
Multiprocessing  hardware  as  implemented  on  System1370 is 
presented.  With  emphasis  on  tightly-coupled  systems  confgura- 
tions,  topics  include  instructions  and  facilities,  and  a  compari- 
son  with  prior IBM multiprocessors. 

Advanced  function  extended  with  tightly-coupled 
multiprocessing 

by R. A. MacKinnon 

The availability of Advanced Function Extended brings  new 
hardware to  Systeml370 and, through the Operating System/ 
Virtual Storage 2 (oslvs2) Release 2, enables users to implement 
tightly- or loosely-coupled  multiprocessing. Tightly-coupled mul- 
tiprocessing, is  available  only on Systeml370 Models 158 MP or 
168 MP and  employs the sharing of a real  main storage by two 
CPUS capable, usually, of executing any of the programs and, 
depending  upon channels, accessing any of the Input/Output 
(I/o) devices in the system. A single  copy  of oslvs2 in shared 
main-storage controls the entire hardware configuration  and  man- 
ages  main storage using  Dynamic Address Translation (DAT) 
and  virtual storage. This mode of operation is  called multipro- 
cessor  mode. Through manual  configuration switches, each of 
the 158 or 168 CPUS can  be  given  real storage and I/O; hence each 
can operate in a completely independent mode  from its “peer” 
processor. In this mode of operation, called uniprocessor  mode, 
a separate copy of vs2 resides in each main storage and controls 
a single,  partitioned CPU. 

Loosely-coupled  multiprocessing is available on any System/ 370 
configuration capable of running oslvs:! Release 2 and above 
(Models 145, 155-11, 165-11, 158, 168, and 158/168 MP).  A 
component of O S / V S ~  Release 2, called Job Entry Subsystem 3 
(JES3 ), assumes the role of coordinator and controls the flow  of 
work  through the system. With  loosely-coupled  multiprocessing. 
each CPU stands by  itself  with  its  own  complement of  main stor- 
age. A CPU designated the global processor is connected to 
each of the other CPUS by the hardware Channel-to-Channel 

32 MACKINNON IBM SYST J 



Adapter (CTCA) and a shared direct access file. The other CPUS 
are designated focal processors and may also interconnect with 
one another through CTCAS to provide backup if the global 
processor fails.  All jobs enter the system through the global 
processor including Remote Job Entry (NE) input. The global 
processor then  performs job-entry services for all processors (in- 
cluding itself). Each CPU system (global or local) contains a 
copy of Oslvs2, the JES3 subsystem, and  has a complement of 
I/O unless the installation elects to share or pool devices between 
CPUS. Normally, all unit-record I/O is  assigned to the global  pro- 
cessor because all  work (job streams and systems output) enters 
and leaves through this CPU. Control information  is  communi- 
cated between global and local processors over the channel-to- 
channel connection; job-related data is exchanged over chan- 
nels and through the shared JES3 direct access device that all the 
processors access. System output (such  as operator messages, 
local printing/punching and NE output) is returned through the 
shared direct access device ( s )  to the global processor which 
drives the consoles, unit record devices, and RIE terminals (when 
present). Any or all of the CPUs  in a JES3 environment may  be 
tightly-coupled  multiprocessing systems. An added measure of 
flexibility  is  possible since any of the nonglobal processors may 
be  under the control of Asymmetric Multiprocessing System 
(ASP) Version 3 under OslMVT or oslvs2 Release 1. Thus the 
ASP-controlled CPUS may  be System/360s,  System/370 in basic 
control mode, or System/370 in extended control mode; all are 
referred to as mains. 

Implementation of tightly- and loosely-coupled  multiprocessing 
(MP) is under oslvs at Release 2 or above. Major architectural 
and internal design  changes  have  been written into the OS/VSZ 
System Control Program (sCP) which also apply to  System/370 
CPUS operating under it  in uniprocessor configurations - that is, 
no  multiprocessing. The following discussion is a brief  overview 
of three major  design innovations in vs2, available to uniproces- 
sors, which  firmly establish the foundation upon  which  multipro- 
cessing is built: 

Parallelism 
Locks 
Reliabilitylprotection 

From this, the reader should  see that the basic vs2 system  can 
accommodate multiprocessing  on a standard basis; multiprocess- 
ing  is  not  an “add-on” as with OSIMVT. More detail on oslvs2 
Release 2 multiprocessing components can  be  found elsewhere 
in this  issue.’ 

Many  more areas of the osIvs2 SCP operate multiprogrammed 
than  is the case with OSlMVT or oslvsz Release 1. Thus with 

ADVANCED  FUNCTION  EXTENDED 



Release 2 and  above,  control program execution  derives  the 
same benefits that multiprogramming extends  to application 
programs,  but with even  greater impact on  systems  responsive- 
ness  and  performance  because  the SCP is the  central, controlling I 
resource.  Bottlenecks  have  also  been removed from OSlvS2 
Release 2 by allowing similar functions  to  operate in parallel 
rather  than in the serial fashion of MVT or oslvs2 Release 1. 
For example,  device allocation has  been redesigned to allow 
multiple allocation requests  to  be  under way and  executing simul- 
taneously  wherever possible. In  the  past,  for  instance,  a  tape 
could not  be  allocated while a disk was being allocated.  An- 
other  approach  toward accomplishing the objective of paral- 
lelism involves the elimination of previous  and known areas of 
contention  such as  the  job  queue  (where  jobs  to  be initiated are 
stored) and the  systems catalog. Job queue information is dis- 
persed among the  application regions and spool data  set;  the  cata- 
log is implemented as a VSAM data set which results in a  faster 
search with less  contention.  Finally,  the  control program spends 
less time operating in disabled mode (with all interruptions 
masked off). In  this  context,  less  disablement holds significant 
promise for a more responsive  systems environment. 

locks Along with increasing the  extent  to which systems  code  oper- 
ates in parallel, oslvs2 also  takes  necessary  steps  to  prevent 
uncontrolled  access  to  critical  systems  areas  and data  that,  at 
specific points in time,  cannot  be  shared.  A  combination of pro- 
gram structure  and  Advanced  Function  Extended  hardware  are 
the  tools  used by oslvs2 to accomplish this. A  system of pro- 
grammed switches or locks is used by OS/VSZ to  enqueue  one 
processor  on a critical resource  currently being utilized by the 
other CPU. This same  technique  applies to work within a uni- 
processor  environment.  A key hardware  element called interfock- 
ing prevents  simultaneous  accessing of storage  areas from more 
than  one  processor. The new swapping instructions  (discussed 
in a later  section)  set  and  test  the locks. Locking is important 
in vs2 not only in a heavily paralleled control program exe- 
cuting on a  uniprocessor,  but is also an absolute  necessity in an 
MP environment  where  two  processors  share,  access,  and  execute 
SCP code on an interruption-driven basis. vs2 provides  the nec- 
essary  protection in the MP environment while placing major 
emphasis on not  “shutting  out” inter-cpu communication or 

’ dependent  functions  (such as executing a spin loop  and lock). 
Lock design also  ensures  that vs2 does  not  become  “deadlocked” 
if an expected or awaited unlocking event  does  not  occur. 

protection for  a higher level of systems integrity upon which multiprocess- 
ing (MP) is built. Several  architectural  changes within vs2 ac- 
complish this. Unlike OS/MVT and oslvs2 Release 1 in which the 

34 MACKINNON  IBM SYST J 



supervisor and other systems functions  all  run  under protect 
key 0, in oslvsz at Release 2 some  significant parts of the con- 
trol program  run in a nonzero  key.  Effectively a hierarchy of SCP 
storage protection  is  implemented  utilizing  hardware  storage- 
protection  keys 0-7; oslvs2 is thus protecting  itself  from  itself 
to a far greater degree  than in past  implementations of os. 

