

The Department of Defense has issued rulings that generally
prohibit defense contractors from simultaneous multiprogram-
ming of classified and unclassified (or different levels of
classified) jobs. This is of particular concern since it often re-
sults in inefficient usage of large computing systems. I I

@ Many installations, in order to cost justify the large systems
that are needed for peak-load environments, sell time to out-
side users in nonpeak periods. In addition, of course, there are
installations whose business it is to sell time to outside users.
Both of these cases give rise to concern over the capability of
the system to protect accounting data and system accounting
mechanisms from unauthorized alterations.

In general, the need for reliable operating system security capa-
bility is now well established, although there is still considerable
disagreement over what type of security is appropriate for vari-
ous types of operations, and so forth. However, there is another
attribute of an operating system, called system integrity, that
is a basic prerequisite for any security system.

The need for system integrity stems from the fact that the con-
sideration of security introduces a new concept into operating
system design. Security is by definition not only concerned with
accidental exposure or damage, but also with deliberate, unautho-
rized attempts to access protected resources. However, the con-
cept of a “malicious user,” or adversary, is a concept that has
historically not existed in a general-purpose operating system.
Previous systems such as OS/.MVT were not designed to prevent
deliberate user (user program in the sense of a normal problem
program, with no special authorization) tampering with the
operating system. There was what could be called an “accidental
error”, philosophy which essentially said that the operating sys-
tem would attempt to protect itself and other users on the system
from common “accidental user errors,” but there was no explicit
attempt to protect against the user deliberately trying to interfere
with the operation of the system. Consequently, in such sys-
tems a variety of ways did exist in which the functioning of the
operating system itself could easily be tampered with:

The system integrity problem, then, is the fact that security con-
trols, no matter how sophisticated, are not reliable if the operat-
ing system that administers those controls is not itself protected
from user tampering. Putting security controls in a system not so
protected simply protects against the “honest” user, and is
somewhat akin to putting locks only on the entrance doors to a
building on the assumption that no one would enter through an
exit door. Thus any enhanced system security capability must 1 NO. 3 - 1974 oslvs2 SYSTEM INTEGRITY 231 I

problem of eliminating the “back doors” to the operating system
and its resources.

This leads to a more formal definition of system integrity- the
ability of the system to protect itself against unauthorized user
access, to the extent that security controls cannot be compro-
mised. Specifically, for oslvsz Release 2, this means that there
must be no way for any unauthorized program,’ using any de-
fined or undefined system interface, to:

Bypass store or fetch protection.’
Bypass password checking.
Obtain control in an authorized state.’

Thus the system integrity support in vs2 Release 2 is not a goal
in itself. Its objective is to create a system base, a foundation on
which existing security features (for example, password
protection) are reliable and effective, and a foundation on which
user or future IBM security capability can be built.

reliability, Although the reason behind vS2 Release 2 system integrity sup-
availability, port is security, this support also has the side effect of increasing

serviceability system reliability and availability. While the “accidental error”
philosophy mentioned previously has existed for some time, it
has been an informal and discretionary guideline, and perform-
ance/ design point trade-offs were often made with respect to the
types of user errors that were protected against. In fact, many of
the integrity problems found in previous systems could be caused
by accidental, as well as deliberate, user errors: perhaps more
significantly, many such problems turned out to be exactly the
types of problems that are likely to result in intermittent “bugs”
in the system.

oslvs2 Release 2 integrity support by definition had to signif-
icantly improve system/user isolation capability, and in so
doing, restrict l o that user himself the scope of the damage that
he could cause (accidentally or deliberately). In fact, the ability
to cause an uncontrolled system failure at will was specifically
identified as an integrity exposure in vs2 Release 2, thus assuring
an increase in system reliability and availability. (Note the differ-
ence between uncontrolled system failure or crash as opposed to
such things as system wait state or reduced system throughput
caused by obtaining excess amounts of global resources such as
System Queue Area or Direct Access Space. This differentiation
was made because an uncontrolled system failure may directly
impact security in that “secure” data may be destroyed or dis-
closed. The deliberate use of excess amounts of global resources,
however, while affecting system availability, does not affect data
security.)

232 MCPHEE IBM SYST J

System integrity problems and their solutions

Over the past several years, various IBM and customer study
efforts examining operating system integrity have aided the de-
tection of integrity exposures in vs2 and previous systems. Fur-
thermore, knowledge in the area of system integrity has pro-
gressed to a point where key validity-checking criteria essential
to system integrity have been identified, and the general integrity
problem has been broken down into seven classes or types of
problems and their solutions.

I In the discussion that follows, examples of validity-checking cri-
teria are given and the classes of integrity exposures are pre-
sented. Each type of exposure is explained via examples and by
relating it to the primary technique used for correcting or avoid-
ing that type of exposure in vs2 Release 2 .

’

The new or changed validity-checking criteria for the most part validity-
result from the change in philosophy from “accidental error” phi- checking
losophy to the “adversary” philosophy which says that nothing criteria
the unauthorized program can do, accidentally or deliberately,
can be allowed to compromise system security controls. The ex-
amples below illustrate the types of changes that have taken
place.

One example of the new validation criteria is the Time-of-
Check-to-Time-of use (TOCTTOU) Problem shown below:

Time
* *

Validity
Check

Operation

In a multiprogramming system, if there exists a time interval
between a validity check and the operation connected with that
validity check, the variables involved in the outcome of the va-
lidity check must remain unchanged from the time of the validity
check until the operation is complete. If this cannot be ensured,
then there is the possibility that, through multitasking, the validi-
ty-check variables can deliberately be changed during this time
interval, resulting in an invalid operation being performed by the
control program.

