System integrity is a basic requirement for operating system
security. Presented are types of system integrity problems and
their general solutions. Techniques used in 05/vs2 Release 2 to
solve these problems are highlighted.

Operating system integrity in OS/VS2
by W. S. McPhee

the need for
security

230

System integrity is a major step in the direction of increased
operating system security capability. This paper provides an
explanation of the system integrity problem and how it relates to
security. The general classes of integrity problems /solutions are
discussed, and primary techniques used in vS2 Release 2 to cor-
rect or avoid integrity “exposures” are presented. User proce-
dural requirements necessary to maintain system integrity, and
the impact of system integrity support on the overall system are
also addressed.

During the past several years, concern over operating system
security capability has grown significantly, motivated by the
following basic facts:

Data and the ability to process it correctly are valuable
commodities. Both companies and individuals have a clear
financial interest in being able to protect themselves from
unauthorized disclosure or alteration of critical or sensitive
data.

Individual privacy is a socially valuable commodity. Much
sensitive information concerning individuals is required to be
kept private. In some cases this is now required by law; in
other cases by growing social concern over the rights of the
individual in our society.

To relate this growing concern to specifics, consider the follow-
ing few examples:

e There has been increasing pressure over the past several years
to bring the privacy issue as it relates to computers and other
electronic equipment under the control of the law either
through new laws, or through the courts in attempts to make
existing privacy laws apply in this area. For example, in a
recent suit in the state of California, an attempt was made to
obtain a ruling to the effect that placing data in a particular
computing system was equivalent to public disclosure of that
data, due to the inadequacy of security safeguards in that
system.

MCPHEE) IBM SYST J.

¢ The Department of Defense has issued rulings that generally
prohibit defense contractors from simultaneous multiprogram-
ming of classified and unclassified (or different levels of
classified) jobs. This is of particular concern since it often re-
sults in inefficient usage of large computing systems.

Many installations, in order to cost justify the large systems
that are needed for peak-load environments, sell time to out-
side users in nonpeak periods. In addition, of course, there are
installations whose business it is to sell time to outside users.
Both of these cases give rise to concern over the capability of
the system to protect accounting data and systém accounting
mechanisms from unauthorized alterations.

In general, the need for reliable operating system security capa-
bility is now well established, although there is still considerable
disagreement over what type of security is appropriate for vari-
ous types of operations, and so forth. However, there is another
attribute of an operating system, called system integrity, that
is a basic prerequisite for any security system.

The need for system integrity stems from the fact that the con-
sideration of security introduces a new concept into operating
system design. Security is by definition not only concerned with
accidental exposure or damage, but also with deliberate, unautho-
rized attempts to access protected resources. However, the con-
cept of a “malicious user,” or adversary, is a concept that has
historically not existed in a general-purpose operating system.
Previous systems such as 0S/MVT were not designed to prevent
deliberate user (user program in the sense of a normal problem
program, with no special authorization) tampering with the
operating system. There was what could be called an ‘‘accidental
error”’ philosophy which essentially said that the operating sys-
tem would attempt to protect itself and other users on the system
from common ‘“‘accidental user errors,” but there was no explicit
attempt to protect against the user deliberately trying to interfere
with the operation of the system. Consequently, in such sys-
tems a variety of ways did exist in which the functioning of the
operating system itself could easily be tampered with.

| The system integrity problem, then, is the fact that security con-
trols, no matter how sophisticated, are not reliable if the operat-
ing system that administers those controls is not itself protected
from user tampering. Putting security controls in a system not so
protected simply protects against the ‘“‘honest” user, and is
somewhat akin to putting locks only on the entrance doors to a
building on the assumption that no one would enter through an
exit door. Thus any enhanced system security capability must

NO. 3 + 1974 08/VS2 SYSTEM INTEGRITY

reliabitity,
availability,
serviceability

begin, at the most basic level, with solving the system integrity
problem of eliminating the ‘“back doors” to the operating system
and its resources.

This leads to a more formal definition of system integrity —the
ability of the system to protect itself against unauthorized user
access, to the extent that security controls cannot be compro-
mised. Specifically, for 0s/vs2 Release 2, this means that there
must be no way for any unauthorized program,' using any de-
fined or undefined system interface, to:

e Bypass store or fetch protection.”
e Bypass password checking.
e Obtain control in an authorized state."

Thus the system integrity support in vS2 Release 2 is not a goal
in itself. Its objective is to create a system base, a foundation on
which existing security features (for example, password
protection) are reliable and effective, and a foundation on which
user or future IBM security capability can be built.

Although the reason behind vs2 Release 2 system integrity sup-
port is security, this support also has the side effect of increasing
system reliability and availability. While the “‘accidental error”
philosophy mentioned previously has existed for some time, it
has been an informal and discretionary guideline, and perform-
ance/ design point trade-offs were often made with respect to the
types of user errors that were protected against. In fact, many of
the integrity problems found in previous systems could be caused
by accidental, as well as deliberate, user errors: perhaps more
significantly, many such problems turned out to be exactly the
types of problems that are likely to result in intermittent “‘bugs”
in the system.

0S/vs2 Release 2 integrity support by definition had to signif-
icantly improve system/user isolation capability, and in so
doing, restrict to that user himself the scope of the damage that
he could cause {accidentally or deliberately). In fact, the ability
to cause an uncontrolled system failure at will was specifically
identified as an integrity exposure in vS2 Release 2, thus assuring
an increase in system reliability and availability. (Note the differ-
ence between uncontrolled system failure or crash as opposed to
such things as system wait state or reduced system throughput
caused by obtaining excess amounts of global resources such as
System Queue Area or Direct Access Space. This differentiation
was made because an uncontrolled system failure may directly
impact security in that “secure” data may be destroyed or dis-
closed. The deliberate use of excess amounts of global resources,
however, while affecting system availability, does not affect data
security.)