Additionally, a hierarchy or structure has  been  established with- 
in OS/VSZ to contain  abnormal  termination  conditions to the 
smallest  possible  amount of code and to handle  them  by the 
lowest  possible  functional  recovery  routine. Not only does this 
offer greater opportunity  to  refresh  damaged code, but  it  is also 
aimed at terminating, if possible,  only the damaged task(s) with- 
out  affecting the undamaged ones and, in the process, without 
preoccupying the whole of oslvsz in this chore. 

Lastly, at Release 2, oslvsz resolves the problem that pre- 
viously  existed  whereby the application  programmer  could  get 
control in storage-protection  key 0 or “crash” the system if OS 
were  given  improper addresses or addresses beyond that user’s 
authorized  storage space. One technique  used by oslvsz to en- 
sure integrity is to  respond to many  service requests by an  appli- 
cation  program (for instance, W O R  or GET a record) by perform- 
ing the requested work  not  in  key 0 but  using the key (non-zero) 
of the requestor. In so doing, vs2 isolates other users and the en- 
tire system from consequences of incorrect addresses. The new 
Program Status Word key handling instructions facilitate  imple- 
mentation of the  isolation (discussed later in this paper). Also, 
each oslvsz region  and user have  their  own  exclusive virtual 
address space and are thus protected by the DAT facility  through 
their  own  complement of segment  and  page tables. No user can 
address another user’s space and, therefore, both store and  fetch 
protection  results. 

The remainder of this paper discusses in detail the Advanced 
Function Extended features related to tightly-coupled (shared 
main-storage) multiprocessing. The topics presented are: 

Shared  main-storage MP. 
MP hardware architecture including  new instructions and  fa- 

A comparison  with  prior IBM multiprocessors. 
cilities. 

Shared  main-storage  multiprocessing 

Without  going  into the hardware  detail of the next section, this 
section strives to  present an appreciation of the workings of a 
tightly-coupled  multiprocessing  system. Here the question  be- 
comes:  “What  is  going  on in such a system?” 

NO. 1 . 1974 ADVANCED  FUNCTION  EXTENDED 

Figure 1 layout of main storage 



The layout of  main storage  contains  a single copy of the oslvsz 
Release 2 control program (Figure 1 ) , and  thus  does  not  appear 
very different from uniprocessor  schematics of  main storage. 
What  changes in MP configurations is the  number of processors 
driving the work active in the  system  and utilizing real  storage. 
Two processors - two Model 158 MP CPUS or two Model 168 MP 
CPUS-are used to  execute  code under  control of a single copy 
of oslvsz in a virtual  storage, multiple virtual  address  space  en- 
vironment.  Whereas  uniprocessors  have only one  task  “active” 

configuration can  actually  have  two  active  tasks  dispatched and 

has  its own complete  set of hardware facilities, channel  paths to 
1l0, and, from its standpoint,  complete  access to all main storage 
without  any  concern  to  the  existence of the  other CPU or its ac- 
tivities and  thereby providing a single system image to the in- 
stallation. The layout of main storage  appears  to  either CPU 
as shown in Figure 2. Because  there is a single copy of vs2 and 
each CPU is ‘‘logically’’ oblivious to  the other’s presence (al- 
though vs2 is aware), a major MP characteristic is the ability 
of one of the CPUS, given proper signaling and  coaching,  to 
assume in most situations the total  processing load if the  other 
CPU should drop  out for  any reason. In this  case,  the MP configu- 
ration  not only has  the  attribute of two  processors to apply to task 
execution in parallel, but  also a redundant  resource (a whole 
CPU) to  prevent total system  stoppage when one CPU ceases 
processing. 

igure 2 Systems overview at a time and only one  instruction from it  being executed,  an M P  

each CPU can be independently executing instructions.  Each CPU FIXED 

OS/VSP Another  vantage point from which to view shared main-storage 
viewpoint multiprocessing is to  observe  the  activities of oslvs2 and how it 

functions.  A simplified example is illustrated in Figure 3. 

The console  operator  presses  the IPL key on one of the CPUS 
(assume CPU B ) .  This processor  proceeds to initialize oslvsz in 
main storage  and perform basic  housekeeping  necessary  to bring 
up  the entire MP system. CPU B ,  having finished this  start-up, 
now finds both itself and CPU A ready to undertake  processing 
of application work. CPU B, still executing OSlVsz code, goes 
through  the  task  dispatcher  and  turns  control of this CPU from 
oslvsz to an application. Just  prior  to  this,  however, it issues 
a  reset, then a  restart signal to  the  other CPU to  cause  an inter- 
ruption in CPU A and  to  cause CPU A to  execute vs2. CPU A 
takes  the signal interruption  generated as a “farewell” by CPU B 
and  starts executing oslvsz while CPU B processes  independent- 
ly, Thus oslvsz proceeds through the  task  dispatcher  to turn 
control  over to an application. At this  point,  both CPUS can be 
executing  unrelated applications in parallel and in different virtual 
regions. It is also possible to have both CPUs executing  code in 
Oslvs2, or a single multitasked region, at the  same time. Pro- 
cessing  continues in both CPUS until an interruption  occurs. 

36 MACKINNON IBM SYST J 



Figure 3 Activities of OS/VS2 in MP Systems (F) 
MP SYSTEM 

VS2 AND 

Fl WORKFOR 

FIND WORK 
FOR CPU  A 

DISPATCH 

APPLICATION 
CPU  A ON 

C b O N Y T /  , DISPATCH os’vsp / GIVESUP 
CPU B ON GEEZP CONTROL 

, /6S/VS2 

APPLICATION 

INTERRUPTION 
OCCURS 

WORK ON 
DISPATCH 

FOR C W  B 
FIND WORK 

DISPATCH 
WORKON 1 

‘WHILE THIS DIAGRAM SHOWS SEPARATE ROUTINES BASED UPON CPU IDENTITY. VSZ MAKES USE OF COMMON ROUTINES FOR  MANY 
OF THESE DECISIONS AND ANALYSES 

Interruptions  occur in either CPU for  exactly  the  same  reasons 
as in uniprocessors. For example,  a  processor issuing a START 1 / 0  
instruction  receives  the normal I/O interruption ( s )  signalling 
device-end, channel-end. The point,  then, is not to get confused 
as to which CPU handles interruptions.  After servicing an inter- 
ruption  and prior to relinquishing control of the CPU, vs2 exe- 
cutes  its  task-dispatching algorithm to  determine which  work to 
dispatch  next. Thus,  over a period of time, work will be passed 
back and  forth  between  two CPUS because of interruptions  and its 
changing status  on oslvs2’s task-dispatching list. An M P  system 
is considered symmerrical when both CPUS possess  a like set of 
hardware  features  and  channel  paths  to rlo devices. The con- 
verse of symmetry is asymmetry where only one CPU has a par- 
ticular hardware facility (such as an  emulator) or access  to a 
needed device. 

When necessary, CPU hardware will prevent  one CPU from inter- 
fering with another in the midst of instruction  execution through a 
process called interlocking which involves CPU hardware.  A new 
software implementation called locking ensures against unfore- 
seen  altering or accessing of  main storage at critical times by the 
other CPU. 

