
Discussed is an extended facility of job management for O S / V S I .
This facility provides spooling and scheduling in a virtual stor-
age system. Its three major components are peripheral services,
central services, and queue management.

The job entry subsystem of OS/VSl
by J. H. Baily, J. A. Howard, and T. J. Szczygielski

With the advent of System/370, the existing System/360 oper-
ating systems were extended to take advantage of virtual storage
capabilities. OS/MFT (multiprogramming with a fixed number of
tasks) was extended to become oslvsl. In addition, the intro-
duction of HASP' (Houston Access Support Processor) had
demmstrated that the performance and functional capabilities of
job management could be significantly improved. Thus, to ex-
tend the operating system for the virtual environment and to in-
crease performance and functional capabilities, it was necessary
to modify the job management component of OSIMFT.

Historically, job management was responsible for directing and
controlling the flow of jobs through an operating system by
providing the functions of job processing and command process-
ing. The Job Entry Subsystem 1 (JESI) of oslvsl is an extension
to job management that provides a centralized facility for
spooling2 and scheduling input and output streams. JESl operates
in a virtual storage environment and incorporates some of the
performance and functions of HASP.

This paper describes JESl, contrasting OS/MFT job management
with oslvsl job management and highlighting the comparative
advantages of J E S ~ . The paper outlines the input required by the
subsystem and discusses the general functions of the subcompo-
nents of JESl including, when appropriate, how the functions
were accomplished.

Overview

When the objectives of JESl were being defined, the following
areas of OS/MFT job management (Figure 1) were identified as
critical for throughput in the new system:

NO. 3 * 1974 JOB ENTRY SUBSYSTEM

Multiple copies of many modules of job management were
used.
Readers and writers used problem program partitions, and
the reader shared a partition with the initiator.
The job queue data set contained so many different types of
data that queue contention was a problem.
The system-input/system-output process had a heavy over-
head in the allocation and unallocation of direct-access stor-
age space. Also, the availability of direct-access space for a
data set was dependent on the degree of segmentation of the
total direct-access space.
Interpretation of the job control language (JCL) and creation
of schedule? control tables at reader time and heavy job
queue access by both the reader and writer caused unit rec-
ord devices to be used inefficiently.

Figure 2 illustrates the subcomponents of JESl and the data sets
or devices that they access. JEsl is divided into three parts-
queue management, which is the access method to the job queue
data set and scheduler data central services, which is the
access method to spool, and peripheral services, which serves
the llo devices.

JESl is a single load module that is resident in virtual storage.
The code is reentrant so that multiple copies do not exist and
multiple loads do not occur. This is especially important in a vir-
tual environment because multiple copies and multiple loads
would increase paging.

Also, with JESl as a resident reentrant module, the readers and
writers need not use up a partition. In addition to freeing prob-
lem program partitions, the between-job overhead that existed
as a result of a reader/interpreter5 sharing a partition with an
initiator is eliminated. The elimination is significant because
sharing caused the two tasks to go through a suspend-restore
process for each job that was read or scheduled.

For each job read from the input device, the reader assigns
space on the job queue for tables containing queuing and ac-
counting information only. Scheduler control tables are not cre-
ated from the job’s JCL until the job is selected for execution.
Then they are written to the scheduler data set, which is a re-
source of the initiator selecting the job. Also, the system mes-
sages related to the job are spooled with the rest of the output of
the job. This separation of control tables and system messages
from the job queue effectively reduces job queue contention.6

The entire process for system-input/system-output data sets
was improved. The allocation and unallocation of direct-access
space for the data sets uses an algorithm that utilizes a bit map