MCPHEE IBM SYST J

System integrity problems and their solutions

Over the past several years, various IBM and customer study
efforts examining operating system integrity have aided the de-
tection of integrity exposures in vs2 and previous systems. Fur-
thermore, knowledge in the area of system integrity has pro-
gressed to a point where key validity-checking criteria essential
to system integrity have been identified, and the general integrity
problem has been broken down into seven classes or types of
problems and their solutions.

In the discussion that follows, examples of validity-checking cri-
teria are given and the classes of integrity exposures are pre-
sented. Each type of exposure is explained via examples and by
relating it to the primary technique used for correcting or avoid-
ing that type of exposure in vS2 Release 2.

The new or changed validity-checking criteria for the most part
result from the change in philosophy from “‘accidental error’ phi-
losophy to the “adversary” philosophy which says that nothing
the unauthorized program can do, accidentally or deliberately,
can be allowed to compromise system security controls. The ex-
amples below illustrate the types of changes that have taken
place.

One example of the new validation criteria is the Time-of-
Check-to-Time-of-Use (TOCTTOU) Problem shown below:

T T

1 2
S £

Time
* *
Validity Operation

Check

In a multiprogramming system, if there exists a time interval
between a validity check and the operation connected with that
validity check, the variables involved in the outcome of the va-
lidity check must remain unchanged from the time of the validity
check until the operation is complete. If this cannot be ensured,
then there is the possibility that, through multitasking, the validi-
ty-check variables can deliberately be changed during this time
interval, resulting in an invalid operation being performed by the
control program.

The TOCTTOU consideration is perhaps the most significant of
the changes in validity-checking criteria. The requirement it im-
poses has considerably influenced the direction of the integrity
support in VS2 Release 2. For example, it is no longer acceptable

No. 3 - 1974 08/VS2 SYSTEM INTEGRITY

validity-
checking
criteria

to validate such items as a user parameter list at the beginning of
supervisor call (SvC) processing and then assume validity
throughout that processing. Steps must be taken to ensure that
the variables on which the svC depends do not change through-
out its processing; otherwise repeated validity checks must be
performed once each time such variables are referenced. Listed
below are several examples of steps that must be taken in various
cases to meet the TOCTTOU validity requirement:

Logical disablement (prevention of multitasking) for the
duration of the validity check and related operation(s).
Protection (in areas not accessible to user programs) of
user-supplied addresses and other data for the duration of the
validity check and related operation(s).

Suppression (for the same duration) of user-initiated GET-
MAIN or FREEMAIN operations, in order to preserve the cur-
rent status of main storage being accessed by the control
program.

The key-switch technique (described later in this paper) also
plays an important role in satisfying the TOCTTOU requirement
for two particular types of integrity problems.

A second example of the changed validation criteria is the valid-
chain concept of validity checking. Any validity check involves
certain validity-check variables that are accessed and tested or
compared with other variables to determine if a given operation
is acceptable. The valid-chain concept simply says that such
validity-check variables must be located through a chain of pro-

tected system control blocks that begins with a control block
already known to be valid, or one known to be fixed at a given
location at Initial Program Load (IPL) time, such as the Com-
munications Vector Table (CvT) in 0SIMVT. (This does not im-
ply that a system routine must go back to the CVT or similar con-
trol block everytime it wants to establish a valid chain. Typically,
a control block address not too far back on such a chain is avail-
able and already validated in a register. For example, in VS2 the
first load of an SVC may receive control with a valid Task Con-
trol Block (TCB) address in a register.) The following is an ex-
ample illustrating the valid-chain requirement.

Figure 1 shows a case where a user program provides the con-
trol program with the address of a control block B,. Assume that
the validation procedure that must be carried out before the ad-
dress of B, can be accepted as valid is one of verifying the ad-
dress to be on a chain of similar control blocks, located via block
A. One way to perform such validation would be to note that the
B-type control blocks on such a chain all point back to block A.
Then one can take the user pointer to B,, B,’s pointer to A, and

MCPHEE IBM SYST J

Figure 1 The valid chain concept

USER AREA SYSTEM AREA

™

follow the chain from A to ensure that B, is in fact on the chain.
However, this is a clear violation of the valid chain rule. A’s ad-
dress has been obtained by assuming the validity of the control
block (B,) that was still in the process of being validated. A user
attempting to compromise system integrity could have provided
a counterfeit B,, which pointed to a counterfeit A, which in turn
pointed to a counterfeit chain containing B,.

The correct approach then is to separately locate control block
A (through a valid chain) and then search the chain for a match
on the user-supplied B,. Note, however, that when only the ‘“‘ac-
cidental error” is considered, the above USER to B, to A to B,
validation is an acceptable mechanism because the chances are
negligible that a user error would extend to a valid USER to B, to
A to B, sequence. Such mechanisms were in fact used in prior
systems, such as OS/MVT, to achieve accidental-error protection.

A final example of enhanced validity-checking procedures is the
simple concept of a “full” check. This stems directly from the
change in philosophy and refers to the fact that a previous valid-
ity check that would have detected most possible user errors
before they caused system damage, must now be upgraded to
detect all such user errors, deliberate or accidental. One common
example of this type of change is in validating that a given con-
trol block is in a user-accessible area. In many cases in the past,
the validation that would have been done would check just the
first word of the control block; now consideration must be given
to the fact that a page (4K) boundary might fall within the con-
trol block. (Validating a single word of storage in System/360

No. 3 - 1974 08/VS2 SYSTEM INTEGRITY

classes of
integrity
problems

system
data in the
user area

or /370 verifies only that the 2K /4K block containing that par-
ticular word is accessible to the user.) Since the part of the con-
trol block beyond the page boundary might not be accessible
to the user in question, it also must be checked for accessibility.
It should be noted that less than 100 percent complete validity
checks and other integrity-related “omissions’ in previous sys-
tems were not generally due to poor design or coding. In many
cases they reflect valid trade-offs with respect to critical design-
point/performance considerations relative to earlier releases of
0S/360 systems.

