
Discussed is an approach to simulating direct-access devices.
A n experimental simulator provides the capability to test newly
developed 110 supervisors and to test code for new or proposod
devices without the benejit of the actual device.

This functional simulator performs all of the search, data-
movement, and status-reporting functions of the device trans-
parently to the user. Data-driven (table) techniques enable the
user to simulate a number of direct-access devices (one at a
time) and measure their would-be performance. Interactive op-
tions of the simulator enable the user to check for errors and test
the various error routines.

Direct-access device simulation
by E. Nahouraii

The term “simulation” refers to a variety of concepts in data
processing. Consequently, we need to defifie its meaning in the
context of this paper, that is, with reference to device simula-
tion. In this application, it is the process of reproducing the
functions of a physical device, without the device being attached
to the system or being replaced by another real device of similar
characteristics.

Currently, there are special-purpose device simulators that per-
form these functions; however, they require special hardware
and are thus limited to simulating the one device. Some simula-
tors either do not have data-handling capability or can only be
executed on a particular system.’ Other simulators provide
modeling and performance evaluation2 but no data-handling
functions. None of these simulators has the capability of com-
bining functional ability and performance measurements to
achieve software testing and to serve as an experimental tool for
evaluating hardware and software interactions.

Discussed in this paper are techniques developed and imple-
mented in an experimental approach that enables a user to simu-
late all channel commands commonly used to support direct-
access devices on the IBM System/360 and Systeml370. No
modification of a user program is required prior to execution, thus
resulting in a transparent simulator. Data-driven techniques,

NO. 1 - 1974 DASD SIMULATION 19

~ ~~~~~~~~~~

Figure 1 Real versus simulated environment

r
I
I

SIMULATION ENVIRONMENT REAL ENVIRONMENT

I I
I

J
I I

I

I SOFTWARE SIMULATION

I ?I”
CHANNEL

””_

DIRECT-ACCESS STORAGE DEVICES

”-

which enable the user to direct the simulation of a number of
different devices, are also described. All error conditions, via
status, are reflected in the same manner as if the physical device
were attached. Figure 1 indicates the setup.

Simulation description

The transfer of information between CPU storage and an I /O de-
vice is accomplished by execution of I / O instructions as shown
in Figure 2. The direct-access device ~imulator~’~ (DSIM) is a
software package that intercepts an I / O instruction issued for
a device to be simulated. Each I / O instruction is interpreted,
and its hardware function is reproduced by testing and modify-
ing data in tables. The tables represent the hardware implied by
the combined specification of the channel, control unit, and de-
vice. Six 1 / 0 instructions perform in the IBM System/370 as fob
I O W S : ~ “Start I / O ” (sI0) identifies the channel, subchannel, and
I / O device. “Start I / O Fast Release” (SIOF) causes the opera-
tion to be initiated independently of the device. “Halt I / O ”

20 NAHOURAII IBM SYST I

Figure 2 Information transfer between CPU and 1/0 device

\
COMMAND

RETRY

\

1 l /O DEVICE I

(HIO) terminates execution of a particular 1/0 operation. “Test
Channel” (TCH) determines the condition of the channel. “Halt
Device” (HDV) is similar to HIO except that, when a channel is
busy, only the addressed device is affected. “Test I / O ” (TIO) de-
termines the state of the channel, subchannel, and the device.

When a user executes his application program and tries to write
or read data from a direct-access device, control is normally giv-
en to the device-level I / O supervisor6 (10s). The 10s issues I / O
instructions directed to the specified channel, subchannel, and
device. DSIM receives control whenever any of these 1 / 0 in-
structions are issued to the particular device to be simulated.
Associated with each I / O instruction is a set of channel com-
mand words (CCWS) that indicate what specific functions the
channel,’ subchannel, and the device should perform. In the
System/370, a fixed location contains the address of these
c c w s .

There are five classes of commands: control, search, read,
sense, and write. Varous combinations of these commands are

NO. 1 * 1974 DASD SIMULATION 21

Figure 3 Device status table

CHANNEL
- - - - - - - - - - - - - -

STATUS WORD

ADDRESS OF TRACK TABLE

ADDRESS OF RECORD TABLE

I ADDRESS OF CURRENT RECORD I
SECTOR VALUE

FILE MASK

END TRACK

LAST TRACK POSITION

SEARCH FLAGS

MEASUREMENTS

22

issued by 10s to read or write a record on the device, i.e.,

SEEK
SET FILE MASK
SET SECTOR
SEARCH IDENTIFIER EQUAL
TRANSFER IN CHANNEL
WRITE COUNT KEY AND DATA

When DSIM receives control as the result of 10s issuing any of
these I / o instructions, the command associated with the 1/0
instruction is fetched by DSIM. Each command is simulated in-
dependently in the same sequence that the channel, the control
unit, and the device would have processed it if they were pres-
ent. Simulated track size is the same size as the track on the
physical device. The detailed simulation techniques can be
found in Reference 8.