254 BAILY, HOWARD, A N D SZCZYGIELSKI IBM SYST J

OSIMFT job management

JOB INPUT

CONTROL
CARDS&

READER PARTITION I
READER/

INTERPRETER
WITHQUEUE

METHOD
ACCESS 1

1 I

PROBLEM PROGRAM PARTITION

TERMINATOR
WITHOUEUE

I M A N A ~ E M E N T I

ALLOCATION

MANAGEMENT
WITH QUEUE

SEQUENTIAL

METHOD PROGRAM

WRITER PARTITION

WITH QUEUE

METHOD
ACCESS

n

QUEUE

SYSTEM INPUT/
SYSTEM OUTPUT

JOB ENTRY SUBSYSTEM 1

Figure 2 JESl job flow

QUEUEMA,\AGEMENT I - " I 1 CENTRAL SERVICES

I ,

PARTITION

It
PROBLEM
PROGRAM
PARTITION

T =e- - \ r

1JEl
CONTROL
CARDS&

JOB INPUT

JOBOUTPUT

chaining. On the reader side, however, an even more important
change was the reader/interpreter split. Removing the interpre-
tation of JCL and the creation and writing of scheduler tables
from input stream processing frees the reader to read and spool
the input stream as fast as it can drive the input device.

Thus the areas within job management that are critical for
throughput were addressed in the design of JEs1. In addition,
other areas of job management required modifications. The main
change was to make the interface to JESl an integral part of the
system and to maintain the full restart capabilities' that existed
in OS/MFT.

External impacts

We now look at some specifics of JESl. The primary consideration
will be the ways in which JESl affects the problem programmer,
the system operator, and the system programmer. External
compatibility with O ~ / M F T was the rule when JESl was imple-

256 BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J

Figure 3 OSIMFT and OS/vSl queue comparison

I SCHEDULER I -

258

OSIMFT
TABLES

(FROM JCL) OS/VSl -
QUEUE

QUEUINGANO
ACCOUNTING

TABLES
QUEUE

zation requirements. JESl configuration and automated system
initialization are intended to give the system programmer flexi-
bility in tailoring his operating system.

The system programmer can use the parameters in the JES sys-
tem generation macroinstruction to specify for central services
the spool allocation unit, the number and size of the buffers into
which central services will block data being transferred to and
from spool, the maximum number of output records to be al-
lowed for a job, and the volumes that contain spool data sets.
He can also specify the percentage of spool capacity which, if
exceeded, causes central services to inform the operator and
suggest corrective action. For peripheral services, he can speci-
fy the maximum number of readers and writers that may be ac-
tive concurrently, the blocking factor for unit record I/O activity,
nonunit record block sizes, and the amount of storage required
for user-supplied writer routines.

The system programmer is affected by several changes to the
reader and writer cataloged procedures. Through the reader
procedure, he can control whether procedures invoked by jobs
in the input stream are written to the spool data set or read di-
rectly from the system procedure library at the time the job is
selected for execution. In addition, the parameter field in the
writer procedure has been extended to provide for a variable
number of job separator pages, to optionally translate unprint-
able characters to blanks, to specify the number of lines per page
of printed output, and to specify the checkpoint interval for sys-
tem output data sets.

'

The third major area in which JESl impacts the system program-
mer is estimating the required size of the system data sets. Sec-

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J

QUEUE

FIXED SUPERVISOR

"

tual storage, plus fixed storage for control blocks.

The writer work area contains control blocks similar to those
used by the reader interface with the access methods. Queue
management is used to select an output job and read job-related
tables from the job queue. The data from the job queue points
to spool, and the writer uses central services to read the system
output data. Reading continues until an end-of-data-set condition
is returned, with each record being transferred to the output
device using the JES access method.

The writer selects and processes system output data sets by
class within a job. Multiple copies of the data set will be pro-
duced if requested by the programmer in his JCL or by the opera-
tor in the writer command. In other words, with the JESl writer,
it is not necessary to rerun the job or use multipart paper to pro-
duce multiple copies. After the last system output data set in
each class is processed, the writer frees the queue space asso-
ciated with that class and decrements the count of classes for
that job. When the count of classes within the job reaches zero,
all output for the job has been processed, and the writer frees
the remaining queue and spool space associated with the job.

The interface to user-written writers and job separator routines
is unchanged from OSIMFT. Control character processing is also
compatible with O s l M r r . However, the JESl writer monitors
control characters for the beginning of logical pages to perform
the hold, forward-space, and backspace functions of the writer
command, and to cheqkpoint system output data sets.