The following classes of integrity problems have been identified:

System data in the user area.

Nonunique identification of system resources.
System violation of storage protection.

User data passed as system data.

User-supplied address of protected control blocks.
Concurrent use of serial resources.

Uncontrolled sensitive system resources.

Each of these classes of problems is described below in connec-
tion with the primary techniques used to solve the problem in
vS2 Release 2. Examples are given in general terms as much as
possible to avoid detailing specific problems that could be used to
compromise systems prior to vS2 Release 2.

The first two problems in the above list are somewhat more gen-
eral in nature than the remainder of the problems. The tech-

niques, if they may be called that, of solving these problems can
only be stated in very general (orimprecise) terms, or are specific
to a given instance of the problem. Because of this, these two
problems are addressed together before going on to the more
explicit integrity mechanisms being used in vs2 Release 2.

System data in the user area refers to the problem where sensi-
tive system data, which should be located in an area of storage
protected from the unauthorized user, is in fact located in a user-
accessible area. In general, the types of system information that
must be protected from the user are as follows:

Code (and the location of code) that is to receive control in
supervisor state or system key (0-7 in vS2 Release 2), or
that is APF-authorized. (APF-authorization is described in a
section later in this paper.)

Work areas for such code, including areas where the con-
tents of registers are saved /restored.

Control blocks that represent the allocation or use of system
resources.

MCPHEE IBM SYST J

Note that in vS2 Release 2, as in previous MVT and vS2 releases,
system code and data is normally protected from user modifica-
tion via protect/storage keys. Keys are only used to protect
user programs from each other in the case of Virtual = Real
(Vv =R) program. Segment protection is used otherwise.

Since the problem is very general, the solution also must be
stated in somewhat general terms —that is, either relocate sensi-
tive system data to areas protected from the unauthorized user,
or modify the way in which the system uses the data such that it
is no longer sensitive.

Probably the most common example of this type of problem is
the case where the system uses an address, located in storage
modifiable by the user, to branch to a program in supervisor state
or key 0-7. The user can of course gain control in supervisor
state or system key simply by modifying this address at the ap-
propriate time. The solution to this problem is:

If the routine being given control actually requires the privi-
leged key or state, the address must be relocated to an area
not accessible to the unauthorized user.

If the routine being given control does not require the privi-
leged key or state, the problem can be solved by replacing
the branch with a SYNCH operation that gives control in user
key and problem state, but allows control to be returned to
the system in supervisor state system key.

An operating system is essentially a resource manager. As such,
if there is a case where it does not uniquely identify the re-

sources it is dealing with, it becomes subject to integrity prob-
lems. These problems generally take the form of the ability of an
unauthorized user program to counterfeit control program re-
sources such as programs or control blocks, or to cause the sys-
tem to intermix incompatible control program resources. Non-
unique identification of system resources is the term used to refer
to this problem.

The general solution to the problem can only be stated as the
reverse of the problem; that is, the system control program must
maintain and use sufficient data (protected from the user) on
any sensitive control program resource, to uniquely distinguish
that resource from any other control program or user resource.
To be more specific than this, one must have a knowledge of the
particular type of resource involved in the problem, as can be
seen from the following examples:

To be uniquely identified, a program must be identified by
both name and library. Specifically, to prevent control pro-
gram routines from being counterfeited, the vs2 Release 2

No. 3 - 1974 08/vS2 SYSTEM INTEGRITY

nonunigue
identification
of system
resources

control program checks both name and library before satisfy-
ing a load request for an authorized program (a program to
be executed in system key, supervisor state or APF- author-
ized). Such loads can be satisfied only from authorized sys-
tem libraries.

Certain types of resources such as copies of programs can be
requested and used by both the user and the control program
concurrently. In this case, the control program must identify
the resource as belonging to both the control program and
the user to ensure that the user is not able to delete the re-
source while the control program is still using it. This could
result in an integrity exposure. Note that in this case, the
“identity”’ of a resource is being extended to include the in-
formation that has become a part of the control program and
as such is not deletable by the user.

The key-switch technique of changing from system key to user
key is widely used as a validity checking mechanism in vs2 Re-
lease 2. Its purpose is to achieve simpler and more effective va-
lidity checking by making a system program, performing an op-
eration in behalf of a user program, appear to be a user program
for the duration of that operation. By switching from system key
to user key, the system routine ensures that it will suffer the same
validity-check failures as the user program would have suffered
had it attempted to perform the operation itself.

The ability to make use of this technique is dependent on the
following two capabilities:

~ The capability to define validity-checking mechanisms that
are sensitive to key but not state (problem state versus su-
pervisor state) as the difference between system and user.
(Supervisor state must be used as the authorization mechan-
ism that allows the key switch, and therefore must be able
to be retained by the system routine in order to switch back
to system key.) In general, this requirement may be described
as the existence of a state-switch state on which validity
checks do not depend, one or more other states on which
various types of validity checks do depend, and the ability
to hold the state-switch state simultaneously with any of the
other states.
A mechanism that allows the system routine to recover from
the validity-check failure (for example, program check and
ABEND) in order to cause the proper error messages, ABEND
codes, and such to be given to the user. Note that since al-
most all vs2 Release 2 control program routines are protect-
ed by special recovery routines that do intercept such fail-
ures, this requirement is not a problem.

238 MCPHEE IBM SYST J

Two types of integrity problems lend themselves particularly to
_the key-switch solution. System violation of storage protection
is a problem where a system routine, operating in one of the
privileged system keys (0-7), performs a store or fetch opera-
tion in behalf of a user routine without adequately validating that
a user-specified location actually is in an area accessible to him.
The key-switch technique is now widely used throughout vs2
Release 2 by system key routines performing store /fetch opera-
tions on such user areas (control blocks, buffers, and parameter
lists and the like). It is a simple, effective technique that allows
the hardware to do the validity checking. (A new key-switch in-
struction is available and used by vs2 Release 2 for this pur-
pose. This reduces overhead and considerably simplifies the
mechanics of key switching, which otherwise would have re-
quired LPSW instructions each time.) Also, it is also a low-over-
head method of avoiding the Time-of-Check-to-Time-of-Use
problem.

