An experimental algorithm for optimizing program placement in
virtual storage systems is described. Interprogram linkages are
monitored and subsequently analyzed for frequency and proxim-
ity. The algorithm evaluates this information within the context
of a paging environment. Program lists that define the optimum
program placements are then generated. Performance gains are
also discussed.

Optimizing program placement in virtual systems

292

by K. D. Ryder

As virtual storage systems' enjoy increasing acceptance and
usage, the optimization of program execution for this environ-
ment becomes more and more important. Many facets of this
general topic have already been explored, such as internal struc-
turing g)f programs and function grouping based upon frequency
of use.

An earlier study by Hatfield and Gerald® presented an excellent
general approach to the problem of intraprogram structure in a
virtual storage environment. By way of contrast, the present
study has as its genesis a very specific interprogram optimiza-
tion problem related to a given software environment and de-
rived from the development of 0S/vs2. Therefore, the following
discussion gives particular attention to concerns of the practical-
ity, usability, and feasibility of the solution.

This paper describes an experimental approach to solving one
particular aspect of the virtual storage optimization problem.
The topic under consideration is the question of where and how
programs should be placed within virtual storage, with no direct
concern for either the internal structure or the data references of
each program. The approach in this paper is not as sophisticated
as some others currently available, nor do the experimental re-

K. D. RYDER IBM SYST J




sults indicate that performance improvements may be as great,
but it does offer a simplified way of improving program execution.

Virtual storage may be characterized in many ways.' For the
purposes of this paper, it is considered to appear as an address
space that has no direct or fixed relationship to the address
space represented by the actual storage size of the computer.”
Virtual storage typically provides to the user an address space
that is, in fact, larger than the storage capacity of the computer.
This size disparity provides tremendous flexibility and func-
tional capability to the user. However, it also requires that at
least part of the user’s address space be retained on a direct-
access device to be brought into the real storage of the computer
only when necessary. Clearly, the part of the user program cur-
rently executing must be in real storage.

Whenever a reference is made to part of a program that is not in
real storage, the user program must be interrupted until the ref-
erenced entity is brought into the computer’s storage. The unit
brought into real storage is typically called a page, and the inter-
ruption of the user program is called a page fault. This terminol-
ogy reflects the fact that the virtual address space is divided into
fixed-size units (pages) and only those pages currently involved
in program eXecution need to be in real storage. The overhead in
time and central processor utilization for page-fault resolution
represents a principal cost factor in virtual storage systems.
Therefore, most efforts to optimize use of the virtual storage
environment address this problem in one way or another.

It is obvious that a major source of page faults can be the link-
age of one program to another. For example, if program A pass-
es control to program B, a page fault will occur unless program
B is in real storage. This paper investigates an algorithm for
ensuring that such page faults are held to a minimum. Optimiza-
tion to minimize other sources of page faults, although a broad
and significant topic, is not considered here. The algorithm will
be discussed in terms of its implementation within a single, spe-
cific virtual storage system —the IBM operating system os/ivs2.t”
The implementation was within the context of the first release of
0S/VS2, that is, 0s/vS2.1. However, the general concept and al-
gorithm have a direct application in any virtual storage system.

A significant feature of the 0S/vS2.1 system is the link pack area
(LPA). This consists of a portion of virtual address space, nor-
mally one to two megabytes in size, which contains both system-
and user-supplied programs. Due to the large number and vari-
ety of programs within the LPA, one may expect the bulk of pro-
gram linkages to involve programs within the LPA. Accordingly,
it was decided that the prime objective would be the optimum
placement of programs within the LPA. This placement, or pack-

NO. 4 - 1974 OPTIMIZING PROGRAM PLACEMENT




294

Figure 1 LPA phase output

Starting Virtual Storage
Program Name Address of Program

Program 1 Address 1

Program 2 Address 2

Program 3 Address 3

Program 4 Address 4

(1 entry per program in the LPA)

aging, would minimize the incidence of page faults related to in-
terprogram linkages.

Algorithm operation

The process of optimizing the LPA structure may be logically
divided into three phases. The first phase, the LPA phase, deter-
mines the LPA structure as it currently exists. The key informa-
tion includes the name, size, and location of each program. This
LPA data is then stored for later reference (see Figure 1).

The second phase, the trace phase, monitors the linkage activity
of the system as it is operating with a normal work load. During
this tracing activity, the only deviation from a purely normal
user environment is the operation of the trace monitor itself. The
function of this monitor is quite simple and therefore presents a
very minimal interference factor. The user environment has total
flexibility —it may be multiprogrammed, batch, interactive, or
any combination thereof. The user environment should accu-
rately represent the operating environment to be optimized.