The TOCTTOU consideration is perhaps the most significant of
the changes in validity-checking criteria. The requirement it im-
poses has considerably influenced the direction of the integrity
support in vs2 Release 2. For example, it is no longer acceptable

NO. 3 * 1974 oslvs2 SYSTEM INTEGRITY 233

to validate such items as a user parameter list at the beginning of
supervisor call (svc) processing and then assume validity
throughout that processing. Steps must be taken to ensure that
the variables on which the svc depends do not change through-
out its processing: otherwise repeated validity checks must be
performed once each time such variables are referenced. Listed
below are several examples of steps that must be taken in various
cases to meet the TOCTTOU validity requirement:

Logical disablement (prevention of multitasking) for the
duration of the validity check and related operation(s).
Protection (in areas not accessible to user programs) of
user-supplied addresses and other data for the duration of the
validity check and related operation(s) .
Suppression (for the same duration) of user-initiated GET-
MAIN or FREEMAIN operations, in order to preserve the cur-
rent status of main storage being accessed by the control
program.

The key-switch technique (described later in this paper) also
plays an important role in satisfying the TOCrrOU requirement
for two particular types of integrity problems.

A second example of the changed validation criteria is the valid-
chain concept of validity checking. Any validity check involves
certain validity-check variables that are accessed and tested or
compared with other variables to determine if a given operation
is acceptable. The valid-chain concept simply says that such
validity-check variables must be located through a chain of pro-
tected system control blocks that begins with a control block
already known to be valid, or one known to be fixed at a given
location at Initial Program Load (IPL) time, such as the Com-
munications Vector Table (CVT) in OSIMVT. (This does not im-
ply that a system routine must go back to the CVT or similar con-
trol block everytime it wants to establish a valid chain. Typically,
a control block address not too far back on such a chain is avail-
able and already validated in a register. For example, in vs2 the
first load of an svc may receive control with a valid Task Con-
trol Block (TCB) address in a register.) The following is an ex-
ample illustrating the valid-chain requirement.

Figure 1 shows a case where a user program provides the con-
trol program with the address of a control block B,. Assume that
the validation procedure that must be carried out before the ad-
dress of B, can be accepted as valid is one of verifying the ad-
dress to be on a chain of similar control blocks, located via block
A. One way to perform such validation would be to note that the
B-type control blocks on such a chain all point back to block A.
Then one can take the user pointer to B,, B,’s pointer to A, and

234 MCPHEE IBM SYST J

I Figure 1 The valid chain concept

USER AREA SYSTEM AREA

follow the chain from A to ensure that B, is in fact on the chain.
However, this is a clear violation of the valid chain rule. A’s ad-
dress has been obtained by assuming the validity of the control
block (B,) that was still in the process of being validated. A user
attempting to compromise system integrity could have provided
a counterfeit B,, which pointed to a counterfeit A, which in turn
pointed to a counterfeit chain containing B,.

The correct approach then is to separately locate control block
A (through a valid chain) and then search the chain for a match
on the user-supplied B,. Note, however, that when only the “ac-
cidental error” is considered, the above USER to B, to A to B,
validation is an acceptable mechanism because the chances are
negligible that a user error would extend to a valid USER to B, to
A to B, sequence. Such mechanisms were in fact used in prior
systems, such as OSIMVT, to achieve accidental-error protection.

A final example of enhanced validity-checking procedures is the
simple concept of a “full” check. This stems directly from the
change in philosophy and refers to the fact that a previous valid-
ity check that would have detected most possible user errors
before they caused system damage, must now be upgraded to
detect all such user errors, deliberate or accidental. One common
example of this type of change is in validating that a given con-
trol block is in a user-accessible area. In many cases in the past,
the validation that would have been done would check just the
first word of the control block; now consideration must be given
to the fact that a page (4 K) boundary might fall within the con-
trol block. (Validating a single word of storage in System/360

NO. 3 * 1974 OS/VS2 SYSTEM INTEGRITY 235

or / 370 verifies only that the 2K /4K block containing that par-
ticular word is accessible to the user.) Since the part of the con-
trol block beyond the page boundary might not be accessible
to the user in question, it also must be checked for accessibility.
It should be noted that less than 100 percent complete validity
checks and other integrity-related “omissions” in previous sys-
tems were not generally due to poor design or coding. In many
cases they reflect valid trade-offs with respect to critical design-
point / performance considerations relative to earlier releases of
OS/360 systems.

classes of The following classes of integrity problems have been identified:

problems System data in the user area.
integrity

Nonunique identification of system resources.
System violation of storage protection.
User data passed as system data.
User-supplied address of protected control blocks.
Concurrent use of serial resources.
Uncontrolled sensitive system resources.

Each of these classes of problems is described below in connec-
tion with the primary techniques used to solve the problem in
vs2 Release 2. Examples are given in general terms as much as
possible to avoid detailing specific problems that could be used to
compromise systems prior to vs2 Release 2.

