Selected components of tightly-coupled multiprocessing pro-
gramming support are presented. Included are design rationale
and reference to prior multiprocessing systems to give addition-
al perspective.

Design of tightly-coupled multiprocessing programming

by J. S. Arnold, D. P. Casey, and R. H. McKinstry

One of the components of 0s/vs2 Release 2 is the support of a
tightly-coupled multiprocessing environment in which two Cen-
tral Processing Units (cpUs) share a single main storage con-
taining one copy of the operating system. This paper describes
five aspects of the programming support of the multiprocessing
(MP) hardware:

Locking.

Service management,
cPuU affinity.
Dispatching.

Alternate CPU recovery.

The locking section describes the serialization technique used to
provide disablement across CPUs. It also describes how the sys-
tem was subdivided to allow what were disabled, mutually ex-
clusive functions to run in parallel on an MP system.

The service management section discusses a new set of system
services that provide a new unit of dispatchability in the system.
This unit of dispatchability has less overhead and better perfor-
mance than tasks and is provided to encourage increased paral-
lelism in system functions.

The cpuU affinity section describes a way to force dispatching of
work to a specific CPU. It provides a way of forcing an emulator
job step which requires a particular hardware feature to the CPU
having that feature.

The dispatching section describes the changes in the Dispatcher
and related functions to support MP, multiple-address spaces,

and the above three changes to the system.

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

The Alternate CPU Recovery (ACR) section discusses the pro-
cess invoked when a CPU in a tightly-coupled MP environment
can no longer function. ACR occurs as a result of a signal (either
hardware or software generated) that is sent by the malfunction-
ing CPU before it enters a disabled wait or check-stop state. The
hardware-generated signal, Malfunction Alert, occurs when con-
tinued instruction execution is impossible.'"” The software-
generated signal, Emergency Signal, is issued by the Machine
Check Handler if it determines that the CPU cannot function

properly.

Locking

In a multiprogramming control program, it is necessary to serial-
ize functions (in the control program) that reference the same
data or control blocks. One 0S/vS method of doing this is to
disable the CPU so that no interrupts can occur to cause a switch
from the current process. This provides the necessary serializa-
tion on a uniprocessor, but is not effective on a multiprocessor
because disablement affects only one CPU. If a process execut-
ing on one CPU disables, it serializes only the one CPU; nothing
prevents another process on the other CPU from also disabling
and running in parallel with the first process.

The simplest solution to this problem is to provide a mechanism
by which one cpuU, when it enters the disabled state, locks out
the other cPU from entering the disabled state. This can be done
by defining a lockword that all processes check when they disa-

ble. If the lockword is zero, the process stores a CPU identifier
into the lockword and continues. If the lockword is not zero, the
processor spins on the lockword until it becomes zero. The pro-
cess that holds the lock sets it to zero just before enabling. This
provides serialization of two CPUs in a way equivalent to disa-
bling. A technique similar to this was used in the System/360
Model 65 MP. Hardware support is needed for this function
since it is necessary to perform the comparison and store into
the lockword as a single operation. This prevents the other CPU
from changing the lockword while the operation is being execut-
ed. If this is not done, both CPUs could compare against the
lockword at the same time, and because both would find a zero
value, both would store into the lockword and both would con-
tinue assuming they owned the lock. In the Model 65 Mp, the
Test and Set instruction was used for this purpose. In Sys-
tem/370 vs2 Release 2, the Compare and Swap instruction is
used.

While this technique does provide the necessary serialization, it
also introduces a system bottleneck. Because the serialization

covers a large part of the control program, a significant percent-

No. 1 -« 1974 TIGHTLY-COUPLED MP PROGRAMMING

age of the CPU power can be wasted if one CPU is executing the
control program with the lock held and the other CPU is spinning
on the lock waiting to enter the control program.

This bottleneck could be effectively eliminated by defining the
system so that each item requiring serialization had its own lock.
This would distribute the locking requests such that the probabil-
ity of both CPUs contending for the same lock would be very
small. However, since a conflict is possible, the locks must be
maintained and this can result in significant overhead if there is a
large number of locks.

In 0s/vs2 Release 2, a compromise solution was used. The
control program was analyzed and subdivided into components
having a minimum of interaction. Locks were assigned to the
components. This resulted generally in locks being assigned to
collections of related control blocks instead of to each control
block (some locks were assigned to specific control blocks).
The locks defined are such that they should provide a significant
reduction in wasted CPU time as compared to the single lock
approach without an unacceptable level of overhead.

In analyzing the control program, one apparent split was into
global and local components:

The local supervisor which contained those functions'in the
local program logically associated with a particular user
(such as Getmain for a user subpool, or Attach a subtask).
The global supervisor which contained those functions in the
control program logically associated with more than one user
(such as Getmain for the System Queue Area, or system
wide ENQ).

This split was heavily influenced by a decision to swap all users’
address spaces, and to swap as much of the system control in-
formation about a user with the user. To do this, it was necessary
to separate the control blocks and queues for each user into sep-
arate areas. Some queues, such as the Job Pack Area queue and
the Getmain queues for user subpools, already were unique to a
job and were easy to move. Others, such as the TCB queue, had to
be split into separate queues for each user. Some, such as the
ENQ queues, could not be split or swapped because their use was
for system-wide serialization including swapped-out users. The
queues that could be isolated by user were put into the Local
System Queue Area (LSQA) and Scheduler Work Area (SWA)
in the users’ private area. The system-wide queues were put in
the common area. The private area is addressable only to func-
tions running in the user’s address space with the user’s segment
table. The common area is addressable in every address space
and with any segment table.

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

Because the private area is addressable to only the one user and
because all the data and control blocks are unique to that user,
any function that references only private-area information could,
if coded reentrantly, run in parallel with itself in different ad-
dress spaces without any serialization. These functions have
been called the local supervisor. The remaining control program
functions which provide system-wide services or use control
information in the common area and must serialize across ad-
dress spaces have been called the global supervisor.

The local supervisor functions do not have to serialize across
address spaces, but must serialize with other executions in the
same address space. This can occur due to multitasking in the
address space. To provide the serialization, a local lock was
defined. One local lock exists for each address space and is used
by local supervisor functions to serialize with other local super-
visor functions in the same address space. Local supervisor
functions can be active and own local locks in other address
spaces without serializing with the current address space.

The local supervisor functions request the local lock, instead of
disabling, in order to serialize. When the local lock is held in an
address space, the dispatcher does not dispatch any other TCB in
the address space. If another CPU is already executing work in
the address space when the lock is obtained, it continues to run
until it is interrupted and switched away from, or until it asks for
the local lock. At that point it is suspended and the cpuU is dis-
patched to another address space.

The local supervisor is logically disabled by the local lock; that
is, no local processing can take place until the local lock is re-
leased. Therefore, local supervisor functions can be dispatched
in a hardware-enabled state and still be logically disabled. To
support this, a save area was provided into which status could
be saved if an interrupt occurred. The availability of this save
area also allowed the system to switch from a local supervisor
function to another higher-priority user. Because of these
changes, a number of control program functions that formerly
ran disabled, now run enabled. This increase in enabled code
allows greater responsiveness to interrupts and to high-priority
functions.

The local lock is defined as an enabled suspend lock. That is, the
holder of the lock executes enabled and, if another process re-
quests the lock while it is held, the requester is suspended and
the cpu dispatched to another process. The suspended process
is not redispatched until the lock is released.

