Discussed is an extended facility of job management for 0S|VSI.
This facility provides spooling and scheduling in a virtual stor-
age system. Its three major components are peripheral services,
central services, and queue management.

The job entry subsystem of OS/VS1
by J. H. Baily, J. A. Howard, and T. J. Szczygielski

With the advent of System /370, the existing System /360 oper-
ating systems were extended to take advantage of virtual storage
capabilities. OS/MFT (multiprogramming with a fixed number of
tasks) was extended to become 08/vSi. In addition, the intro-
duction of HASP' (Houston Access Support Processor) had
demonstrated that the performance and functional capabilities of
job management could be significantly improved. Thus, to ex-
tend the operating system for the virtual environment and to in-
crease performance and functional capabilities, it was necessary
to modify the job management component of OS/MFT.

Historically, job management was responsible for directing and
controlling the flow of jobs through an operating system by
providing the functions of job processing and command process-
ing. The Job Entry Subsystem 1 JES1) of 0S§/VS1 is an extension
to job management that provides a centralized facility for
spooling” and scheduling input and output streams. JES1 operates
in a virtual storage environment and incorporates some of the
performance and functions of HASP.

This paper describes JES1, contrasting OS/MFT job management
with 0S/vS1 job management and highlighting the comparative
advantages of JES1. The paper outlines the input required by the
subsystem and discusses the general functions of the subcompo-
nents of JES1 including, when appropriate, how the functions
were accomplished.

Overview
When the objectives of JES1 were being defined, the following

areas of OS/MFT job management (Figure 1) were identified as
critical for throughput in the new system:

No. 3 - 1974 JOB ENTRY SUBSYSTEM




Muitiple copies of many modules of job management were
used.

Readers and writers used problem program partitions, and
the reader shared a partition with the initiator.

The job queue data set contained so many different types of
data that queue contention was a problem.

The system-input /system-output process had a heavy over-
head in the allocation and unallocation of direct-access stor-
age space. Also, the availability of direct-access space for a
data set was dependent on the degree of segmentation of the
total direct-access space.

Interpretation of the job control language (JCL) and creation
of scheduler’ control tables at reader time and heavy job
queue access by both the reader and writer caused unit rec-
ord devices to be used inefficiently.

Figure 2 illustrates the subcomponents of JES1 and the data sets
or devices that they access. JESI is divided into three parts—
queue management, which is the access method to the job queue
data set and scheduler data sets,’ central services, which is the
access method to spool, and peripheral services, which serves
the 1/0 devices.

JES1 is a single load module that is resident in virtual storage.
The code is reentrant so that multiple copies do not exist and
multiple loads do not occur. This is especially important in a vir-
tual environment because multiple copies and multiple loads
would increase paging.

Also, with JES! as a resident reentrant module, the readers and
writers need not use up a partition. In addition to freeing prob-
lem program partitions, the between-job overhead that existed
as a result of a reader/interpreter” sharing a partition with an
initiator is eliminated. The elimination is significant because
sharing caused the two tasks to go through a suspend-restore
process for each job that was read or scheduled.

For each job read from the input device, the reader assigns
space on the job queue for tables containing queuing and ac-
counting information only. Scheduler control tables are not cre-
ated from the job’s JCL until the job is selected for execution.
Then they are written to the scheduler data set, which is a re-
source of the initiator selecting the job. Also, the system mes-
sages related to the job are spooled with the rest of the output of
the job. This separation of control tables and system messages
from the job queue effectively reduces job queue contention.’®

The entire process for system-input/system-output data sets
was improved. The allocation and unallocation of direct-access
space for the data sets uses an algorithm that utilizes a bit map

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J




Figure 1 OS/MFT job management

JOBINPUT

CONTROL
CARDS &
DATA

READER PARTITION

READER/
FOR EACH INTERPRETER
READER WITH QUEUE
PARTITION MANAGEMENT

i

SEQUENTIAL
ACCESS
METHOD

PROBLEM PROGRAM PARTITION

FOR EACH INITIATOR/
TERMINATOR

STARTED
FSAE WITH QUEUE
A MANAGEMENT

ALLOCATION
WITH QUEUE
MANAGEMENT

SEQUENTIAL
PROBLEM ACCESS

PROGRAM METHOD

SYSTEM INPUT/
WRITER PARTITION SYSTEM OUTPUT

FOR EACH WRITER
WRITER WITH QUEUE
PARTITION MANAGEMENT

i

SEQUENTIAL
ACCESS
METHOD

L

2

JOBOUTPUT

in main storage. No physical 1/0 operations are necessary to
locate or return space. The algorithm balances 1/0 activity
among the spool devices and consistently makes the same
amount of spool space available. It is not affected by the seg-
mentation problem of OS/MFT. The writing of data is more effi-
cient because the system spool data set is preformatted.