NO. 1 ’ 1974 ADVANCED FUNCTION EXTENDED 3 1  



The preceaing  discussion  dealt with task  dispatching  and  inter- 
ruptions  handled by the processors as the result of 1/0 activity. 
Like a uniprocessor, each M P  processor has I/O devices attached 
to it  through  channels. The most  flexible  and desirable configura- 
tion  is  for the two processors to be symmetrical in every respect 
-that  is, the two CPUS are identical in features and  facilities  and 
each CPU has a channel  path  to  each  control unit/device. In this 
way, oslvs2, when  dispatching tasks, is  given  maximum latitude 
as to  which processor can (at any  one instant) execute a particu- 
lar  task or initiate requested I/O operations. If a feature exists on 
only  one CPU, oslvsz job control provides for assignment of a 
particular  task  to a specific CPU. Where Ilo is the problem (that 
is, a system  service request routine determines that it  needs to 
access an  asymmetric device), an  affinity for a CPU is  established 
only  during the period  when rlo is requested €or the asymmetric 
device; otherwise, either cpu can execute the  task’s code. 

This discussion of  how  work  is  managed and  allocated by 
OSlVS2 in an MP configuration  has  assumed  normal  operating 
conditions.  Such will not  always  be the case, however; thus, 
error recovery  needs  to  be addressed. Significantly,  within an 
M P  system  nearly every element  is redundant or accessible 
through  more  than  one  path. 

Specifically, at the CPU level, either processor can execute appli- 
cation or SCP work, and oslvs2 provides for Alternate CPU Re- 
covery  when  one CPU has  failed. The oslvs2 SCP or the console 
operator of oSlVS2 can  vary a processor offline  with the expecta- 
tion that the remaining CPU will carry the whole  load.  An opera- 
tor VARY command  also  permits other hardware components 
such  as storage, control units, channels, and  devices  to be brought 
either offline or online in an  orderly  fashion. The next section 
discusses the extensive System/370 facilities in the Model 
158/ 168 MP for handling error conditions  and  signaling mal- 
function  notification  within the system. The MP system  with 
its  single  copy of the  control  program also assists in cases of 
devicelchannel error by  providing  such  facilities as Alternate 
Path  Retry (to another channel or control unit), Dynamic  De- 
vice  Reconfiguration (for mountable  volumes  on  tape/DASD), a 
copy of the Link  Pack Area Library, and the Clear I/O function 
(which clears channels or subchannels). Except for Alternate 
CPU Recovery  and  inter-CPu  signaling, oslvs2 also provides 
this error recovery to uniprocessors. 

Each CPU in an M P  configuration  has  an Interval Timer, CPU 
Timer, Clock Comparator, and Time-of-Day (TOD) Clock. What 
oslvs2 provides, however, is  centralized  control of the Time- 
of-Day  Clock in MP mode so that a task will get a single TOD 
clock  image regardless of  which CPU is executing it at any  par- 
ticular  time. This is  accomplished  through a combination of 

38 MACKINNON IBM SYST J 



oslvsz code (which is executed at system IPL time or when 
VARYing a CPU online)  and MP hardware called TOD clock syn- 
chronizutiotl. 

The previous  discussion  attempted  to  establish  the  characteris- 
tics of System/370 M P  by describing the  process of work/task 
handling. With this environment defined, the purpose of the  next 
sections is to discuss  the specific multiprocessing hardware 
units. 

Multiprocessing hardware 

System/370 tightly-coupled multiprocessing is a configuration configuration 
of the following components: 

Two Model 158 M P  or two Model 168 M P  CPUS with proces- 
sor storage  associated with each CPU. 
A  unit  connecting  the  processors which accomplishes  the  ad- 
dress selection and sharing of main storage  and inter-cpu 
communication. 

0 A complement of channels  associated with each CPU with 
most  control  units  capable of being accessed by both CPUS 
via two-channel switching. 
A configuration control panel that  orchestrates  the  above. 

The differences in the  details of the  hardware  between the Mod- 
els 158 MP and 168 MP are delineated in Table 1 .  In simplest 
terms,  the  processor  storage on each Model 158 must  be identi- 
cal in size whereas Model 168s can  have any combination of 
storage  sizes. When configured as uniprocessors,  however,  the 
CPUS can  have individual increments of storage assigned to them. 
The actual size of the smallest assignable increment is 256K, 
512K, or 1 megabyte depending  on  the  total installed storage. 

Another  consideration is the real-addressing range of each  stor- 
age box itself. Each physical storage  increment  does  not  come 

Table 1 Comparison of Systemj370 Model 158 MP and  Model 168 MP 

Function 158 MP 168 MP 

Minimum storage 5 12K 1 megabyte 
Maximum storage 4 megabytes 8 megabytes 
Maximum storage for entire system 8 megabytes 16 megabytes 
Identical storage size required for each CPU Yes No 
Uniprocessor mode Yes Yes 
Processor storage partitioned equally on No No 

Processor storage assigned contiguously to CPU No No 
Control over which CPU oscillator pulses the No Yes 

uniprocessors 

TOD clock 

NO. 1 . 1974 ADVANCED  FUNCTION  EXTENDED 39 



with  preestablished address ranges as System/370 uniprocessors 
do.  While this may  seem quite different  from storage on  nOn-MP 
systems, all the specifics are resolved in a flexible  manner at the 
configuration control panel of the MP system. At the panel the 
computer operator makes several determinations  including: 

Figure MP Mode of system operation-uniprocessing or multiprocess- 

Which  logical storage units are assigned to which processors 
“4 MBYTE SYSTEM- ing. 

if in  uniprocessor  mode. 

storage, regardless of mode. 
CPU A  CPU B 
MODEL 168 MODEL 168 What the real address range  will  be on each unit  of processor 

A 

W I  ADDRESS RANGE 

For example,  assume a four megabyte  Model 168 MP system 
MBYTES MBYTES MBYTES with  logical storage units of one  megabyte as shown  in  Figure 

CPU A 
MODEL 168 

CPU B 
MODEL 168 4A. Depicted in Figure 4B are example  floating addresses. As- 

B signments in uniprocessor  mode  could  give CPu A one  megabyte 

STORAGE SIZE and CPU B three megabytes of processor storage and these could 
MBYTE M  BYTES 
n, 

be addressed and partitioned, as illustrated in Figure 4C. 
A 1 D.* ; A;yEsT I 3.4 1 

MBYTE MBYTES MBME MBYTES 
Similar  flexibility  is  desired in assigning  control  units  between 

CPU  A 
MODEL 168 
MODE = UP MODE=UP called 110 symmetry, enables either processor to undertake I/O, 

CPU B CPUs and their channels. Dual (or more) paths to all devices, 
MODEL 168 

C enhances availability in multiprocessing  mode,  and  provides 
configuration  flexibility  from a single  control  panel  when  in  uni- 
processor mode. 

prefixing Previous sections have  explained that each CPU in a multipro- 
cessing system has  all the functions of a uniprocessor with re- 
gard to instruction execution, I/O operations, machine-check 
handling,  and  generating  and  servicing interruptions. However, 
interruptions not  only  involve CPU hardware  but  also  utilize 
fixed processor-storage locations for storing PSWS, logout areas, 
and other machine-dependent  information. 

A uniprocessor utilizes main storage  locations 0-4095 for these 
machine-dependent purposes. However, in multiprocessing 
mode,  with  main  storage shared and  available  to  both CPUS, com- 
plications arise. Since  both processors in MP mode cannot use 
locations 0-4095 for the same  purpose, another solution  must be 
found. The following discussion, showing that neither CPU ac- 
cesses real  locations 0-4095 for normal  usage, describes that solu- 
tion. 

The formal  hardware  term for the vehicle that solves  this  dilem- 
ma  is  prefixing.  Prefixing  on System/370 is  completely  con- 
figured  by software (os~vs~) ,  is  both  forward  and  backward,  and 





8- 19 of the address with zeros and thus forces an address in the 
real  storage  range 0-4095. Reverse prefixing  is  one  way  in  which 
oslvsz can store hardware-related  information or status into a 
unique  real area (0-4095) that can be inspected by the other 
CPU when  signalled.  Machine-check  handling  is  an  example. 
The flow  of this  logic  scheme  is  shown in Figure 5 .  