While additional local locks could have been defined to further
subdivide the local supervisor, it did not seem to be necessary

No. 1 - 1974 TIGHTLY-COUPLED MP PROGRAMMING

local
supervisor

global
supervisor

because the (1) local lock-holder ran enabled, (2) any other
request for the lock was suspended and did not tie up the CpuU,
and (3) the local supervisor functions could continue to execute
in other address spaces. We felt, however, that the split of the
system into a multiple local lock supervisor and a single lock
global supervisor would not sufficiently reduce wasted CPU spin
time, particularly since the most frequently executed disabled
functions in past systems were lumped into the global supervi-
sor.

In a first pass, the global supervisor was split into four func-
tional areas—chosen because the control blocks and queues
used by the areas were, for the most part, independent of each
other. A lock was defined for each area:

Dispatcher lock —used by all functions associated with dis-
patching and/or changing the queues, and control blocks
used in dispatching.

Storage Management lock —used by the real and virtual stor-
age allocation functions, the paging supervisor, the auxiliary
storage manager, and any functions that must serialize with
these functions to reference their queues.

110 Supervisor (108) lock—used to serialize references to
the 10S control blocks and queues.

Miscellaneous lock —used by all other parts of the global
SUpEervisor.

These locks were defined as disabled spin locks; that is, the
CPU that holds the lock executes disabled and, if the other CPU
requests the lock, it spins in a disabled state until the lock is
available. However, when one lock is held by a CpU, any other
lock can be held by the other cpuU. It was felt that the four locks
would provide sufficient parallelism to reduce the wasted lock-
spin time to an acceptable level.

Since the first pass, functions have been redesigned or new func-
tions added to the system in such a way that it was convenient
to define additional locks, thereby reducing the probability of
contention for a lock without significantly increasing the number
of lock requests. The additional locks result from the splitting of
the storage management lock and 10S lock into multiple locks,
and the addition of a set of locks for vTAM and a lock for the
System Resource Manager.

In addition, the miscellaneous lock, renamed the Cross Memory
Services (cMS) lock, has been redefined as an enabled suspend
lock. As with the local lock, the owner of the cMS lock runs
enabled and can be interrupted and /or switched away from to
run higher-priority work. If there is another request for the lock

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

while it is held, the requestor is suspended and other work is
dispatched. This enabled global lock has been provided for two
reasons:

Disabled page faults are not allowed in the system. We felt
that some global functions could use a lock that did not re-
quire them to fix all their code and control blocks.

Some functions required significant amounts of time under
the lock and could impact the responsiveness of the system.
By running these functions logically disabled under the lock,
responsiveness was retained at the expense of some in-
creased contention for the lock.

The other locks were left as disabled spin locks because normal-
ly the functions that run under the locks are of short duration. In
addition, the cost in system overhead to perform the necessary
status saving to accept interrupts and allow switching would
offset the gain in responsiveness. Also, the more frequently used
functions (that is, the 10s interrupt handler, dispatcher, and stor-
age manager) are needed to perform interrupt stacking and task
switching, and therefore would have to remain disabled.

The result of these changes is the following set of locks: current
locks

The Dispatcher (DISP) Lock, a disabled spin lock, is used to
serialize all funcitons associated with the dispatcher queues.
It is also used for a number of miscellaneous functions that
did not fit under the other locks and could not use the CMS
lock.
The Auxiliary Storage Management (4sM) Lock, a disabled
spin lock, is used by AsSM functions for global serialization.
The Space Allocation (SALLOC) Lock, a disabled spin lock,
is used to serialize Real Storage Management and the global
portions of Virtual Storage Management.
The 10S Synchronization (I0SYNCH) Lock, a disabled spin
lock, is used to serialize the 10s purge function and other
parts of 10S.
The 1058 Channel Availability Table (10SCAT) Lock is used
to serialize the selection of a channel by 10s.
A set of locks for the 10S Unit Control Blocks (10SUCB) is
used by 10sS to serialize the changing of status in the UCBs.
There is one disabled spin lock per UCB.
A set of locks for the 10§ Logical Channel Queues (10SLCH)
is used by 10S to serialize access and updates to the logical
channel queues. There is one disabled spin lock per logical
channel queue.
A set of locks for the ¥TAM Node Control Blocks (TPNCB) is

.1 - 1974 TIGHTLY-COUPLED MP PROGRAMMING

locking
rules

used by vTaM when scheduling work via node control
blocks. There is one disabled spin lock per node control
block.

A set of locks for vTaM Destination Node Control Blocks
(rPDNCB) is used to schedule work in VTAM. There is one
disabled spin lock for each destination node control block.

A set of locks for VTAM Access Method Control Block DEBs
(TPACBDEB) is used by VTAM to serialize feedback process-
ing. There is one disabled spin lock per ACBDEB.

The System Resource Manager (SRM) Lock, a disabled spin
lock, is used to serialize the various SRM functions when they
are updating their control blocks.

The Cross Memory Services (CMS) Lock, a global-enabled
suspend lock, is used by any global system functions that can
or must run enabled but need serialization. A local lock must
be held while the cMSs lock is held.

A set of locks for the local supervisor (LOCAL), each a local-
enabled suspend lock is used to serialize functions in a single
address space. There is one lock per address space.

Even with the defined set of locks, many control program ser-
vices must obtain multiple locks to perform their function.
Therefore, it was necessary to define a locking hierarchy to
prevent interlocks. The locks are arranged from high to low in
the order just presented. IOSUCB, 10SLCH, TPNCB, TPDNCB,
TPACBDEB, and LOCAL comprise a set of locks hereafter called
class locks. The following is a set of rules for operations on the
hierarchy (a CPU is considered the owner of a lock):

~ A CPU can hold only one lock of a given class lock set. Two
cPUs can hold two different locks in the same class lock set.
~ A CPU may only request locks higher in the hierarchy than
locks already held.
It is not necessary to obtain all locks in the hierarchy up to
the highest lock needed. Only the needed locks have to be
obtained, but they must be in hierarchy sequence.

For the LocAL and cMs locks, it is possible for the CPU to
switch away from the process requesting the lock. In this case,
the lock is placed in an interrupted or suspended state, and own-
ership of the lock is removed from the cpu. The CPU can then
obtain other local locks for other processes. Requests for a lock
that has been interrupted or suspended are handled the same as
if the lock were held. When the process owning the lock is re-
sumed, it can be run on either CPU, not just the one on which it
was suspended. When resuming the process, the dispatcher
gives ownership of the lock to the cpu that will be running the
process.

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

When a local lock is held or suspended, the dispatcher will not
dispatch any tasks in an address space in which the local lock is
held except the one holding the local lock. Because of this, when
the cMS lock is held, a local lock must also be held to prevent an
interlock from occurring.

The interlock would occur as follows. Tasks A and B are in the
same address space. Task A gets the cMS lock and is interrupt-
ed. Task B is then dispatched, gets the local lock, and then asks
for the cMs lock. The tasks can be running sequentially on the
same or different CPUs, or in parallel on two CpUs. In the latter
case, Task A must have obtained the cMs lock before Task B
asked for it, and must be interrupted after Task B has received
the local lock and before Task A has released the cMms lock.
Task B, because the cMS lock is held when it asks for it, is sus-
pended until the lock is available. Task A, because the local lock
is held by Task B, is not redispatched by the dispatcher follow-
ing the interrupt. Therefore, Tasks A and B are interlocked,
each waiting for the other to release the lock it owns. By requir-
ing that the local lock be held when the cMs lock is held, the in-
terlock is avoided because the owner of the cMS lock cannot be
made nondispatchable by another task getting the local lock.