The simulation of a ccw first validates the bit configuration for
conformance to device specifications. Following are some of the
checks made to effect the validation:

Format of the ccw to make sure the operation code, address,

Limits of the data address, data length and count field.
Valid command code.

A11 the error conditions resulting from this validation are pre-
sented to the system by providing the proper condition code and
causing an interruption in the CPU. After a ccw is validated, its
code is tested and appropriate subroutines are called to perform
the function by interrogating and updating various tables. One
such table is the device status table shown in Figure 3, which
indicates the status of the simulated device as of the last ccw
simulated. The table is updated for each simulated ccw and con-
tains the total tracks that have been used and the position of the
read/write heads. When one SIO is completed, the position of
the read/write heads is saved before the status of the device is
reset. This allows DSIM to calculate the seek distance between
the current and subsequent tracks for measurement purposes.

The channel status word table entry indicates the result of the
last ccw simulated. Prior to fetching the next CCW, this entry is
tested for a channel-end and device-end condition produced by
DSIM as illustrated in Figure 4. If these two conditions are true,
and the unit check and/or program check are not true (meaning
no error has occurred), DSIM proceeds to determine if any more
ccws are to be simulated. If not, the control is returned to 10s
by causing a CPU interruption. This interruption is the same as if
the real device were present.

flags, and count field exist.

NAHOURAll IBM SYST J

Figure 4 Simulation flow

SIO, TIO, TCH,
HIO, HDV

ISSUE CONDlTlON
CODE '0' CCW

ACCEPTED

NO CHARACTERISTICS

VOLlD & VTOC
INITIALIZE

I

a" FETCH NEXT CCW

CCW CODE GO
DETERMINE

TO SIM (CODE)

ANALYZE CCW.
PERFORM CCW

INTERROGATING
FUNCTION BY

AND UPDATING
APPROPRIATE

TABLES

REFLECT RESULTS
I N DEVICE STATUS

TABLE

v RETURN

DSlM capabilities

DSIM provides for execution of code using a direct-access device
without the device being present. Such a capability is useful dur-
ing the development cycle of an IOS, especially when the new
code must be tested against a prototype device, which often is
not available or not fully operational. Without such a test vehi-
cle, it is difficult to differentiate.between hardware and software
errors. However, with the aid of the DSIM, a developer can test
most of his code before using the real device. The DSIM ccw
validation is a first step toward testing a new 10s. In addition,

NO. 1 1974 DASD SIMULATION 23

DSIM simulates each ccw and provides indications when the
code has generated an unacceptable ccw. The DSIM error-gen-
erating mode enables the system to create fictitious errors that
permit the testing of error-recovery routines.

DSIM is useful even when the device is available but is at a dif-
ferent geographical location or on a system whose configuration
is otherwise unsuitable. For example, it would be possible for
application programmers to execute and test their programs be-
fore attainment of the real device. Errors can be forced by using
the error-generating facility of DsIM. This provides a capability
not generally attainable even with the real device.

In general, DSIM is an experimental tool for designers who hy-
pothesize a new device and wish to determine its performance
using a real application.

data-driven DSIM was designed to be a data-driven simulator; thus it allows
techniques the simulation of a number of direct-access devices. When DSIM

receives control, it will ask the user to type the name of the de-
vice to be simulated, for example, an IBM 23 14 or 3330 or 3340,
etc. If the device type is known to DSIM (one of the above), it
automatically initializes the device characteristic tables. Other-
wise the user is requested to type the device characteristics con-
sisting of track size, inter-record gap, various timings concerning
the read/write head movements, and the data rate. This capabil-
ity enables a user to experiment with a device by providing dif-
ferent characteristics and then execute an application program
to obtain the performance measurements.

Operating environment

DSIM is designed to operate in either of two environments- the
stand-alone machine environment and the multivirtual machine
environment. Both modes of operation use all of the same mod-
ules, except for one that provides the interface with the host.

stand-alone When the environment is that of a stand-alone machine, the op-
environment erating system, the DSIM, and the application program reside in

the same machine. The operating system is generated to include
a channel, a control unit, and a device to be used by the simula-
tor, or a dedicated channel and device can be used. After the
system is initialized, modifications are made to the 10s to enable
trapping of all 1 / 0 operations. DSIM determines if the device
being addressed is the one being simulated. If not, control is re-
turned to 10s. Otherwise, DSIM simulates each and every ccw
issued. Data produced by the application program and thought
to have been written on the (simulated) device actually resides
within the machine memory. The application program in this

24 NAHOURAH IBM SYST J

Figure 5 DSIM in stand-alone environment

CPU

OPERATING SYSTEM

W 110 SUPERVISOR - 110 INSTRUCTI~N 1 """_ "- t
DSIM I

c
IS I T 110 FOR

I YES
SIMULATE

L INTERRUPTI0
TO 110

HANDLER

APPLICATION PROGRAM "_
READ DATA I

WRITE DATA I
""A

1
""4

I co"u",':oL

f
DEVICE

1

mode can create and update the data as though it were a data set
on the device. Modification to the operating system makes this
mode of operation release-dependent.