The first two problems in the above list are somewhat more gen-
eral in nature than the remainder of the problems. The tech-
niques, if they may be called that, of solving these problems can
only be stated in very general (or imprecise) terms, or are specific
to a given instance of the problem. Because of this, these two
problems are addressed together before going on to the more
explicit integrity mechanisms being used in vs2 Release 2.

system System data in the user area refers to the problem where sensi-
data in the tive system data, which should be located in an area of storage
user area protected from the unauthorized user, is in fact located in a user-

accessible area. In general, the types of system information that
must be protected from the user are as follows:

Code (and the location of code) that is to receive control in
supervisor state or system key (0-7 in vs2 Release 2), or
that is APF-authorized. (APF-authorization is described in a
section later in this paper.)
Work areas for such code, including areas where the con-
tents of registers are saved/restored.
Control blocks that represent the allocation or use of system
resources.

Note that in VS2 Release 2, as in previous MVT and vs2 releases,
system code and data is normally protected from user modifica-
tion via protect/storage keys. Keys are only used to protect
user programs from each other in the case of Virtual = Real
(v = R) program. Segment protection is used otherwise.

Since the problem is very general, the solution also must be
stated in somewhat general terms- that is, either relocate sensi-
tive system data to areas protected from the unauthorized user,
or modify the way in which the system uses the data such that it
is no longer sensitive.

Probably the most common example of this type of problem is
the case where the system uses an address, located in storage
modifiable by the user, to branch to a program in supervisor state I I
state or system key simply by modifying this address at the ap-
propriate time. The solution to this problem is:

If the routine being given control actually requires the privi-
leged key or state, the address must be relocated to an area
not accessible to the unauthorized user.
If the routine being given control does not require the privi-
leged key or state, the problem can be solved by replacing
the branch with a SYNCH operation that gives control in user
key and problem state, but allows control to be returned to
the system in supervisor state system key.

An operating system is essentially a resource manager. As such, nonunique
if there is a case where it does not uniquely identify the re- identification
sources it is dealing with, it becomes subject to integrity prob- of system
lems. These problems generally take the form of the ability of an resources
unauthorized user program to counterfeit control program re-
sources such as programs or control blocks, or to cause the sys-
tem to intermix incompatible control program resources. Non-
unique identacation of system resources is the term used to refer
to this problem.

The general solution to the problem can only be stated as the
reverse of the problem; that is, the system control program must
maintain and use sufficient data (protected from the user) on
any sensitive control program resource, to uniquely distinguish
that resource from any other control program or user resource.
To be more specific than this, one must have a knowledge of the
particular type of resource involved in the problem, as can be
seen from the following examples:

To be uniquely identified, a program must be identified by
both name and library. Specifically, to prevent control pro-
gram routines from being counterfeited, the vs2 Release 2

NO. 3 1974 OSlVS2 SYSTEM INTEGRITY 231

ing a load request for an authorized program (a program to
be executed in system key, supervisor state or APF- author-
ized). Such loads can be satisfied only from authorized sys-
tem libraries.
Certain types of resources such as copies of programs can be
requested and used by both the user and the control program
concurrently. In this case, the control program must identify
the resource as belonging to both the control program and
the user to ensure that the user is not able to delete the re-
source while the control program is still using it. This could
result in an integrity exposure. Note that in this case, the
“identity” of a resource is being extended to include the in-
formation that has become a part of the control program and
as such is not deletable bv the user.

key is widely used as a validity checking mechanism in vs2 Re-
lease 2 . Its purpose is to achieve simpler and more effective va-
lidity checking by making a system program, performing an op-
eration in behalf of a user program, appear to be a user program
for the duration of that operation. By switching from system key
to user key, the system routine ensures that it will suffer the same
validity-check failures as the user program would have suffered
had it attempted to perform the operation itself.

The ability to make use of this technique is dependent on the
following two capabilities:

The capability to define validity-checking mechanisms that
are sensitive to key but not state (problem state versus su-
pervisor state) as the difference between system and user.
(Supervisor state must be used as the authorization mechan-
ism that allows the key switch, and therefore must be able
to be retained by the system routine in order to switch back
to system key.) In general, this requirement may be described
as the existence of a state-switch state on which validity
checks do not depend, one or more other states on which
various types of validity checks do depend, and the ability
to hold the state-switch state simultaneously with any of the
other states.
A mechanism that allows the system routine to recover from
the validity-check failure (for example, program check and
ABEND) in order to cause the proper error messages, ABEND
codes, and such to be given to the user. Note that since al-
most all vs2 Release 2 control program routines are protect-
ed by special recovery routines that do intercept such fail-
ures, this requirement is not a problem.

238 M C P H E ~ IBM SYST .I

user calls. svc routine B directly because the validity checking
will be performed on the basis of the caller being an unauthorized
program. This confusion arises because of the various cases in
the system where svc routines operating in their own behalf in-
voke other svc routines to perform operations that would not,
and should not, withstand the normal validity checking applied to
unauthorized programs. The problem is to identify the case where
an svc is operating in a user’s behalf - that is, with unvalidated,
user-supplied data that should undergo normal validity checking.

The solution to the problem requires that svc routine A (which
is aware of whether or not it has been called by an unauthorized
program) ensure that the proper validity checking is accom-
plished. However, it is usually not practical for svc routine A
to do the validity checking itself because of the potential for user
modification of the data prior to or during its use Ijy svc routine
B (the T O C ~ O U problem) . The general solution, thus, is for svc
routine A to provide an interface to svc routine B, informing rou-
tine B that the operation is being requested with user-supplied
data in behalf of an unauthorized problem program (implying that
normal validity checking should be performed).

