
Selected  components of tightly-coupled  multiprocessing  pro- 
gramming  support  are  presented.  Included  are  design  rationale 

Design of tightly-coupled  multiprocessing  programming 
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One of the components of oslvsz Release 2 is the  support of a 
tightly-coupled multiprocessing environment in which two  Cen- 
tral Processing  Units (CPUS) share a single main storage  con- 
taining one copy of the  operating  system. This paper  describes 
five aspects of the programming support of the multiprocessing 
( M P )  hardware: 

Locking. 
Service management. 
CPU affinity. 
Dispatching. 
Alternate CPU recovery. 

The locking section  describes  the serialization technique used to 
provide disablement  across CPUS. It also  describes how the sys- 
tem was subdivided to allow what were disabled, mutually ex- 
clusive functions  to run in parallel on an MP system. 

The service management section  discusses  a new set of system 
services  that  provide  a new unit of dispatchability in the system. 
This unit of dispatchability has less overhead  and  better perfor- 
mance than tasks  and is provided to  encourage  increased paral- 
lelism in system  functions. 

The CPU affinity section describes a way to force  dispatching of 
work to  a specific CPU. It provides a way of forcing an emulator 
job  step which requires  a  particular  hardware  feature  to  the CPU 
having that  feature. 

The dispatching section  describes  the  changes in the  Dispatcher 
and related functions  to  support MP, multiple-address spaces, 
and  the  above  three  changes  to  the  system. 
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cess invoked when a CPU in a tightly-coupled M P  environment 
can no longer function. ACR occurs  as  a result of a signal (either 
hardware or software  generated)  that is sent by the malfunction- 
ing CPU before it enters  a disabled wait or check-stop  state. The 
hardware-generated signal, Malfunction Alert,  occurs when con- 
tinued instruction  execution is impossible.’” The software- 
generated signal, Emergency Signal, is issued by the  Machine 
Check  Handler if it determines  that  the CPU cannot function 
properly. 

Locking 

In  a multiprogramming control  program, it is necessary  to serial- 
ize functions (in the  control  program)  that  reference  the  same 
data  or control blocks. One oslvs method of doing this is to 
disable the CPU so that no interrupts can occur  to  cause  a switch 
from the  current  process. This provides the necessary serializa- 
tion on a uniprocessor, but is not effective on a  multiprocessor 
because disablement affects only one CPU.  I f  a  process  execut- 
ing on one CPU disables, it serializes only the  one CPU; nothing 
prevents  another  process on the  other CPU from also disabling 
and running in parallel with the first process. 

The simplest solution to this problem is to provide a mechanism 
by which one CPU, when it enters  the disabled state, locks out 
the  other CPU from entering the disabled state.  This can be done 
by  defining a lockword that all processes  check when they disa- 
ble. If the lockword is zero,  the  process  stores  a CPU identifier 
into  the lockword and  continues. If the lockword is not zero,  the 
processor  spins on the lockword until it becomes zero. The pro- 
cess  that holds the lock sets it to zero  just before enabling. This 
provides serialization of two CPUS in a way equivalent to  disa- 
bling. A technique similar to  this was used in the System/360 
Model 65 MP. Hardware  support is needed for  this function 
since it is necessary to perform the comparison and  store  into 
the lockword as a single operation.  This  prevents  the  other CPU 
from changing the lockword while the  operation is  being execut- 
ed. If this is not done, both CPUS could compare against the 
lockword at the same time, and because both would  find a  zero 
value, both would store  into  the lockword and both would con- 
tinue assuming they owned the lock. In the Model 65 MP,  the 
Test and Set instruction was used for this purpose. In Sys- 
tem/370 vs2 Release 2, the Compare and Swap instruction is 
used. 

1 While this technique does provide the  necessary serialization, it 
also  introduces  a  system bottleneck. Because the serialization 
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age of the CPU power can be wasted if one CPU is executing the 
control program with the lock held and  the  other CPU is spinning 
on the lock waiting to  enter  the control program. 

This bottleneck could be effectively eliminated by defining the 
system so that  each item requiring serialization had its own lock. 
This would distribute  the locking requests  such  that  the probabil- 
ity of both CPUS contending  for  the  same lock would be very 
small. However,  since  a conflict is possible, the locks must be 
maintained and  this can result in significant overhead if there is a 
large number of locks. 

In o S N S ~  Release 2, a compromise solution was  used. The 
control program was analyzed and subdivided into  components 
having a minimum of interaction.  Locks  were assigned to  the 
components.  This resulted generally in locks being assigned to 
collections of related control blocks instead of to each  control 
block (some locks were assigned to specific control  blocks). 
The locks defined are  such  that they should provide a significant 
reduction in wasted CPU time as compared to the single lock 
approach without an  unacceptable level of overhead. 

In analyzing the  control program, one  apparent split was  into 
global and local components: 

The local supervisor which contained  those  functions in the 
local program logically associated with a  particular  user 
(such  as  Getmain  for  a  user  subpool, or Attach  a subtask). 
The global supervisor which contained  those  functions in the 
control program logically associated with more than  one  user 
(such  as  Getmain  for  the  System  Queue  Area, or system 
wide ENQ).  

This split was heavily influenced by a  decision  to  swap all users’ 
address  spaces,  and  to  swap as much of the system  control in- 
formation about  a  user with the  user. To  do this, it was  necessary 
to separate  the  control  blocks  and  queues  for each user  into sep- 
arate  areas.  Some  queues,  such as the Job Pack  Area  queue and 
the  Getmain  queues  for  user  subpools, already were unique to a 
job and  were  easy  to move. Others, such as the TCB queue, had to 
be split into  separate  queues  for each user. Some,  such as the 
ENQ queues, could not be split or swapped because  their  use  was 
for  system-wide serialization including swapped-out  users. The 
queues  that could be isolated by user  were  put  into  the Local 
System Queue  Area (LSQA) and Scheduler Work Area (SWA) 
in the users’ private  area. The system-wide  queues  were  put in 
the common area. The private  area is addressable only to func- 
tions running in the  user’s  address  space with the  user’s segment 
table. The common area is addressable in every  address  space 
and with any segment table. 
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Because the private area is addressable to only the  one  user and 
because all the data and control blocks are unique to  that  user, 
any function that  references only private-area information could, 
if coded  reentrantly, run in parallel with itself in different ad- 
dress  spaces without any serialization. These functions have 
been called the local supervisor. The remaining control program 
functions which provide system-wide  services or use control 
information in the common area  and must serialize across  ad- 
dress  spaces have been called the global supervisor. 

The local supervisor  functions  do  not  have  to serialize across 
address  spaces, but must serialize with other  executions in the 
same  address  space.  This can occur  due  to multitasking in the 
address  space. To provide the serialization, a local  lock was 
defined. One local lock exists  for  each  address  space and is used 
by local supervisor  functions  to serialize with other local super- 
visor  functions in the  same  address  space. Local supervisor 
functions can be active and own local locks in other  address 
spaces without serializing with the  current  address  space. 

The local supervisor  functions  request  the local lock, instead of 
disabling, in order  to serialize. When the local lock is  held in an 
address  space,  the  dispatcher  does  not  dispatch  any  other TCB in 
the address  space. If another CPU is already executing work in 
the  address  space when the lock is obtained, it continues to run 
until it  is interrupted and switched away  from, or until it asks  for 
the local lock. At that point it is suspended and the CPU is dis- 
patched to  another  address  space. 

The local supervisor is  logically disabled by the local lock; that 
is, no local processing can take place until the local lock is re- 
leased.  Therefore, local supervisor functions can be dispatched 
in a hardware-enabled state  and still be  logically disabled. To 
support  this,  a  save  area was provided into which status could 
be saved if an  interrupt  occurred. The availability of this save 
area also allowed the  system  to switch from a local supervisor 
function to  another higher-priority user. Because of these 
changes,  a number of control program functions  that formerly 
ran disabled, now  run enabled.  This  increase in enabled code 
allows greater  responsiveness to interrupts  and  to high-priority 
functions. 

The local lock is defined as an enabled  suspend  lock. That is, the 
holder of the lock executes enabled and, if another  process  re- 
quests  the lock  while it is held, the  requester is suspended  and 
the CPU dispatched to another  process. The suspended  process 
is not redispatched until the lock is released. 