Summing up peripherkl services, we have seen that the subtask
structure that permits'multiple readers and writers in one system
partition, the use of qentrant code, the packaging of the reader
and writer into main lbgic and auxiliary routines, and the use of
page-boundary aligned work areas are all intended to enhance
performance in a virtual environment.

central The second component of JESl is job entry central services
services (Figure 9) . Central services contain the service routines neces-

sary to spool input and output. It executes under control of the
caller, which generally is either job management or data manage-
ment. Data management calls central services on behalf of the'
problem program. In order to maintain compatibility for the
problem program, the data control block interface to data man-
agement is still valid for system input/output data. Data manage-
ment recognizes when any BSAM (Basic Sequential Access
Method) or QSAM (Queued Sequential Access Method) request
is for system input or system output and converts the data con-
trol block interface into an interface with central services. When

264 BAILY, HOWARD. AND SZCZYGIELSKI IBM SYST J

Figure 9 Job entry central services

JOB MANAGEMENT

DATA MANAGEMENT

BRANCH ENTRY
OR SVC

JOB ENTRY CENTRAL SERVICES

~~ ~ ~~ ~

the problem program calls data management, and data manage-
ment determines that central services is required, a supervisor
call instruction (SVC) is issued. Having data management and the
supervisor call as the interface between the problem program
and central services provides for data security. It allows central
services to receive control in key zero and thus allows for the
blocking of the user’s data into a protected buffer. Also, the
supervisor call instruction itself verifies the caller’s key against
the key of the caller’s data.

The main services performed by job entry central services are to
open a spool data set, put a record to or get a record from the
data set, close a spool data set, and cheCkpoint the control
blocks. This last service allows for the retrieval of spool data
sets and the allocation units that they use. To perform all of
these functions, the spool management subcomponent is in-
voked. It uses work-area management to allocate logical cylin-
‘ders for the data sets being created and to access data on the
spool. It uses the buffer manager to attach buffers to the data
sets that are processed.

The first subcomponent of central services is work-area manage-
ment. In order to understand the function of work-area manage-
ment, it is necessary to see how the spool configuration is pro-
cessed at system initialization time. Assuming that two spool

volumes were created in system generation, we see the result of
the JES input in Figure 10. JESl makes a single track range for all
input tracks and saves information to relate any track identifier
with the correct spool volume. Using the buffer size and spool
allocation unit, which were specified by the system programmer
in bytes, the system calculates for each volume the number of
tracks that will be a spool allocation unit. This number of tracks
is called a logical cylinder.

cylinder A master cylinder map (MCM) is built and used to manage the
maps spool logical cylinders. The map contains one bit for each logical

cylinder. Initially all bits are on, indicating that all logical cylin-
ders are available for allocation. When logical cylinders become
unavailable for general use, it means they are owned by some
job. Such logical cylinders are recorded in a job-related table
called the job cylinder map (JCM). For every bit off in the mas-
ter map, a corresponding bit is on in the job map of some job.
The job maps are the same size as the master map. Thus, when
a job is finished with its logical cylinders, a simple OR instruction
returns the allocation units to the available pool.

Work-area management is divided into two functions: allocation
and the read/write routine. The prior description of the cylinder
maps shows what the allocation process is: turning a bit off in the
master map and on in the job map. The spool allocation algo-
rithm also consists of balancing the I/O load on spool. In order to
achieve the balance, the algorithm goes through two consider-
ations. First, the spool volume chosen for an allocation is the
one that has space available and the lowest average spool I/O
time. Second, once that volume is determined, the logical cylin-
der chosen is the one closest to the position of the arm of the
direct-access device.