In shared  main-storage MP, oslvsz establishes two  prefix  storage 
Figure 6 Prefix storage locations locations (one PSA for  each CPU),  fixes  their  page frames, and 

loads bits 8-  19 of their  page-frame addresses into the PVR of 
each CPU. This is  shown in Figure 6 using  an  illustrative  real 
decimal address for PSAS of 12,000 for CPU A and 28,000 for 

28,000 

CPU A 
PVR=12.000 

CPU B 
PVR=28,000 CPU B. 

Reverse prefixing occurs whenever oslvsz deliberately  wishes 
to place  information in real  locations 0-4095; this  is  accom- 
plished by  using storage references within the range of the PSA. 
Also, during certain status-recording sequences, the CPU does 
not  prefix,  but  places data directly  into  permanent  lower  storage. 
Such  is the case during a Store Status operation, which results 
from a manual  key  being activated on the CPU console or from 
a Signal Processor order (discussed in the following section). 
All  this  is  possible because, normally,  real locations 0-4095 are 
not  accessed by either CPU. 

On  multiprocessing  configurations  prefixing  is  always active 
regardless of CPU mode (UP or MP) or whether Translate is ON 
or OFF. When Translate is ON, prefixing  is  applied after transla- 
tion.  (Prefixing is not operative during the following operations: 
store status, channel references to extended logout area, I D  data 
transfer, accessing of data-addressing-words,  and ccw fetching.) 

contention Advanced Function Extended  embodies a number of hardware 
innovations for specifically  resolving those areas of contention 
that can arise within  the CPU. 

Hardware seriadization. In  uniprocesdor  mode a CPU is  neither 
aware of nor  affected by other CPUS. Instruction execution and 
storage references take place in proper sequence without inter- 
ference. With  tightly-coupled  multiprocessing  configurations now 
possible  within a virtual storage environment, System/370 ar- 
chitecture establishes a specific set of hardware  rules that apply 
to  proper instruction execution in such  configurations. This set 
of rules results in serialization  which ensures that activities occur 
in their  proper  sequence  and thus guarantees the proper  outcome 
of the various activities underway or about to start. A need for 
serialization  becomes  more  evident  since  some System/370 
models  prefetch instructions and, in certain cases, affect storage 
accesses in a sequence different  from  instruction  execution. 
These internal architecture characteristics are transparent to the 

42 MACKINNON IBM SYST 1 



program  and  programmer  since  they are dictated by CPU logic 
hardware. However, they do impact  and  determine CPU perfor- 
mance characteristics, which  vary  among the System/370 mod- 
els.  Program results across all  models,  however, will be the same. 

While hardware  serialization  is a basic  part of System/370 uni- 
processor architecture, tightly-coupled  multiprocessing further 
establishes the rationale for serialization  when  one considers 
the need for another CPU to access the “serialized” CPU’S main 
storage. Here the essential requirement  is for the “serialized” 
CPU to accomplish its instruction execution  without  any  uncer- 
tainty whether the accuracy of its results will be  affected  by an- 
other CPU’S activities. Serialization ensures that main storage, 
high speed  buffers,  and  storage-protection  keys are not  modified 
in  an undetected  fashion by another CPU (or its channels). Serial- 
ization  within a CPU guarantees that another CPU or channel that 
observes its activities will do so in proper sequence. 

Serialization occurs during  hardware interruptions and  while 
executing these instructions: 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

Branch on Condition 
Compare  and  Swap 
Compare  Double  and  Swap 
Store Clock 
Test and Set 
Load PSW 
Purge TLB 
Set Prefix 
I/O Instructions 
Read Direct 
Write Direct 
Signal Processor 

Along  with  serialization in System/370, MP systems implement 
interlocking which prevents a CPU from  observing or modifying 
a storage location  being  worked  on by a  Test and Set or Swapping 
instruction  issued by the other CPU. 

Locking. Locking  is  an oslvs;! software  mechanism  and struc- 
ture that establishes a sequence over system resources that 
cannot be  shared or executed in parallel by multiprocessors. 
Their use  is  serial as controlled by locks that are “opened” and 
“closed” through the vs2 macro SETLOCK. To complete  this 

’ structure, System/370 provides new hardware to facilitate  lock 
setting/checking  and to prevent  contention  during the critical 
lock-setting  procedure. There are two  new instructions, Compare 
and Swap, and  Compare Double and  Swap,  and the former  is 
used to accomplish this job. During  execution of the swapping 
instructions, CPU operation  is  interlocked  to  eliminate the pos- 

NO. 1 . 1974 ADVANCED  FUNCTION  EXTENDED 43 



during  instruction execution, being altered by the other CPU. This 
is in sharp contrast to the Or Immediate (01) instruction which 
does not  interlock  storage  and therefore provides  no  protection 
from the other CPU’S activity. The swapping instructions func- 
tion as follows (recall that each MP CPU has  its  own  unique  gen- 
eral  purpose registers; they are not  shared  like  main storage): 

Examine the contents of a general  purpose  register  and a 
word  in  main storage. 
When the comparison is equal, the word  in  main storage  is 
replaced by the contents of another register. 
When the comparison  is  unequal, the word in storage re- 
places the register contents originally  used in the compari- 
son. 

The two  varieties of swapping  differ  only in the amount of data 
compared (word or double word). They are most  useful in han- 
dling parameter lists of addresses (because of use of words or 
double words) and  switch testinghetting. 

Disabling. Disablement describes the case in  which a CPU masks 
out interruptions. During certain critical operations all interrupts 
including  Malfunction Alert are masked out. (Disabled loops do 
not exist as  in o s l ~ v r  since  an  enabled  window for Malfunction 
Alert  and  Emergency  Signal is  included in such  loops in os/vS2 
Release 2.) These interrupts remain  pending (and requested 
service is  not performed) while the receiving CPU is preoccupied 
with the critical operation with interruptions masked. To reduce 
the occasion for disablement, vs2 utilizes  Compare  and  Swap for 
updating of locations that might  be  simultaneously  accessed by 
two CPUS without  using locks, as shown by the following  ex- 
ample: 

I LOOP L 4,3  Also  load  general  register 4 

cs 3,4, 0 (2) Store new  value if storage location  is  un- 
changed 

BNE LOOP 

osIvs2’s structure of locks, the significant  degree of parallelism 
possible in the control  program,  and System/370 hardware seri- 
alization  all  combine to allow  more osIvs2 code over a period 
to  time  to  run  with interruptions enabled (compared to the 
Model 65 MP and the MVT and oslvs2 Release 1 software 
systems). 

44 MACKINNON IBM SYST J 



There is  no  new protection  hardware in System/370 MP con- 
figurations,  except for the significant  new  system  protection  pro- 
vided  through a combination of some  new instructions and  new 
osIvs2 architecture. First, the entire oslvsz SCP does not  run 
under  storage-protection  key 0. Instead keys 0 -7 are reserved 
for systems code and those areas such as Systems Queue Area 
(SQA) that can  be  accessed by other regions. This means that 
vs2 is  reserving  key 0 (and its prerogatives) to  only a select  por- 
tion  of the system  while  extending  normal  storage  protection 
groundrules  to SCP code, thus  protecting  itself. Second, vs2 iso- 
lates itself  and other users from  “game  playing” activities within 
a region  by giving a user no  ability  to  obtain  control in key 0 or 
disrupt the system  through  improper  addressing (deliberate or 
unintentional). vs2 responds  to  user  service requests by operat- 
ing under  the  storage  protection key  of the  user rather than key 
0. (The new PSW Key  Handling instructions implement  this  and 
are discussed later in this paper.) Finally, osIvs2 Release 2 
provides  multiple,  virtual address spaces-one for  each job, each 
TSO user, and  each IMS application. This is a departure from 
O S I V S ~  Release 1 with its single  virtual address space for all  re- 
gions  and  only  two  segment  tables.  What  Release 2 provides  then, 
with its multiple  virtual address spaces, is a protection  mecha- 
nism  through  the DAT facility that makes  it  impossible  for a user 
to ever address outside his  own address space. 