While additional local locks could have been defined to further 
subdivide the local supervisor, i t  did not seem to be necessary 
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because  the ( 1 )  local lock-holder ran enabled, (2 )  any  other 
request  for  the lock was suspended  and did not tie up  the CPU, 
and ( 3  ) the local supervisor  functions could continue  to  execute 
in other  address  spaces. We felt,  however,  that  the split of the 
system  into  a multiple local lock supervisor  and a single lock 
global supervisor would not sufficiently reduce  wasted CPU spin 
time, particularly since  the  most  frequently  executed disabled 
functions in past  systems  were lumped into  the global supervi- 
sor. 

global In a first pass,  the global supervisor  was split into  four  func- 
supervisor tional areas-chosen  because  the  control blocks and  queues 

used by the  areas  were,  for  the  most  part,  independent of each 
other. A lock was defined for  each  area: 

Dispatcher lock-used by all functions  associated with dis- 
patching and/or changing the  queues,  and  control blocks 
used in dispatching. 
Storage  Management lock - used by the real and virtual stor- 
age allocation functions,  the paging supervisor,  the auxiliary 
storage manager, and  any  functions  that must serialize with 
these  functions  to  reference  their  queues. 
1l0 Supervisor (10s) lock-used  to serialize references  to 
the 10s control blocks and  queues. 
Miscellaneous lock -used by all other  parts of the global 
supervisor. 

These locks  were defined as disabled spin locks; that is, the 
CPU that holds the lock executes disabled and, if the  other CPU 
requests  the  lock, it spins in a disabled state until the lock is 
available. However, when one lock is held  by a CPU, any  other 
lock can be held by the  other CPU. It was felt that  the  four  locks 
would provide sufficient parallelism to  reduce  the  wasted  lock- 
spin time to  an  acceptable level. 

Since  the first pass,  functions  have  been redesigned or new func- 
tions added  to  the  system in such a way that it was  convenient 
to define additional locks,  thereby reducing the probability of 
contention  for a lock without significantly increasing the  number 
of lock requests. The additional locks result from the splitting of 
the  storage management lock and 10s lock into multiple locks, 
and  the addition of a  set of locks  for VTAM and a lock for  the 
System  Resource  Manager. 

In addition,  the miscellaneous lock, renamed the  Cross Memory 
Services (CMS) lock,  has been redefined as an  enabled suspend 
lock. As with the local lock, the  owner of the CMS lock runs 
enabled  and can be  interrupted and/or switched away from to 
run higher-priority work. If there is another  request  for  the lock 
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while it is held, the  requestor is suspended  and  other work is 
dispatched.  This enabled global lock has been provided for  two 
reasons: 

Disabled page faults are  not allowed in the  system. We felt 
that  some global functions could use  a lock that did not  re- 
quire  them to fix all their code and control blocks. 
Some  functions required significant amounts of time under 
the lock and could impact the  responsiveness of the  system. 
By running these  functions logically disabled under  the  lock, 
responsiveness  was retained at  the  expense of some in- 
creased  contention  for  the  lock. 

ly the  functions  that run under  the  locks are of short  duration. In 
addition,  the  cost in system  overhead  to perform the  necessary 
status saving to accept  interrupts  and allow switching would 
offset the gain in responsiveness.  Also,  the more frequently used 
functions (that is, the 10s interrupt  handler,  dispatcher,  and  stor- 
age manager)  are  needed  to perform interrupt stacking and  task 
switching, and therefore would have  to remain disabled. 

The result of these  changes is the following set of locks: current 
locks 

The Dispatcher ( D I S P )  Lock, a disabled spin lock, is used to 
serialize all funcitons  associated with the  dispatcher  queues. 
It is also used for a number of miscellaneous functions  that 
did not fit under  the  other locks and could not use the CMS 
lock. I 
spin lock, is used by ASM functions  for global serialization. 
The Space  Allocation (SALLOC) Lock, a disabled spin lock, 
is used to serialize Real Storage  Management  and  the global 
portions of Virtual Storage Management. 

lock, is used to serialize the 10s purge function  and  other 
parts of 10s. 
The 10s  Channel  Availability  Table ( IOSCAT)  Lock is used 
to serialize the selection of a  channel by 10s. 
A  set of locks for  the 10s Unit  Control  Blocks ( IOSUCB)  is 
used by 10s to serialize the changing of status in the UCBS. 
There is one disabled spin lock per UCB. 
A set of locks  for  the 10s Logical  Channel Queues ( IOSLCH) 
is used by 10s to serialize access and updates  to  the logical 
channel  queues. There is one disabled spin lock per logical 
channel queue. 
A  set of locks for  the VTAM Node Control  Blocks ( T P N C B )  is 

I NO. 1 1974 TIGHTLY-COUPLED MP PROGRAMMING 65 I 



used by VTAM when scheduling work via node  control 
blocks. There  is  one disabled spin lock per node  control 
block. 

A set of locks for V T A M  Destination Node Control  Blocks 
( T P D N C B )  is used to schedule work in VTAM. There is one 
disabled spin lock for  each  destination  node  control block. 
A set of locks  for VTAM Access  Method Control Block DEB.$ 
(TPACBDEB) is used by VTAM to serialize feedback  process- 
ing. There is one disabled spin lock per ACBDEB. 
The System  Resource  Manager ( S R M )  Lock, a disabled spin 
lock, is used to serialize the  various SRM functions when they 
are updating their  control blocks. 
The Cross  Memory  Services ( C M S )  Lock, a global-enabled 
suspend  lock, is used by any global system  functions  that  can 
or must run enabled but need serialization. A local lock must 
be held while the CMS lock is held. 
A set of locks  for  the local supervisor (LOCAL),  each  a local- 
enabled suspend lock is used to serialize functions in a single 
address space. There is one lock per  address  space. 

locking Even with the defined set of locks, many control program ser- 
rules vices  must  obtain multiple locks  to perform their function. 

Therefore, it was  necessary  to define a locking hierarchy  to 
prevent  interlocks. The locks are arranged from high to low  in 
the order  just presented. IOSUCB, IOSLCH, TPNCB, TPDNCB, 
TPACBDEB,  and LOCAL comprise a set of locks hereafter called 
class  locks. The following is a set of rules  for  operations on the 
hierarchy (a CPU is considered the  owner of a  lock): 

A CPU can hold only one lock of a given class lock set.  Two 
CPUS can hold two different locks in the same  class lock set. 
A CPU may only  request locks higher in the  hierarchy  than 
locks  already held. 
It is not  necessary to obtain all locks in the  hierarchy up to 
the highest lock needed. Only the  needed  locks  have to be 
obtained,  but  they  must  be in hierarchy  sequence. 

For the LOCAL and CMS locks, it  is possible for  the CPU to 
switch away from the  process requesting the  lock. In this case, 
the lock is placed in an  interrupted or suspended  state,  and own- 
ership  of  the lock is removed from the CPU. The CPU can then 
obtain  other local locks  for  other  processes.  Requests  for  a lock 
that  has been interrupted or suspended are handled the  same as 
if the lock were held. When the  process owning the lock is re- 
sumed, it can be run on either CPU, not  just  the  one on which it 
was suspended. When resuming the  process,  the  dispatcher 
gives ownership of the lock to  the CPU that will be running the 
process. 
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When a local lock  is  held or suspended,  the  dispatcher will not 
dispatch  any  tasks in an  address  space in which the local lock is 
held except  the  one holding the local lock. Because of this, when 
the CMS lock is held, a local lock must also be held to  prevent  an 
interlock from occurring. 

The interlock would occur  as follows. Tasks A  and B are in the 
same address  space.  Task  A  gets  the CMS lock and is interrupt- 
ed.  Task  B is then dispatched,  gets  the local lock,  and then asks 
for  the CMS lock. The tasks  can be running sequentially on the 
same or different CPUS, or in parallel on two CPUS. In the  latter 
case,  Task A must have obtained the CMS lock before  Task B 
asked  for it, and must be interrupted  after  Task B has received 
the local lock and before  Task  A has released the CMS lock. 
Task B, because  the CMS lock is  held when it asks  for it, is sus- 
pended until the lock is available. Task  A, because  the local lock 
is held by Task B, is not redispatched by the  dispatcher follow- 
ing the  interrupt.  Therefore, Tasks A and B are interlocked, 
each waiting for  the  other  to  release  the lock it owns. By requir- 
ing that  the local lock be held when the CMS lock is held, the in- 
terlock is avoided because  the  owner of the CMS lock cannot be 
made nondispatchable by another  task getting the local lock. 