The last critical area is the efficient use of unit record 1/0 de-
vices. Both the reader and writer use channel command word

1974 JOB ENTRY SUBSYSTEM




Figure 2 JES1 job flow

JOBENTRY SUBSYSTEM 1

QUEUE MANAGEMENT CENTRAL SERVICES

PARTITION
SCHEDULER
DATASET

PERIPHERAL SERVICES

L

PROBLEM
PROGRAM JOBOUTPUT
PARTITION

CONTROL
CARDS &
DATA

JOB INPUT

chaining. On the reader side, however, an even more important
change was the reader/interpreter split. Removing the interpre-
tation of JCL and the creation and writing of scheduler tables
from input stream processing frees the reader to read and spool
the input stream as fast as it can drive the input device.

Thus the areas within job management that are critical for
throughput were addressed in the design of JES1. In addition,
other areas of job management required modifications. The main
change was to make the interface to JES1 an integral part of the
system and to maintain the full restart capabilities’ that existed
in OS/MFT.

External impacts

We now look at some specifics of JES1. The primary consideration
will be the ways in which JES1 affects the problem programmer,
the system operator, and the system programmer. External
compatibility with-OS/MFT was the rule when JES1 was imple-

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J




mented. The intent was to place the bulk of the responsibility for
change on the system programmer and to impact the system
operator and problem programmer only to the extent required
for new functions.

The os/vsi Planning and U se Guidé® lists the known problems
that a problem programmer may encounter. For example, no
execute channel program (EXCP) level logic is permitted for sys-
tem input or output. While there are differences between OS/MFT
and 0S/vsi1, they are so minor that JES1 has caused little or no
impact on the problem programmer. With the inclusion of the
JESI spooling facilities for system input and output data sets, the
problem programmer may want to reconsider his system input
or output processing for old applications and, certainly, for new
applications. For example, JES1 blocks and deblocks the user’s
data, and as a result, the problem programmer gains little or
nothing from his own blocking algorithm.

The changes for the system operator are minimal and generally
required for new functions. The operator, unlike the problem
programmer, becomes aware of JESI the first time that the oper-
ating system is initialized, or loaded into main storage. Three
main changes in JES1 affect the system operator. First, the oper-
ator may format all spool volumes or invoke the spool change
processor. The change processor allows the spool volume list to
be reset at system initialization time. The second external
change related to the operator is the “hot” reader capability that
leaves unit record readers open until a stop command is entered.
This feature reduces the amount of operator action required to
process multiple job streams. Last, a new writer command per-
mits operator control of system output data sets being printed or
punched. The operator can forward space or back space a given
number of logical pages in the data set being printed or punched.
He can override the control characters to force single, double,
or triple spacing of the data set, suspend the job being processed
and enqueue it to the system output hold queue, and make up to
255 copies of the data set or job currently being printed or
punched.

The system programmer is impacted by JES1 in three main areas:
the configuration definition, system task procedures, and JESI
system data set definitions. The system programmer defines the
JES1 configuration with the JES system generation'’ macroin-
struction. The result of the macroinstruction is the job entry
subsystem communication table JESCT) and the JES parameters
member of the system parameter library. The JES parameters
member permits changing the configuration without repeating
the system generation process. The automated system initializa-
tion feature of 0s/vS1 (Release 2) permits different JES parame-
ter members to be created and used for different system initiali-

NO. 3 - 1974 JOB ENTRY SUBSYSTEM

problem
programmer

system
operator

system
programmer




Figure 3 OS/MFT and OS/VS1 queue comparison

SCHEDULER
. TABLES
0S/MFT (FROM JCL) 08/Vs1

AN

QUEUING AND
ACCOUNTING
TABLES

SYSTEM
MESSAGES

zation requirements. JES1 configuration and automated system
initialization are intended to give the system programmer flexi-
bility in tailoring his operating system.