Once an allocation unit is chosen, it is converted into a track
identifier that is used by spool management for subsequent I/O
requests to the read/write routine. The spool read /write routine
converts its input into an interface with the I/O Supervisor
(10s). The interface is a macroinstruction called EXCPVR (Exe-
cute Channel Program Virtual).14 It is similar to the EXCP in-
struction and was written for system access methods that are
critical I/O areas in a virtual storage system. The interface takes
advantage of the facts that the spool r/o work area and buffer are
adjacent and that the channel program is always the same string’
of channel command words. With the above two assumptions,
the generalized 10s code of EXCP that fixes I/O related areas and
translates channel command words from virtual to real addresses
is bypassed.

The second component of job entry central services is buffer
management. At system initialization time, the central services

266 BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J

~

Figure 10 Work-area manager

a JESCT

n SPOOL 2

I
SPOOL UNIT

AND BUFFER SIZE
OF ALLOCATION

I I '
-

OFTRACKS
NUMBER - WORK AREA MANAGER

-

t I - I I I I I
BIT MAP FOR SPOOL 1 I BIT MAP FOR SPOOL 2

ALLOCATION UNITS I ALLOCATION UNITS
I I

I 1 I
MASTER CYLINDER MAP

rlo work areas and buffers are formatted. This ensures that a
minimum amount of work is done when I/O activity to the spool
begins. Buffer management initialization ensures that the first
work area and buffer are on a page boundary. By specifying a
buffer size so that the work area and buffer together are divisible
by 1 K, the system programmer ensures that the input and output
data will be on the smallest number of pages and that the chan-
nel command words within the I/O work area will never cross a
page boundary. This helps to reduce the processing time for the
MCPVR instruction because fewer pages need to be fixed and
unfixed and the channel command word translation process is
simplified.

When a buffer is needed, buffer management attaches the work
area and buffer to a spool data set. The same area stays with a
data set until close time unless the system programmer specified
too few buffers. In this case, buffer management provides for the
sharing of buffers between data sets. This process ensures that
the system will never stop because of a lack of buffers. How-
ever, it involves a high I/O overhead. Thus, when the system
programmer specifies the number of buffers, it is recommended
that a high estimate be made.

I Spool management is the last and main subcomponent of central

be- divided into two areas: data set maintenance, that is, open
and close activity, and the get and put process. At open time,
control blocks are built, the beginning track identifier for the
data set is saved, and the data set is made ready for get and put
operations." At close time, control blocks and work areas are
cleaned up and the ending track identifier is saved. Both the ~

open and close processes are very efficient because they involve
little or no I/O activity.

The get-put modules of spool management perform several func-

lows system input/output applications to forget about blocking.
Get and put truncate and expand the user's data. This feature is
important for performance because by truncating the 2nding
blank characters, the space in the central services buffer is used
more efficiently, resulting in less I/O activity. In the put module,
the facility to suballocate the logical cylinder allows for fewer
spool allocation calls and is significant in small systems where a
call to a subroutine could cause page-fault rlo activity. Also in
the put module, spool management chains the records belonging
to a spool data set. This has two advantages. First, a logical cyl-
inder can be shared between data sets of a job. This prevents
wasting direct-access storage device space when, for instance,
several system input data sets of a job each contain only a few
records. Second, chaining the data reduces the number of check-
points that are necessary for recovery at system restart time.

queue The last component of JESl is queue management. Queue man-
management agement has been centralized with the subsystem and functions

much the same in oslvsl as in OSIMFT, the main change being in
routing data to either the job queue or a scheduler data set.
When allocating a record on the scheduler data set, a sequential
algorithm is used as opposed to the chained, nonsequential algo-
rithm of OSIMFT. This is possible because the same data set is
used by the initiator for each job it selects. These functional
changes allowed the scheduler control tables to be removed
from the job queue and are the prime reasons why the job queue
contention problem does not exist with JESl.

Summary ,

In this paper, the facilities of the job entry subsystem of oslvsl
have been described briefly. The comparison between osl~FT
job management and oslvsl job management identified several
areas where performance could be improved and described the
approaches taken by JESl for such improvement. The input to
the subsystem, primarily through system generation parameters,
was considered. Compatibility with OS/MFT and the flexibility

268 BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J

JOB ENTRY SUBSYSTEM 269