The lock hierarchy is based on the expected nesting of system
functions and, therefore, the expected sequence in which the
locks will be requested. There are some system functions that
will be nested in such a way that obtaining the locks in the nest-
ing sequence would result in a hierarchy violation. In these
cases, the routine needing the higher-level lock must first obtain
all lower locks needed by subsequent routines.

The interface used to obtain and release locks is provided through
a macro (SETLOCK) that can be used only by supervisor mode,
key 0 functions because it generates a branch to the Lock Routine
which uses privileged instructions and protected storage.’

The Lock Routine performs two functions in support of Alter-
nate CPU Recovery (ACR). First, it maintains a bit mask on a
per-CPU basis indicating which locks are held by the cpu. When
a lock is obtained by a CPU, a specific bit identifying that lock is
turned on in the bit mask. If a CPU failure occurs, ACR running
on the functioning cpu will use the bit mask for the failing cpu
to determine how to switch between the work for the function-
ing CPU and the work for the failing cpU until all the locks for
this CPU are freed. This allows it to avoid interlocks on the locks
while it is invoking recovery routines for the failing CpPU’s work.
This bit mask is also used as a validity check for hierarchy viola-
tions. The bits for each type of lock are ordered in the bit mask
according to the hierarchy. The Lock Routine using a second
mask containing a bit in the position for the requested lock type

No. 1 - 1974 TIGHTLY-COUPLED MP PROGRAMMING

locking
and ACR

compares the two masks. If the CPU-bit mask has a higher value,
a hierarchy violation is indicated. This check was provided as a
debugging tool so that system errors in the use of locks could be
easily found. It also allows the system to recognize deadlocks
before they occur and, by invoking recovery routines, allows the
system to continue operation.

The second function performed to support ACR occurs in the
disabled spin for a global spin lock. In this case, one CPU is spin-
ning waiting for the other cpU to release the lock. If the other
cPU should fail such that the lock cannot be released, an inter-
lock would occur. To prevent this, the Lock Routine will enable
in its disabled spin path for Malfunction Alert (MFA) and Emer-
gency Signal (EMS) interrupts.

These interrupts are generated by the failing CPU either by the
hardware (MFA interrupt) or by the software (EMS interrupt)
depending on which one decides the CPU cannot continue. By
accepting the interrupt, the running CPU can break out of the
disabled spin routine and give control to ACR. ACR can then re-
cover the failing CPU’s work and, using the lock-held bit masks,
avoid the interlock situation.

Service management
Service Management is a new set of primitive functions provid-

ed in 0S/vs2 Release 2. This basic set of services allows inter-
nal system components to structure themselves to run enabled,

non-serialized, and in parallel on a multiprocessing system with
less overhead than would be required by the utilization of exist-
ing task management services. The main facilities of this sup-
port, transparent to all problem-program tasks and available
only to key 0 system services, are:

e A control block, called a Service Request Block (SRB), de-
fined to represent a service request. This block, like a TCB,
identifies a unit of work to the dispatcher. It is, however, sig-
nificantly smaller and requires less information to be initial-
ized for each request.

A simple macro service, called SCHEDULE, which enters ser-
vice requests into the queue of dispatchable work with a min-
imum of overhead.”

Changes to the Dispatcher to operate from a new service
request control structure in addition to the task structure.
The changes are optimized to provide maximum perfor-
mance when dispatching service requests while providing the
ability to schedule the SRrBs to different address spaces and at
a priority either independent of and higher than the priority
of the address space or at the priority of the address space.

ARNOLD, CASEY AND MCKINSTRY iBM SYST J

The Service Management feature resulted from an effort to
move 0S, which is a general-purpose, highly functional system,
into the high-performance terminal-oriented environment. Ser-
vice Management is an attempt to provide a dispatching facility
in the system that could be used by system services and applica-
tion programs to better utilize the two CPUs in an Mp environ-
ment. The application programs of concern are those which,
even though having independently dispatchable units of work,
found it necessary to run as a single 0S task and to provide their
own dispatching structure because of the overhead of the 0S
task structure and OS services. These dispatchers were tailored
to the specific application and could, therefore, be fast and have
small storage requirements compared to OS services. Because of
the tailoring, however, each one was a unique implementation.
The Service Management features are an attempt to provide a
service in the system that is small and fast enough to be used by
these types of subsystems. This service is only used to a limited
extent by the subsystems available with 0S/vs2 Release 2.

The Service Management features provide a solution to two
problems that exist because of special dispatchers. Both of these
problems exist in the case where a subsystem is implemented
such that there is a single 0S task under which the subsystem
dispatches its own units of work. Because the operating system
is aware of only the one task and not the subsystem’s units of
work, it cannot dispatch the subsystem to more than one CPU at
a time in an MP system. With the Service Management features,
the system is made aware of the subsystem’s units of work and
can dispatch them in parallel on muitiple CPUs.

The second problem occurs when two or more subsystems run
on the same system. Again because of the single task, both the
high- and low-priority work of one subsystem will run before the
second subsystem. Unless the subsystems are designed to coop-
erate by voluntarily releasing time at specific intervals, the sec-
ond subsystem’s ability to meet its high-priority response re-
quirements could be impacted. With the Service Management
features, it is possible to run the high-priority work of both sub-
systems at a priority independent of and higher than the priority
of the subsystem jobs. The low-priority work of the subsystem
would continue to compete on a job priority basis. This capabil-
ity should improve the ability of two or more subsystems to ex-
ist in the same system with acceptable performance in all sub-
systems.

In addition to the subsystem reasons for developing the Service
Management features, it turned out to be very useful in the sys-
tem. It provided a mechanism used for almost all communica-

No. 1 - 1974 TIGHTLY-COUPLED MP PROGRAMMING

service request
control structure

tions between address spaces, and it was used to run some parts
of interrupt handlers as service requests, allowing more enable-
ment and parallelism for these services.

An example of the usage is the 10S interrupt handler. When an
interrupt occurs, the interrupt handler collects the necessary
information about the interrupt and schedules an SRB. The inter-
rupt handler can then start any 1/O request waiting for the 1/0
path and accept any additional pending interrupts. By delaying
complete processing of the interrupt, this approach allows faster
reuse of channels and lower disabled interrupt time. The sched-
uling of the SRB provides the ability (1) to complete the inter-
rupt process on any CPU, and not just the one that took the in-
terruption, (2) to process the interrupt enabled except where
specific serialization through locks is used, and (3) to switch
from the random address space where the interrupt was taken to
the address space of the user originally requesting the 1/0. This
latter capability provides the interrupt handler routine with the
addressability to the user’s control blocks that is necessary to
complete the interrupt processing.

The basic control structure utilized by the Service Management
features incorporates two levels of system priority: global and
local. Service requests queued at the global level are given a
priority above that of any address space, regardless of the actual
address space in which they will be dispatched. Service requests
queued at the local level are given a priority equal to that of the
address space in which they will be dispatched but higher than
that of any task within that address space.

At each level there exists a Service Priority List (SPL). This list
is a static, contiguous list of queue anchors and simply serves as
a mechanism for allowing prioritization among the various types
of service requests that may exist. Each element of the SpL
serves as an anchor for a queue of service requests, and the dis-
patching algorithm is such that it starts at the top of an SPL and
takes any request queued at the first element prior to looking for
a request queued at a lower element. Thus, the SPL is effectively
a list of priority levels, with a single global SPL for the system
and one local SPL per address space.