As program linkages are established, the trace monitor notes the
task that is attempting the linkage and the address to which link-
age is being established (see Figure 2). This information will be
put to use in the final phase of the algorithm’s operation. In
terms of the 0S/vS2.1 implementation, the linkages to be traced
are identified via LINK, LOAD, XCTL, and SYNCH supervisor
calls (svcs), Error Recovery Program (ERP) invocations, and
issuances of type 3 and 4 svcs.” The key consideration is that
all of these linkages require operating system assistance and are,

K. D. RYDER IBM SYST J




Figure 2 Trace output

Task 1.D. Virtual Storage Address of Linkage

Task 1 Address 5

Task 1 Address 9

Task 3 Address 6 “

Task 7 Address 11

Task 1 Address 3

Task 1 Address 20

Task 2 Address 8

Task 1 Address 2

(1 entry per monitored linkage)

therefore, easily monitored. In addition, such monitoring will
normally encompass all the interprogram linkages within the
LPA.

The third and final phase of the algorithm is the pack phase. In
this phase, the output of the previous phases is analyzed, and an
optimum LPA structure is developed. The output of this final
phase consists of sets of program names, indicating which pro-
grams are to be placed together in a page (or pages) of virtual
storage.

The data collected during the trace phase is purely sequential,
and it must undergo additional processing before it can be used.
Typically, the trace data at this point reflects the activity within
a multiprogramming environment. To derive usable linkage se-
quences, it is necessary to sort the trace data on a task basis.
Thus, the final form of the input is multiple, disjoint sets of link-
age data, time-ordered on a task basis (see Figure 3). These sets
may now be analyzed, selecting the sets in any order, to under-
stand the linkage affinity that one program has for another.

The concept of a linkage affinity is fundamental to utilization of
the trace data in the pack phase. For a given task, the trace data

No. 4 + 1974 OPTIMIZING PROGRAM PLACEMENT

linkage
affinity




296

Figure 3 Trace output sorted by task

Task I.D. Virtual Storage Address of Linkage

Task 1 Address 5

Task | Address 9

Task 1 Address 3

Task 1 Address 20

Task 1 Address 2

Task 1

Task 1

Task 1

Task 1

Task 1

Task 1

Task 1

(1 Table per Task)

may show the following linkage sequence: Program A ————
Program B ———  Program C ————  Program D
——— Program E————— Program F —— . .
It is clear that Program A has a linkage affinity for Program B. It
is also true that some lesser affinity exists between Program A
and Program C, between Program A and Program D, etc. For
simplicity, the affinity of Program A to Program B will hence-
forth be denoted as (A, B). For the 0S/vS2.1 implementation of
the algorithm, affinity values were assigned as follows:

(A4, B)=5: (4, C) =4: (4, D) =3; (4, E)=2; (4, F) = 1.

1t can be seen that interprogram affinities were considered only
to a level of five, i.e., (A, G), (A, H), and so forth are insignifi-
cant. The actual affinity values chosen were equally arbitrary,
but they proved to be workable values. Clearly, the set of values
that was used is among the simplest possible combinations, and
the values were chosen primarily for their simplicity. The favor-
able results obtained with the algorithm may not reflect its full
potential since only limited experimentation was done with alter-
native values. The levels of affinity to be considered and the
affinity values selected in no way detract from the generality of
the algorithm.

K. D. RYDER IBM SYST J




Figure 4 Affinity matrix

LPA PROGRAM

Given that an affinity value may be assigned to pairs of pro-
grams, it is now necessary to accumulate these values for each
program pair over the period that was monitored.

The logical mechanism by which this is achieved is the affinity
matrix. This matrix has a row and a column for each program
that exists in the LPA (see Figure 4). As the task-related sets of
trace data are now examined, the appropriate elements of the
matrix are incremented. Thus, for the sample linkage sequence
Program A —————>  Program B———  Program C
———»  Program D ——  Program E ——
Program F ——— . . ., matrix elements would be incre-
mented as follows: '

(A, B) incremented by 5
(A, C) incremented by 4
(A, D) incremented by 3
(A, E) incremented by 2
A, F) incremented by 1

(
(B, C) incremented by 5
(

B, D) incremented by 4

NO. 4 - 1974 OPTIMIZING PROGRAM PLACEMENT

affinity
matrix

297



Figure 5 Affinity submatrix

LPA PROGRAM

If a given program in a linkage sequence does not reside in the
LPA, any couplet of which it is a part is simply disregarded.
Hence, if Program C were not in the LPA in the above example,
no matrix element involving C would exist. All other increment
values would remain unchanged. All trace data involving non-
LPA programs is thus purged as the affinity matrix is built.