In practice, in vs2 Release 2 most svc B-type routines that
could be subject to this problem use the key of their caller as a
basis for determining whether or not to perform validity check-
ing. Therefore, most vs2 Release 2, svc A-type routines have
simply adopted the convention of assuming the key of their call-
er before calling the svc B routine. This solution is effective in
the case of 2 levels of SVCS, as shown above, in n levels if nec-
essary.

user-supplied The user-supplied address of protected control blocks integrity
address of problem can exist whenever the control program accepts the ad-
protected dress of a protected system control block from the user. For

control blocks most system control blocks this situation should not be permit-
ted to exist. However, in certain cases it is permissible (with
adequate validity checking), and even advantageous, to allow the
user to provide the address of a system control block that de-
scribes his allocation/access to a particular resource (such as a
data set) to identify that resource from a group of similar re-
sources (for example, a user may have many data sets
allocated). Inadequate validity checking in this situation creates
an integrity exposure since the user program can provide its own
(counterfeit) control block in place of the system control block
and thereby cause a virtually unlimited array of integrity prob-
lems depending on exactly what sensitive data the system may
be keeping in the control block involved.

The primary example of the potential for this type of problem in
vs2 involves the Data Extent Block (DEB), which is effectively

240 MCPHEE IBM SYST J

1
the system’s protected record of a user’s ability to perform I/O to
a data set. It serves to tell the system the location of the data set
and any restrictions on the user’s ability to access it. This avoids
going through the open process each time I/O is requested to/
from a data set. Since the DEB address is located in the Data
Control Block (DCB) (a user-accessible control block), adequate
validity checking must be done to ensure that the DEB cannot
be counterfeited. The key to adequate validity checking in this
and other cases of this type of problem is that the address of the
control block in question should not be treated as an address, but
rather as an identifier. The function of the address in the DCB
should not be to tell the system where the DEB actually is located,
but rather to identify which of the set of valid DEBS associated
with the user is the one associated with the current I/O (or other)
operation being requested. To meet this requirement, a DEB
Check (DEBCHK) mechanism was implemented; and for each user
IlO operation and certain other operations in which the DEB is
critical to system integrity, the DEBCHK mechanism uses a pro-
tected, jobstep-related table of valid DEBS to ensure that the ad-
dress provided is that of a valid DEB associated with the user in
question. Also, in some cases, the type of DEB involved (for ex-
ample, QSAM, ISAM) is verified.

In order to minimize the performance implications of DEBCHK, a
constant overhead mechanism that is not dependent on the
number of entries in the DEB table has been designed. When a
DEB is first created and its address placed in the valid DEB table,
the offset of that address is then placed in the DEB itself. The
validity check is as follows:

From the DEB at the user-supplied address, obtain the offset

Verify that the offset does not exceed the size of the DEB

Verify that the address at that offset matches the user-sup-

into the valid DEB table.

table.

plied address.

This mechanism eliminates the overhead of a table search and,
more importantly, removes the possibility that DEBCHK could
become a performance bottleneck in the case of user jobs having
large numbers of simultaneous open data sets (large numbers of
DEBS) which, by increasing the size of the DEB table, would in-
crease the time needed to search the table.

Going back to the identifier concept, one must conclude that ex-
cept for compatibility problems, the need for a DEB address in
the DCB could be removed completely. The DCB could just as well
contain only an offset into the valid DEB table, the same as that
previously described for the DEB. After verifying that the offset
was in the bounds of the table, the control program could use it

Figure 3 A hypothetical DCB/DEB/UCB structure

USER SYSTEM

r l F 1 (EXTENT 1)

- 4 7 (DEVICE 1)

/’
/

, ,.
,

/
/

While the validation mechanism as described functions well for
the case where a single, protected control block address is used as
the identifier of a resource allocated to a user program, complica-
tions can arise if various attributes of a user’s allocation to a sin-
gle resource are described by more than one protected control
block. In such cases, the user must not be permitted to identify
more than one of the set of protected control blocks describing
that allocation unless there exists a mechanism whereby informa-
tion contained in one of the blocks (such as unique keys, or chain
pointers) can be used (after that block is validity checked) to
verify that all other user-addressed blocks are actually associated
with that user’s allocation to the resource in question. If not,
there is rlo validity check that can be performed to avoid incor-
rect combinations of resources or resource attributes being as-
sociated with that user. Why this is true can be seen in the follow-
ing example involving the DEB. In vs2 the DEB is used to define
the direct access extent limits of a user’s data set, while the Unit
Control Block (UCB) defines the device on which the data set
resides. If the user were allowed to provide the address of both
the DEB and the UCB and each was validity checked independent-
ly of the other, a method might be established to verify that (I)
the user had access to the DEB-specified extent on some device,
and (2) the user had access to some extent on the ucB-specified
device. But the only way to ensure that the specified device
and the specified extent go together with respect to that user is
to have the UCB identified via information in the DEB (which is
in fact the case in vs2) or vice versa.

242 MCPHEE IBM SYST J

Figure 3 shows a hypothetical DCB/DEB/UCB illustrating this
problem. The solid lines indicate the correct pointers; the dotted
line indicates one of several ways the data-set attributes could
be confused (the extents of data set 2 are paired with the device
of data set 1) because there is no interconnection between the
DEB and the UCB. (Note that this is a hypothetical example, for
in vs2 the DEB and UCB are interconnected.)