There are two levels in each SPL. One level is for general system
usage, and the other has a nonquiescable attribute and is re-
stricted to functions requiring this attribute. Currently, this sec-
ond level is restricted to SRBs that are suspended and resched-
uled, SRBs scheduled to resolve page faults, and SRBs scheduled
to initialize a new address space. All service requests from a sin-
gle spPL level are defined to have equal priority. No assumptions
can be made with respect to the actual order in which they are dis-
patched. When the Dispatcher selects a service request to dis-

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

patch, it removes the request from the queue. Thus this struc-
ture has only ready, dispatchable service requests queued. The
SRBs representing service requests are fixed in real storage and
are addressable from any address space. These control blocks
are not owned by the Dispatcher, but are supplied by the func-
tion requesting a service and may be freed or reused as soon as
they are dispatched. The SRBs may be in any system key and are
not modified by the Dispatcher except for queuing.

One level in each SPL is defined as nonquiescable, but this level
has very restricted usage. It is needed because at times it is nec-
essary to stop the dispatching of SRBs in an address space (for
example, when an address space is to be swapped out or when it
is terminating). The definition of stopping SRBs is to prevent
dispatching of new SRBs and to allow completion of SRBs already
dispatched. Because SRBs can be suspended due to lock requests
or page faults and because page fault processing and reschedul-
ing of suspended SRBs make use of SRBs, it is necessary to have
the nonquiescable level at which these SRBs can be scheduled
and dispatched while the other SRBs are stopped.

For implementation reasons, two additional queues, called Local
and Global Service Manager Queues (LSMQ and GSMQ), are
used. These queues were introduced so that the locking require-
ments associated with dispatching SRBs can be limited to the
Dispatcher and so that the SCHEDULE service that introduces
service requests to the system can run unlocked. The SCHED-
ULE service requires that the invoker supply a previously ob-
tained and initialized SRB to represent the request until it is ac-
tually dispatched, and to supply the priority of the request (ei-
ther global or local). The schedule routine queues the SRB to the
appropriate service manager queue (LSMQ or GSMQ) and re-
turns to the invoker. On the next entry to the Dispatcher, the
presence of the SRBs is detected and the Dispatcher moves any
SRBs that may have accumulated on the SMQs since the last en-
try to the dispatcher to the appropriate spLs. If there were any
global SRBs, the Dispatcher then dispatches one. Any local SRBs
are placed on the local spL and are dispatched when that ad-
dress space becomes the highest-priority address space with
ready work. The information needed by the Dispatcher to dis-
patch a service request is contained in the SRB, provided by the
invoker of SCHEDULE. It includes the address space that the
service request is to be dispatched in, the entry point of the rou-
tine to receive control, the protect key it is to run in, the SPL
level the SRB is to be queued to, and a parameter to be passed in
register one on entry to the Service Request Routine.

Service Request Routines have some restrictions and operating
characteristics that are different from task-oriented routines.

These are:

+ 1974 TIGHTLY-COUPLED MP PROGRAMMING

characteristics
of service
routines

71

STOP SRB

They are entered in supervisor state, enabled, unlocked and
in relocate mode; they must return to the address provided
on entry in register 14 in the same condition because the SRB
exit is a direct entry to the Dispatcher and no cleanup or sta-
tus restoring is performed at this entry.

The service routine is responsible for freeing the SRB or mak-
ing it available for reuse since once the SRB is dispatched, the
Dispatcher no longer keeps track of its existence.

Service routines cannot issue SVCs, but instead may use
branch entries to system functions provided that the func-
tions do not have an implicit TCB requirement; that is, that the
function does not assume the caller is executing under a TCB
and, therefore, uses the current TCB pointer to get addressa-
bility. When a service routine is running, the current TCB
pointer is invalid.

Service routines may lose control because of a page fault or
because of an unconditional request for a suspend type lock
(cMS or LOCAL) that is currently held. In both of these
cases, the full status of the process is saved and other work
is dispatched. When the page fault is resolved or the lock is
available, the service routine is made eligible for redispatch-
ing by scheduling a special SRB containing the saved status at
the nonquiescable level of the appropriate local SpL. The
Page Fault Handler and the Lock Routine obtain the special
SRBs and save the status. When it finds the special SRB, the
Dispatcher restores the status, frees the SRB, and resumes
the service routine at the point of suspension.

Except for the noted suspension cases, service routines are
non-preemptable. Thus, even though they run enabled and
may be interrupted by asynchronous interrupts, they will not
be switched away from until they voluntarily give up control.
Interrupts that occur are processed but any dispatchable
units of work made ready by the interrupt processing are
ignored and control returned directly to the service routine.

This last characteristic of service processing is provided because
these routines are expected to be relatively short in duration
and, therefore, it is preferable to run them to completion instead
of going through the overhead of satus saving and restoring, and
task switching just to run a higher priority unit of work. This
choice also eliminates the need to retain a status save-area con-
trol block in anticipation of a task switch during a service rou-
tine’s execution.

A STOP SRB function is provided in the system as part of the
STATUS service. This function is intended primarily to support
the quiescing and swapping of address spaces although it is also
used for other reasons. As mentioned when discussing the non-
quiescable SpPL level, service requests are stopped by preventing
the dispatching of new SRBs and allowing all service routines

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

already dispatched, including suspended SRBs that will be redis-
patched, to complete. While SRBs are stopped, all scheduled
SRBs are moved to the local spL. If the SRB had been scheduled
on the global SpPL, it is moved to the corresponding priority level
on the appropriate local SPL and, when SRBs are restarted, it is
dispatched as if it had originally been scheduled as a local re-
quest. If the address space is swapped out, the Dispatcher,
when it puts the SRBs on the local SPL, notifies the System Re-
source Manager of the existence of work for the address space.
The System Resource Manager, based on the workload in the
system, subsequently causes the address space to be swapped in
and reactivated.

CPU affinity

In a multiple-processor environment, certain hardware features
may not be available on both cpuUs. In these environments, the
system must be directed to run those programs requiring a cer-
tain feature only on the CPU with the feature installed. This ca-
pability in 0s/vs2 Release 2, called CPU affinity, has two de-
fined forms: SRB affinity and task affinity. Although both have the
same effect of causing a unit of work indicated by a TCB or SRB
to be dispatched to a specific Cpu, they differ in the way the
affinity requirements are determined.

The dispatching part of the process works the same for both
types of affinity. When the Dispatcher is entered, it selects a TCB
or SRB to dispatch. It then checks a bit mask in the TCB/SRB to see
if the TCB/SRB can run on the CPU currently running the Dis-
patcher. If it can, the dispatcher dispatches the unit of work; if
not, the Dispatcher leaves the work for the other CPU to pick up
when it enters the Dispatcher and searches for another TCB or
SRB to dispatch.

SRB affinity is strictly an internal function since the system func-
tion that SCHEDULES the SRB determines the affinity require-
ments, if any, and indicates them by setting the appropriate bits
in the SRB affinity field. Task affinity is a misnomer because it is
really job-step affinity; that is, the affinity requirement is deter-
mined by the job scheduler when the job step is started and the
affinity is propagated to any subtask attached by the job step.
Task affinity is provided to support emulator job steps in an MP
environment when the emulator hardware feature is installed on
only one of the CpUs.

The control information is found in the Program Properties Ta-
ble (PPT) which has been extended to contain entries that relate
program names to a bit mask indicating which CPUs have the
feature installed.’