The lock hierarchy is based on the  expected nesting of system 
functions  and,  therefore,  the  expected  sequence in which the 
locks will be requested.  There are some system  functions  that 
will be nested in such  a way that obtaining the locks in the  nest- 
ing sequence would result in a hierarchy violation. In these 
cases,  the routine needing the higher-level lock must first obtain 
all lower  locks needed by subsequent  routines. 

The interface used to  obtain and release  locks is provided through 
a macro (SETLOCK) that  can  be used only by supervisor  mode, 
key 0 functions  because it generates a branch to  the Lock Routine 
which uses privileged instructions  and  protected   tor age.^ 

The Lock  Routine  performs  two  functions in support of Alter- 
nate CPU Recovery (ACR). First, it maintains a bit mask on a 
per-cpu basis indicating which locks are held  by the CPU. When 
a lock is obtained by a CPU, a specific bit identifying that lock is 
turned  on in the bit mask. If a CPU failure occurs, ACR running 
on the functioning CPU will use the bit mask for  the failing CPU 
to  determine how to switch between the work for  the function- 
ing CPU and  the work for  the failing CPU until all the locks for 
this CPU are freed.  This allows it to avoid interlocks on the locks 
while it  is invoking recovery  routines  for the failing CPU’S work. 
This bit mask is also used as a validity check  for hierarchy viola- 
tions. The bits for  each  type of lock are  ordered in the bit mask 
according  to  the  hierarchy. The Lock  Routine using a second 
mask containing a bit in the position for the requested lock type 
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compares  the  two masks. If the  cpu-bit mask has a higher value, 
a  hierarchy violation is indicated.  This  check was provided as a 
debugging tool so that  system  errors in the use of locks could be 
easily found. It also allows the  system  to recognize deadlocks 
before they occur  and, by invoking recovery  routines, allows the 
system  to  continue  operation. 

The second function performed to support ACR occurs in the 
disabled spin for  a global spin lock.  In  this  case,  one CPU is spin- 
ning waiting for  the  other CPU to release  the lock. If the  other 
CPU should fail such  that  the lock cannot be released,  an inter- 
lock would occur. To prevent this, the  Lock  Routine will enable 
in its disabled spin path  for Malfunction Alert (MFA) and  Emer- 
gency Signal (EMS) interrupts. 

These interrupts are generated by the failing CPU either by the 
hardware (MFA interrupt)  or by the  software (EMS interrupt) 
depending on which one  decides  the CPU cannot  continue. By 
accepting  the  interrupt,  the running CPU can break out  of  the 
disabled spin routine and give control  to ACR. ACR can then re- 
cover  the failing CPU’S work and, using the lock-held bit masks, 
avoid the  interlock  situation. 

Service management 

Service Management is a new set of primitive functions  provid- 
ed in os/vsz Release 2. This basic set of services allows inter- 
nal system  components to structure  themselves  to run enabled, 
non-serialized, and in parallel on a multiprocessing system with 
less overhead than would be required by the utilization of exist- 
ing task management services. The main facilities of this  sup- 
port,  transparent  to all problem-program tasks  and available 
only to key 0 system  services,  are: 

A  control block, called a Service Request Block (SRB), de- 
fined to  represent a service  request. This block, like a TCB, 
identifies a unit of work to  the  dispatcher. It is, however, sig- 
nificantly smaller and  requires less information to be initial- 
ized for  each  request. 
A simple macro  service, called SCHEDULE, which enters  ser- 
vice requests  into  the  queue of dispatchable work with a min- 
imum of overhead.3 
Changes  to  the  Dispatcher to operate from a new service 
request  control  structure in addition to  the  task  structure. 
The changes are optimized to provide maximum perfor- 
mance when dispatching service  requests while providing the 
ability to  schedule  the SRBS to different address  spaces  and  at 
a priority either  independent of and higher than the priority 
of the  address  space  or  at  the priority of the  address  space. 
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The  Service  Management feature resulted  from an effort to 
move os, which is a general-purpose, highly functional  system, 
into  the  high-performance  terminal-oriented  environment.  Ser- 
vice Management is an  attempt  to  provide a  dispatching  facility 
in the  system  that  could  be used  by system  services  and  applica- 
tion  programs  to  better utilize the  two CPUS in an M P  environ- 
ment.  The application  programs of concern  are  those  which, 
even  though having  independently  dispatchable  units of work, 
found it necessary  to  run  as a  single os task  and  to  provide  their 
own  dispatching  structure  because of the  overhead of the os 
task structure  and os services.  These  dispatchers  were  tailored 
to  the specific  application  and  could,  therefore,  be  fast  and  have 
small  storage  requirements  compared  to os services.  Because of 
the tailoring, however,  each  one  was a  unique  implementation. 
The  Service  Management  features  are  an  attempt  to  provide a 
service in the  system  that is small  and fast  enough  to  be  used by 
these  types of subsystems.  This  service  is  only  used  to a limited 
extent by the  subsystems  available  with oslvsa Release 2. 

The  Service  Management  features  provide a  solution to  two 
problems  that  exist  because of  special  dispatchers. Both of these 
problems  exist in the  case  where a subsystem is implemented 
such  that  there is a  single os task  under  which  the  subsystem 
dispatches  its  own  units of work.  Because  the  operating  system 
is aware of  only  the  one  task  and  not  the  subsystem’s  units of 
work, it cannot  dispatch  the  subsystem  to  more  than  one CPU at 
a time in an M P  system. With the  Service  Management  features, 
the  system is made  aware of the  subsystem’s  units of work  and 
can  dispatch  them in parallel on multiple CPUS. 

The  second problem  occurs  when  two or more  subsystems  run 
on  the  same  system. Again because of the single task,  both  the 
high- and  low-priority  work of one  subsystem will run  before  the 
second  subsystem.  Unless  the  subsystems  are  designed  to  coop- 
erate by  voluntarily  releasing  time at  specific  intervals,  the  sec- 
ond  subsystem’s  ability to  meet  its high-priority response  re- 
quirements could  be  impacted.  With  the Service  Management 
features, it is possible to run  the high-priority  work of both  sub- 
systems  at a  priority  independent of and  higher  than  the  priority 
of the  subsystem  jobs.  The low-priority work of the  subsystem 
would continue to compete  on a job priority  basis.  This  capabil- 
ity  should  improve  the  ability of two  or  more  subsystems  to  ex- 
ist in the  same  system  with  acceptable  performance in all sub- 
systems. 

In addition  to  the  subsystem  reasons  for  developing  the  Service 
Management  features, it turned  out  to  be  very useful in the  sys- 
tem. It provided a mechanism  used  for  almost all communica- 
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tions between address  spaces,  and it was used to  run  some  parts 
of interrupt  handlers  as  service  requests, allowing more  enable- 
ment and parallelism for  these  services. 

An  example of the usage is the 10s interrupt handler. When an 
interrupt  occurs,  the  interrupt  handler  collects  the  necessary 
information about  the  interrupt  and  schedules  an SRB. The inter- 
rupt  handler  can then start  any I/O request waiting for  the I/O 
path  and  accept  any additional pending interrupts. By delaying 
complete processing of the  interrupt,  this  approach allows faster 
reuse of channels  and  lower disabled interrupt time. The sched- 
uling  of the SRB provides the ability ( 1 )  to complete  the  inter- 
rupt  process on any CPU, and  not just  the  one  that took the in- 
terruption, (2) to  process  the  interrupt  enabled  except  where 
specific serialization through locks is used,  and ( 3 )  to switch 
from the random  address  space  where  the  interrupt was taken  to 
the  address  space of the  user originally requesting the I/O. This 
latter capability provides  the  interrupt  handler  routine with the 
addressability to  the user’s control blocks that is necessary to 
complete the interrupt processing. 

service request The basic  control  structure utilized by the  Service Management 
controlstructure features  incorporates  two levels of system  priority: global and 

local. Service  requests  queued at  the global level are given a 
priority above  that of any  address  space,  regardless of the  actual 
address  space in which they will be dispatched.  Service  requests 
queued at the local level are given a priority equal to  that of the 
address  space in which they will be dispatched  but higher than 
that of any  task within that  address  space. 