An obvious simplification of the affinity matrix is to (1) discard
all entries of the form (A, A) since the affinity of a program for
itself is of no interest and (2) combine all entries of the form (B,
A) with (A, B) since it makes no difference whether A estab-
lishes a linkage to B or vice versa. In this latter case, only the
frequency and proximity of the A and B linkages are important.

An actual implementation of the algorithm would normally nev-
er build the full affinity matrix, although it has -been described
here for generality. The resultant submatrix is shown in Figure 5.

Before the actual preparation of program packing lists, the sub-
matrix must be simplified further. This simplification process
recognizes several fundamental considerations. These consider-
ations reflect the requirements of the 0S/vs2.1 environment. The
rules should also apply in large part to any virtual storage situa-
tion.

K. D. RYDER IBM SYST J




1. If a program is greater than a page in size, then it should be
positioned on a page boundary. This rule allows the program-
mer some capability to anticipate page faults and to structure
his program internally in an optimum fashion. Otherwise, the
point in the program at which a page boundary is crossed will
be totally unpredictable to the program. The implication of  Figure 6 Building of matrix
this requirement is that no affinities should be considered
between programs when both are larger than a page in size. !

Obviously, such a combination would not reduce the number GROUP THE

of pages required for the two programs if both programs are N TASK

constrained to a page boundary. The corresponding entries in T
the submatrix are therefore deleted.
ASSIGN AFFINITY

. If any program is an exact multiple of the page size, then it pVALUESTO

cannot be combined with any other program within a page. (BASED O

Accordingly, all matrix entries involving such programs are
deleted. INCREMENT

. It is allowable to combine a program greater than a page in APPROPRIATE

size with one of less than page size. However, for any two Ay AFEINTY
programs, their combination in a single page (or pages) must COMPLETE
require fewer pages than they would require separately. For

example, a program requiring one and three fourths pages ﬁ}ﬁ%:?[
should never be combined with one requiring three fourths of aA)

a page. To do so would involve three pages, exactly what T

would be required if no effort at combination was made.

COMBINE
ENTRIES OF
THE FORM

Furthermore, program placement in the LPA should be such (A,8) AND (B,4)
that no program spans a page boundary unless its size is in l
fact greater than a page. To violate this assumption would

greatly increase the page-fault rate during execution of such il
programs. Not only would the program be highly susceptible YHERE
to page faults, but it would also be unable to predict the point I
within the program at which the page boundary would fall.
The program structure, therefore, could not be optimized
around the location of this boundary. Phrased in different
terms, this consideration states that for any two programs, |
their individual sizes modulo page size may not produce a AT LEAST ONE
sum that exceeds a page in size. The affinity submatrix is, PRIV
therefore, purged of any such combinations. puLTILe

!

. If the value of any entry in the affinity submatrix is less than PACKING FAILS
an arbitrary value, it is deleted. For the purposes of this im- THE NUMBER OF

. . . PAGES REQUIRED
plementation, that arbitrary value was zero. That is, all re-
maining submatrix elements were considered. Figure 6 sum- I

marizes the key operations in first constructing the affinity THE VALUE IS
. o« . . . LESS THAN
matrix and then deriving the affinity submatrix. N (AN ARBITRARY
CONSTANT) AFFINITY
SUBMATRIX
COMPLETE

BOTH PROGRAMS
~

PAGE SIZE

It should be pointed out that the restrictive nature of these rules
does not in fact preclude dense packing of the LPA. Even though
some affinities cannot be translated into program packing lists,
other affinities will normally exist and can be used to fill out

NO. 4 - 1974 OPTIMIZING PROGRAM PLACEMENT




final
stages

each list. Also, as will be noted later, when the actual LPA is
constructed, the affinity-based packing of the LPA is followed by
a space reclamation phase that effectively eliminates any unused
spaces.

The algorithm now enters an iterative process whereby the affin-
ity submatrix is searched and program packing lists are de-
veloped. The largest value in the affinity submatrix is now locat-
ed and deleted. Either of two situations may prevail:

. Neither of the programs associated with the selected matrix
element has yet been added to a packing list. This is obvious-
ly the situation on the initial scan of the matrix.

