  u 
A I PAGEBOUNDARY 

UNUSED i l l  
I~ODUF!3LpEAsGE PAGE BOUNDARY - - - - -- - - - 

0 25 PAGE 
0 25 PAGE 
0 50 PAGE 
1 25 PAGE 
0 25 PAGE 

PAGEBOUNDARY 

J 

1 

C 
PAGE  BOUNDARY . 

0 50 PAGE 

PAGEBOUNDARY 

T T I  
tures,  then  the  appropriate  set of program packing lists can be 
assigned the moper name to  cause its selection at svstem initiali- 
zation time. 

- 

Performance measurements 

The algorithm has been subjected  to formal measurements  and 
has  demonstrated significant performance gains in an oSlvs2.1 
environment.  Measurements were made on a System/370, 
Model 155-11. Work loads  were used that  were made up of 
COBOL, FORTRAN, SORT, and Basic Assembly Language ( B A L )  
programs. Various jobs included assembly, compilation, linkage 
editing, and/or execution  steps.  Each work load required approx- 
imately 10 minutes  for completion in the  environment established 
for the measurements. 

The average  performance  improvements are summarized in Ta- 
ble l .  The gains realized for  each of the work loads were quite 
similar. Comparisons are relative to the same system with an 
LPA that  was  not affinity-packed. The table  shows  the effect of 
an affinity-packed LPA on a  number of key performance  parame- 
ters.  Supervisor  state CPU time reflects those periods when the 
CPU is not in a waiting condition and is not executing in the 
problem state.  Supervisor  state normally is associated with con- 
trol program execution. As shown by the  table, this overhead 
was decreased by seven  percent. 
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I Table  1 Performance  improvements 

Change  wit 
Parameter  packed LPr 

I Supervisor  state execution  time 7% 
Total run time 
1 / O  interruptions 

5% 
10% 

Paging channel  time 2 1% 

The total run times for  the work loads were decreased by  ar 
average of  five percent. The total number of rlo interruptions 
which is influenced by the  incidence of  paging operations,  de 
creased by 10 percent.  This can be attributed directly to a de 
crease in the  number of paging operations  required. Similar con 
siderations apply with regard to the 2 1 percent  reduction in utili. 
zation of the paging channel.  This  latter savings is especiallJ 
significant for configurations in which the paging channel i: 
shared with other r l o  operations. I 
Although these  results  were obtained in a formal measuremen1 
environment, they are  not  presented as an  exhaustive  analysis ol 
the algorithm’s capabilities. Rather,  these  results should be re. 
garded as a  statement of the  potential of this approach  to pro- 
gram packing. Direct performance comparisons  to  other optimi- 
zation techniques should not be rigorously applied due to the 
many variables affecting such performance figures. Absolute 
comparisons  are reliable only when factors  such as work load, 
real storage,  hardware and software configurations, etc.  are 
strictly controlled  and directly comparable. 

In these  measurements, no attempt was made to induce an artifi- 
cally high, or even heavy, paging load. The base system  for 
measurement  comparisons  experienced less than 20 paging op- 
erations per second. One would suspect  that  performance gains 
would be even more substantial as  the paging rate  increases. To 
some extent,  this  contention has been supported.  A small 
oslvs2.1 system, using the algorithm experimentally,  reported  a 
25 percent  decrease in work load run times. Since  the small sys- 
tem was characterized by a high ratio of virtual storage to real 
storage, it would normally experience higher paging rates. It 
would,  therefore, be favorably affected by proper packing of the 
LPA. 

Summary comment 

Experience with the algorithm to date  indicates it to be a worth- 
while step  toward optimization for  a virtual storage  environ- 
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ment. The algorithm is clearly not  the ultimate solution to pro- 
gram packing, yet it does provide an automated  and effective 
means  to  this  end. As such, it has proved useful and  far prefera- 
ble to manual or intuitive  techniques  for program placement. 

The generality of the algorithm is such  that it  may readily be 
applied to any virtual storage  environment. The details of the 
LPA, trace,  and pack phases may change  for  a given environ- 
ment,  but functionally they  are still applicable. The pack phase 
is,  obviously,  the key element in the overall process.  The algo- 
rithm implicit within this phase is essentially independent of 
both the LPA and  trace  phases. The output of the LPA phase is 
simply a table of virtual addresses and is not uniquely nor in- 
trinsically related to the LPA.  Likewise,  the  trace  phase  pro- 
duces  a  sequence of virtual addresses  that can be gathered in 
any number of ways and  that need not be restricted simply to 
program linkages. 

The low overhead  and simplified assumptions  inherent in this 
implementation suggest that it could readily provide  a tool for 
use during normal system  operation. As such,  the algorithm 
would allow dynamic system monitoring in any installation. 
Updated program packing lists could then be generated periodi- 
cally, as required. 

One possible extension of the algorithm could be applied to 
branch linkages. In this case,  the LPA phase would consist of 
building (or predefining) a  directory of the programs to be moni- 
tored. The trace phase could simply monitor the linkage points 
under  consideration.  This could be readily achieved via tempo- 
rary modifications to  the linkage points.  Each linkage point 
could then invoke the tracing subroutine. The pack phase would 
operate essentially unchanged, with the  format of the packing 
lists being produced in whatever form is most usable. 

This  analysis of interprogram linkages does  not  address  the sig- 
nificant area of data  references.  Since  such  references  represent 
a  source of page faults,  their  consideration would provide an 
additional input to  the optimization process.  Obviously,  practi- 
cal difficulties arise in attempting  to  determine  what  these  data 
reference  patterns are.  The normal approaches to collecting 
such  information imply more sophisticated tracing techniques, 
much greater volumes of data, and substantially more  overhead, 
compared  to  the simple linkage trace  described  here. 

Even without adapting the algorithm to new applications or ad- 
ditional inputs, much additional information could be derived 
form further  measurement and analysis. For example,  attempts 
could be made to optimize the assignment of affinity values, as 
opposed  to  the linear 5-4-3-2-1 approach now used. The depth 
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to which affinities should be considered is also an open  question; 
the  present  value of five  is a workable, but possibly not  opti- 
mum, value. There is also  the  question of the minimum allowa- 
ble value in the affinity matrix. The  present implementation con- 
siders  any  nonzero value in the  matrix. It may be,  however,  that 
nonzero  values below a  certain minimum should be disregarded. 
Low-affinity programs would then be packed on  the basis of op- 
timum space  utilization,  not affinity. 

Finally,  there is an additional level of complexity that can be in- 
troduced  to  the pack phase. As described in this  paper,  the pack 
phase  repeatedly  scans  the affinity submatrix  and  deletes  the 
highest value found. This matrix element identifies two pro- 
grams  that are then placed in the  same packing list, if possible. 
This  straightforward  approach  becomes more complex if one 
attempts  to  consider  groups of matrix elements  rather  than sin- 
gle elements. For example, (A, B )  may represent  the highest 
value in the affinity matrix.  Yet it may be that packing A with C, 
D, and E will yield superior  results  even though (A, C ) ,  (A, 
D ) ,  and (A, E) are all individually less  than (A, B) . Such a re- 
sult is at  least  theoretically possible. 

In  conclusion, it can be said that  the algorithm offers tangible 
benefits in its  present  form  and  provides  a  basis  for  further  ex- 
perimental investigation of the virtual storage  environment. 
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