At each level there  exists  a Service Priority List (sPL). This list 
is a  static,  contiguous list of queue  anchors  and simply serves as 
a mechanism for allowing prioritization among the  various  types 
of service  requests  that may exist.  Each  element of the SPL 
serves  as  an  anchor  for a queue of service  requests,  and  the  dis- 
patching algorithm is such  that it starts  at  the top of an SPL and 
takes  any  request  queued  at  the first element prior to looking for 
a request  queued at a lower  element. Thus,  the SPL is effectively 
a  list of priority levels, with a single global SPL for  the  system 
and one local SPL per  address  space. 

There  are two levels in each SPL. One level is for general system 
usage,  and  the  other  has  a  nonquiescable  attribute  and is re- 
stricted  to  functions requiring this  attribute.  Currently,  this sec- 
ond level is restricted  to SRBS that are suspended  and  resched- 
uled, SRBS scheduled to  resolve page faults, and SRBS scheduled 
to initialize a new address  space. All service  requests from a sin- 
gle SPL level are defined to  have equal priority. No assumptions 
can be made with respect  to  the  actual  order in which they are dis- 
patched. When the  Dispatcher  selects a service  request to dis- 
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patch, it removes  the  request from the  queue. Thus this  struc- 
ture  has only ready,  dispatchable  service  requests  queued. The 
SRBS representing  service  requests are fixed in real storage  and 
are addressable from any  address  space.  These  control blocks 
are  not owned by the  Dispatcher, but are supplied by the func- 
tion requesting  a  service  and may be freed or reused as soon as 
they are dispatched. The SRBS may be in any  system key and are 
not modified by the  Dispatcher  except for queuing. 

One level in each SPL is defined as nonquiescable,  but  this level 
has very  restricted usage. It is needed because at times it is nec- 
essary to  stop the  dispatching of SRBS in an  address  space  (for 
example, when an  address  space is to be swapped out or when it 
is terminating). The definition of stopping SRBS is to  prevent 
dispatching of new SRBs and to allow completion of SRBs already 
dispatched. Because SRBS can be suspended due  to lock requests 
or page faults and because page fault processing and  reschedul- 
ing  of suspended SRBS make use of SRBS, it is necessary  to  have 
the  nonquiescable level at which these SRBS can be scheduled 
and  dispatched while the  other SRBS are stopped. 

For implementation reasons,  two additional queues, called Locd 
and Global Service  Manager  Queues ( L S M Q  and G S M Q ) ,  are 
used. These  queues  were  introduced so that  the locking require- 
ments  associated with dispatching SRBS can  be limited to  the 
Dispatcher  and so that  the SCHEDULE service  that  introduces 
service  requests  to  the  system  can run unlocked. The SCHED- 
ULE service  requires  that  the  invoker supply a previously ob- 
tained and initialized SRB to  represent  the  request until it  is ac- 
tually dispatched,  and  to supply the priority of the  request (ei- 
ther global or local). The schedule  routine  queues  the SRB to  the 
appropriate  service manager queue (LSMQ or GSMQ) and  re- 
turns  to  the  invoker.  On  the  next  entry  to  the  Dispatcher,  the 
presence of the SRBS is detected  and the Dispatcher  moves  any 
SRBS that may have  accumulated on the SMQS since  the  last  en- 
try  to  the  dispatcher  to  the  appropriate SPLS. If there  were  any 
global SRBS, the  Dispatcher  then  dispatches  one. Any local SRBS 
are placed on  the local SPL and are dispatched when that  ad- 
dress  space becomes the highest-priority address  space with 
ready work. The information needed by the  Dispatcher  to  dis- 
patch a service  request is contained in the SRB, provided by the 
invoker of SCHEDULE. It includes the  address  space  that  the 
service  request is to  be  dispatched in, the  entry point of the rou- 
tine to receive  control,  the  protect key it is to run in, the SPL 
level the SRB is to be queued  to,  and  a  parameter to be passed in 
register one  on entry to the  Service  Request Routine. 

Service  Request  Routines  have some restrictions and operating 
characteristics  that are different from task-oriented routines. 
These  are: 
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in relocate  mode; they must return to the  address provided 
on entry in register 14 in the  same condition because  the SRB 
exit is a  direct  entry to the  Dispatcher and no cleanup or sta- 
tus  restoring is performed at this entry. 
The service  routine is responsible  for freeing the SRB or mak- 
ing  it available for  reuse  since  once  the SRB is dispatched,  the 
Dispatcher no longer keeps track of its  existence. 
Service  routines  cannot  issue s v c s ,  but  instead may use 
branch  entries  to  system  functions provided that  the  func- 
tions do not  have  an implicit TCB requirement:  that is, that  the 
function does  not  assume  the  caller is executing under  a TCB 
and,  therefore,  uses the  current TCB pointer  to get addressa- 
bility. When a service  routine is running, the  current TCB 
pointer is invalid. 
Service  routines may lose  control  because  of  a page fault or 
because of an unconditional request  for a suspend  type lock 
(CMS or LOCAL) that is currently held. In both of these 
cases,  the full status of the  process is saved and  other work 
is dispatched. When the page fault is resolved or the lock is 
available, the  service  routine is made eligible for  redispatch- 
ing  by scheduling a special SRB containing the saved status at 
the  nonquiescable level of the  appropriate local SPL. The 

SRBS and save  the  status. When it finds the special SRB, the 
Dispatcher  restores  the  status,  frees  the SRB, and resumes 
the  service  routine at  the point of suspension. 
Except  for  the noted suspension  cases,  service  routines  are 
non-preemptable. Thus, even though they run enabled and 
may be interrupted by asynchronous  interrupts, they will not 
be switched away from until they voluntarily give up control. 
Interrupts  that  occur  are  processed  but  any  dispatchable 
units of work made ready by the  interrupt  processing are 
ignored and  control  returned  directly  to  the  service routine. 

This last  characteristic of service processing is provided because 
these  routines are expected  to be relatively short in duration 
and,  therefore, it is preferable to run them to completion instead 
of going through the  overhead  of  satus saving and restoring, and 
task switching just  to run a higher priority unit of work.  This 
choice  also eliminates the need to retain a status  save-area  con- 
trol block in anticipation of a  task switch during a  service rou- 
tine’s execution. 

STOP SRB A STOP SRB function is provided in the  system as part of the 
STATUS service.  This  function is intended primarily to  support 
the quiescing and swapping of address  spaces although it is also 
used for  other  reasons. As mentioned when discussing the non- 
quiescable SPL level, service  requests are stopped by preventing 
the  dispatching of  new SRBS and allowing all service  routines 
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already  dispatched, including suspended SRBS that will be redis- 
patched,  to complete. While SRBS are stopped, all scheduled 
SRBS are moved to  the local SPL. If the SRB had been scheduled 
on the global SPL, it  is moved to  the  corresponding priority level 
on the  appropriate local SPL and, when SRBS are  restarted, it is 
dispatched as if it  had originally been scheduled as a local re- 
quest. If  the  address  space is swapped out, the  Dispatcher, 
when it puts  the SRBS on the local SPL, notifies the  System  Re- 
source  Manager of the  existence of work for  the  address  space. 
The System  Resource  Manager, based on the workload in the 
system,  subsequently  causes  the  address  space to be swapped in 
and  reactivated. 

CPU affinity 

In  a multiple-processor environment,  certain  hardware  features 
may not be available on both CPUS. In these  environments,  the 
system must be directed to run those programs requiring a cer- 
tain feature only on  the CPU with the  feature installed. This  ca- 
pability in oslvs;! Release 2, called CPU ufinity, has two  de- 
fined forms: SRB ufinity and tusk ufinity. Although both have  the 
same effect of causing a unit  of work indicated by a TCB or SRB 
to be dispatched  to  a specific CPU, they differ in the way the 
affinity requirements are determined. 

The dispatching part of the  process  works  the  same  for both 
types of affinity. When the  Dispatcher is entered, it selects  a TCB 
or SRB to  dispatch. It then  checks a bit mask  in the TCBlSRB to  see 
if the TCB~SRB can run on the C P u  currently running the  Dis- 
patcher. If  it can,  the  dispatcher  dispatches  the unit of work; if 
not,  the  Dispatcher  leaves  the work for  the  other CPU to pick up 
when it enters the Dispatcher and searches  for  another TCB or 
SRB to  dispatch. 