. (a) both programs are already in packing lists or (b) one and
only one program is already in a packing list.

In Case 1, processing is fairly straightforward. The earlier
purges of the affinity matrix have guaranteed that the program
pair can, in fact, be packed successfully in one or more pages.
Hence, a program packing list is established for these two pro-
grams. Also, the space remaining in the page (or pages) to be
occupied by the programs in this packing list is calculated. This
calculation is performed by taking the program sizes modulo the
page size, summing these values, and subtracting the sum from
the page size. In the event that this remaining space is smaller
than any as-yet-unpacked LPA program, then this program pack-
ing list is complete. If the list is, in fact, complete, matrix ele-
ments involving elements of this list are purged to avoid their
further consideration.

Case 2 represents the more complex situation. It may be viewed
more simply by considering two subcases. In Case 2a, both pro-
grams have already been included on program packing lists. All
matrix interactions between members of the two program lists
are now deleted. No benefit will result from future consider-
ations of affinities between elements of the lists. If both lists
contain programs that are greater than a page in size, then no
combination is possible, as discussed earlier.

A further test is required before the two program lists can be
merged. Just as noted earlier for two programs, it is not desir-
able to combine program lists unless they require fewer pages
together than singly. That is, the sizes of the two program lists
modulo page size should not yield a sum greater than page size.

If the preceding tests are met successfully, the two lists are
merged to form a single program packing list. The space remain-
ing in the page (or pages) to be occupied by the members of this
list 1s now recalculated. As before, a space remainder smaller

K. D. RYDER IBM SYST J




Figure 7 Packing list creation

MATRIX
EMPTY
?

DELETE HIGHEST
REMAINING
AFFINITY
VALUE FROM
MATRIX

BOTH BOTH
DOES LISTS HAVE PROGRAMS
PACKING REDUCE PROGRAM = ALREADY
PAGES REQUIRED PAGE SIZE IN PACKING
! ?

LISTS
?

EITHER
COMBINE PACKING CREATE PROGRAM
LISTS TO PACKING ALREADY
FORM NEW LIsT IN PACKING
LisT LIST

MORE
THAN ONE
PROGRAM -
PAGE SIZE
?

DOES
PACKING REDUCE
PAGES REQUIRED

?

ADD PROGRAM
TO EXISTING
PACKING LIST

than any still-unpacked LPA program will indicate a completed
list. Matrix elements involving members of the list are deleted
once the list is completed.

For Case 2b, it is necessary that one and only one of the two
programs already exist in a packing list. To simplify future pro-
cessing of the affinity matrix, all matrix interactions between the
unassociated program and programs in the list are purged.

The addition of the selected program to the existing list may
cause the list to contain multiple programs larger than a page in
size. For the reasons discussed earlier, this situation is undesir-
able, and no such combination is allowed.

No. 4 - 1974 OPTIMIZING PROGRAM PLACEMENT




resuitant
LPA

302

The final test requires that the unassociated program fit in the
page(s) to be occupied by the list members. Note that the pro-
gram may be larger than a page, in which case its size modulo the
page size is considered.

As usual, the addition of the unassociated program to the list
causes a recalculation of the space remaining in the page(s) as-
sociated with the list.

The algorithm continues to cycle through the affinity matrix until
all entries have been deleted. The end product is a set of pro-
gram packing lists that may be used to optimize the placement of
LPA modules in virtual storage. Each list is an entity and may be
considered in any order relative to the other lists. For the
QS/vS2.1 implementation, the format of these lists matches ex-
actly that of the lists used to build the LPA at system initializa-
tion time.” ® Hence, the algorithm output is simply and directly
used to structure the LPA. The algorithm operation of actually
building the packing lists is summarized in Figure 7. Only the
key functions are shown.

In Figure 8, the resultant LPA can be seen, given a particular set
of program packing lists. It should be noted that, for conve-
nience, any program greater than a page in size appears as the
first element in the list. This facilitates its placement on a page
boundary, as shown. In the 0S/vs2.1 environment, the loading of
programs named in a list is done in the order of their appearance
in that list. The first program is assigned the lowest virtual ad-
dress in the page or block of pages for that list, and succeeding
programs in the list are assigned progressively higher addresses.
Each successive list is associated with a progressively lower
block of address space.

Another notable feature of the 0s/vs2.1 implementation involves
those LPA programs for which no significant affinities were re-
corded. Such programs are used to fill in the unused spaces in
the LPA. The assignment of available space is made on the basis
of program size, with the largest programs considered first. This
process allows efficient space utilization in conjunction with
affinity-based program packing.