The system programmer can tise the parameters in the JES sys-
tem generation macroinstruction to specify for central services
the spool allocation unit, the number and size of the buffers into
which central services will block data being transferred to and
from spool, the maximum number of output records to be al-
lowed for a job, and the volumes that contain spool data sets.
He can also specify the percentage of spool capacity which, if
exceeded, causes central services to inform the operator and
suggest corrective action. For peripheral services, he can speci-
fy the maximum number of readers and writers that may be ac-
tive concurrently, the blocking factor for unit record 1/0 activity,
nonunit record block sizes, and the amount of storage required
for user-supplied writer routines.

The system programmer is affected by several changes to the
reader and writer cataloged procedures. Through the reader
procedure, he can control whether procedures invoked by jobs
in the input stream are written to the spool data set or read di-
rectly from the system procedure library at the time the job is
selected for execution. In addition, the parameter field in the
writer procedure has been extended to provide for a variable
number of job separator pages, to optionally translate unprint-
able characters to blanks, to specify the number of lines per page
of printed output, and to specify the checkpoint interval for sys-
tem output data sets.

The third major area in which JES1 impacts the system program-
mer is estimating the required size of the system data sets. Sec-

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J




Figure 4 OS/MFT queue compared to OS/VS1 data set

0s/vst

SCHEDULER TABLES SCHEDULER DATA
SET

PO

0S/MFT

SCHEDULER TABLES SCHEDULER DATA
P1 SET
Pi

L]
SCHEDUI;:EHRTABLES SCHEDULER DATA

Pn

ondary storage estimate formulas give some direction, but the
formulas contain such variables as the number of jobs on the
input and output queues and the number of data sets in the sys-
tem at one time. The variables are difficult to estimate because
they must be estimated for the variable set of jobs at peak time.
To some extent, JES! has simplified the definition of system data
sets.

To estimate the size of the job queue (Figure 3) in OS/MFT, the
following questions had to be answered: At peak time, what is
the total number of input and output jobs? What is the total
number of tables generated from JCL? And what is the total
number of system messages? In 0S/vS1 the situation is simpli-
fied. The question generally is: How many input and output jobs
must the job queue be capable of holding?

A scheduler data set is associated with each initiator (Figure 4).
Defining the scheduler data set gets the system programmer
back to the task of estimating the amount of JCL because the
scheduler data set is used for scheduler tables that are the result
of JCL interpretation. With JES1, however, the estimate is made
for the jobs, or generally the worst-case job, that will run under
a single initiator. Answering the question for a worst-case job
for one initiator is easier than answering the question for all jobs
under all initiators. One other advantage exists with the associa-
tion of a unique scheduler data set with each initiator. If the esti-
mate for a data set is low, the space-critical problem affects one
initiator, not the whole system. The initiator with a problem is
stopped and restarted, specifying more space. The rest of the
active initiators remain unchanged.

+ 1974 JOB ENTRY SUBSYSTEM




Figure 5 JES1 in the virtual environment of OS/VS1

a HIGH ADDRESS
PAGEABLE SUPERVISOR

PAGEABLE
SUPERVISOR <
AREA

JES1
> PAGEABLE
AREA

CENTRAL SERVICES BUFFERS

PAGEABLE AREA
FOR PROBLEM

PROGRAM <
PARTITIONS

FIXED SUPERVISOR

LOW ADDRESS

Estimating the size of spool is similar to estimating the amount
of system input/output scratch space in OS/MFT. It is directly
related to the amount of system input and output that will be in
the system at any one time. However, the segmentation problem
that existed with the direct-access device storage management
of OS/MFT does not exist with JES1. The entire amount of space
allocated for spool will be made available.

Internal process

In looking at the external impacts of JES1, we have essentially
seen what input is provided to the subsystem. We will now look
at JESI at a lower level and see how the input is processed by

each of the JES1 components.