In addition, with respect to this particular integrity problem,
there is a variation of the basic key-switch technique that pro-
vides an automatic solution to one of the most difficult aspects of
system integrity support—namely, ensuring that a given solution
has been applied in all cases of the problem. Thus, while the key-
switch technique is effective as a solution, there is always the
problem of ensuring that key switches have been inserted at all
the appropriate places. The variation on the basic technique that
provides this assurance is the change in vS2 Release 2 to run cer-
tain portions of the control program in a limited store/ fetch state
(that is, nonkey 0) instead of unlimited store /fetch state (key 0).
This has the effect of forcing a key switch at the appropriate

places (whenever a user area is referenced) because if the
switch is not made, the control program’s limited store state will
cause the store/fetch operation to fail in the normal case, thus
producing an error situation that must be corrected by a key
switch. Large parts of the data management area (which is
prone to the storage protection type violations), for example, will
runin key 5 in vS2 Release 2.

User data passed as system data is a second type of integrity
problem that lends itself to the key-switch technique. The poten-
tial for this problem arises wherever, as shown in Figure 2, it is
possible for an unauthorized user program to use one SVC rou-
tine (routine A) to invoke a second SVC routine (routine B) that
the problem program could have invoked directly. An integrity
exposure occurs if SVC routine B bypasses some or all validity
checking based solely on the fact that it was called by another
SVC routine (routine A), and if user-supplied data passed to rou-
tine B by routine A either is not validity checked by routine A or
is exposed to user modification after it was validated by routine
A (the TOCTTOU problem). This problem does not exist if the

NO. 3 - 1974 08/VS2 SYSTEM INTEGRITY

system
violation
of storage
protection

Figure 2 User data passed as
system data

x
\\\ //

user data
passed as
system data

user-supplied
address of
protected
control blocks

user calls SVC routine B directly because the validity checking
will be performed on the basis of the caller being an unauthorized
program. This confusion arises because of the various cases in
the system where SVC routines operating in their own behalf in-
voke other SVC routines to perform operations that would not,
and should not, withstand the normal validity checking applied to
unauthorized programs. The problem is to identify the case where
an SVC is operating in a user’s behalf —that is, with unvalidated,
user-supplied data that should undergo normal validity checking.

The solution to the problem requires that SvVC routine A (which
is aware of whether or not it has been called by an unauthorized
program) ensure that the proper validity checking is accom-
plished. However, it is usually not practical for SVC routine A
to do the validity checking itself because of the potential for user
modification of the data prior to or during its use By SVC routine
B (the TOCTTOU problem) . The general solution, thus, is for svc
routine A to provide an interface to SVC routine B, informing rou-
tine B that the operation is being requested with user-supplied
data in behalf of an unauthorized problem program (implying that
normal validity checking should be performed).

In practice, in vS2 Release 2 most SVC B-type routines that
could be subject to this problem use the key of their caller as a
basis for determining whether or not to perform validity check-
ing. Therefore, most vS2 Release 2, SVC A-type routines have
simply adopted the convention of assuming the key of their call-
er before calling the SVvC B routine. This solution is effective in
the case of 2 levels of SVCs, as shown above, in n levels if nec-
essary.

The user-supplied address of protected control blocks integrity
problem can exist whenever the control program accepts the ad-
dress of a protected system control block from the user. For
most system control blocks this situation should not be permit-
ted to exist. However, in certain cases it is permissible (with
adequate validity checking), and even advantageous, to allow the
user to provide the address of a system control block that de-
scribes his allocation /access to a particular resource (such as a
data set) to identify that resource from a group of similar re-
sources (for example, a user may have many data sets
allocated). Inadequate validity checking in this situation creates
an integrity exposure since the user program can provide its own
(counterfeit) control block in place of the system control block
and thereby cause a virtually unlimited array of integrity prob-
lems depending on exactly what sensitive data the system may
be keeping in the control block involved.

The primary example of the potential for this type of problem in
vs2 involves the Data Extent Block (DEB), which is effectively

MCPHEE IBM SYST J

the system’s protected record of a user’s ability to perform 1/0 to
a data set. It serves to tell the system the location of the data set
and any restrictions on the user’s ability to access it. This avoids
going through the open process each time 1/0 is requested to/
from a data set. Since the DEB address is located in the Data
Control Block (DCB) (a user-accessible control block), adequate
validity checking must be done to ensure that the DEB cannot
be counterfeited. The key to adequate validity checking in this
and other cases of this type of problem is that the address of the
control block in question should not be treated as an address, but
rather as an identifier. The function of the address in the DCB
should not be to tell the system where the DEB actually is located,
but rather to identify which of the set of valid DEBs associated
with the user is the one associated with the current 1/0 (or other)
operation being requested. To meet this requirement, a DEB
Check (DEBCHK) mechanism was implemented; and for each user
I/O operation and certain other operations in which the DEB is
critical to system integrity, the DEBCHK mechanism uses a pro-
tected, jobstep-related table of valid DEBs to ensure that the ad-
dress provided is that of a valid DEB associated with the user in
question. Also, in some cases, the type of DEB involved (for ex-
ample, QSAM, ISAM) is verified.

In order to minimize the performance implications of DEBCHK, a
constant overhead mechanism that is not dependent on the
number of entries in the DEB table has been designed. When a
DEB is first created and its address placed in the valid DEB table,
the offset of that address is then placed in the DEB itself. The
validity check is as follows:

¢ From the DEB at the user-supplied address, obtain the offset
into the valid DEB table.
Verify that the offset does not exceed the size of the DEB
table.
Verify that the address at that offset matches the user-sup-
plied address.