SRB affinity  is strictly an internal function since  the  system  func- 
tion that SCHEDULES the SRB determines  the affinity require- 
ments, if any, and indicates them by setting the  appropriate bits 
in the SRB affinity field. Task affinity  is a misnomer because it  is 
really job-step affinity; that is, the affinity requirement is deter- 
mined  by the  job  scheduler when the job  step is started  and  the 
affinity  is propagated to any  subtask  attached by the job  step. 
Task affinity is provided to  support  emulator job  steps in an MP 
environment when the  emulator  hardware  feature is installed on 
only one of the CPUS. 

The control information is found in the Program Properties Ta- 
ble (PPT) which has been extended to contain entries  that  relate 
program names to a bit mask indicating which CPUS have  the 
feature in~talled.~ 
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The PFT is a job-scheduler module and now contains  the  names 
and  symbols  for oslvsz Release 2-supported emulators. These 
are obtained at SYSGEN time from information supplied in the 
AFFINITY macro.4 

This table is used by the  Initiator to determine if affinity is re- 
quired by a job  step and if at least one of the  required CPUS is 
online. The Initiator  searches  the PPT for  the program name 
specified on  the EXEC statement. If found,  the  associated bit mask 
is ANDed with the CCA field of the online CPU. The result is the 
affinity requirement - that  is, a bit is on  for  each  online CPU with 
the  feature installed. If non-zero, the mask is saved and the 
ATTACH routine  propagates it into the  job-step TCB and  any  sub- 
sequent  subtask TCBS. The affinity  field is reset when the  step 
terminates. If the result is zero,  there is no online CPU with the 
needed feature. If this  occurs  for  the first step of a job,  the  job 
is put  on  the hold queue  and can be released by the  operator 
when the needed CPU becomes available. If the step is not the 
first in the  job,  the  job is aborted. 

Dispatching 

The main function of the  Dispatcher in oslvsz Release 2 (as it 
was in previous  releases) is to  select  and give control  to  the 
highest-priority dispatchable unit of work.' However,  the imple- 
mentation has changed significantly. The major changes are re- 
flected in the new control  structure  the  Dispatcher must use. 
Whereas in previous releases  the  Dispatcher worked from a TCB 
queue containing all the TCBS currently defined in the  system 
and  only had to find the highest-ready TCB on  the  queue, in Re- 
lease 2 the  Dispatcher  has  to work with six different queues: 

The Global  Service  Manager  Queue (GSMQ). 
The Global  Service Priority List (GSPL). 
The Local  Service  Manager  Queue (LSMQ). 
The  Address Space  Control Block (ASCB) queue. 
A Local Service Priority List (LSPL) per address  space. 
A TCB queue per address  space. 

In addition,  the  Dispatcher must recognize a request  for CPU 
affinity, a  redispatch of a suspended SRB, and a redispatch of an 
interrupted or suspended local supervisor.  Also it must  keep 
track of what is dispatched on each CPU to  prevent  the  dispatch- 
ing of the  same  process  on  two CPUS or the loss of a  process 
that could run. 

The GSMQ,  LSMQ,  GSPL,  LSPL and SRB queues  are  a result of the 
Service  Manager  services  that defined a new non-task-dispatch- 
able unit represented by an SRB. The ASCB queue  and  the TCB 

14 ARNOLD, CASEY AND MCKINSTRY IBM  SYST J 



queue per address  space  are  due to the  local/global  supervisor 
split. The ASCB queue is a global queue identifying the address 
spaces  currently in storage. The TCB queue is a local queue in 
each  address  space  and  contains all the currently defined TCBS in 
the  address  space.  Another  queue affected by the local supervi- 
sor is the asynchronous  exit  queue, which is split into a  queue 
per address  space. 

Six new entry points in support of the  Service  Manager, locking, Dispatcher 
MP, and paging extensions to the  control program have also been entry  points 
added  to  the  Dispatcher. The normal entry point continues  to be 
used when a task has been interrupted or has  caused  a  task 
switch. On this entry,  the  Dispatcher  checks if any higher-prior- 
ity dispatchable unit (either  a TCB or SRB) has been made ready. 
If not,  and  the  current task is still ready,  the  Dispatcher redis- 
patches it. If the  current  task is not ready or higher-priority 
work is available, the  Dispatcher  saves  the  status of the  current 
task,  searches the queues  for  other  work, and dispatches it. The 
status saving can be handled in one of two ways, depending on 
whether or not the local lock was held by the  task when it was 
interrupted. If the local lock is not held, normal status saving is 
done; that is, job-step timing is performed,  task timing (if any) is 
stopped,  and floating point registers are  saved. (The general reg- 
isters and the PSW were saved before the Dispatcher was en- 
tered.) In addition,  the  Dispatcher: 

Clears  the TCB NEW~OLD fields used to indicate which task 
is active on a CPU.  A  set of these fields exists  for  each CPU 
in the PSA of the CPU. System  services running under  a  task 
determine the current TCB address from these fields. 
Clears  the CPUID field and TCB active bit in the TCB. These 
fields are used to  prevent  the dispatching of a  task on two 
CPUS at the same time. 
Decrements  the  count of CPUS running tasks in the  address 
space.  This is a field  in the ASCB used in conjunction with 
another ASCB field containing a  count of ready TCBS to  deter- 
mine if the  Dispatcher should search  the TcB queue of an 
address  space  for  a ready task  not  dispatched on another 
CPU. The ready TCB counter  saves  a TCB queue  search if 
there  are no ready tasks. The pair of counters  saves  a  search 
if there are ready TCBS but they are active on the  other CPU. 

If  the local lock is held  by the task, the same status saving has to 
be done.  However, it  is saved in a special save  area, called the 
Interrupt  Handler  Save  Area ( I H S A ) .  There is one of these  per 
address  space.  (Only  one is needed because  there can only be 
one holder of the local lock at a time in an  address  space.) In 
addition to  the normal status,  the  Dispatcher  also has to save 
the NEW/OLD fields and the Functional Recovery Routine ( F R R )  
stack in the IHSA and must change  the  ownership of the lock. The 
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FRR stack  contains information about  error  recovery  routines 
to  be given control if an  error  occurs while the lock is held.' 
This information is specified and  deleted dynamically by the 
routines running with the lock held. The ownership of the lock 
is changed by storing an  interrupt ID into  the lockword and 
zeroing the local lock bit in the CPUS lock-held bit mask. These 
changes  leave  the local lock held, but make the  current CPU no 
longer the  owner.  This allows the CPU to be dispatched  to  an- 
other  address  space  and  to  get  another local lock. 

The  other entries  to  the  Dispatcher all indicate  that  the  process 
which was running has  either  completed or cannot  continue,  and 
that  status saving different from the normal entry is needed. 
Because the  current  process  cannot be redispatched,  the  status 
saving is done immediately and before  the  search for other ready 
work is performed. Two of these  entries are from the Lock  Rou- 
tine and two  are from the Page Fault  Handler indicating that  the 
current  process is suspended. The  other two  entries  indicate  that 
the  current  process is complete.  One of each  type is for TCBs; 
the  other  for SRBS. 

The lock entry for TCBS is used when the  current  task  that  owns 
the local lock is suspended while requesting the CMS lock. (The 
local lock must  be held when the CMS lock is requested.) The 
status saving at this entry is the  same as the normal entry  except 
that  the  Lock  Routine  has placed a  suspend identification in the 
local lock word and  the  Dispatcher  does  not  have  to  put  an  inter- 
rupt identification in it. 

The lock entry  for SRBS is used when an SRB routine is suspend- 
ed while requesting either  the local or the CMS lock. In  this  case, 
the  Lock  Routine  obtains an SRB with a  save  area  and  saves all 
the  necessary  status including updating the local lock ownership 
if necessary. The Dispatcher only does  the  job-step timing for 
the SRB'S address  space  and  resets  the SRB mode indicator. 
There is an SRB mode indicator  for  each CPU to  show  that  an 
SRB routine is active on the CPU. The primary users of the indi- 
cator  are  the interrupt  handlers.  They normally pass  control  to 
the  Dispatcher;  but if the SRB mode switch is on,  the  interrupt 
handlers  return  control  directly  to  the  interrupted SRB routine. 

The Lock  Routine  uses the normal entry  to  the  Dispatcher when 
suspending a  task requesting the local lock. The task is not 
placed in wait state,  but  the  Dispatcher will not  redispatch it as 
long as  the local lock is held. 