Figure 5 illustrates the virtual storage location of JES1 in the VS1
system. Note how the supervisor area is divided into a fixed

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J




Figure 6 Peripheral services monitor

WORK AREAS

PARAMETER
LISTS

READER
INITIALIZATION

SERVICES
MONITOR

CH

WRITER
INITIALIZATION

|
|
T
|
I
PERIPHERAL !
|
|
|
I

L+

JOB ENTRY
PERIPHERAL
SERVICES

NOC. OF NO. OF
READERS WRITERS

READER WRITER

JESCT

area at the low end of real storage and a pageable area at the
high end of virtual storage. Except for about 600 bytes of fixed
1/0 appendage code, all of the JES1 modules are pageable and are
loaded into the pageable supervisor area, directly above the
problem program partitions.

Job entry peripheral services consists of a monitor, a reader, and
a writer. The monitor (Figure 6) controls the starting and stop-
ping of all JES1 readers and writers. It is the main task in the
subtasking structure within the JES1 partition, and attaches'' all
JES1 readers and writers. At the time of system initialization, the
monitor obtains the system generation value for the maximum
number of concurrent readers and writers from the job entry
subsystem communication table and obtains virtual storage for
work areas and parameter lists associated with each reader and
writer. Each work area is a 2K-byte block aligned on a page
boundary. The monitor also opens a data control block for the
system procedure library and stores a pointer to it in the com-
munication table. A copy of this control block is used by the in-
terpreter to access the system procedure library. This eliminates
the overhead in use of the macroinstructions OPEN and CLOSE"
'by the interpreter for each job.

When a reader or writer is started, the monitor determines
if the maximum number of readers or writers is being exceeded
by comparing the count of active readers or writers against
the maximum number permitted. The monitor obtains a param-
eter list, saves information in it that will be required during
stop processing, then initializes a work area with reader- or

No. 3 - 1974 JOB ENTRY SUBSYSTEM

peripheral
services




Figure 7 JES1 reader

PROCEDURES

AUXILIARY
WORK AREA LOGIC

CENTRAL QUEUE
SERVICES MANAGER

/ \

writer-dependent information and attaches the reader or writer
task. On the ATTACH macroinstruction, the monitor specifes an
exit routine that will receive control when the reader or writer
closes. At that time, the monitor uses the information in the pa-
rameter list to detach the subtask and invoke a partition to deal-
locate the devices.

The JES1 reader (Figure 7) consists of a main logic module that
reads and spools the input stream and an auxiliary module that
processes commands in the input stream, handles the ‘“hot”
reader interface, does error processing, spool and queue inter-
lock processing, and procedure handling. Only one copy of the
reader code will be loaded no matter how many reader tasks are
active. Therefore, the storage overhead for each additional read-
eér task consists of a 2K work-area page and buffer space in vir-
tual storage, plus fixed storage for control blocks.

The reader work area contains the control blocks and parameter
lists used to interface with the access methods. The input stream
is read using the JES access method gAM)."” This access method
provides channel command word chaining for unit-record

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J




Figure 8 JES) writer

SYSTEM
OUTPUT
QUEUE

CENTRAL QUEUE
SERVICES MANAGER

JES1 AUXILIARY
RK AREA
wo WRITER LOGIC

OUTPUT OUTPUT
ouTPUT

devices. The same interface is used for unit-record, direct-
access, or tape devices. AllJCL and system input data is spooled
through central services. A separate spool data set is created for
each job’s JCL, each system input data set, and, if necessary, the
cataloged procedures invoked by each job. If the reader pro-
cedure indicates that the cataloged system procedure library is
being used, the reader does not read and spool procedures. In-
stead, they are read directly from the procedure library by the
interpreter after the job is selected. If other procedure libraries
are required, the reader uses the Basic Partitioned Access
Method (BPAM) to access the procedures and spools them for
the interpreter. Finally, job-related queuing and accounting ta-
bles are created and written to the job queue through the queue
inanager, and the job is made available for selection by an initia-
tor.

he JES1 writer (Figure 8) consists of a main logic module for
printer output, a main logic module for punch and tape output,
and auxiliary modules for processing job separators, spanned
records, user writers, end-of-class conditions, and commands.
Like the JES1 reader, the storage overhead for each additional

NO. 3 - 1974 JOB ENTRY SUBSYSTEM




central
services

writer consists of a 2K work-area page and buffer space in vir-
tual storage, plus fixed storage for control blocks.