Thus vs2 makes  use of the hardware storage-protection key, 
reserving  it for supervisor protection  from user code, utilizing 
it  when the control  program seeks to  isolate a user from others 
when  performing systems services, and  employing  selective  keys 
(9- 15)  to protect v = R code not  subject  to  paging. (Key 8 is 
reserved for jobs executing v = v.) The reference  and  change- 
bit  portion of the storage-protect key  is as significant  to vS2 as 
the access control code itself,  relating  not to protection  but  to 
management of the real  main  storage. 

Advanced Function Extended  provides a new channel  recovery 
capability  supported  only by OS/VSZ Release 2, to selectively 
reset a channel  and is implemented by the Clear I/O (CLRIO) 
Function instruction  on  both the U P  and MP. The Clear I/O Func- 
tion  accomplishes the resetting of a subchannel  and the addressed 
device  without  affecting  the status of other channels or sub- 
channels. 

The ability to selectively reset a subchannel by programming  is 
significant  and  holds  great  promise for improved  system opera- 
tion  by  providing  an  added  means  by  which  an  ailing I/O prob- 
lem can be  helped  and a CPU problem  avoided.  Without the Clear 
I/O Function, prior systems were  forced  to re-1PL the entire sys- 
tem  if the I/O path or device  requiring reset was  vital  to  system 
operation. 

NO. 1 . 1974 ADVANCED  FUNCTION  EXTENDED 







The Time-ofDay ( T O D )  Clock  Synchronization check intenup- 
tion occurs when two TOD clocks are running but  get  “out of 
synch”  (that is, bits 32 -63 do not match).  This can  be masked 
out by control  register 0, bit 19. 

signal The receiving CPU is also  subject to control from the sending 
processor CPU as the  result of orders  sent by the SIGP instruction. Specifi- 

cally, the  sender  can  request from the  receiver: 

SENSE- Deliver  status information back to the  requestor. 
START - Enter operating  state, if stopped. 
STOP - Enter  stop state. 
STOP and STORE STATUS-The stop  state is entered  and CPU 
status is saved in real storage  locations (not subject  to prefix- 
ing) 216-512. 
INITIAL MICROPROGRAM LOAD (IMPL)  -The receiver  per- 
forms initial program reset,  then  undertakes  the IMPL se- 
quence by reading the console file. 
RESETS -The manually-initiated resets  (previously  dis- 
cussed)  can  also be signalled by SIGP to  another  proces- 
sor (specifically -program  reset, initial program reset, CPU 
reset,  and initial CPU reset). 
RESTART-The receiver-CPU stores  the old PSW in location 
8, fetches a new PSW from location 0, and  commences  pro- 
gram execution.  Restart is issued,  for  instance, during start- 
up of the system  or when a CPU (the  one being restarted) is 
being VARYed online. 

The sending CPU, the  issuer of the SIGP instruction, is or- 
dering  the  addressed CPU to  do something, is signaling, or is 
requesting information. However,  the effect and immediacy 
of the SIGP instruction on the  receiver is a  function of current 
activity in the  receiver,  its  operating  status, masking condi- 
tion, and status of any  prior SIGP orders  that may be outstand- 
ing. When SIGP is executed  on  the  sender: 

The condition code is set on the  sender, indicating whether 
the  order was  accepted by the intercommunication hardware. 
With condition code = 0, the  order is accepted  and  no  status 
is stored. 
A condition code = 1 indicates  the order was  not  accepted 
and  status bits have  been  stored in a register to indicate why. 
Common  reasons  for  rejection include an already-pending 
order  that  has not yet been completed in the addressed 
(receiving) CPU, manual intervention in progress  there, or a 
condition in which the  addressed CPU is check-stopped. 
Nothing  occurs in the  addressed CPU beyond returning  sta- 
tus  to  the  sender in the form of the  status bits when SIGP 
requests  sense information. The  sense  order is an  example of 
a  situation  for which a  processor might address itself in the 

48 MACKINNON IBM SYST J 



SIGP instruction. For instance, if a CPU has masked out  ex- 
ternal signals from the  other CPU (all  except  restart  can  be 
masked), a SIGP issued to itself will return  status information 
on pending external call and emergency signal interruptions. 

An additional intercommunication consideration in System/370 
MP systems  is  the role of buffer storage  and the storage-protec- 
tion keys found in each  processor. The CPU hardware  under- 
takes  the following. In MP mode, a Set  Storage Key instruction 
executed in one CPU results in setting  the  key in the  protection 
array in both CPUS. Reference  and  change  bits are also  set in 
both  arrays.  (The  reader is reminded that  the physical storage 
protection  array logically associated with each 2 K block of main 
storage may be housed  separately  from  storage within the pro- 
cessor.)  These  actions  are  transparent  to programming and  are a 
function of internal MP architecture aimed at presenting  and  pre- 
serving  the single-system image to  the  user. 

The timing facilities available on  the Model 158 MP and Model 
168 MP configurations are  the  same  as  on  the  uniprocessors. 
What differs is the additional hardware provided in M P  mode to 
synchronize  the  Time-of-Day (TOD) clock in each CPU. The 
various  clocks  on  each  processor are handled by oslvs2 and 
provide the programmer with exactly  the  same  services as in 
uniprocessing. Note,  however,  that  a  task is not  necessarily  exe- 
cuted  on only one CPU since it will be  passed  back  and  forth as 
interruptions  occur  and dispatching is undertaken. Thus  the ap- 
plication program and vs2 must  have  a  consistent TOD clock 
reading if the  presence of two CPUS (with  two TOD clocks)  is to 
be  transparent and have no effect upon program results. Also, on 
each CPU the  Clock  Comparator is matched  against  its TOD clock 
during  its  operation. 

TOD clock synchronization is the  hardware solution to  this  di- 
lemma and  requirement.  Sychronization  applies only in MP 
mode and is controlled by a bit setting in a control register. 
When the Set Clock  instruction is executed, a value provided by 
the  operator is loaded  into  the TOD clock.  Clock  operation fol- 
lowing Set Clock now depends  upon  control  register 0. When bit 
2 = 0 (its initial value and  the value used in the  uniprocessor 
mode),  the TOD clock enters  set  state  and  starts running imme- 
diately following Set  Clock.  However, when the TOD synch 
bit = 1, the clock enters  the  stopped  state until either of two 
events  occur: 

TOD synch bit = 0. 
The  other CPU’S running TOD clock is incremented  to Os in 
positions 32-63. 

NO. 1 . 1974 ADVANCED  FUNCTION  EXTENDED 



Table 4 Layout of control register 0 

control 
register 

usage 

Bit Function 

1 
2 
8 -9  

11-12 

16 
17 
18 
19 
20 
21 

Set System Mask suppression 
TOD synchronization control 
Page size control 

01 = 2K bytes page size 
I O  = 4 K bytes page size 

00 = 64K bytes segment size 
Segment size control 

Malfunction Alert mask 
Emergency Signal  mask 
External Call mask 
TOD Clock Synchronhation Check mask 
Clock Comparator mask 
CPU Timer mask 

Table 5 Programming support that utilizes  the  new instructions 

VTAM 
OSIVS2 Release 2 and  above 

Uniprocessors M P  mode 

Swapping Swapping Signal processor 
PSW key handling SetIStore prefix 
Clear I/O Store CPU address 

Either  event is under  the  control of o s l v s 2  and occurs when 
vs2 has  completed  its time-setting sequence. 