The entries from the page-fault suspend  routine are used when a 
task or SRB routine  takes  a page fault that  cannot be satisfied by 
a page in main storage. The status saving at  these  entries is the 

76 ARNOLD, CASEY AND MCKINSTRY IBM  SYST J 



same as  at  the corresponding Lock Routine  entries. The only dif- 
ference is that  the  Dispatcher lock must be obtained at  these 
entires while it  is provided as input by the Lock Routine. 

The task-termination  entry point is used by the End of Task 
(EOT) routine when it has completed deleting a task. In this  case, 
the  task  has been removed from the TCB ready queue  and  there 
is  no status  to  save.  The Dispatcher  does,  however, perform 
job-step timing calculations and resets  control information by 
zeroing the NEW and OLD pointers in the Prefix Save  Area  and 
decrementing  the  count of the  number of CPUS in the address 
space. 

The SRB termination entry point is the  return point from SRB rou- 
tines. Again there is no status saving needed,  but  the  Dispatcher 
performs job-step timing calculations  and  turns off the SRB mode 
indicator. 

The Memory Switch Routine  provides  the  Dispatcher with an 
indicator  that work is ready.  (This  routine is called by other  sys- 
tem functions  that make work ready.)  For SRBS, the  Dispatcher 
calls the Memory Switch Routine  whenever it moves an SRB to 
a local SPL. For TCBS, a number of different functions  (such as 
POST and STATUS) call the Memory Switch Routine when they 
make a  task  ready. 

The Memory Switch Routine  makes  use of two fields per CPU. 
One of these fields (PSAAOLD) indicates the  current  address 
space  active  on  a CPU. The  other (PSAANEW) indicates  the high- 
est-priority  address  space with ready work except when a glob- 
al SRB routine is dispatched. In this  case, it contains  the highest 
ready  address  space excluding the  address  space in which the 
SRB routine is running (the SRB routine can be either higher or 
lower  priority). 

When the  Dispatcher  dispatches a work unit in an address 
space, it stores  the  address of the ASCB into PSAAOLD and, if it 
is not  a global SRB being dispatched,  into PSAANEW. If, while the 
unit  of work is executing,  the Memory Switch Routine is called 
because  other work is made  ready,  the  Memory Switch Routine 
checks  the priority of the  address  space in which the new ready 
work will run. If it is higher than or equal  to  the priority of the 
address  space pointed to by PSAANEW, the new ASCB address is 
stored  into PSAANEW. If  it  is lower,  the value is unchanged. The 
Dispatcher  uses  the fields to  determine if a switch from the  cur- 
rent  address  spaces is needed. When searching for an address 
space  to  dispatch,  the  Dispatcher  starts  at  the  one pointed to by 
PSAANEW. 
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In  an M P  system,  the  Memory Switch Routine  checks the priority 
of the  address  space in which new work was made ready against 
the PSAANEW field for each CPU and  updates  the field for  the 
CPU with the lowest priority address  space in PSAANEW. In 
addition, it causes  an  interrupt  to  occur on the CPU that had 
the field updated using the Signal Processor (SIGP) instruction. 
The interrupt is taken as soon as  the  other CPU enables,  and 
causes  an  entry  to  the  Dispatcher.  The reason the  Dispatcher 
entry is forced,  rather than depending  on normal task switching 
activity, is to avoid the condition where  the CPU is in wait state 
and  there  are no outstanding  interrupts  for  the CPU. If  the SIGP 
were  not  issued,  the CPU would never  come  out of wait state. 
Another  reason  for  the  forced  entry  to  the  Dispatcher is to pro- 
vide better  responsiveness to higher-priority work. 

work The  Dispatcher makes use of the  queues  and  control informa- 
selection tion to select work to  run. Work is selected based on position in 

the  queues. Position on the SPL queues is random. Position on 
the ASCB and TCB queues is determined by priority when the 
control blocks are put on the  queues. 

The  Dispatcher selects work in the following sequence: global 
SRBS, highest-priority address  space, local SRBs, interrupted lo- 
cal supervisor, and TCBS. A global SRB is selected from the GSPL 
queue and is dispatched if it is not prevented from running on 
the  current CPU by CPU affinity specifications and if the  address 
space in which it is to run has not had SRBS stopped. 

If there are no dispatchable global SRBS, the  Dispatcher  search- 
es the ASCB queue  starting with the ASCB pointed to by PSAA- 
NEW. For each ASCB, the  Dispatcher  checks first for SRBS on the 
LSPL, then for  ready TcBs. The TCB check is made by  comparing 
the  count of ready TCBS with the  count of CPUS active in the 
address  space. If there is ready work,  the  Dispatcher  switches 
addressability  to  the selected address  space. To this  point,  the 
dispatcher has been running in the  last  dispatched  address 
space. To switch addressability,  the  Dispatcher  loads  the  ad- 
dress of the segment table for  the new address  space  into  the 
hardware  control register. 

After selecting the  address  space  and switching addressability  to 
it,  the  Dispatcher first searches  for SRBS on  the LSPL. If one is 
found that  can run on the  current CPU and SRBS are not  stopped 
in the  address  space,  then  the SRB is dispatched. If there  are no 
dispatchable SRBS for  the  address  space,  the  Dispatcher  requests 
the local lock for  the  address  space. If  it is available, the  Dis- 
patcher  searches from the top of the TCB queue  for  a  ready TCB. 
The first TCB that is ready  and  not  active  on  another CPU is 
selected,  and if it is not  prevented by CPU affinity requirements 
from running on  the  current CPU, it is dispatched. 
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The local lock can be unavailable for  three  reasons.  Either  the 
lock is held by another CPU or it was held by a task or SRB that 
was suspended or interrupted. The  Dispatcher checks this by 
looking for  the  interrupt ID in the lock word. If  it is not  there, 
the  Dispatcher looks for  another  address  space  to  run. If the 
lock holder was interrupted,  the  Dispatcher  adjusts  the lock 
word and  the CPU lock-held bit mask to make the  current CPU 
the  owner of the  lock,  and then redispatches  the  interrupted local 
supervisor routine. 

If  there  are no dispatchable global SRBS and no  address  spaces 
with dispatchable SRBS or TCBS, the  Dispatcher places the CPU 
into wait state.  The CPU remains in wait state until an  interrupt 
occurs from the  current CPU because of previously started I/O 
or timer requests, or from the  other CPU when it has made work 
ready. 

Alternate CPU recovery 

Alternate CPU Recovery (ACR) is a process  that is invoked 
when a CPU in a tightly-coupled multiprocessing environment 
can no longer function. The invocation of ACR occurs  as a result 
of a signal sent by the failing CPU before it enters a disabled wait 
or check-stop  state. This signal  may be either  hardware  gener- 
ated  (Malfunction Alert)  or software  generated  (Emergency 
Signal ) . 

The objective of ACR is to enable  the  system to continue  without 
the use of the failing CPU. While the  system may be able  to  con- 
tinue, it does so in a degraded fashion.  Obviously,  the  reduction 
of available CPU power  contributes  to  this  degradation.  Also, 
jobs  that  require  the failing CPU in order  to  execute  (for  exam- 
ple, an  emulator  feature or a device available only to  the failing 
CPU)  will cease (if in progress)  or will not be permitted to  run. If 
there  are a significant number of such jobs,  the meaningfulness 
of continued system  operation is questionable.  However, ACR 
does  not  attempt to pass  judgment  on  the meaningfulness of sys- 
tem operation, but rather  enables  the  system  to  continue. The 
decision to  terminate  the  system is left to  the  system  operator. 

In designing the ACR process,  three major design objectives 
were  adopted. The normal Recovery  Termination  Manager 
( RTM) facilities are used to  interface with recovery  and  retry rou- 
tines;  that is, no special facilities for  the ACR environment are 
provided. A  further objective of the ACR design in 0s/vs2 Re- 
lease 2 was  to make the  recovery capability from a CPU failure 
equal to its recovery capability from a machine check or pro- 
gram error.  This is accomplished by using the normal system 
recovery  routines. No attempt has been made to design new 
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recovery  routines  for each of the possible states in which a CPU 
might be when it fails. A third objective of the ACR design was to 
provide an  environment in which the majority of recovery rou- 
tines could be insensitive to  the ACR environment. The problems 
associated with achieving this  objective  and  the way in which it 
was accomplished are explained in the following sections. 

disabled In order  to make a full ACR capability possible, the  system must 
spin loops be able  to  receive a Malfunction Alert (MFA) or an Emergency 

Signal (EMS) whenever  one CPU is waiting for  another CPU to 
do something. Clearly, if one CPU is in a totally disabled spin 
loop waiting, for  example,  for  a failed CPU to  release  a lock, re- 
covery from the CPU failure would  be impossible. The running 
CPU, unable to receive the MFA/EMS, would never know that 
the CPU for which it  is waiting had failed. Thus, the first consid- 
eration of the ACR design is to  ensure  that  the  system is able  to 
receive notification of a CPU failure. This is accomplished by 
having all  of the oslvs2 system  components  open an MFAlEMs 
“window”  whenever  they  enter disabled loops waiting for  anoth- 
er CPU to perform some function. The opening of the window 
involves periodically enabling the CPU for MFA and EMS inter- 
rupts. 