It is reasonable to assume that variations in work loads would
tend to involve different sets of LPA programs but would not
drastically affect the linkage patterns between particular pro-
grams. In this sense, the packing lists generated from different
trace runs would be additions to, rather than replacements for,
existing lists. The 0s/vs2.1 implementation adopted a flexible
approach in this area, however, by allowing for the definition of
multiple sets of program packing lists. If it is determined that
different work loads generate significantly distinct LPA struc-

K. D. RYDER IBM SYST J




Figure 8 LPA structuring based on program packing lists

PROGRAM PACKING LISTS VIRTUAL STORAGE
(AD.F) T
(G.B)
[(AR))]
(E.H.K) D
A
UNUSED

PAGE BOUNDARY

ODULE SIZES PAGE BOUNDARY
0.25 PAGE
0.25 PAGE
0.25 PAGE
0.50 PAGE
1.25 PAGE PAGE BOUNDARY
0.25 PAGE
1.50 PAGE
0.25 PAGE
0.25 PAGE
0.25 PAGE PAGE BOUNDARY
0.50 PAGE

PAGE BOUNDARY

PAGE BOUNDARY

tures, then the appropriate set of program packing lists can be
assigned the proper name to cause its selection at system initiali-
zation time.

Performance measurements

The algorithm has been subjected to formal measurements and
has demonstrated significant performance gains in an 0S/vS2.1
environment. Measurements were made on a System/370,
Model 155-11. Work loads were used that were made up of
COBOL, FORTRAN, SORT, and Basic Assembly Language (BAL)
programs. Various jobs included assembly, compilation, linkage
editing, and / or execution steps. Each work load required approx-
imately 10 minutes for completion in the environment established
for the measurements.

The average performance improvements are summarized in Ta-
ble 1. The gains realized for each of the work loads were quite
similar. Comparisons are relative to the same system with an
LPA that was not affinity-packed. The table shows the effect of
an affinity-packed LPA on a number of key performance parame-
ters. Supervisor state CPU time reflects those periods when the
CPU is not in a waiting condition and is not executing in the
problem state. Supervisor state normally is associated with con-
trol program execution. As shown by the table, this overhead
was decreased by seven percent.

NO. 4 ¢« 1974 OPTIMIZING PROGRAM PLACEMENT




304

Table 1 Performance improvements

Change with
Parameter packed LPA

Supervisor state execution time 7%
Total run time 5%
1/0 interruptions 10%
Paging channel time 21%

The total run times for the work loads were decreased by an
average of five percent. The total number of 1/0 interruptions,
which is influenced by the incidence of paging operations, de-
creased by 10 percent. This can be attributed directly to a de-
crease in the number of paging operations required. Similar con-
siderations apply with regard to the 21 percent reduction in utili-
zation of the paging channel. This latter savings is especially
significant for configurations in which the paging channel is
shared with other 1/O operations.

Although these results were obtained in a formal measurement
environment, they are not presented as an exhaustive analysis of
the algorithm’s capabilities. Rather, these results should be re-
garded as a statement of the potential of this approach to pro-
gram packing. Direct performance comparisons to other optimi-
zation techniques should not be rigorously applied due to the
many variables affecting such performance figures. Absolute
comparisons are reliable only when factors such as work load,
real storage, hardware and software configurations, etc. are
strictly controlled and directly comparable.

In these measurements, no attempt was made to induce an artifi-
cally high, or even heavy, paging load. The base system for
measurement comparisons experiericed less than 20 paging op-
erations per second. One would suspect that performance gains
would be even more substantial as the paging rate increases. To
some extent, this contention has been supported. A small
0S/vS2.1 system, using the algorithm experimentally, reported a
25 percent decrease in work load run times. Since the small sys-
tem was characterized by a high ratio of virtual storage to real
storage, it would normally experience higher paging rates. It
would, therefore, be favorably affected by proper packing of the
LPA.

Summary comment

Experience with the algorithm to date indicates it to be a worth-
while step toward optimization for a virtual storage environ-

K. D. RYDER IBM SYST J




ment. The algorithm is clearly not the ultimate solution to pro-
gram packing, yet it does provide an automated and effective
means to this end. As such, it has proved useful and far prefera-
ble to manual or intuitive techniques for program placement.