While concurrent use of serial resources is a general problem for
any multiprogramming system, there are two serialization con-
siderations that specifically relate to system integrity. One is the
TOCTTOU problem previously mentioned, which at times must
be controlled with some form of serialization mechanism. The
other concerns improper user manipulation of svcs and again
relates to the previous discussion on the “accidental error” phi-
losophy. In vS2 Release 2, serialization mechanisms have been
introduced in certain svcs to prevent the user from utilizing
multi-tasking to pass the same resource simultaneously to two
parts of the system never designed to process that resource si-
multaneously. In general, the reason for the original lack of a seri-
alization mechanism in such svcs was the fact that only a de-
liberate user error would be likely to produce that situation, an
event that did not have to be accounted for under the “accidental
error” philosophy.

In vs2 Release 2, Enqueue/Dequeue (ENQIDEQ) and a new
hierarchical locking structure (developed primarily for multipro-
cessing serialization problems) are the primary methods used to
control integrity problems relating to serial resources. The lock-
ing mechanism is used, for example, to prevent FREEMAIN from
occurring on certain areas of storage for the duration of a given
operation - a problem previously mentioned in connection with
the TOCTTOU problem.

With respect to potential system integrity problems, it is critical
that unauthorized programs not have access to the serialization
mechanism. This requirement creates a problem with the use of
ENQ~DEQ, not only for new areas of serialization control, but old
areas as well, since it was determined that ENQlDEQ was already
being used in many areas where lack of serialization could cause
integrity exposures. The problem was that ENQlDEQ had never
been a restricted function and, in general, if the user wanted to
nullify a system ENQ by issuing the appropriate DEQ, there was no
way to stop him. To correct this deficiency, a change was made
so that ENQ/DEQ is now restricted to authorized programs for all
major names of the form SYSZXXXX and for certain existing ma-
jor names such as SYSDSN, SYSVTOC, and SYSPSWD.