I The components of the vs2 system  that enter spin loops  are: 

Lock  Manager- spins waiting for  a global spin lock to be 

Real Storage  Manager - spins during PTLB processing. 
Timer  Supervisor - spins during time-of-day clock  synchro- 
nization. 
Inter-processor  communications - spins waiting for  another 
CPU to acknowledge that it has received or completed  the 
processing  associated with a SIGP instruction. 

released. 

ACR When the MFA or EMS is received by the  External  Interrupt 
initialization Handler,  control is routed to the  Recovery  Termination Man- 

ager,  at  a special entry  point, to begin the ACR process. 

The first phase of ACR is concerned with handling the  two pro- 
cesses  that  were in progress at the time of the CPU failure. RTM 
views these  two  processes differently. The process  that was in 
control on the failed CPU has been abnormally interrupted;  that 
is, an  abend has occurred. RTM must,  therefore,  ensure  that  con- 
trol is passed to any recovery  routines (FRRs,  STAE or ESTAE 
exits)  that were established on  the failed CPU prior to  the mal- 
function.*r6 

The process in control on the functioning CPU (the CPU per- 
forming the ACR process)  has also  been  interrupted.  However, 
with respect  to  this  process,  the  interrupt is not abnormal; it has 
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not  caused  an  error. RTM views this process as simply interrupt- 
ed work, much as 10s views work stopped by an I/O interrupt. 
Thus RTM ensures  the normal resumption of this process. 

Thus, during the first phase of ACR. KTM takes responsibility for 
two  processes.  Upon  entry, it indicates that the failed c p u  is no 
longer available (by turning off its “alive” bit in the  Common 
System Data  area), marks  the failed CPU’S timer as permanently 
damaged,  and  sets  the  system in ACR mode (by turning on the 
LCCAACR bit in both CPUS’ LCCAS). While in ACR mode, RTM 
alternately  passes  control  to the interrupted work of the good 
CPU and  to  the  recovery  routines  (and  any  requested  retry 
routines) of the  interrupted work of the failed cpu. The system 
remains in ACR mode until a  state is reached in which normal 
system  operation  can be resumed. RTM begins this “switching” 
process by returning control  to  the  External  Interrupt  Handler  to 
resume  the  interrupted work of the functioning CPU. At this 
point, the ACR initialization phase is over. 

When the c p u  malfunction occurs,  the  process in progress may 
hold one  or more global spin locks and/or be executing in the 
disabled state.  The same is true of the  process in progress on the 
good CPU. This is the  reason  for  the special ACR processing that 
is described in the following sections. 

If both CPUS owned locks,  the problem is that no matter which 
process RTM chooses  to  execute first (the FRR for  the work on 
the failing CPU or  the resumption of  work on  the good C P U ) ,  
either  process may request a lock held  by the  other.  Under  nor- 
mal circumstances, this would result in a lock spin. In an ACR 
environment, this obviously must not occur  since  the  function- 
ing CPU now essentially owns both sets of locks. 

The problem with the disabled state is that  a disabled process is 
theoretically non-suspendable. The disabled state serializes ac- 
tivity on a CPU. Thus,  cpu-oriented serially-reusable resources 
can normally be used by a process in disabled state with no pos- 
sibility that  the  resources will be preempted.  Fields in the PSA, 
such as the FRR stack  and register save  areas,  and  the Configu- 
ration Control  Array are therefore available to a  process in the 
disabled state. In the ACR environment, RTM owns  the work of 
two CPUS. If either or both of the  processes  were disabled at  the 
time of the  failure, RTM must  provide an environment in which 
the cpu-oriented serially-reusable resources are preserved. 

As stated previously, following a CPU failure the  system  remains 
in ACR mode until a point is reached at which normal system 
operation  can be resumed when both  processes  have  entered  the 
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Dispatcher;  that is, when both  processes  take  some  action  that 
causes  the  Dispatcher  to  receive  control  (such as exit from an 
SRB,  Or a WAIT SVC ). 

Entrance  into  the  Dispatcher implies that  the  process in control 
has  reached a suspendable  state  such  that it can  be  suspended 
and  resumed by normal system  functions. When a process  can 
be suspended  another  process can be dispatched  on the CPU. 
Thus a process  that  can  be  suspended  no longer has  any claim to 
mu-oriented serially-reusable  resources. In addition,  since a 
process owning a global spin lock cannot be suspended,  en- 
trance  into  the  Dispatcher  also  indicates  that  the  process in con- 
trol owns no global spin locks. 

When both  processes  have  entered  the  Dispatcher all global spin 
locks  have been freed  and  no  dependency  exists  on cpu-ori- 
ented serially-reusable resources. At this  point,  the final cleanup 
routines of ACR may be invoked to  complete  the ACR process. 

Following ACR initialization, RTM returns  control to  the interrupt- 
ed work of the functioning CPU. RTM is again entered  for ACR 
processing under  either of two  conditions: 

The  process  enters the  Dispatcher, which detects  that  the 
system is in ACR mode (by testing the LCCAACR bit set by 
ACR initialization)  and  passes  control to RTM. RTM then re- 
stores  the  status of the failed CPU and  passes  control  to  the 
recovery  routine  for  the  process  that  was in progress. 
The process  requests  a global spin lock that is not available. 
At this point,  the  Lock  Manager  must  determine if a spin on 
the lock is possible. If the currently  suspended  process (from 
the failed CPU) owns a lock higher in the  hierarchy,  a spin 
cannot be allowed. The  process in progress  must  be  suspend- 
ed,  its  status  saved,  and  the  suspended  process  resumed. The 
Lock  Manager calls RTM to perform the  suspension  and  to 
resume  the  other  process. 

The suspension rule for lock conflicts is the crucial algorithm of 
the ACR process. Simply put,  the algorithm is “On locking con- 
flicts, dispatch  the  process with the highest lock.”  This  prevents 
deadlocks in the ACR environment. The algorithm is executed 
each time a lock conflict is encountered while the  system is  in 
ACR mode. Thus, it is possible to  suspend  and  resume both the 
recovery  work of the failed CPU and  the normal work of the 
good CPU multiple times before both processes finally enter the 
Dispatcher. 

In addition to preventing deadlocks,  the  suspension algorithm 
also  makes it possible for  recovery  routines  to be independent of 
the ACR environment. The recovery  routine need not be sensi- 
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tive to  the  fact  that it  is running on a different CPU than the orig- 
inal process  (although  this information is provided in the RTM 
interface).  The recovery  routine  can  get  and  release  locks  (either 
explicitly, or implicitly through branch-entered  supervisor rou- 
tines)  and request  retry  routines. The implementation of the sus- 
pension algorithm requires  the  existence of the lock-held bit 
masks  that are maintained by the  Lock  Manager. It uses  these 
masks when a locking conflict is encountered  to  determine 
which process  owns  the highest lock. 

As stated previously, processes  that hold global spin locks are 
disabled, are normally non-suspendable,  and  “own” cpu-ori- 
ented  control information and  data  areas.  However, ACR must  be 
able  to  suspend  such  processes if the failed CPU owned a global 
spin lock when the failure occurred  and when locking conflicts 
occur while in ACR mode. Before we explain how this is done, 
the  nature of the cpu-oriented control information and  data  areas 
will be discussed. 

The  cw-oriented control information and  data  areas  consist of 
two  types of  fields -physical  and logical. In  general, physical 
$fields are  those  that  describe  the  hardware  associated with a 
CPU. Examples of physical fields would be the  channel availabil- 
ity table and  the Time-of-day clock, clock comparator,  and  inter- 
val timer  status  indicators. Logical $fields are software-oriented 
fields essentially independent of the  hardware.  Examples are  the 
lock-held bit masks and  the FRR stack. 