+ 1974 TIGHTLY-COUPLED MP PROGRAMMING

The PPT is a job-scheduler module and now contains the names
and symbols for 0s/vs2 Release 2-supported emulators. These
are obtained at SYSGEN time from information supplied in the
AFFINITY macro.*

This table is used by the Initiator to determine if affinity is re-
quired by a job step and if at least one of the required CPUs is
online. The Initiator searches the ppT for the program name
specified on the EXEC statement. If found, the associated bit mask
is ANDed with the ccA field of the online CPU. The result is the
affinity requirement —that is, a bit is on for each online CPU with
the feature installed. If non-zero, the mask is saved and the
ATTACH routine propagates it into the job-step TCB and any sub-
sequent subtask TCBs. The affinity field is reset when the step
terminates. If the result is zero, there is no online CPU with the
needed feature. If this occurs for the first step of a job, the job
is put on the hold queue and can be released by the operator
when the needed CPU becomes available. If the step is not the
first in the job, the job is aborted.

Dispatching

The main function of the Dispatcher in 0S/vS2 Release 2 (as it
was in previous releases) is to select and give control to the
highest-priority dispatchable unit of work.” However, the imple-
mentation has changed significantly. The major changes are re-
flected in the new control structure the Dispatcher must use.
Whereas in previous releases the Dispatcher worked from a TCB

queue containing all the TCBs currently defined in the system
and only had to find the highest-ready TCB on the queue, in Re-
lease 2 the Dispatcher has to work with six different queues:

The- Global Service Manager Queue (GSMQ).

The Global Service Priority List (GSPL).

The Local Service Manager Queue (LSMQ).

The Address Space Control Block (ASCB) queue.

A Local Service Priority List (LSPL) per address space.
A TCB queue per address space.

In addition, the Dispatcher must recognize a request for CPU
affinity, a redispatch of a suspended SRB, and a redispatch of an
interrupted or suspended local supervisor. Also it must keep
track of what is dispatched on each CPU to prevent the dispatch-
ing of the same process on two CPUs or the loss of a process
that could run.

The GSMQ, LSMQ, GSPL, LSPL and SRB queues are a result of the
Service Manager services that defined a new non-task-dispatch-
able unit represented by an SRB. The ASCB queue and the TCB

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

queue per address space are due to the local /global supervisor
split. The ASCB queue is a global queue identifying the address
spaces currently in storage. The TCB queue is a local queue in
each address space and contains all the currently defined TCBs in
the address space. Another queue affected by the local supervi-
sor is the asynchronous exit queue, which is split into a queue
per address space.

Six new entry points in support of the Service Manager, locking,
MP, and paging extensions to the control program have also been
added to the Dispatcher. The normal entry point continues to be
used when a task has been interrupted or has caused a task
switch. On this entry, the Dispatcher checks if any higher-prior-
ity dispatchable unit (either a TCB or SRB) has been made ready.
If not, and the current task is still ready, the Dispatcher redis-
patches it. If the current task is not ready or higher-priority
work is available, the Dispatcher saves the status of the current
task, searches the queues for other work, and dispatches it. The
status saving can be handled in one of two ways, depending on
whether or not the local lock was held by the task when it was
interrupted. If the local lock is not held, normal status saving is
done; that is, job-step timing is performed, task timing (if any) is
stopped, and floating point registers are saved. (The general reg-
isters and the pSW were saved before the Dispatcher was en-
tered.) In addition, the Dispatcher:

Clears the TCB NEW/OLD fields used to indicate which task
is active on a CPU. A set of these fields exists for each cpu
in the PSA of the CPU. System services running under a task
determine the current TCB address from these fields.

Clears the cpUID field and TCB active bit in the TCB. These
fields are used to prevent the dispatching of a task on two
CPUSs at the same time.

Decrements the count of CPUs running tasks in the address
space. This is a field in the ASCB used in conjunction with
another ASCB field containing a count of ready TCBs to deter-
mine if the Dispatcher should search the TCB queue of an
address space for a ready task not dispatched on another
CcpU. The ready TCB counter saves a TCB queue search if
there are no ready tasks. The pair of counters saves a search
if there are ready TCBs but they are active on the other CpPU.

If the local lock is held by the task, the same status saving has to
be done. However, it is saved in a special save area, called the
Interrupt Handler Save Area (IHSA). There is one of these per
address space. (Only one is needed because there can only be
one holder of the local lock at a time in an address space.) In
addition to the normal status, the Dispatcher also has to save
the NEW/OLD fields and the Functional Recovery Routine (FRR)
stack in the 1HSA and must change the ownership of the lock. The

No. 1 -« 1974 TIGHTLY-COUPLED MP PROGRAMMING

Dispatcher
entry points

FRR stack contains information about error recovery routines
to be given control if an error occurs while the lock is held.”
This information is specified and deleted dynamically by the
routines running with the lock held. The ownership of the lock
is changed by storing an interrupt ID into the lockword and
zeroing the local lock bit in the cPUs lock-held bit mask. These
changes leave the local lock held, but make the current CPU no
longer the owner. This allows the CPU to be dispatched to an-
other address space and to get another local lock.

The other entries to the Dispatcher all indicate that the process
which was running has either completed or cannot continue, and
that status saving different from the normal entry is needed.
Because the current process cannot be redispatched, the status
saving is done immediately and before the search for other ready
work is performed. Two of these entries are from the Lock Rou-
tine and two are from the Page Fault Handler indicating that the
current process is suspended. The other two entries indicate that
the current process is complete. One of each type is for TCBs;
the other for SRBs.

The lock entry for TCBs is used when the current task that owns
the local lock is suspended while requesting the cMS lock. (The
local lock must be held when the cMs lock is requested.) The
status saving at this entry is the same as the normal entry except
that the L.ock Routine has placed a suspend identification in the
local lock word and the Dispatcher does not have to put an inter-
rupt identification in it.

The lock entry for SRBs is used when an SRB routine is suspend-
ed while requesting either the local or the cMs lock. In this case,
the Lock Routine obtains an SRB with a save area and saves all
the necessary status including updating the local lock ownership
if necessary. The Dispatcher only does the job-step timing for
the SRB’s address space and resets the SRB mode indicator.
There is an SRB mode indicator for each CPU to show that an
SRB routine is active on the CpU. The primary users of the indi-
cator are the interrupt handlers. They normally pass control to
the Dispatcher; but if the SRB mode switch is on, the interrupt
handlers return control directly to the interrupted SRB routine.

The Lock Routine uses the normal entry to the Dispatcher when
suspending a task requesting the local lock. The task is not
placed in wait state, but the Dispatcher will not redispatch it as
long as the local lock is held.

The entries from the page-fault suspend routine are used when a
task or SRB routine takes a page fault that cannot be satisfied by
a page in main storage. The status saving at these entries is the

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

same as at the corresponding Lock Routine entries. The only dif-
ference is that the Dispatcher lock must be obtained at these
entires while it is provided as input by the Lock Routine.

The task-termination entry point is used by the End of Task
(EOT) routine when it has completed deleting a task. In this case,
the task has been removed from the TCB ready queue and there
is no status to save. The Dispatcher does, however, perform
Jjob-step timing calculations and resets control information by
zeroing the NEW and OLD pointers in the Prefix Save Area and
decrementing the count of the number of CcpUs in the address
space.

The SRB termination entry point is the return point from SRB rou-
tines. Again there is no status saving needed, but the Dispatcher
performs job-step timing calculations and turns off the SRB mode
indicator.

The Memory Switch Routine provides the Dispatcher with an
indicator that work is ready. (This routine is called by other sys-
tem functions that make work ready.) For SRBs, the Dispatcher
calls the Memory Switch Routine whenever it moves an SRB to
a local spL. For TCBs, a number of different functions (such as
POST and STATUS) call the Memory Switch Routine when they
make a task ready.