NO. 3 * 1974 OSlVS:! SYSTEM INTEGRITY


~~~~ 

The restriction problem did not  exist with the new locking 
mechanism since it was  by definition restricted  to  authorized 
programs from its  inception. 

uncontrolled In  the ideal case,  the  system  control program should maintain 
sensitive control  over  access  to all system  resources.  However,  there us- 

system ually arises a need for  certain special types of programs (for ex- 
resources ample: some system utilities) run as ordinary  user  programs (job- 

steps), but  that,  because of the special nature of their  function, 
must  have  the  capability  to manage certain  system  resources 
directly.  This  capability is provided through IBM-Written and, in 
some cases,  user-written special service  routines  (in  the form of 
svcs or special paths  through svcs) that bypass  established  re- 
sources-management  controls normally imposed on  user  pro- 
grams.  Because  there  has been no way in the  past  for  the  control 
program to effectively differentiate the  class of programs  that  re- 
quire  such special services  from  the  totality  of user programs, 
these special services  have generally been made available to all 
user  programs  without  restriction. The lack of restriction  on  such 
sensitive  services  results in system integrity problems.  An  ex- 
ample of this in OS~MVT is  the unrestricted  path  through OPENJ 
that allows writing of the Volume Table of Contents (VTOC). To 
solve  such integrity problems,  yet allow this  special  class of pro- 
grams  to  continue  to  exist,  the Authorized  Program  Facility (APF) 
was introduced in vs2. 

The following is a  summary of the APF support  provided in 
OS/VSZ Release 2. Two methods of restricting  sensitive  system 
resources/  services  are  provided.  Sensitive svcs are restricted 
via a  parameter  on  the SVCTABLE macro at system  generation 
time. The svc First-Level  Interrupt  Handler  ensures  that svcs 
restricted in this  manner are only  accessible  to  programs having 
APF authorization,  supervisor  state, or system key (0- 7 ) .  

For svc’s where  only  a  part of the  function  they  provide is sen- 
sitive, the capability of restricting  a  particular  path  through  an 
svc is provided (for example,  the  path through OPENJ that  opens 
the vroc for  writing). This facility is provided through  insertion 
of a TESTAUTH macro at the  appropriate  location in the svc. 
TESTAUTH returns  an indication that  the program calling the svc 
is either  authorized or unauthorized;  the svc must  then  take ap- 
propriate  action based on this return. TESTAUTH is  capable of 
testing for  supervisor  state,  system key, APF authorization, or 
any  combination.  Appropriate IBM svcs are automatically  re- 
stricted;  however,  the  capability is provided for  the  security- 
conscious installation to  restrict its own sensitive svcs as well. 

Nonsystem-key/ nonprivileged-mode programs are authorized  to 
access  services,  restricted as described  above by being link- 
edited with an authorized-state indicator. This program authori- 

244 MCPHEE  IBM SYST J 



zation is accepted by the system only from certain  authorized 
system  libraries  and only on a  jobstep  basis. The following is a 
summary of how this functions. 

An installation is given the capability at system  generation or 
IPL time  to define a list of authorized  libraries  from which the 
APF-authorized program attribute is recognized by the  system. It 
is the installation’s responsibility to  control  the  contents of such 
libraries. (SYSI.LINKLIB and sYsI.svCLIB are automatically con- 
sidered authorized  libraries.) The first load module in a  jobstep 
basically determines  the  authorization  for  that  jobstep. If the first 
load in the  jobstep is not APF-authorized, it is impossible for  any 
part of the  jobstep  to  become APF-authorized. If the first load in 
the  jobstep is APF-authorized, the  jobstep remains  authorized un- 
less  a LOAD request is satisfied from an unauthorized  library, in 
which case  the task goes  to an ABEND. This is necessary  to  pre- 
vent  such  exposures as the  use of the JOBLlBlSTEPLIB facility to 
replace  the second or subsequent  loads of an APF-authorized pro- 
gram with a program of the  correct  name  but from an  unauthor- 
ized library. It is important  to  note  the need for  an ABEND. 
Simply turning off the  jobstep’s  authorization does not suffice be- 
cause of the possibility that  an  access  path  to  a  restricted  re- 
source  (for example,  a valid DEB allowing writing into a VTOC) 
may remain established  after  the  authorization  indicator is turned 

unauthorized module even though the  authorization  indicator 
had been turned off. It is the responsibility of the  authorized  pro- 
gram not  to recover from the ABEND in a way that would allow 
the  unauthorized module to  execute  authorized, or unauthorized 
with an established  access  path  to  a  restricted  resource. 

Essential  to the effectiveness of the APF-authorization mecha- 
nism is the  fact  that APF authorization is strictly program au- 
thorization, as opposed to user  authorization. It is generally in- 
tended  that  any APF-authorized program should be executable 
as a jobstep by any  user  without damage to  system integrity or 
security. The APF-authorized problem program is considered  to 
be effectively an  extension  to  the  control program. As such, al- 
though it is allowed to bypass normal system  controls on 
resources  /services, it is responsible  to  provide  the  same or equiv- 
alent  controls in any  interface with the  user. (The IEHDASDR 
program, for  example, is allowed to  bypass normal controls  on 
access  to  direct  access  space;  but  before altering any  data, it 
invokes  the  system  password  checking mechanism to  ensure  that 
its invoker is authorized  to  delete  the data  sets in question.) 

In some cases,  however, it  may not be feasible  for  an APF-aU- 
thorized program to apply the normal system  control mechanism 
to its user  interface. In this  event,  the  use of the program must  be 

NO. 3 . 1974 os/vs7 SYSTEM INTEGRITY 245 



controlled. In v s 2  Release 2, it is suggested that  such  programs 
be placed in a  password-protected  authorized  library so that  exe- 
cution of the program is controlled (the password  for the library 
is required when it is opened  to allow fetching of the  program). 

As indicated  above, it is necessary  for  the first load of an  author- 
ized program to  be link-edit authorized - that is, with the  author- 
ized-state  indicator. As long as all subsequent  loads  come from 
authorized  libraries,  the jobstep continues  to  run  authorized. 
Second or subsequent  loads should specifically not be marked 
APF-authorized since  to do so would enable  them to be executed 
as the first load of a  jobstep which, because of their  authoriza- 
tion, could cause  unpredictable integrity problems. 

If an APF-authorized program specifically wishes to LOAD a 
program from  an  unauthorized  library  and  continue  execution 
with authorization  turned off (that  is, not be terminated when 
the  unauthorized program is loaded),  the authorized program 
must  turn off its own authorization  indicator  prior to issuing the 