The TOD clocks in the  two multiprocessing CPUS are pulsed by 
separate  oscillators when operating in U P  mode. In M P  mode, a 
single oscillator pulse is used to  increment  both TOD clocks.  On 
the Model 158 MP this is always  the  oscillator on CPU A ;  a 
switch is provided on the Model 168 MP configuration panel to 
allow the  operator  to  select  the  oscillator  to be used. On  each 
CPU, the CPU timer  and clock comparator  are  stepped in the 
same  increments as that CPU’S TOD clock. This is true in both 
U P  and MP modes of operation. 

Set-clock  can be issued by v s 2  on either CPU provided at least 
one of the clock security  switches  is  activated on ENABLE SET. 
During MP operation, if v s 2  discovers  one of the TOD clocks is 
malfunctioning or damaged, it  will perform TOD services  for  the 
entire  system using the remaining valid TOD clock. 

Only  control  register 0 is affected by and used for  multiprocess- 
ing implementation.  Table 4 depicts the layout of this control 
register as it pertains  to  advanced  function  (virtual  storage 
addressing) or multiprocessing. 



Table 6 Use of new instructions in System/370 Models 

Model I I5 
Instruction  und 125 Model 135 

Swapping Standard Standard* 
PSW key handling No No 
Clear 1/0 No No 
Signal Processor No No  
Prefixing No N O  
Store CPU Address No No 

Model 155-11, 158, 
168,1581168 M P  

Model 145 in U P   m o d e  

Standard* t Standard 
Yest Standard 
Yest Standard 
NOS NOS 
NOS NOS 
NOS NOS 

Model 
1581168 M P  

Standard 
Standard 
Standard 

Yes 
Yes 
Yes 

Provided as conditional swapping features. 
tProvided on Model 145 through advanced control program  support feature required  by OS/VS2 Release 2 and above. Includes conditional swapping in- 
structions. 
$May  be issued by VSZ when changing from M P  lo partitioned mode, or from partitioned to MP mode or lo detect presence or absence of multiprocessing 
hardware. 

MP instructions and facilities 

Advanced Function Extended introduces a series of  new in- 
structions that are available  on  specific System/370 models for 
possible  use by a variety of systems control programming.' The 
instructions are listed  below: 

Compare and  Swap 
Compare Double and  Swap 
Insert PSW Key 
Set PSW Key  from Address 
Clear 110 
Set Prefix 
Store Prefix 
Signal Processor 
Store CPU Address 

Tables 5 and 6 associate these instructions with particular CPU 
models  and  the software that utilizes  them. The remainder of 
this section is concerned with a discussion of the new instruc- 
tions  with  emphasis  upon their rationale and  possible use. 

Compare  and  Swap ( C S ) .  The execution of cs is serialized and CS 
the contents of a register (R,) are compared  with the word in the 
addressed main storage location: 

CS R,, R,, D, (B,) 

One of two  condition codes results: 

0- An  equal comparison; the word in  main storage is re- 

0 1 -Unequal comparison; register R, is  loaded  with a word 
placed by the contents of register R,. 

from  main storage. 

NO. 1 ' 1974 ADVANCED FUNCTION EXTENDED 5 1 



CDS 

Figure 7 Protection-key portion 
of current PSW a s  used 
by IPK 

BIT 

KEY 0 0 0 0  

0 2324 2728 31 

IPK 

SPKA 

CLRIO 

SlGP 

5 2  

that  the  comparison is a double word (eight bytes) in width: 

CDS R,, R,, D, (B,) 

Swapping instructions are not privileged instructions  and are 
most useful for altering the  contents of  main storage  after  the 
issuer  checks to be sure  that  he knows what is supposed  to be 
altered (an  equal). When the  comparison  shows a descrepancy 
(unequal match),  the information actually in main storage is cop- 
ied into  a register and  thus  presented  to  the  user. The four-byte 
width of cs is useful for manipulating address lists while the CDS 
usage of a  double word provides  for both an  address  and  a pa- 
rameter  entry number. The latter is helpful in ensuring that  the 
sequence of a list is unaltered by another CPU. 

Insert PSW K e y  ( I P K ) .  The protection-key portion of the  current 
PSW is loaded into  general-purpose register 2 as shown in 
Figure 7. This  instruction is  helpful to vs2, which can no longer 
assume  that nucleus or  other SCP code  operates  under key 0 and 
must therefore  determine  what  the  active key is at any point. 

Set PSW K e y  from Address ( S P K A ) .  This  instruction  results in 
setting the  protection key of the  current PSW from bits 24- 27  of 
the  second  operand: 

SPKA D, (B,) 

This instruction is helpful in facilitating vsz’s servicing of an 
application’s private address-space  request using the key of that 
job  rather than  the key of vs2.  Thus vs2 protects itself and iso- 
lates  others from the  consequences of an  unauthorized  access. 
For instance,  a simplified example might involve moving a logical 
record  to a user-specified work area: 

I PK VS? key saved in general purpose register 2 
L 3 ,  USERKEY Put  user key in general purpose register 3 
SPKA 3(0)  Key into PSW 
MVC - - - Move  to work area 
SPKA 2(0) Restore  vsz’s key 

Clear 110 (CLRIO) Function. This instruction  resets  the  subchan- 
ne1 and  causes  the  current  operation  at  the  addressed  device  to 
be discontinued: 

CLRIO D, (B,) 

Signal  Processor ( S I G P ) .  An inter-cpu signal or  request is gen- 
erated in the following manner. R, contains the addressed CPU, 
D, (B,)  is the resultant  address of an eight-bit order  code  sent 
to  the  addressed CPU, and R, contains  the  status as a result 
of SIGP’S execution when the condition code = 1 (Such is the 

MACKINNON IBM  SYST J 



case as a result of SIGP SENSE, or due to SIGP’S order being re- 
jected. If condition code = 0, 2, or 3  there are no R, status bits 
in R ~ . )  

SIGP R,, R,, D, ( B , )  

One of the capabilities of the SIGP multiprocessing instruction is 
to  request  a new M P  facility-Store  Status. The SIGP order  Stop 
and Store  Status places the following information within the first 
5 12 lower  permanent  locations of real main storage: 

CPU timer 
Clock  comparator 
Current PSW 
Prefix value 
Model-dependent  feature 
Floating point registers (0-6) 
General  purpose registers (0 - 15 ) 
Control  registers (0 - 15)  

Store  Status is not subject to prefixing and is a good example of 
the  use  to which vs2 puts real locations 0-4095 for  common, 
systems reliability. The console  operator can initiate Store Sta- 
tus manually by activating  a key on the CPU console panel. 

Set Pre jx  W X ) .  The CPU’S prefix register is set from bits 8 -  
19 of the addressed word in  main storage: 

This gives vs2 the flexibility of selecting any page frame in main 
storage as the PSA and loading the prefix portion of its frame 
address into the PVR. 

Store Prefix ( S T P X ) .  The contents of the prefix register  are  stored 
into  the specified word (the format of which is depicted in 
Figure 8 )  : 

STPX D, (B , )  

Store CPU Address @ T A P ) .  The CPU stores  into  the designated 
half-word its own established address (~’0000’ or ~ ’ 0 0 0  1 ’ ): 

STAP D, (B , )  

Considering  that vs2 can be executing on either or both CPUS at a 
given point in time, the STAP instruction conveniently provides 
the means  for determining which CPU it is currently controlling. 
(The  Store CPU Address instruction should not  be confused 
with the  System/370  instruction  Store CPU ID,  which  is not as- 
sociated with multiprocessing.) 