This mechanism eliminates the overhead of a table search and,
more importantly, removes the possibility that DEBCHK could
become a performance bottleneck in the case of user jobs having
large numbers of simultaneous open data sets (large numbers of
DEBs) which, by increasing the size of the DEB table, would in-
crease the time needed to search the table.

Going back to the identifier concept, one must conclude that ex-
cept for compatibility problems, the need for a DEB address in
the DCB could be removed completely. The DCB could just as well
contain only an offset into the valid DEB table, the same as that
previously described for the DEB. After verifying that the offset
was in the bounds of the table, the control program could use it
to obtain the DEB address directly from the table.

NOo. 3 - 1974 08/VS2 SYSTEM INTEGRITY

Figure 3 A hypothetical DCB/DEB/UCB structure

USER SYSTEM

(EXTENT 1)

(DEVICE 1}

(EXTENT 2)

(DEVICE 2)

While the validation mechanism as described functions well for
the case where a single, protected control block address is used as
the identifier of a resource allocated to a user program, complica-
tions can arise if various attributes of a user’s allocation to a sin-
gle resource are described by more than one protected control
block. In such cases, the user must not be permitted to identify
more than one of the set of protected control blocks describing
that allocation unless there exists a mechanism whereby informa-
tion contained in one of the blocks (such as unique keys, or chain
pointers) can be used (after that block is validity checked) to
verify that all other user-addressed blocks are actually associated
with that user’s allocation to the resource in question. If not,
there is no validity check that can be performed to avoid incor-
rect combinations of resources or resource attributes being as-
sociated with that user. Why this is true can be seen in the follow-
ing example involving the DEB. In vS2 the DEB is used to define
the direct access extent limits of a user’s data set, while the Unit
Control Block (UCB) defines the device on which the data set
resides. If the user were allowed to provide the address of both
the DEB and the UCB and each was validity checked independent-
ly of the other, a method might be established to verify that (1)
the user had access to the DEB-specified extent on some device,
and (2) the user had access to some extent on the UCB-specified
device. But the only way to ensure that the specified device
and the specified extent go together with respect to that user is
to have the UCB identified via information in the DEB (which is
in fact the case in vS2) or vice versa.

MCPHEE IBM SYST J

Figure 3 shows a hypothetical DCB/DEB/UCB illustrating this
problem. The solid lines indicate the correct pointers; the dotted
line indicates one of several ways the data-set attributes could
be confused (the extents of data set 2 are paired with the device
of data set 1) because there is no interconnection between the
DEB and the UCB. (Note that this is a hypothetical example, for
in vS2 the DEB and UCB are interconnected.)

While concurrent use of serial resources is a general problem for
any multiprogramming system, there are two serialization con-
siderations that specifically relate to system integrity. One is the
TOCTTOU problem previously mentioned, which at times must
be controlled with some form of serialization mechanism. The
other concerns improper user manipulation of SvCs and again
relates to the previous discussion on the “accidental error” phi-
losophy. In vS2 Release 2, serialization mechanisms have been
introduced in certain SvCs to prevent the user from utilizing
multi-tasking to pass the same resource simultaneously to two
parts of the system never designed to process that resource si-
multaneously. In general, the reason for the original lack of a seri-
alization mechanism in such SVCs was the fact that only a de-
liberate user error would be likely to produce that situation, an
event that did not have to be accounted for under the “accidental
error”’ philosophy.

In vs2 Release 2, Enqueue/Dequeue (ENQ/DEQ) and a new
hierarchical locking structure (developed primarily for multipro-
cessing serialization problems) are the primary methods used to
control integrity problems relating to serial resources. The lock-
ing mechanism is used, for example, to prevent FREEMAIN from
occurring on certain areas of storage for the duration of a given
operation —a problem previously mentioned in connection with
the TOCTTOU problem.

With respect to potential system integrity problems, it is critical
that unauthorized programs not have access to the serialization
mechanism. This requirement creates a problem with the use of
ENQ/DEQ, not only for new areas of serialization control, but old
areas as well, since it was determined that ENQ/DEQ was already
being used in many areas where lack of serialization could cause
integrity exposures. The problem was that ENQ/DEQ had never
been a restricted function and, in general, if the user wanted to
nullify a system ENQ by issuing the appropriate DEQ, there was no
way to stop him. To correct this deficiency, a change was made
so that ENQ/DEQ is now restricted to authorized programs for all
major names of the form syszxxxx and for certain existing ma-
jor names such as SYSDSN, SYSVTOC, and SYSPSWD.

NO. 3 - 1974 08/vs2 SYSTEM INTEGRITY

concurrent use
of serial
resources

uncontrolled
sensitive
system
resources

The restriction problem did not exist with the new locking
mechanism since it was by definition restricted to authorized
programs from its inception.

In the ideal case, the system control program should maintain
control over access to all system resources. However, there us-
ually arises a need for certain special types of programs (for ex-
ample; some system utilities) run as ordinary user programs (job-
steps), but that, because of the special nature of their function,
must have the capability to manage certain system resources
directly. This capability is provided through IBM-written and, in
some cases, user-written special service routines (in the form of
SVCs or special paths through SvCs) that bypass established re-
sources-management controls normally imposed on user pro-
grams. Because there has been no way in the past for the control
program to effectively differentiate the class of programs that re-
quire such special services from the totality of user programs,
these special services have generally been made available to all
user programs without restriction. The lack of restriction on such
sensitive services results in system integrity problems. An ex-
ample of this in 0S/MVT is the unrestricted path through OPENJ
that allows writing of the Volume Table of Contents (vTOC). To
solve such integrity problems, yet allow this special class of pro-
grams to continue to exist, the Authorized Program Facility (APF)
was introduced in vS2.