LOAD request. In this  case, it is the resonsibility of the  author- 
ized program to  ensure  that no access  paths  to restricted re- 
sources  are still established when the  unauthorized load is given 
control. It is also  the  authorized program’s responsibility to  en- 
sure  that  there  are  no  asynchronous  routines running or yet to 
run  that  have a dependency on the program’s currently  author- 
ized status. 

The existence  of multiple authorized  libraries  introduces a prob- 
lem with respect  to naming of authorized  modules. It can be as- 
sumed that  an  executing,  authorized program is aware of the  cor- 
rect  name of a module it attempts  to load.  However,  because  an 
authorized program normally executes as a jobstep  executable 
by any  user, it cannot  control  the identity of JOB LIB^, STEPLIBS, 
and  others  since  these  libraries  are identified via JCL. Therefore, 
there is an  exposure  that if two  modules of the  same name exist 
on different authorized  libraries,  an  authorized program attempt- 
ing to load one of these  modules could get  the  other if the  user 
executing  the  authorized program were  to  (deliberately or acci- 
dentally) improperly JOBLIB, STEPLIB, or concatenate  the  two 
libraries in question. The existence of this  type of exposure  re- 
quires  the  additional  restriction  that  duplicate module names  not 
be  permitted  across  authorized  libraries.  Because  this  restriction 
must be enforced by the  installation, it appears  that a naming con- 
vention would be  the simplest way to  permit effective monitoring 
of this  restriction. 

While the  previous  portion of this  paper  described  the  tech- 
miscellaneous niques  representing  the primary integrity control  mechanisms 

mechanisms used in v s 2  Release 2, there  are  several  lesser-used  techniques 

246 MCPHEE IRM ww 1 





The installation must  be  responsible  for the physical environ- 
ment of the computing system.  Operations  personnel  and  system 
programmers  have, in effect, uncontrolled  access  to  certain  por- 
tions of the  Operating  System. These persons are considered to 
be under installation control  and are presumed  trustworthy as 
far as system integrity is ~once rned .~  

The installation must  ensure  that  their own modifications and 
additions to  the control program do  not introduce  any integrity 
exposures;  that  is, all user-written  authorized  code  (such as a 
user svc) must perform the same or an  equivalent  type of valid- 
ity checking and  control  that  the vs2 Release 2 control program 
employs to maintain system integrity. 

The installation must  be  responsible  for  the  adoption of certain 
procedures  that are a necessary  complement to  the integrity 
support within the  operating  system.  Several  examples of such 
responsibilities are now given. More  detail on this topic can be 
found in vs2 Release 2 do~umentation.~’~ 

The installation must  password-protect  appropriate  system li- 
braries.  System integrity clearly cannot be maintained if sys- 
tem code  and  data  are  exposed  to  arbitrary modification by any 
user  on  the  system. For integrity purposes, it is generally suffi- 
cient to  protect appropriate libraries from write  access  (no  pass- 
word is required  for  read  access,  but a password is required  for 
write access).  However,  for security  purposes, it is necessary to 
protect  certain  system  data  sets (for example, the PASSWORD 
data  set  itself) from read as well as write  accesses. To improve 
the  operational  characteristics of such  protection,  password  re- 
quests  for  data  sets being opened by the  system are suppressed 
during IPL and  system  task initialization. 

The checkpoint  data  set  produced by the  Checkpoint/Restart 
facility contains  sensitive  system data normally protected  from 
the  user.  Therefore, maintaining system integrity requires  that 
such  data  sets  be  protected from modification (or from being 
counterfeited)  prior  to  their  use by the  Restart facility. vs2 Re- 
lease 2 implements a facility whereby the installation can  adopt 
a  set of special procedures/controls  over  checkpoint  data  sets 
that will eliminate their potential for compromising system integ- 
rity. The control mechanism involves  a  combination of: 

System/operator validation of checkpoint  data  sets. 
External labeling procedures  for  checkpoint  volumes. 
Off-line control of checkpoint volumes. 
Prohibition of I/O to checkpoint  data  sets,  except through the 
Checkpoint svc (authorized  programs  excepted). 

MCPHEE IBM SYST J 



Concluding remarks 

In conclusion,  three  areas of concern  that  continue to be 
brought up repeatedly with respect  to  system integrity support 
are now addressed.  These  questions  concern  the impact of integ- 
rity support on the system as a whole, the feasibility of integrity 
on  other  systems,  and  the  questions of what level of integrity has 
been achieved in vs2 Release 2 and  what in fact  constitutes  an 

, adequate level of system integrity. 

Of primary concern to any  security-conscious installation is the impact  on 
overall impact to  the vs2 Release 2 system  and to installation the  system 
procedures resulting from the  introduction of system integrity 
support. While it is, of course,  not possible to gauge the impact 
on any given installation without specific knowledge of that in- 
stallation,  the impact in general should be low. The following 
addresses  some potential areas of impact. 

With respect  to  performance,  there are some extra CPU time and 
real storage  use  due to the  enhanced validity checking and so 
forth.  However,  the information available to date indicates  that 
this will not significantly degrade  system  performance.  Insofar 
as possible, techniques  have been used that minimize the impact 
of increased validity checking, as can be seen in the following 
examples. The DEBCHK type of validity checking, performed at 
each I/O operation, could have been a  performance problem had  it 
been designed such that  the DEBTABLE search  overhead in- 
creased as the  number of DEBS (open data  sets)  grew larger. 
However, as previously described,  the design is such that  the 
search  overhead is essentially constant no matter how many data 
sets  are  open, and in fact  represents only a small increment  to 
I/O validity checking in previous  systems. The validity checking 
needed to ensure  that  the  system  does not violate store/fetch 
protection  also could have  become  a problem were it not  for 
techniques such as  the key-switch technique which allows the 
mainline validity checking to be streamlined with the  error han- 
dling done in recovery  routines. 

There  are not  expected to be any integrity-induced incompatibil- 
ities (with  respect  to  user  interfaces  documented in Systems 
Reference  Library  manuals)  that  cannot be eliminated via a re- 
linkedit of the program to make it APF-authorized. There is at 
present only one known integrity-induced incompatibility that 
would require such a  relinkedit-  the previously mentioned re- 
striction  that  prevents all but  authorized  programs from doing 
rlo directly (that is, not through the  checkpoint  macro)  to  a 
checkpoint  data  set. 

As with any new system  there will be changes required in exist- 