The writer work area contains control blocks similar to those
used by the reader interface with the access methods. Queue
management is used to select an output job and read job-related
tables from the job queue. The data from the job queue points
to spool, and the writer uses central services to read the system
output data. Reading continues until an end-of-data-set condition
is returned, with each record being transferred to the output
device using the JES access method.

The writer selects and processes system output data sets by
class within a job. Multiple copies of the data set will be pro-
duced if requested by the programmer in his JCL or by the opera-
tor in the writer command. In other words, with the JES1 writer,
it is not necessary to rerun the job or use multipart paper to pro-
duce multiple copies. After the last system output data set in
each class is processed, the writer frees the queue space asso-
ciated with that class and decrements the count of classes for
that job. When the count of classes within the job reaches zero,
all output for the job has been processed, and the writer frees
the remaining queue and spool space associated with the job.

The interface to user-written writers and job separator routines
is unchanged from OS/MFT. Control character processing is also
compatible with OS/MFT. However, the JES1 writer monitors
control characters for the beginning of logical pages to perform
the hold, forward-space, and backspace functions of the writer
command, and to checkpoint system output data sets.

Summing up peripheral services, we have seen that the subtask
structure that permits multiple readers and writers in one system
partition, the use of reentrant code, the packaging of the reader
and writer into main logic and auxiliary routines, and the use of
page-boundary aligned work areas are all intended to enhance
performance in a virtual environment.

The second component of JES1 is job entry central services
(Figure 9). Central services contain the service routines neces-
sary to spool input and output. It executes under control of the
caller, which generally is either job management or data manage-
ment. Data management calls central services on behalf of the’
problem program. In order to maintain compatibility for the
problem program, the data control block interface to data man-
agement is still valid for system input/output data. Data manage-
ment recognizes when any BSAM (Basic Sequential Access
Method) or QsaM (Queued Sequential Access Method) request
is for system input or system output and converts the data con-
trol block interface into an interface with central services. When

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST )




Figure 9 Job entry central services

JOB MANAGEMENT
OR

DATA MANAGEMENT

BRANCH ENTRY
OR SVC

JOB ENTRY CENTRAL SERVICES

SPCOL WORK AREA
MANAGER MANAGER

A

JCL
BUFFER SYSTEM INPUT

MANAGER PROCEDURES

SYSTEM MESSAGES
SYSTEM QUTPUT

the problem program calls data management, and data manage-
ment determines that central services is required, a.superviSor
call instruction (SvC) is issued. Having data management and the
supervisor call as the interface between the problem program
and central services provides for data security. It allows central

services to receive control in key zero and thus allows for the
blocking of the user’s data into a protected buffer. Also, the
supervisor call instruction itself verifies the caller’s key against
the key of the caller’s data.

The main services performed by job entry central services are to
open a spool data set, put a record to or get a record from the
data set, close a spool data set, and checkpoint the control
blocks. This last service allows for the retrieval of spool data
sets and the allocation units that they use. To perform all of
these functions, the spool management subcomponent is in-
voked. It uses work-area management to allocate logical cylin-
ders for the data sets being created and to access data on the
spool. It uses the buffer manager to attach buffers to the data
sets that are processed.

The first subcomponent of central services is work-area manage-
ment. In order to understand the function of work-area manage-
ment, it is necessary to see how the spool configuration is pro-
cessed at system initialization time. Assuming that two spool

No. 3 - 1974 JOB ENTRY SUBSYSTEM




cylinder
maps

volumes were created in system generation, we see the result of
the JES input in Figure 10. JES1 makes a single track range for all
input tracks and saves information to relate any track identifier
with the correct spool volume. Using the buffer size and spool
allocation unit, which were specified by the system programmer
in bytes, the system calculates for each volume the number of
tracks that will be a spool allocation unit. This number of tracks
is called a logical cylinder.