The following is a summary of the APF support provided in
0s/vs2 Release 2. Two methods of restricting sensitive system
resources/ services are provided. Sensitive SVCs are restricted
via a parameter on the SVCTABLE macro at system generation
time. The svC First-Level Interrupt Handler ensures that Svcs
restricted in this manner are only accessible to programs having
APF authorization, supervisor state, or system key (0-7).

For svC’s where only a part of the function they provide is sen-
sitive, the capability of restricting a particular path through an
svc is provided (for example, the path through OPENJ that opens
the vrocC for writing). This facility is provided through insertion
of a TESTAUTH macro at the appropriate location in the SvcC.
TESTAUTH returns an indication that the program calling the svC
is either authorized or unauthorized; the svCc must then take ap-
propriate action based on this return. TESTAUTH is capable of
testing for supervisor state, system key, APF authorization, or
any combination. Appropriate IBM SVCs are automatically re-
stricted; however, the capability is provided for the security-
conscious installation to restrict its own sensitive SVCs as well.

Nonsystem-key/ nonprivileged-mode programs are authorized to
access services, restricted as described above by being link-
edited with an authorized-state indicator. This program authori-

MCPHEE IBM SYST J

zation is accepted by the system only from certain authorized
system libraries and only on a jobstep basis. The following is a
summary of how this functions.

An installation is given the capability at system generation or
IPL time to define a list of authorized libraries from which the
APF-authorized program attribute is recognized by the system. It
is the installation’s responsibility to control the contents of such
libraries. (SYS1.LINKLIB and SYS1.SVCLIB are automatically con-
sidered authorized libraries.) The first load module in a jobstep
basically determines the authorization for that jobstep. If the first
load in the jobstep is not APF-authorized, it is impossible for any
part of the jobstep to become APF-authorized. If the first load in
the jobstep is APF-authorized, the jobstep remains authorized un-
less a LOAD request is satisfied from an unauthorized library, in
which case the task goes to an ABEND. This is necessary to pre-
vent such exposures as the use of the JOBLIB/STEPLIB facility to
replace the second or subsequent loads of an APF-authorized pro-
gram with a program of the correct name but from an unauthor-
ized library. It is important to note the need for an ABEND.
Simply turning off the jobstep’s authorization does not suffice be-
cause of the possibility that an access path to a restricted re-
source (for example, a valid DEB allowing writing into a VTOC)
may remain established after the authorization indicator is turned
off. This path could then of course be utilized by the substitute,
unauthorized module even though the authorization indicator
had been turned off. It is the responsibility of the authorized pro-
gram not to recover from the ABEND in a way that would allow
the unauthorized module to execute authorized, or unauthorized

with an established access path to a restricted resource.

Essential to the effectiveness of the APF-authorization mecha-
nism is the fact that APF authorization is strictly program au-
thorization, as opposed to user authorization. It is generally in-
tended that any APF-authorized program should be executable
as a jobstep by any user without damage to system integrity or
security. The ApPF-authorized problem program is considered to
be effectively an extension to the control program. As such, al-
though it is allowed to bypass normal system controls on
resources /services, it is responsible to provide the same or equiv-
alent controls in any interface with the user. (The IEHDASDR
program, for example, is allowed to bypass normal controls on
access to direct access space; but before altering any data, it
invokes the system password checking mechanism to ensure that
its invoker is authorized to delete the data sets in question.)

In some cases, however, it may not be feasible for an APF-au-
thorized program to apply the normal system control mechanism
to its user interface. In this event, the use of the program must be

NO. 3 - 1974 08/vS2 SYSTEM INTEGRITY

miscellaneous
mechanisms

246

controlled. In vS2 Release 2, it is suggested that such programs
be placed in a password-protected authorized library so that exe-
cution of the program is controlled (the password for the library
is required when it is opened to allow fetching of the program).

As indicated above, it is necessary for the first load of an author-
ized program to be link-edit authorized —that is, with the author-
ized-state indicator. As long as all subsequent loads come from
authorized libraries, the jobstep continues to run authorized.
Second or subsequent loads should specifically not be marked
APF-authorized since to do so would enable them to be executed
as the first load of a jobstep which, because of their authoriza-
tion, could cause unpredictable integrity problems.

If an APF-authorized program specifically wishes to LOAD a
program from an unauthorized library and continue execution
with authorization turned off (that is, not be terminated when
the unauthorized program is loaded), the authorized program
must turn off its own authorization indicator prior to issuing the
LOAD request. In this case, it is the resonsibility of the author-
ized program to ensure that no access paths to restricted re-
sources are still established when the unauthorized load is given
control. It is also the authorized program’s responsibility to en-
sure that there are no asynchronous routines running or yet to
run that have a dependency on the program’s currently author-
ized status.

The existence of multiple authorized libraries introduces a prob-
lem with respect to naming of authorized modules. It can be as-
sumed that an executing, authorized program is aware of the cor-
rect name of a module it attempts to load. However, because an
authorized program normally executes as a jobstep executable
by any user, it cannot control the identity of JOBLIBs, STEPLIBS,
and others since these libraries are identified via JCL. Therefore,
there is an exposure that if two modules of the same name exist
on different authorized libraries, an authorized program attempt-
ing to load one of these modules could get the other if the user
executing the authorized program were to (deliberately or acci-
dentally) improperly JOBLIB, STEPLIB, or concatenate the two
libraries in question. The existence of this type of exposure re-
quires the additional restriction that duplicate module names not
be permitted across authorized libraries. Because this restriction
must be enforced by the installation, it appears that a naming con-
vention would be the simplest way to permit effective monitoring
of this restriction.

While the previous portion of this paper described the tech-
niques representing the primary integrity control mechanisms
used in vs2 Release 2, there are several lesser-used techniques

MCPHEE IBM SYST J

that are useful to handle specific aspects of certain types of in-
tegrity problems. Two significant mechanisms are now de-
scribed.