A fundamental  part of the ACR design is its  approach  to  the  two 
different types of fields. With respect to the FRRS for  the  work 
that was in progress  on  the failed CPU, ACR makes it appear  that 
they are still running on the  same logical CPU. This implies that 
when the  recovery  routines of the failed CPU are “dispatched” 
by RTM, the logical fields that are normally addressable  to  the 
recovery routine are  those of the failed CPU. This eliminates the 
need for special ACR code in the  recovery  routines  that are hard- 
ware independent. 

The physical fields are  not modified  by ACR since they always 
reflect the  hardware  status of the CPU that is performing the ACR 
process,  even when the failed CPU’S FRRS are dispatched. 
Thus,  those FRRS that must reference  the physical PSA/CCA 
fields that  were in use by the  abended  process require special 
code  for  the ACR environment. The physical CPU identification 
of the failed CPU is provided in the FRR interface so that  this in- 
formation can  be found by these FRRS. (The design rationale 
was that  any  attempt  to “fool” a process  into thinking that it is 
operating  on  a different physical CPU is a  dangerous  procedure. 
It is obviously doomed to failure if the  process  attempts  to  act 
on  the basis of the simulated hardware  status  by,  for  example, 
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channel. For this  reason  the design was  chosen  that  requires 
these  hardware-dependent FRRS to be aware of the  actual hard- 
ware  on which they are executing. 

In  order  to enable ACR to provide  “normal”  addressability  to  the 
logical fields without requiring it to be aware of each field, the 
physical and logical Conjiguration Control Arrays (PCCA and 
LCCA) were  created.  In  general,  the LCCA contains  pointers to 
all the logical fields; the PCCA contains  pointers  to  the physical 
fields. The only exceptions  to  this are  the fields of the PSA. The 

physical fields such as  the new Program Status Word and the 
Channel  Address  Word. The PSA also  contains  a small number 
of logical fields for compatibility (TCB new)  or severe perfor- 
mance  reasons. 

The PSA contains  the  addresses of the LCCA and PCCA. Thus, 
RTM suspends a process by moving the logical fields of the PSA 
to  an ACR work area  (pointed  to by the LCCA). In  order  to re- 
sume a process, RTM moves the logical fields from the ACR work 
area  to the PSA and  stores  the  address of the  appropriated LCCA 
in the PSA. 

110 restart When both processes  have  entered  the  Dispatcher, RTM invokes 
the r/o Restart  function which handles incomplete I/O opera- 
tions that  were initiated by the CPU prior  to  its failure. For 
each  outstanding I/O request, I/O Restart simulates a channel 
error  and calls the I/O Second-Level  Interrupt  Handler to pass 
control to  the appropriate Error Recovery  Procedure (ERP). If 
the functioning CPU has  a  path  to  the  device  on which the I/O 
request was initiated, a “retry possible” indicator is set in the 
ERPIB. If the functioning CPU has no path  to  the  device,  the “no 
retry”  indicator is set in the ERPIB. 

The ERP routine  restarts  the I/O on  an  alternate  path. If none 
exists,  the ERP invokes  Dynamic  Device Reconfiguration to  at- 
tempt moving tape or direct  access volumes to different de- 
vices.’  If neither of these  can be done,  the ERP will post  to the 
user  a  permanent  error  indicator. 

I/O Restart  also  marks offline all device  paths  that  were avail- 
able  to  the failed CPU. In  addition, if a device is found that  no 
longer has available paths to the functioning CPU, the  associated 
UCB is marked offline (to prevent  subsequent allocation of the 
device)  and  an  indicator is set that  causes  subsequent I/O 
requests  to  the  device  to be posted with permanent  error. I/O 
Restart  schedules  a message to the  operator which indicates  that 
a  device has been  lost due  to  the CPU failure. 
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If the failed CPU had an  outstanding  reserve on a  device when it 
failed, an integrity problem could arise if r/o Restart released 
the  reserve  (via SIGP RESET). The integrity problem exists if a 
loosely-coupled CPU was waiting to  reserve  the  device  to  update 
data  that  were  under  the  control of the failed CPU. On the  other 
hand, if the  reserve is not  released,  the loosely-coupled CPU 
would wait forever.  In  order  to solve this problem, 110 Restart 
first puts  the  system  into  a wait state. At this  point,  the  operator 
has  two  options; he can re-IPL the  system, or stop  the loosely- 
coupled CPUS and press  the  restart  button  on  the functioning CPU. 
If  he chooses  the  latter, I/O Restart again receives  control,  frees 
the reserves on the failed CPU via a SIGP RESET, and attempts  to 
acquire  the  reserves  for  the functioning CPU. (The stopping of 
the loosely-coupled CPU prevents it from reserving the  device 
after  the SIGP RESET.) If I/O Restart can and  does successfully 
acquire  the  reserves,  the I/O Restart  process is complete  and 
control is returned to RTM. If  it cannot, it puts the  system  into a 
hard wait state and a re-IPL  is necessary. 

The wait state loaded by I/O Restart when it first detects  the 
outstanding  reserves is either  a 041 or a 042 wait state which 
indicates  to  the  operator  that  the failed CPU had outstanding  re- 
serves. The 042 code is loaded by I/O Restart if the  reserved 
device is logically  offline to the functioning CPU.' If the  operator 
decides  to  restart the system, I/O Restart brings a  path  to  the 
device logically online to  reserve  the  device  for  the functioning 
CPU. 

When the I lo  Restart  function  completes, RTM posts  the  con- 
sole switch ECB in the  Unit  Control Matrix. This  causes  the 
Communications  Task  to  reroute  any messages destined  for 
consoles  attached  to  the failed CPU.  The console switch routine 
also automatically switches to any  secondary  console  that is 
associated with a lost console and selects  a new master  console 
if necessary. RTM then  issues  an SRM event indicating that  a CPU 
has been lost (SYSEVENT code ALTCPREC), cleans up  its inter- 
nal work  areas,  and  branches  to  the  Dispatcher.  At this point 
the ACR process is complete. 

In addition to  the  software  components mentioned previously in 
this section,  the following also  have special support for the ACR 
environment. 

The Dispatcher. In addition to passing control  to RTM when the 
system is in ACR mode, the  Dispatcher  also handles tasks and 
SRBS that  have CPU affinity to  the failed CPU.  When the  Dis- 
patcher finds an SRB or task  that it cannot  dispatch on the cur- 
rent CPU, it checks  to  determine if there is a CPU available on 
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which the SRB or task  can be dispatched. If there is not,  the 
Dispatcher  abends  the SRB or task with a completion code  that 
indicates  a CPU failure has  occurred. 

Real  Storage  Management (RSM). RSM enters  two lock spins 
during page-invalidation processing. In  the first spin, RSM waits 
for  the  other CPU to stop in preparation  for  a PTLB. In  the  sec- 
ond, RSM waits for  the  other CPU to issue  a PTLB instruction so 
that it can invalidate a page. RSM detects when a CPU failure 
occurs in either of these  spins (by checking  a bit that indicates 
which CPUS are still functioning)  and simply stops waiting for 
the failed CPU. If PTLB processing was in control  on  the CPU 
when the failure occurred, its recovery  routine  retries the opera- 
tion on the functioning CPU. (FTLB is an  instruction  that  clears 
an internal hardware buffer which allows optimization of address 
translation by the  hardware.  This buffer has  to be cleared  each 
time a page is invalidated by RSM. In MP it is necessary  to  clear 
the buffer on both CPUS at  the same time. The above  sequence is 
used to synchronize  the CPUS and clear  the buffers.) 

Inter-Processor  Communications ( I P C )  Manager. A  return  code 
of 20 is returned if a CPU failure occurs while the IPC Manager is 
processing a RISGNL request. 

Concluding remarks 

Programming support of tightly-coupled multiprocessing hard- 
ware  has been discussed, particularly the oslvs2 Release 2 com- 
ponents: locking, service management, CPU affinity, dispatch- 
ing, and  alternate CPU recovery. These facilities improve  the 
control program utilization of the two-cpu environment in that it 
can now run parallel disable  functions.  Also, spin time on locks is 
reduced, and the new dispatchable unit allows more parallelism 
in new system  functions.  Furthermore,  the  system is able to re- 
cover from the loss of one of the  two CPUS. 
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