NO. 1 ‘ 1974 ADVANCED  FUNCTION  EXTENDED 

SPX 

STPX 

STAP 

Figure 8 Contents of the prefix 
register 

-1 
0 7 8  19 20 31 

53 



Table 7 Comparison of multiprocessors 

Features  System1370  Model 67 Duplex Model 65 M P  

Two CPUs sharing main storage 
Use of virtual storage 
Multiple virtual storage 
Configuration control panel 

MP or UP mode 
Floating storage 
Channel and 1 / 0  switching 

Interval timer 
CPU timer 
Clock comparator 
TOD clock 
Hardware synchronization clocks 
Malfunction signal 
Inter-CPU signalling 

Yes 
o s / v s 2  
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
TOD 
Yes 
SIGP 

Yes 
Yes 
Yes (TSS) 

Yes 
Yes 
Yes 

High resolution 
No 
No 
No 
No 
Yes 

Extended direct control 

Yes 
No 
No 

Yes 
Yes 
Yes 
Yes 
No 
No 
No 
No 
Yes 

Direct control 

Comparison of multiprocessing  systems 

System/370 158/168 MP hardware has  evolved  from earlier 
IBM Systems-System/360 Model  67  Duplex  and  Model 65 MP. 
Several features of these prior systems are presented next and 
placed in the perspective of System/370 followed  by discussions 
of each system. A recapitulation of the multiprocessing hardware 
features of the three systems is contained in Table 7. A fourth 
multiprocessor, the IBM 9020, used at the Federal Aviation  Ad- 
ministration,  has  been  described el~ewhere.~ 

features Special  purpose. The System/360 Model  67  Duplex  and  Model 
of prior 65 MP were  unique systems in that they  employed  specially de- 
systems veloped  hardware  beyond System/360 architecture, and  they 

required  programming support other than  operating  systems 
avail'able at that time (osD60, D O S / ~ ~ O ) .  The Model  67  Duplex 
is  supported by the Time-sharing System/360 (TSS) and by 
user-modified code based  upon CP-67. Several  timesharing  ser- 
vices  still  use the Model  67 Duplex and  their  version of virtual 
machines. The Model 65 MP was  implemented  using  special 
versions of OS~MVT. In contrast, System/370 Models 158/ 168 
MP are members of System/370 family  and  utilize standard 
o s l v s 2  support with  Release 2. In particular, o s I v s 2  is  desig- 
nated as Systems Control Programming (SCP) and  this  operating 
system also supports uniprocessor configurations. Thus MP is 
not  grafted  upon a reluctant  operating  system environment, but 
is rather an  integral  part of the  whole  system. 

System response to malfunction. System/370 multiprocessing, 
with its large  main storage and  multiple  virtual address spaces, 
places a large  number of users within a single data processing 

54 MACKINNON  IBM SYST J 



environment.  Because of this, the  System/370 MP configurations 
were designed with an added capability to handle a system mal- 
function. For instance,  the Signal Processor (SIGP) instruction 
provides a greatly enhanced inter-cpu communication facility 
that  facilitates  recovery  subsequent  to CPU failures. The new 
System/370  Clear I/O (CLRIO) Function  instruction, offers 
promise of avoiding the  occurrence of a channel or channel  con- 
trol unit/device problem necessitating  the IPL of a CPU. Also, 
the  dual  paths now available on  the IBM 3705 programmable com- 
munications controller running under  Network  Control Pro- 
gram/vs remove  the  prior System/360 two-channel restrictions 
to  the IBM 2701/2702/2703 (which meant  that  the manually- 
IPLed CPU acquired teleprocessing affinity). 

Storage manangement. System/370 MP employs virtual storage 
management under O S / V S ~  control.  In  addition, multiple virtual 
address  spaces  are implemented - one for each  user. The Model 
67  Duplex  under TSS also  employs virtual storage through the 
DAT feature  and  provides multiple virtual storage. The Model 65 
MP, of course, made no use of virtual storage or DAT. All systems 
employed prefixing, but in different ways. 

Conjigurarion chariges. System/370,  the Model 67  Duplex,  and 
the Model 65 MP share  the  objectives of shared main-storage, 
pooled I/O devices through multiple data  paths  (channels),  and 
the ability of each CPU to  be operated  separately in uniprocessor 
mode. In all these  systems, a hardware configuration panel is 
provided to facilitate operator-initiated configuration and  recon- 
figuration of the CPUS, storage, and/or I/O devices (although 
each  system  employs different implementations  to accomplish 
this). 

Inter-CpU communication. All three MP systems  under  discus- 
sion have  methods by which the CPUS communicate with one 
another.  Each  provides  for signaling the  other CPU in case of 
machine check  and to exchange information. Both the Model 67 
and  the Model 65 MP accomplish signaling between CPus by 
modification of the  Direct  Control  hardware.  On  the  other  hand, 
Systend370 MP architecture  contains a specific instruction  for 
communication - Signal Processor, which is more comprehen- 
sive in its function and in its effect on multiprocessing operation 
than  its  predecessor mechanisms. Through  the  use of this in- 
struction, a functioning CPU can,  for  example,  start,  stop, or reset 
the  other CPU, or cause the other CPU to perform a logout opera- 
tion. These capabilities  enhance  the  prospects  for  system  recov- 
ery in the  event of a CPU failure. 

The Model 67 Duplex, like System/370, implements shared 
main storage multiprocessing with virtual storage. The program- 
ming support is provided through TSS while other  users  have 

NO. 1 . 1974 ADVANCED  FUNCTION  EXTENDED 



developed  their own programming support based upon CP-67 
with its virtual machines. 

There  are  no special hardware  instructions  on Model 67  Duplex 
for multiprocessing purposes.  Forward prefixing is employed on 
the  Model  67, with the specific assignment of the  alternate  ad- 
dress  and  user selection performed through  hardware manually 
set by a customer engineer. The non-alternate  area, unlike 
System/370,  occupies real storage  locations 0-4095. 

A configuration control panel gives the machine operator  the 
ability to  determine  systems  mode  (simplex/uniprocessing or 
duplex/multiprocessing), configure main storage  units through 
floating address  switches,  and, through a  series of switches, 
configure channels  and  control  units. What is unique about  the 
Model  67 is that  each CPU can  sense  and  store  into  its  control 
registers ( 8  - 14) the manual switch settings  on  the configuration 
unit by use of the  Store Multiple Control  instruction. 

Inter-cpu signaling utilizes the Model 67 Extended  Direct Con- 
trol facility and  a  control register. Each CPU can  receive from 
the  other  an  external  interruption  caused by a malfunction alert 
generated by a machine check or a Write Direct  instruction. 
(Write  Direct is the vehicle by which one CPU signals the other. 
It also  provides  a  means  for an “external  start” by which the 
sending CPU can  terminate  operations in the receiving CPU and 
cause a Psw-restart from location 0.) The Model 67, unlike Sys- 
tem/370,  does  not provide in its signaling design the  extensive 
control,  resets,  sense,  and  status capability provided by the  Sys- 
tem/370 SIGP instruction.  Also,  the Model 67  does  not have  a 
Clear I/O Function  instruction  for  selective  resetting of sub- 
channels. 