In connection with the TOCTTOU problem, it is frequently neces-
sary for the control program to temporarily move user-supplied
parameter lists and so forth to areas of storage that the user pro-
gram is not allowed to modify. While there is no specific need
relative to the TOCTTOU problem to fetch-protect such areas
from the user program, it does no harm since there generally is
no need for the user program to reference such areas for the dura-
tion of the move. Therefore, when moving such parameter lists
and other items, the control program in many cases takes ad-
vantage of system-key fetch-protected subpool support in vs2
Release 2 to obtain storage for the moved data that is both fetch
and store-protected from the user program. This successfully
avoids additional validity checking that would otherwise be re-
quired to ensure that the user program did not pass a ‘“parameter
list” that was in reality an area of storage fetch-protected from
that user program. (The user program could of course look at the
parameter list if it were moved to a nonfetch-protected area.)
This technique in fact turns out to avoid a fairly substantial valid-
ity-check overhead, since the key-switch technique does not
work for the user-key to system-key type move operation.

The protected copy technique mentioned previously can also be
useful with respect to problems other than the TOCTTOU prob-
lem. During OPEN/CLOSE/EOV, for example, the DCB (user con-
trol block) is involved in both the system-data-in-the-user-area
problem and the system-violation-of-store-fetch-protection prob-
lem. Not only does the DCB have to be accessed many times by
OPEN/CLOSE/EQV, but also, sensitive indicators are set and tested
in the DCB. A straightforward total solution involves relocating
the sensitive indicators to a protected control block and inserting
the appropriate validity checks or key switches in OPEN/CLOSE/
EOV. Instead, a solution was adopted whereby a second (pro-
tected) copy of the DCB is created and used throughout most of
OPEN/CLOSE/EOV. The actual (user) DCB is updated at appro-
priate times, but otherwise the copy is used. This eliminated the
need to relocate the sensitive indicator fields and also the need
to validate the DCB each time it is referenced.

Installation responsibilities

vS2 Release 2 is provided with basic system integrity support.
However, to ensure that system integrity is effective and to avoid
compromising any of the integrity controls provided in the sys-
tem, the installation must assume the responsibility for the fol-
lowing items.

NO. 3 + 1974 08/vS2 SYSTEM INTEGRITY

The installation must be responsible for the physical environ-
ment of the computing system. Operations personnel and system
programmers have, in effect, uncontrolled access to certain por-
tions of the Operating System. These persons are considered to
be under installation control and are presumed trustworthy as
far as system integrity is concerned.’

The installation must ensure that their own modifications and
additions to the control program do not introduce any integrity
exposures; that is, all user-written authorized code (such as a
user svC) must perform the same or an equivalent type of valid-
ity checking and control that the vs2 Release 2 control program
employs to maintain system integrity.

The installation must be responsible for the adoption of certain
procedures that are a necessary complement to the integrity
support within the operating system. Several examples of such
responsibilities are now given. More detail on this topic can be
found in vs2 Release 2 documentation.*?

The installation must password-protect appropriate system li-
braries. System integrity clearly cannot be maintained if sys-
tem code and data are exposed to arbitrary modification by any
user on the system. For integrity purposes, it is generally suffi-
cient to protect appropriate libraries from write access (no pass-
word is required for read access, but a password is required for
write access). However, for security purposes, it is necessary to
protect certain system data sets (for example, the PASSWORD
data set itself) from read as well as write accesses. To improve
the operational characteristics of such protection, password re-
quests for data sets being opened by the system are suppressed
during 1PL and system task initialization.

The checkpoint data set produced by the Checkpoint/Restart
facility contains sensitive system data normally protected from
the user. Therefore, maintaining system integrity requires that
such data sets be protected from modification (or from being
counterfeited) prior to their use by the Restart facility. vs2 Re-
lease 2 implements a facility whereby the installation can adopt
a set of special procedures/controls over checkpoint data sets
that will eliminate their potential for compromising system integ-
rity. The control mechanism involves a combination of:

System /operator validation of checkpoint data sets.

External labeling procedures for checkpoint volumes.
Off-line control of checkpoint volumes.

Prohibition of 1/0 to checkpoint data sets, except through the
Checkpoint svc (authorized programs excepted).

MCPHEE IBM SYST J

Concluding remarks

In conclusion, three areas of concern that continue to be
brought up repeatedly with respect to system integrity support
are now addressed. These questions concern the impact of integ-
rity support on the system as a whole, the feasibility of integrity
on other systems, and the questions of what level of integrity has
been achieved in vS2 Release 2 and what in fact constitutes an
adequate level of system integrity.

Of primary concern to any security-conscious installation is the
overall impact to the vs2 Release 2 system and to installation
procedures resulting from the introduction of system integrity
support. While it is, of course, not possible to gauge the impact
on any given installation without specific knowledge of that in-
stallation, the impact in general should be low. The following
addresses some potential areas of impact.

With respect to performance, there are some extra CPU time and
real storage use due to the enhanced validity checking and so
forth. However, the information available to date indicates that
this will not significantly degrade system performance. Insofar
as possible, techniques have been used that minimize the impact
of increased validity checking, as can be seen in the following
examples. The DEBCHK type of validity checking, performed at
each /O operation, could have been a performance problem had it
been designed such that the DEBTABLE search overhead in-
creased as the number of DEBs (open data sets) grew larger.
However, as previously described, the design is such that the
search overhead is essentially constant no matter how many data
sets are open, and in fact represents only a small increment to
1/0 validity checking in previous systems. The validity checking
needed to ensure that the system does not violate store/fetch
protection also could have become a problem were it not for
techniques such as the key-switch technique which allows the
mainline validity checking to be streamlined with the error han-
dling done in recovery routines.

There are not expected to be any integrity-induced incompatibil-
ities (with respect to user interfaces documented in Systems
Reference Library manuals) that cannot be eliminated via a re-
linkedit of the program to make it ApPF-authorized. There is at
present only one known integrity-induced incompatibility that
would require such a relinkedit—the previously mentioned re-
striction that prevents all but authorized programs from doing
1/0 directly (that is, not through the checkpoint macro) to a
checkpoint data set.