The Memory Switch Routine makes use of two fields per CpPU.
One of these fields (PSAAOLD) indicates the current address
space active on a CPU. The other (PSAANEW) indicates the high-
est-priority address space with ready work except when a glob-
al SRB routine is dispatched. In this case, it contains the highest
ready address space excluding the address space in which the
SRB routine is running (the SRB routine can be either higher or
lower priority).

When the Dispatcher dispatches a work unit in an address
space, it stores the address of the ASCB into PSAAOLD and, if it
is not a global SRB being dispatched, into PSAANEW. If, while the
unit of work is executing, the Memory Switch Routine is called
because other work is made ready, the Memory Switch Routine
checks the priority of the address space in which the new ready
work will run. If it is higher than or equal to the priority of the
address space pointed to by PSAANEW, the new ASCB address is
stored into PSAANEW. If it is lower, the value is unchanged. The
Dispatcher uses the fields to determine if a switch from the cur-
rent address spaces is needed. When searching for an address
space to dispatch, the Dispatcher starts at the one pointed to by
PSAANEW.

- 1974 TIGHTLY-COUPLED MP PROGRAMMING

Memory Switch
Routine

work
selection

In an MP system, the Memory Switch Routine checks the priority
of the address space in which new work was made ready against
the PSAANEW field for each CPU and updates the field for the
cpru with the lowest priority address space in PSAANEW. In
addition, it causes an interrupt to occur on the CPU that had
the field updated using the Signal Processor (SIGP) instruction.
The interrupt is taken as soon as the other CPU enables, and
causes an entry to the Dispatcher. The reason the Dispatcher
entry is forced, rather than depending on normal task switching
activity, is to avoid the condition where the CPU is in wait state
and there are no outstanding interrupts for the cpu. If the SIGP
were not issued, the CPU would never come out of wait state.
Another reason for the forced entry to the Dispatcher is to pro-
vide better responsiveness to higher-priority work.

The Dispatcher makes use of the queues and control informa-
tion to select work to run. Work is selected based on position in
the queues. Position on the SPL queues is random. Position on
the ASCB and TCB queues is determined by priority when the
control blocks are put on the queues.

The Dispatcher selects work in the following sequence: global
SRBs, highest-priority address space, local SRBs, interrupted lo-
cal supervisor, and TCBs. A global SRB is selected from the GSPL
queue and is dispatched if it is not prevented from running on
the current CPU by cpu affinity specifications and if the address
space in which it is to run has not had SrRBs stopped.

If there are no dispatchable global srRBs, the Dispatcher search-
es the ASCB queue starting with the ASCB pointed to by PSAA-
NEW. For each ASCB, the Dispatcher checks first for SRBs on the
LSPL, then for ready TCBs. The TCB check is made by comparing
the count of ready TCBs with the count of CPUs active in the
address space. If there is ready work, the Dispatcher switches
addressability to the selected address space. To this point, the
dispatcher has been running in the last dispatched address
space. To switch addressability, the Dispatcher loads the ad-
dress of the segment table for the new address space into the
hardware control register.

After selecting the address space and switching addressability to
it, the Dispatcher first searches for SRBs on the LSPL. If one is
found that can run on the current CPU and SRBs are not stopped
in the address space, then the SRB is dispatched. If there are no
dispatchable srBs for the address space, the Dispatcher requests
the local lock for the address space. If it is available, the Dis-
patcher searches from the top of the TCB queue for a ready TCB.
The first TCB that is ready and not active on another CPU is
selected, and if it is not prevented by cpU affinity requirements
from running on the current CPU, it is dispatched.

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

The local lock can be unavailable for three reasons. Either the
lock is held by another cPU or it was held by a task or SRB that
was suspended or interrupted. The Dispatcher checks this by
looking for the interrupt ID in the lock word. If it is not there,
the Dispatcher looks for another address space to run. If the
lock holder was interrupted, the Dispatcher adjusts the lock
word and the CPU lock-held bit mask to make the current CpU
the owner of the lock, and then redispatches the interrupted local
supervisor routine.

If there are no dispatchable global SRBs and no address spaces
with dispatchable SRBs or TCBs, the Dispatcher places the cpu
into wait state. The CPU remains in wait state until an interrupt
occurs from the current CPU because of previously started 1/0
or timer requests, or from the other cPU when it has made work
ready.

Alternate CPU recovery

Alternate CPU Recovery (ACR) is a process that is invoked
when a CPU in a tightly-coupled multiprocessing environment
can no longer function. The invocation of ACR occurs as a result
of a signal sent by the failing cpu before it enters a disabled wait
or check-stop state. This signal may be either hardware gener-
ated (Malfunction Alert) or software generated (Emergency
Signal).

The objective of ACR is to enable the system to continue without
the use of the failing cPU. While the system may be able to con-
tinue, it does so in a degraded fashion. Obviously, the reduction
of available cPu power contributes to this degradation. Also,
jobs that require the failing CPU in order to execute (for exam-
ple, an emulator feature or a device available only to the failing
cpU) will cease (if in progress) or will not be permitted to run. If
there are a significant number of such jobs, the meaningfulness
of continued system operation is questionable. However, ACR
does not attempt to pass judgment on the meaningfulness of sys-
tem operation, but rather enables the system to continue. The
decision to terminate the system is left to the system operator.

In designing the ACR process, three major design objectives
were adopted. The normal Recovery Termination Manager
(RTM) facilities are used to interface with recovery and retry rou-
tines; that is, no special facilities for the ACR environment are
provided. A further objective of the ACR design in 0S/vS2 Re-
lease 2 was to make the recovery capability from a CPU failure
equal to its recovery capability from a machine check or pro-
gram error. This is accomplished by using the normal system
recovery routines. No attempt has been made to design new

NO. 1 + 1974 TIGHTLY-COUPLED MP PROGRAMMING

objectives
of ACR

disabled
spin loops

ACR
initialization

recovery routines for each of the possible states in which a CPU
might be when it fails. A third objective of the ACR design was to
provide an environment in which the majority of recovery rou-
tines could be insensitive to the ACR environment. The problems
associated with achieving this objective and the way in which it
was accomplished are explained in the following sections.

In order to make a full ACR capability possible, the system must
be able to receive a Malfunction Alert (MFA) or an Emergency
Signal (EMS) whenever one CPU is waiting for another CPU to
do something. Clearly, if one CPU is in a totally disabled spin
loop waiting, for example, for a failed CPU to release a lock, re-
covery from the cPuU failure would be impossible. The running
CPU, unable to receive the MFA/EMS, would never know that
the cpu for which it is waiting had failed. Thus, the first consid-
eration of the ACR design is to ensure that the system is able to
receive notification of a cpu failure. This is accomplished by
having all of the OS/VS2 system components open an MFA/EMS
“window” whenever they enter disabled loops waiting for anoth-
er CPU to perform some function. The opening of the window
involves periodically enabling the cpu for MFA and EMS inter-
rupts.

The components of the vS2 system that enter spin loops are:

s Lock Manager—spins waiting for a global spin lock to be
released.
Real Storage Manager — spins during PTLB processing.
Timer Supervisor —spins during time-of-day clock synchro-
nization.
Inter-processor communications —spins waiting for another
CPU to acknowledge that it has received or completed the
processing associated with a SIGP instruction.

When the MFA or EMS is received by the External Interrupt
Handler, control is routed to the Recovery Termination Man-
ager, at a special entry point, to begin the ACR process.