ing installation system specifications. The primary problem will 



~- 

be the need (if concerned with security)  to be aware of the  nature 
of the new integrity support so as not  to  undo  what  has been done 
in vs2 Release 2. One example of a  requirement in this  area is 
that  any  user-written  system modules executing with system key 
or  state must be link-edited (into an authorized  library) with the 
reentrant  attribute.  This  must be done  to  ensure  that  such mod- 
ules are loaded into  the  proper  subpool  protected from user 
access. 

Probably the  area with the  greatest  potential  for significant im- 
pact is the  existence of code  that  makes use of existing integrity 
exposures in the  system (not necessarily malicious use of such 
exposures,  but  the  casual use of a “hole”  to get into  supervisor 
state  without writing an svc). While no one  has been able  to  as- 
sess  the  extent of such  practices,  there  is the mitigating factor 
that  most of the impact in this  area should have been felt in 
OSIMVT Release 2 1 or at  least by vS2 Release 1, since the “holes” 
most likely to be used for such  purposes are eliminated in those 
releases. With respect  to correcting  the impacted programs,  some 
will be able  to be corrected via a relink-edit to APF-authorized; 
others will  of course  require  code  changes.  However,  for  the 
future,  the  existence of APF support should make the  creation of 
such special interfaces  a simpler operation. With APF control, 
for  example, it becomes  safe  to leave an svc on the  system  that 
returns  control in supervisor  state  and  thus eliminates the need 
for  authorized  programs to use  system  exposures  to accomplish 
this  state  switch. 

other  systems At this point in the state-of-the-art of system integrity it is not 
clear if it is possible or  reasonable to provide system integrity in 
all operating  systems. There  are  at least  two  essential design 
concepts  that  must  exist in order  to  provide  system integrity: 

System/user isolation. 
User/user isolation. 

As with most other  operating  system  capabilities,  these  types of 
controls  require  increased  storage  and CPU overhead. OslMv~ 
already had these  essential design concepts  and while this isola- 
tion of the  system from the  user  and  the  user from other  users 
was not  always  strictly  enforced in MVT, it was  possible to carry 
these design concepts  forward  into vs2 and  introduce  the  strict- 
er controls  necessitated by system integrity with a minimum of 
increased  overhead. To introduce  such  basic integrity-design 
requirements in a system  where  such design concepts previously 
did not  exist or existed only minimally would likely result in a 
final system  very different from the original system in terms of 
main storage  requirements, CPU overhead,  and  operational  char- 
acteristics. In many environments  this may simply not be prac- 
tical or justifiable. There  are simpler, more  procedural  methods 
of achieving the desired  security  control in such  systems. 

I 250 MCPHEE IBM SYST J 



The question must always be asked as  to what level of system level of 
integrity vs2 Release 2 will actually have  and,  perhaps more im- integrity 
portantly,  what level of integrity is adequate. vs2 Release 2 will 
not  have total system integrity because total system integrity, or 
security,  does not exist  anywhere in the real world. If someone  is 
willing to spend enough and risk enough,  any  security  system 
can be broken. 

, Cost and risk are  the key concepts.  Security, or system  integrity, 
does not  have  to be 100 percent foolproof. It only has  to be at a 
level where  the  cost  and risk involved in breaking that  security 
exceed the benefits to be gained by doing so, or  exceed  the  cost 
and risk of obtaining the  same benefits in another  way. 

Thus, while the goal has  been,  and must be, 100 percent  system 
integrity, it is sufficient to  achieve  a level of security integrity in 
vs2 Release 2 such that  the  cost/risk of “breaking”  that  system 
is significantly greater  than  the benefits to be gained in compro- 
mising such a system in the normal commercial environment. 
From limited user  feedback, it appears  that this level has been 
met with respect  to  our level of understanding of the problem and 
the level of subtlety of “exposures” now being corrected in the 
system. There of course  always  remains  the possibility of the 
exposure  that is easily understood  and simply fixed, but somehow 
gets  overlooked.  Any  such design exposure may be remedied 
via an  Authorized Program Analysis  Report (APAR). In  addition, 
it  is worth noting that  even though such random exposures may 
exist,  the difficulty (cost/risk) of finding one  and successfully 
using it  in a system of the complexity and size of vs2 Release 2 
is  by no means trivial. 

Perhaps  the single key factor in achieving this level of system 
integrity has been the “fix  all exposures”  approach  adopted  very 
early in the integrity effort for vs2 Release 2 .  This  approach, in 
effect, says  that any integrity exposure is to be fixed, no matter 
how unlikely it  is that it could be used to violate system  securi- 
ty. For example, many known integrity exposures  have timing 
constraints  that  appear  to make it very difficult to actually use 
the  exposure  to  compromise  the  system.  Such  exposures  have 
been fixed regardless,  because it was learned also very early in 
the integrity effort that it is very risky to  attempt  to classify in- 
tegrity exposures  according to severity. Too often  exposures  that 
appeared  very difficult to  use turned out  to be simple to  use when 
more information came  to light. This “fix all exposures” ap- 
proach is essential in any  serious effort to provide an  adequate 
level of system integrity. The state-of-the-art in this area is not 
yet,  and possibly never will be,  at  a point where  a  reasonable 



ACKNOWLEDGMENT 

The author would like to acknowledge P. Byrne, E. Cassorla, 
L. English, R. McAllister, and others who contributed  to the 
IBM system integrity development effort. 

CITED  REFERENCES AND FOOTNOTES 
1. An authorized  progrum in VS2 Release  2 is a  program  running  with system 

key (keys 0 - 7) and/  or  supervisor  state  and/  or  Authorized Program  Facility 
(APF) authorization. In general, the  concept of an authorized  program can 
best  be thought of as a “trustworthy” program in the sense  that it is  either  part 
of, or a logical extension  to, the  control  program, and  therefore  can  be allowed 
certain privileges  not  granted ordinary  user programs  without fear of compro- 
mising system  integrity. 

2. Store  and  fetch protection correspond respectively, to preventing  write or 
read access  to portions of main storage. 

3 .  considerations of Physical  Security in a Computer  Environment, Form No. 
(3.520-2700, I BM Corporation,  Data Processing  Division,  White  Plains, 
New York. 

4. I B M  Sysrem/370, Introduction to   OS/VS2  Re lease2 ,  Form  No.  GC28-0661, 
I B M  Corporation,  Data Processing  Division,  White  Plains, New  York. 

5 .  O S / V S 2  Planning Guide for Releuse 2,  Form  No.  GC28-0667, IBM Cor- 
poration,  Data Processing  Division,  White  Plains, New  York. 