A master cylinder map (MCM) is built and used to manage the
spool logical cylinders. The map contains one bit for each logical
cylinder. Initially all bits are on, indicating that all logical cylin-
ders are available for allocation. When logical cylinders become
unavailable for general use, it means they are owned by some
job. Such logical cylinders are recorded in a job-related table
called the job cylinder map JCM). For every bit off in the mas-
ter map, a corresponding bit is on in the job map of some job.
The job maps are the same size as the master map. Thus, when
a job is finished with its logical cylinders, a simple OR instruction
returns the allocation units to the available pool.

Work-area management is divided into two functions: allocation
and the read / write routine. The prior description of the cylinder
maps shows what the allocation process is: turning a bit off in the
master map and on in the job map. The spool allocation algo-
rithm also consists of balancing the 1/0 load on spool. In order to
achieve the balance, the algorithm goes through two consider-
ations. First, the spool volume chosen for an allocation is the
one that has space available and the lowest average spool 1/0
time. Second, once that volume is determined, the logical cylin-
der chosen is the one closest to the position of the arm of the
direct-access device.

Once an allocation unit is chosen, it is converted into a track
identifier that is used by spool management for subsequent 1/0
requests to the read /write routine. The spool read / write routine
converts its input into an interface with the 1/0 Supervisor
(10S). The interface is a macroinstruction called EXCPVR {Exe-
cute Channel Program Virtual)."* It is similar to the EXCP in-
struction and was written for system access methods that are
critical I/O areas in a virtual storage system. The interface takes
advantage of the facts that the spool 1/0 work area and buffer are
adjacent and that the channel program is always the same string’]
of channel command words. With the above two assumptions,
the generalized 10S code of EXCP that fixes 1/0 related areas and
translates channel command words from virtual to real addresses
is bypassed.

The second component of job entry central services is buffer
management. At system initialization time, the central services

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J




Figure 10 Work-area manager

— 1
SPOOL UNIT
OF ALLOCATION
AND BUFFER SIZE

|

3

SPOOL 1

N

NUMBER

OF TRACKS WORK AREA MANAGER

AN
I R,

SPOOL 2

N—

BIT MAP FOR SPOOL 1 BIT MAP FOR SPOOL 2

I
|
I
ALLOCATION UNITS 1 ALLOCATION UNITS
!
1

MASTER CYLINDER MAP

1/0 work areas and buffers are formatted. This ensures that a
minimum amount of work is done when 1/0 activity to the spool
begins. Buffer management initialization ensures that the first
work area and buffer are on a page boundary. By specifying a
buffer size so that the work area and buffer together are divisible
by 1K, the system programmer ensures that the input and output
data will be on the smallest number of pages and that the chan-
nel command words within the 1/0 work area will never cross a
page boundary. This helps to reduce the processing time for the
EXCPVR instruction because fewer pages need to be fixed and
unfixed and the channel command word translation process is
simplified.

When a buffer is needed, buffer management attaches the work
area and buffer to a spool data set. The same area stays with a
data set until close time unless the system programmer specified

<too few buffers. In this case, buffer management provides for the
sharing of buffers between data sets. This process ensures that
the system will never stop because of a lack of buffers. How-
ever, it involves a high 1/0 overhead. Thus, when the system
programmer specifies the number of buffers, it is recommended
that a high estimate be made.

Spool management is the last and main subcomponent of central
services. It is responsible for creating new data sets and extend-

No. 3 - 1974 JOB ENTRY SUBSYSTEM




queue
management

ing or retrieving data from old data sets. Spool management can
be divided into two areas: data set maintenance, that is, open
and close activity, and the get and put process. At open time,
control blocks are built, the beginning track identifier for the
data set is saved, and the data set is made ready for get and put
operations.'> At close time, control blocks and work areas are
cleaned up and the ending track identifier is saved. Both the
open and close processes are very efficient because they involve
little or no 1/0 activity.

The get-put modules of spool management perform several func-
tions. They block and deblock the user’s data, a facility that al-
lows system input/output applications to forget about blocking.
Get and put truncate and expand the user’s data. This feature is
important for performance because by truncating the ending
blank characters, the space in the central services buffer is used
more efficiently, resulting in less 1/0 activity. In the put module,
the facility to suballocate the logical cylinder allows for fewer
spool allocation calls and is significant in small systems where a
call to a subroutine could cause page-fault 1/0 activity. Also in
the put module, spool management chains the records belonging
to a spool data set. This has two advantages. First, a logical cyl-
inder can be shared between data sets of a job. This prevents
wasting direct-access storage device space when, for instance,
several system input data sets of a job each contain only a few
records. Second, chaining the data reduces the number of check-
points that are necessary for recovery at system restart time.