The first phase of ACR is concerned with handling the two pro-
cesses that were in progress at the time of the cpu failure. RTM
views these two processes differently. The process that was in
control on the failed cPU has been abnormally interrupted; that
is, an abend has occurred. RTM must, therefore, ensure that con-
trol is passed to any recovery routines (FRRS, STAE Or ESTAE
exits) that were established on the failed CpU prior to the mal-
function.**

The process in control on the functioning cpU (the CPU per-
forming the ACR process) has also been interrupted. However,

with respect to this process, the interrupt is not abnormal; it has

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

not caused an error. RTM views this process as simply interrupt-
ed work, much as 10s views work stopped by an 1/0 interrupt.
Thus RTM ensures the normal resumption of this process.

Thus, during the first phase of ACR, RTM takes responsibility for
two processes. Upon entry, it indicates that the failed CPU is no
longer available (by turning off its “alive” bit in the Common
System Data area), marks the failed CPU’s timer as permanently
damaged, and sets the system in ACR mode (by turning on the
LCCAACR bit in both CPUS’ LCCAs). While in ACR mode, RTM
alternately passes control to the interrupted work of the good
CPU and to the recovery routines (and any requested retry
routines) of the interrupted work of the failed cpu. The system
remains in ACR mode until a state is reached in which normal
system operation can be resumed. RTM begins this “switching”
process by returning control to the External Interrupt Handler to
resume the interrupted work of the functioning CcpU. At this
point, the ACR initialization phase is over.

When the CPU malfunction occurs, the process in progress may
hold one or more global spin locks and /or be executing in the
disabled state. The same is true of the process in progress on the
good cpu. This is the reason for the special ACR processing that
is described in the following sections.

If both cPUs owned locks, the problem is that no matter which
process RTM chooses to execute first (the FRR for the work on
the failing CPU or the resumption of work on the good CPU),
either process may request a lock held by the other. Under nor-
mal circumstances, this would result in a lock spin. In an ACR
environment, this obviously must not occur since the function-
ing CPU now essentially owns both sets of locks.

The problem with the disabled state is that a disabled process is
theoretically non-suspendable. The disabled state serializes ac-
tivity on a cPU. Thus, cpu-oriented serially-reusable resources
can normally be used by a process in disabled state with no pos-
sibility that the resources will be preempted. Fields in the pSA,
such as the FRR stack and register save areas, and the Configu-
ration Control Array are therefore available to a process in the
disabled state. In the ACR environment, RTM owns the work of
two cPus. If either or both of the processes were disabled at the
time of the failure, RTM must provide an environment in which
the cpuU-oriented serially-reusable resources are preserved.

As stated previously, following a cpU failure the system remains
in ACR mode until a point is reached at which normal system
operation can be resumed when both processes have entered the

No. 1 - 1974 TIGHTLY-COUPLED MP PROGRAMMING

locks and the
disabled state

ACR
dispatching
algorithm

81

Dispatcher; that is, when both processes take some action that
causes the Dispatcher to receive control (such as exit from an
SRB, Or a WAIT SVC).

Entrance into the Dispatcher implies that the process in control
has reached a suspendable state such that it can be suspended
and resumed by normal sysiem functions. When a process can
be suspended another process can be dispatched on the CPU.
Thus a process that can be suspended no longer has any claim to
CPU-oriented serially-reusable resources. In addition, since a
process owning a global spin lock cannot be suspended, en-
trance into the Dispatcher also indicates that the process in con-
trol owns no global spin locks.

When both processes have entered the Dispatcher all global spin
locks have been freed and no dependency exists on CPU-ori-
ented serially-reusable resources. At this point, the final cleanup
routines of ACR may be invoked to complete the ACR process.

Following ACR initialization, RTM returns control to the interrupt-
ed work of the functioning CPU. RTM is again entered for ACR
processing under either of two conditions:

The process enters the Dispatcher, which detects that the
system is in ACR mode (by testing the LCCAACR bit set by
ACR initialization) and passes control to RTM. RTM then re-
stores the status of the failed CPU and passes control to the
recovery routine for the process that was in progress.

The process requests a global spin lock that is not available.
At this point, the Lock Manager must determine if a spin on
the lock is possible. If the currently suspended process (from
the failed CPU) owns a lock higher in the hierarchy, a spin
cannot be allowed. The process in progress must be suspend-
ed, its status saved, and the suspended process resumed. The
Lock Manager calls RTM to perform the suspension and to
resume the other process.

The suspension rule for lock conflicts is the crucial algorithm of
the ACR process. Simply put, the algorithm is “On locking con-
flicts, dispatch the process with the highest lock.” This prevents
deadlocks in the ACR environment. The algorithm is executed
each time a lock conflict is encountered while the system is in
ACR mode. Thus, it is possible to suspend and resume both the
recovery work of the failed cpu and the normal work of the
good CPuU multiple times before both processes finally enter the
Dispatcher.

In addition to preventing deadlocks, the suspension algorithm
also makes it possible for recovery routines to be independent of
the ACR environment. The recovery routine need not be sensi-

ARNOLD, CASEY AND MCKINSTRY 1IBM SYST J

tive to the fact that it is running on a different CPU than the orig-
inal process (although this information is provided in the RTM
interface). The recovery routine can get and release locks (either
explicitly, or implicitly through branch-entered supervisor rou-
tines) and request retry routines. The implementation of the sus-
pension algorithm requires the existence of the lock-held bit
masks that are maintained by the Lock Manager. It uses these
masks when a locking conflict is encountered to determine
which process owns the highest lock.

As stated previously, processes that hold global spin locks are
disabled, are normally non-suspendable, and “own” CPU-ori-
ented control information and data areas. However, ACR must be
able to suspend such processes if the failed CPU owned a global
spin lock when the failure occurred and when locking conflicts
occur while in ACR mode. Before we explain how this is done,
the nature of the cPU-oriented control information and data areas
will be discussed.

The cpru-oriented control information and data areas consist of
two types of fields —physical and logical. In general, physical
fields are those that describe the hardware associated with a
cpu. Examples of physical fields would be the channel availabil-
ity table and the Time-of-day clock, clock comparator, and inter-
val timer status indicators. Logical fields are software-oriented
fields essentially independent of the hardware. Examples are the
lock-held bit masks and the FRR stack.

A fundamental part of the ACR design is its approach to the two
different types of fields. With respect to the FRRs for the work
that was in progress on the failed cCPU, ACR makes it appear that
they are still running on the same logical Cpu. This implies that
when the recovery routines of the failed CPU are “dispatched”
by RTM, the logical fields that are normally addressable to the
recovery routine are those of the failed Cpu. This eliminates the
need for special ACR code in the recovery routines that are hard-
ware independent.

The physical fields are not modified by ACR since they always
reflect the hardware status of the CPU that is performing the ACR
process, even when the failed CPU’s FRRs are dispatched.
Thus, those FRRs that must reference the physical PSA/CCA
fields that were in use by the abended process require special
code for the ACR environment. The physical CPU identification
of the failed CPU is provided in the FRR interface so that this in-
formation can be found by these FrRRs. (The design rationale
was that any attempt to “fool” a process into thinking that it is
operating on a different physical CPU is a dangerous procedure.
It is obviously doomed to failure if the process attempts to act
on the basis of the simulated hardware status by, for example,

NOo. 1 - 1974 TIGHTLY-COUPLED MP PROGRAMMING

saving
status

1/0 restart

starting 1/0 with respect to the good CPU on a non-existent
channel. For this reason the design was chosen that requires
these hardware-dependent FRRs to be aware of the actual hard-
ware on which they are executing.