Timing facilities on  the Model 67 are  equivalent to  System/360 
with the  exception  that only a 13-microsecond high-resolution 
timer is provided on each CPU. There is no special hardware on 
the Model 67 to  synchronize timing facilities between  the CPUS; 
this is handled entirely by programming.* 

To resolve  contention  and  to  ensure  that  two CPUS are  not  inter- 
fering with one  another,  a  duplex  System/360 Model 67 must, 
by  necessity,  operate in a disabled mode for  a  certain  amount of 
time. In this case,  one CPU must mask out all interruptions in- 
cluding, possibly, those from the  other CPU. Also, a certain 
amount of time is spent looping on program switches while one 
CPU awaits  the freeing up of a  resource by the  other.  In  Sys- 
tem/370 multiprocessing, disablement  and looping still occur, 
but vs2 architecture  and  the  hardware mitigate the  consequences 
by directly  addressing  both of these multiprocessing bottlenecks 

56 MACKINNON IBM SYST J 



with a more  sophisticated  structure of locks, new instructions, 
and  hardware  synchronization. 

The Model 65 MP differs from Model 67 and System/370 in Model 65 MP 
its management of real storage, in that  there is no virtual storage 
or DAT facility. The Model 65 MP program support  consists of 
modification to OSIMVT. Like  the Model 67 and System/370, 
the Model 65 MP does  share real main storage between two CPUS, 
but like the Model 67  there  are  no special CPU instructions  that 
support  this environment. Forward prefixing is used and is wired 
manually like the Model 67  but, unlike the Model 67,  the Model 
65’s prefixing hardware  must  address  the first 4 K  and  last 4 K  
bytes of available main storage as prefix storage  areas. There 
is no lattitude as  to  the location of PSAS beyond the  operator 
selection of which CPU will utilize which of the two  areas.  Ad- 
ditionally, unlike System/370,  the Model 65 utilizes real lo- 
cations 0-4095 for normal systems  operations  such as PSW 
storing. 

A configuration control panel provides  for  storage allocation by 
floating address of the main storage  units, I/O control unit alloca- 
tion, mode of operation,  and prefix area  selection. The Model 65 
MP, however,  does  not  have  control  registers, and there is no 
ability for  the CPU to  sense  these manual switch settings as with 
the Model 67. 

Inter-cpu communication, similar to  the Model 67, is accom- 
plished either through receipt of Malfunction Alert  generated by 
the  other CPU’S machine check or through an  external  interrup- 
tion signal generated by the  sender with the  Write  Direct  instruc- 
tion of the  Direct  Control  Feature. 

The previous comments relating to timing facilities, contention, 
and  locks for Model 67 also apply to  the Model 65 MP, with the 

~ exception  that  the 13-microsecond timer is not available on the 
~ MP models of the Model 65. 

Summary comment 

System/370 implements multiprocessing by standard  options of 
oslvsz at  Release 2 and  above. Available real storage incre- 
ments are much larger than  those available on the Model 67 or 
Model 65 MP; monolithic storage  rather than core  storage  tech- 
nology  is utilized. Virtual storage with multiple virtual address 
spaces is inherent to System/370 MP systems. 

Several special instructions  are provided on System/370- some 
for implementation on uniprocessor configurations under 
oslvsz, others specifically for MP support. The PSW key han- 

NO. 1 1974 ADVANCED  FUNCTION  EXTENDED 57 



the swapping instructions  facilitate a locking structure  less likely 
to “shut  out”  the  other CPU unnecessarily;  processor signaling 
provides a very  complete  array of inter-cpu communication, 
resetting,  and  “pulse-taking”. These instructions are designed 
either specifically for multiprocessing or in anticipation of a mul- 
tiprocessing environment.  Experience with the  System/360 
Model 67 and  the Model 65 MP has led to the  requirement  for 
and implementation of the SIGP faci!ity. Likewise, System/370’s 
Clear I/O Function  instruction profits from past  experience in 
which a  channel malfunction could prove fatal to  the  entire  sys- 
tem even if for  no  other  reason  than  the  requirement of a re-m. 
of the  entire  system to  reset  the offending hardware. 

Prefixing on System/370 is improved in its implementation. 
First, it  is completely under  program,  rather  than  operator,  con- 
trol and oslvs2 has  complete  freedom in where it defines prefix 
save  areas.  Also,  each CPU’S storage  control unit contains  a pre- 
fix register  that is loaded and  inspected  under program control. 
Thus  the lower  absolute  4096  bytes of real storage are not used 
for prefixing, which means  that on certain machine-initiated 
conditions,  activation of Store  Status facility, or by request of 
vs2, the lower 4096  bytes of real main storage are available to 
capture critical information without disturbing  either CPU’S pre- 
fix save  area. 

The System/370 configuration control panel is similar to  that of 
the Model 65 MP and Model 67, but unlike the Model 67 it does 
not  provide  any facility for CPU sensing of switch settings. There 
are  no prefixing switches  because prefixing is program controlled 
(rather than  “hard-wired”).  The  System/370 configuration panel 
unlike the Model 65 MP or Model 67, is microprogrammed to 
detect  a  number of invalid configuration settings and  thus  to  pre- 
vent  these configurations from being entered. The  System/370 
panel, unlike the Model 65 MP, is not  a  “hot”  panel;  that is, con- 
figuration changes do not  occur when a dial or switch is changed, 
but  rather  take effect only when ENTER CONFIGURATION is 
pressed. 

System/370  inter-cpu communication is accomplished using the 
Signal Processor  instruction.  Nothing  comparable,  either in scope 
or in basic architecture, is provided in MP predecessors.  In  ad- 
dition, System/370 provides  the  instruction  Store CPU Identi- 
fication, implements hardware serialization of functions, hard- 
ware interlocking of storage,  and  provides osIvs2 with new in- 
structions  to  assist with its implementation of a multiprocessing 
system. 

System/370  has,  as  part of its multiprocessing hardware, a facil- 
ity for  coordinating  the  operation of the  Time-of-Day  Clock  on 

58 MACKINNON IBM SYST J 



can ‘‘flip-flop’’ between CPUS, the need is evident for a single 
TOD appearance. The Model 67  and Model 65 MP derive time-of- 
day from an interval timer without  the benefit of hardware-syn- 
chronized  timers or clocks. 

Concluding remarks 

This  paper  has  described  hardware  extensions  to  System/370 
to provide multiprocessing. While the emphasis is upon tightly- 
coupled implementation through MP hardware  and o s l v s 2  Re- 
lease 2, the  characteristics of loosely-coupled systems have been 
sketched  out  for  contrast. The comparison of IBM multiprocessors 
has been included to provide a  rationale  for  the evolution of Sys- 
tem/370 multiprocessing architecture with significant differences 
from and  improvements upon prior System/360 implementation. 

~ ACKNOWLEDGMENT 
The author benefited from the  creative suggestions and support 
from several individuals at  the IBM New England Systems  Sup- 

~ port  Center. 

CITED  REFERENCES 
1. J.S. Arnold, D.P. Casey, and R.H. McKinstry, “Design of tightly-coupled 

multiprocessing programming,’’ in this issue. 
2. IBM System/370 Principles of Operation, Form No. GA22-7000, Interna- 

tional Business Machines Corporation, Data Processing Division, White 
Plains, New York. 

3. “An application-oriented multiprocessing system,” IBM  Systems Journal 6 ,  

4. IBM  System1360  Model  67  Functional  Characteristics, Form no. GA27- 
27 19, International Business Machines Corporation, Data Processing Divi- 
sion, White Plains, New York. 

No. 2,78- 132 (1967). 

GENERAL  REFERENCE 
A.L. Scherr, “Functional structure of IBM  virtual storage operating systems 
Part 11: OSIVS2-2 concepts and philosophies,” IBM  Systems  Journal, 12, No. 
4,382-400, (1973). 

, NO. 1 1974 ADVANCED  FUNCTION  EXTENDED 59 