The last component of JES1 is queue management. Queue man-
agement has been centralized with the subsystem and functions
much the same in 0S$/VS1 as in OS/MFT, the main change being in
routing data to either the job queue or a scheduler data set.
When allocating a record on the scheduler data set, a sequential
algorithm is used as opposed to the chained, nonsequential algo-
rithm of OS/MFT. This is possible because the same data set is
used by the initiator for each job it selects. These functional
changes allowed the scheduler control tables to be removed
from the job queue and are the prime reasons why the job queue
contention problem does not exist with JES1.

Summary

In this paper, the facilities of the job entry subsystem of 0S/vS1
have been described briefly. The comparison between OS/MFT
job management and OS/vVS1 job management identified several
areas where performance could be improved and described the
approaches taken by JES1 for such improvement. The input to
the subsystem, primarily through system generation parameters,
was considered. Compatibility with OS/MFT and the flexibility

BAILY, HOWARD, AND SZCZYGIELSKI IBM SYST J




provided by the JES1 reconfiguration facility were the main
points of this discussion. In a brief analysis of the JESI subcom-
ponents, some of the techniques that permit JES1 to perform
efficiently in a virtual storage environment were illustrated.
Thus, it was shown how JES1 extended OS/MFT job management
by providing additional functions and improving performance in
the virtual storage environment.

CITED REFERENCES AND FOOTNOTES

1.

The following publications describe HASP: OS/VS2 HASP Il Verson 4
Operator Guide, Form No. GC27-6993; OS/VS2 HASP [I Version 4 Log-
ic Manual, Form No. GC27-7255; OS/VS2 HASP II Version 4 System
Programmer Guide, Form No. GC27-6992, IBM Corporation, Data Pro-
cessing Division, White Plains, New York.

. The term “‘spool” is coined from “simultaneous peripheral operation on

line.”

. The scheduler is the part of the job processor that selects, initializes, and

terminates jobs and ensures that the jobs have the required resources. The
scheduler is also referred to as the initiator.

. A scheduler data set is allocated to each initiator at start time. It contains

the job-related control tables used by the scheduler. For Release 3 of
0OS/VS1, the system operator has the option at start initiator time of speci-
fying that virtual storage should be allocated and used in place of the data
set.

. The interpreter is the component of job management that creates scheduler

control tables from JCL.

. Job queue contention and 1/O activity are further reduced in Release 3 of

0OS/VS1 by definition of a job list within virtual storage. The reduction is
especially significant during command processing because it replaces nonse-
quential I/O activity with a virtual storage scan algorithm.

. Restart recovery is the ability to recover jobs and data after a system failure

and /or to restart a job that failed and recover its data. In addition, for Re-
fease 3, the job data records that remain on the queue data set are blocked,
allowing for another reduction in 1/0 activity.

. 08 /VS1 Planning and Use Guide, Form No. GC24-5090, 1BM Corpora-

tion, Data Processing Division, White Plains, New York. More information
on OS/VS1 can be found in References 9, 10, 13, and 14.

. OS/VSI Job Management Logic, Form No. SY24-5161, IBM Corporation,

Data Processing Division, White Plains, New York.

. O8/VSI System Generation, Form No. GC26-3791, IBM Corporation,

Data Processing Division, White Plains, New York.

. B. 1. Witt, “The functional structure of OS/360, Part II, Job and task man-

agement,” IBM Systems Journal 5, No. 1, 12-29 (1966).

. W. A. Clark, “The functional structure of OS/360, Part 111, Data manage-

ment,” IBM Systems Journal 5, No. 1, 30-51 (1966).

. OS/VS1 OPEN/CLOSE/EOV Logic, Form No. SY26-3839, IBM Cor-

poration, Data Processing Division, White Plains, New York.

. OS/VSI I]O Supervisor Logic, Form No. SY24-5156, IBM Corporation,

Data Processing Division, White Plains, New York.

JOB ENTRY SUBSYSTEM

269