In order to enable ACR to provide ‘“‘“normal’’ addressability to the
logical fields without requiring it to be aware of each field, the
physical and logical Configuration Control Arrays (PCCA and
LccAa) were created. In general, the LCCA contains pointers to
all the logical fields; the PCCA contains pointers to the physical
fields. The only exceptions to this are the fields of the PSA. The
System /370 architecture requires the PSA to contain certain
physical fields such as the new Program Status Word and the
Channel Address Word. The PSA also contains a small number
of logical fields for compatibility (TCB new) or severe perfor-
mance reasons.

The pPSA contains the addresses of the LcCA and pPcCA. Thus,
RTM suspends a process by moving the logical fields of the psa
to an ACR work area (pointed to by the LcCA). In order to re-
sume a process, RTM moves the logical fields from the ACR work
area to the PSA and stores the address of the appropriated LcCA
in the PSA.

When both processes have entered the Dispatcher, RTM invokes
the 1/0 Restart function which handles incomplete 1/0 opera-
tions that were initiated by the CPU prior to its failure. For
each outstanding 1/0 request, 1/0 Restart simulates a channel
error and calls the 1/0 Second-Level Interrupt Handler to pass
control to the appropriate Error Recovery Procedure (ERp). If
the functioning CPU has a path to the device on which the 1/0
request was initiated, a “‘retry possible” indicator is set in the
ERPIB. If the functioning CPU has no path to the device, the “no
retry” indicator is set in the ERPIB.

The ERP routine restarts the 1/0 on an alternate path. If none
exists, the ERP invokes Dynamic Device Reconfiguration to at-
tempt moving tape or direct access volumes to different de-
vices.” If neither of these can be done, the ERP will post to the
user a permanent error indicator.

1/0 Restart also marks offline all device paths that were avail-
able to the failed cpu. In addition, if a device is found that no
longer has available paths to the functioning CPU, the associated
UCB is marked offline (to prevent subsequent allocation of the
device) and an indicator is set that causes subsequent 1/O
requests to the device to be posted with permanent error. 1/0
Restart schedules a message to the operator which indicates that
a device has been lost due to the cpu failure.

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

If the failed cpu had an outstanding reserve on a device when it
failed, an integrity problem could arise if 1/0 Restart released
the reserve (via SIGP RESET). The integrity problem exists if a
loosely-coupled CPU was waiting to reserve the device to update
data that were under the control of the failed cPU. On the other
hand, if the reserve is not released, the loosely-coupled CPU
would wait forever. In order to solve this problem, 1/0 Restart
first puts the system into a wait state. At this point, the operator
has two options; he can re-IPL the system, or stop the loosely-
coupled CPUs and press the restart button on the functioning CPU.
If he chooses the latter, 1/0 Restart again receives control, frees
the reserves on the failed CPU via a SIGP RESET, and attempts to
acquire the reserves for the functioning cpu. (The stopping of
the loosely-coupled CcpU prevents it from reserving the device
after the SIGP RESET.) If 1/0 Restart can and does successfully
acquire the reserves, the 1/0 Restart process is complete and
control is returned to RTM. If it cannot, it puts the system into a
hard wait state and a re-1PL is necessary.

The wait state loaded by 1/0 Restart when it first detects the
outstanding reserves is either a 041 or a 042 wait state which
indicates to the operator that the failed cPU had outstanding re-
serves. The 042 code is loaded by 1/0 Restart if the reserved
device is logically offline to the functioning cpu.*® If the operator
decides to restart the system, 1/0 Restart brings a path to the
device logically online to reserve the device for the functioning
CPU.

When the 1/0 Restart function completes, RTM posts the con-
sole switch ECB in the Unit Control Matrix. This causes the
Communications Task to reroute any messages destined for
consoles attached to the failed cpu. The console switch routine
also automatically switches to any secondary console that is
associated with a lost console and selects a new master console
if necessary. RTM then issues an SRM event indicating that a CpuU
has been lost (SYSEVENT code ALTCPREC), cleans up its inter-
nal work areas, and branches to the Dispatcher. At this point
the ACR process is complete.

In addition to the software components mentioned previously in
this section, the following also have special support for the ACR
environment.

The Dispatcher. In addition to passing control to RTM when the
system is in ACR mode, the Dispatcher also handles tasks and
SRBs that have cpu affinity to the failed cPu. When the Dis-
patcher finds an SRB or task that it cannot dispatch on the cur-
rent CPU, it checks to determine if there is a CPU available on

No. 1 « 1974 TIGHTLY-COUPLED MP PROGRAMMING

ACR
termination

other system
resources
affected

by ACR

which the SRB or task can be dispatched. If there is not, the
Dispatcher abends the SRB or task with a completion code that
indicates a CPU failure has occurred.

Real Storage Management (RSM). RSM enters two lock spins
during page-invalidation processing. In the first spin, RSM waits
for the other CPU to stop in preparation for a PTLB. In the sec-
ond, RSM waits for the other CPU to issue a PTLB instruction so
that it can invalidate a page. RSM detects when a CPU failure
occurs in either of these spins (by checking a bit that indicates
which cpUS are still functioning) and simply stops waiting for
the failed cpu. If PTLB processing was in control on the CPU
when the failure occurred, its recovery routine retries the opera-
tion on the functioning CPU. (PTLB is an instruction that clears
an internal hardware buffer which allows optimization of address
translation by the hardware. This buffer has to be cleared each
time a page is invalidated by RSM. In MP it is necessary to clear
the buffer on both CPUs at the same time. The above sequence is
used to synchronize the CPUs and clear the buffers.)

Inter-Processor Communications (IPC) Manager. A return code
of 20 is returned if a CPU failure occurs while the IPC Manager is
processing a RISGNL request.

Concluding remarks

Programming support of tightly-coupled multiprocessing hard-
ware has been discussed, particularly the 0$/vs2 Release 2 com-
ponents: locking, service management, CPU affinity, dispatch-
ing, and alternate CpU recovery. These facilities improve the
control program utilization of the two-CPU environment in that it
can now run parallel disable functions. Also, spin time on locks is
reduced, and the new dispatchable unit allows more parallelism
in new system functions. Furthermore, the system is able to re-
cover from the loss of one of the two CPUs.

CITED REFERENCES AND FOOTNOTE

1. R. A. MacKinnon, “Advanced function extended with tightly-coupled multi-
processing”’, in this issue.

2. IBM System /370 Principles of Operation, Form GA22-7000, IBM Corpora-
tion, Data Processing Division, White Plains, New York.

3. OS/VS2 System Programming Library: Job Management, Supervisor, and
7SO, Form GC28-0682, IBM Corporation, Data Processing Division, White
Plains, New York.

. OS/VS2 System Programming Library: System Generation Reference, Form
GC26-3792, IBM Corporation, Data Processing Division, White Plains,
New York.

. The Dispatcher when entered will select the highest-priority work ready to
run. The rest of the supervisor services, however, will under some conditions
bypass the Dispatcher and, for limited periods of time, lower-priority work

ARNOLD, CASEY AND MCKINSTRY IBM SYST J

will be running while higher-priority work is ready. This is done to avoid some
system overhead and is expected to have little visible effect on priority support.

. OS|VS2 Supervisor Services and Macro Instructions, Form GC28-0683
IBM Corporation, Data Processing Division, White Plains, New York.

. Operator’s Library: OS/VS2 Reference (JES2?), Form GC38-0210, IBM
Corporation, Data Processing Division, White Plains, New York.

. OS/VS Message Library: VS2 System Codes, Form GC38-1008 IBM Cor-
poration, Data Processing Division, White Plains, New York.

TIGHTLY-COUPLED MP PROGRAMMING 87