The generality of the algorithm is such that it may readily be
applied to any virtual storage environment. The details of the
LPA, trace, and pack phases may change for a given environ-
ment, but functionally they are still applicable. The pack phase
is, obviously, the key element in the overall process. The algo-
rithm implicit within this phase is essentially independent of
both the LPA and trace phases. The output of the LPA phase is
simply a table of virtual addresses and is not uniquely nor in-
trinsically related to the LPA. Likewise, the trace phase pro-
duces a sequence of virtual addresses that can be gathered in
any number of ways and that need not be restricted simply to
program linkages.

The low overhead and simplified assumptions inherent in this
implementation suggest that it could readily provide a tool for
use during normal system operation. As such, the algorithm
would allow dynamic system monitoring in any installation.
Updated program packing lists could then be generated periodi-
cally, as required.

One possible extension of the algorithm could be applied to
branch linkages. In this case, the LPA phase would consist of
building (or predefining) a directory of the programs to be moni-
tored. The trace phase could simply monitor the linkage points
under consideration. This could be readily achieved via tempo-
rary modifications to the linkage points. Each linkage point
could then invoke the tracing subroutine. The pack phase would
operate essentially unchanged, with the format of the packing
lists being produced in whatever form is most usable.

This analysis of interprogram linkages does not address the sig-
nificant area of data references. Since such references represent
a source of page faults, their consideration would provide an
additional input to the optimization process. Obviously, practi-
cal difficulties arise in attempting to determine what these data
reference patterns are. The normal approaches to collecting
such information imply more sophisticated tracing techniques,
much greater volumes of data, and substantially more overhead,
compared to the simple linkage trace described here.

Even without adapting the algorithm to new applications or ad-
ditional inputs, much additional information could be derived
form further measurement and analysis. For example, attempts
could be made to optimize the assignment of affinity values, as
opposed to the linear 5-4-3-2-1 approach now used. The depth

No. 4 + 1974 OPTIMIZING PROGRAM PLACEMENT




to which affinities should be considered is also an open question;
the present value of five is a workable, but possibly not opti-
mum, value. There is also the question of the minimum allowa-
ble value in the affinity matrix. The present implementation con-
siders any nonzero value in the matrix. It may be, however, that
nonzero values below a certain minimum should be disregarded.
Low-affinity programs would then be packed on the basis of op-
timum space utilization, not affinity.

Finally, there is an additional level of complexity that can be in-
troduced to the pack phase. As described in this paper, the pack
phase repeatedly scans the affinity submatrix and deletes the
highest value found. This matrix element identifies two pro-
grams that are then placed in the same packing list, if possible.
This straightforward approach becomes more complex if one
attempts to consider groups of matrix elements rather than sin-
gle elements. For example, (A, B) may represent the highest
value in the affinity matrix. Yet it may be that packing A with C,
D, and E will yield superior resuits even though (A, C), (A,
D), and (A, E) are all individually less than (A, B). Such a re-
sult is at least theoretically possible.

In conclusion, it can be said that the algorithm offers tangible
benefits in its present form and provides a basis for further ex-
perimental investigation of the virtual storage environment.

ACKNOWLEDGMENTS

A statement of appreciation goes to those who made significant
contributions to the implementation of the algorithm: D. E.
Coon, who developed an initial APL version; A. F. Banks, who
developed the full-function Basic Assembly Language (BAL)
version; R. H. Van Dam, who tested the BAL version; P. A.
Chiappa, A. G. Jaeger, E. T. Boyle, and 1. H. Schneider, who
made many helpful comments and suggestions during the design
of the program.

CITED REFERENCES
1. P. J. Denning, “Virtual memory,” Computing Surveys 2, No. 3, 153-189
(September 1970).
2. D. Ferrari, “A tool for automatic program restructuring,” Proceedings of the
ACM 1973 Annual Conference, 228-231 (1973).
3. D. J. Hatfield and J. Gerald, “Program restructuring for virtual memory,”
IBM Systems Journal 10, No. 3, 168-192 (1971).
. Introduction to Virtual Storage in System /370, Form No. GR20-4260, IBM
Corporation, Data Processing Division, White Plains, New York.
. OS/VS2 Planning and Use Guide, Form No. GC28-0600, IBM Corpora-
tion, Data Processing Division, White Plains, New York.
. OS/VS2 IPL and NIP Logic, Form No. SY27-7243, IBM Corporation,
Data Processing Division, White Plains, New York.
. OS/VS2 Supervisor Logic, Form No. SY27-7244, 1BM Corporation, Data
Processing Division, White Plains, New York.

. D. RYDER IBM SYST J