As with any new system there will be changes required in exist-
ing installation system specifications. The primary problem will

NO. 3 - 1974 08/vS2 SYSTEM INTEGRITY

impact on
the system

other systems

be the need (if concerned with security) to be aware of the nature
of the new integrity support so as not to undo what has been done
in v$2 Release 2. One example of a requirement in this area is
that any user-written system modules executing with system key
or state must be link-edited (into an authorized library) with the
reentrant attribute. This must be done to ensure that such mod-
ules are loaded into the proper subpool protected from user
access.

Probably the area with the greatest potential for significant im-
pact is the existence of code that makes use of existing integrity
exposures in the system (not necessarily malicious use of such
exposures, but the casual use of a “hole” to get into supervisor
state without writing an svc). While no one has been able to as-
sess the extent of such practices, there is the mitigating factor
that most of the impact in this area should have been felt in
0S/MVT Release 21 or atleast by vs2 Release 1, since the “holes”
most likely to be used for such purposes are eliminated in those
releases. With respect to correcting the impacted programs, some
will be able to be corrected via a relink-edit to APF-authorized;
others will of course require code changes. However, for the
future, the existence of APF support should make the creation of
such special interfaces a simpler operation. With APF control,
for example, it becomes safe to leave an SVC on the system that
returns control in supervisor state and thus eliminates the need
for authorized programs to use system exposures to accomplish
this state switch.

At this point in the state-of-the-art of system integrity it is not
clear if it is possible or reasonable to provide system integrity in

all operating systems. There are at least two essential design
concepts that must exist in order to provide system integrity:

s System/user isolation.
s User/user isolation.

As with most other operating system capabilities, these types of
controls require increased storage and CPU overhead. OS/MVT
already had these essential design concepts and while this isola-
tion of the system from the user and the user from other users
was not always strictly enforced in MVT, it was possible to carry
these design concepts forward into vs2 and introduce the strict-
er controls necessitated by system integrity with a minimum of
increased overhead. To introduce such basic integrity-design
requirements in a system where such design concepts previously
did not exist or existed only minimally would likely result in a
final system very different from the original system in terms of
main storage requirements, CPU overhead, and operational char-
acteristics. In many environments this may simply not be prac-
tical or justifiable. There are simpler, more procedural methods
of achieving the desired security control in such systems.

MCPHEE IBM SYST J

The question must always be asked as to what level of system
integrity vs2 Release 2 will actually have and, perhaps more im-
portantly, what level of integrity is adequate. vs2 Release 2 will
not have total system integrity because total system integrity, or
security, does not exist anywhere in the real world. If someone is
willing to spend enough and risk enough, any security system
can be broken.

Cost and risk are the key concepts. Security, or system integrity,
does not have to be 100 percent foolproof. It only has to be at a
level where the cost and risk involved in breaking that security
exceed the benefits to be gained by doing so, or exceed the cost
and risk of obtaining the same benefits in another way.

Thus, while the goal has been, and must be, 100 percent system
integrity, it is sufficient to achieve a level of security integrity in
v$2 Release 2 such that the cost/risk of “‘breaking” that system
is significantly greater than the benefits to be gained in compro-
mising such a system in the normal commercial environment.
From limited user feedback, it appears that this level has been
met with respect to our level of understanding of the problem and
the level of subtlety of “exposures” now being corrected in the
system. There of course always remains the possibility of the
exposure that is easily understood and simply fixed, but somehow
gets overlooked. Any such design exposure may be remedied
via an Authorized Program Analysis Report (APAR). In addition,
it is worth noting that even though such random exposures may
exist, the difficulty (cost/risk) of finding one and successfully
using it in a system of the complexity and size of vs2 Release 2
is by no means trivial.

Perhaps the single key factor in achieving this level of system
integrity has been the “fix all exposures’ approach adopted very
early in the integrity effort for vs2 Release 2. This approach, in
effect, says that any integrity exposure is to be fixed, no matter
how unlikely it is that it could be used to violate system securi-
ty. For example, many known integrity exposures have timing
constraints that appear to make it very difficult to actually use
the exposure to compromise the system. Such exposures have
been fixed regardless, because it was learned also very early in
the integrity effort that it is very risky to attempt to classify in-
tegrity exposures according to severity. Too often exposures that
appeared very difficult to use turned out to be simple to use when
more information came to light. This “fix all exposures” ap-
proach is essential in any serious effort to provide an adequate
level of system integrity. The state-of-the-art in this area is not
yet, and possibly never will be, at a point where a reasonable
decision can be made that it is acceptable not to correct a known
integrity problem.

No. 3 - 1974 08/VS2 SYSTEM INTEGRITY

level of
integrity

ACKNOWLEDGMENT

The author would like to acknowledge P. Byme, E. Cassorla,
L. English, R. McAllister, and others who contributed to the
IBM system integrity development effort.

CITED REFERENCES AND FOOTNOTES

1. An authorized program in VS2 Release 2 is a program running with system
key (keys 0-7) and/ or supervisor state and/or Authorized Program Facility
(APF) authorization. In general, the concept of an authorized program can
best be thought of as a “‘trustworthy” program in the sense that it is either part
of, or a logical extension to, the control program, and therefore can be allowed
certain privileges not granted ordinary user programs without fear of compro-
mising system integrity.

. Store and fetch protection correspond respectively, to preventing write or
read access to portions of main storage.

. Considerations of Physical Security in a Computer Environment, Form No.
G520-2700, IBM Corporation, Data Processing Division, White Plains,
New York.

. IBM System /370, Introduction to OS /VS2 Release 2, Form No. GC28-0661,
IBM Corporation, Data Processing Division, White Plains, New York.

. OS/VS2 Planning Guide for Release 2, Form No. GC28-0667, IBM Cor-
poration, Data Processing Division, White Plains, New York.

MCPHEE IBM SYST J