DSIM in a stand-alone mode currently can only simulate IBM
2314 and 3330 devices because the modifications were only
made to IBM Operating System/360 release 2 1. Figure 5 illus-
trates the machine configuration for DSIM in the stand-alone en-
vironment.

The IBM Virtual Machine Facility/370 (V M / 3 7 0) is a system'
that manages the resources of a single System/370 computer so
that multiple computing systems appear to exist within it. Each
such computing system is said to run a virtual machine. V M / 3 7 0
consists of two major components, a control program (CP) and
the Conversational Monitor System (CMS) that runs in a virtual
machine under control of CP. The multivirtual environment

NO. 1 * 1974 DASD SIMULATION

i"-"l
V M l 3 7 0

DEVICE STATUS

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ' MODIFICATION
V M

1 f-+
+L"""

\ I
I10 INSTRUCTIONS

DSlM

SPECIAL CP

COMMAND

READ CCW, DATA
WRITE CSW, DATA

STACK INTER.

DATA

! I t ;
(SIMDl

ANY OPERATING SYSTEM

10s
SI0

APPLICATION PROGRAM

GETIREAD

PUTIWRITE

"110
SIMULATED'

define each virtual machine with the appropriate I / O configura-
tion for the simulation and inform C P which two machines are
involved. The I / O configuration is defined by using two special
commands provided for this purpose. The first command, DE-
FINE, allows the user to dynamically add a device to his virtual
machine configuration, i.e.,

DEFINE SIMD <AS> N N N

NNN is the device to be simulated and consists of a virtual chan-
nel, control unit, and device address. The user also must “DE-
FINE” another device for SIMR, i.e.,

DEFINE SIMR <AS> MMM

MMM is the SIMR virtual channel, control unit, and device ad-
dress. The second command, COUPLE, can be issued from either
SIMD or SIMR, i.e.,

COUPLE N N N TO SIMR MMM

Once the two virtual machines are ready, the application pro-
gram in SIMD and DSIM in SIMR can be started. Figure 6 shows
the SIMD and SIMR in MVE. Other requirements of the user in
SIMR depend on the type of options selected. They are described
in the following section.

The MVE mode of DSIM has other potentials in addition to simu-
lating a number of direct-access storage devices. It is a general-
purpose tool that may be used to intercept references and subse-
quently simulate any I / O device, i.e., printers, terminals, display
units, etc.

The simulated device (SIMD) is not restricted to a singular case;
a user may define as many SIMDS as necessary. The intervirtual
communication capability of DSIM enables the communication of
many SIMDs with each SIMR, as illustrated in Figure 7 . The SIMD
issues an SIO instruction to cause an interruption in SIMR. SIMR
has the necessary instructions to move data, messages, or jobs
from one SIMD to any other or to/frorn an SIMR. Figure 8 indi-
cates the commands necessary to establish and bind the SIMR to
the SIMDs. This use Of DSIM is suitable for experimental networks
or data base systems, since it provides send, receive, and store
and forward capabilities.

Interactive options

DSIM operates in the interactive mode and communicates with
the user to determine what options are to be enabled. Also, if

NO. 1 1974 DASD SIMULATION

VMl370
r--1

I \ MODULE
VMCOM I
I""

I ,

SIMR

, I ,

SlMDl

-

f
SIMDZ

-

f
SlMD3

Figure 8 Examples of DEFINE and COUPLE to establish intervirtual machine
communication

S I M R DEFINE
DEFINE SIMR (AS) ccu 1
DEFINE SIMR (AS) c c u 2

DEFINE SIMR (AS) CCUn

DEFINE SlMDl (AS) ccu 1
DEFINE SIMD2 (AS) c c u 2

SIMD DEFINE

DEFINE SIMDn (AS) CCUn

COUPLE
Coupling issued either by S I M D or S I M R
ccu 1 TO c c u 2 SIMR

COUPLE c c u 2 TO c c u 2 SIMR

COUPLE CCUn TO CCUn SIMR

the user is simulating a device not known to DSIM, i.e., not an
IBM 2314, 3330, or 3340 direct-access device, it prompts the
user to input device characteristics. There are three (optional)
modes of operation available to the user- message, error-gener-

28 NAHOURAII IBM SYST J

Figure 9 Example of SIMR logging

vm/370 o n l i n e l j h 3 0 5 asyesu

(NOTE: UPPER CASE=OUTPUT, LOWER CASE=INPUT)

ENTER PASSWORD:
login nahowai m

cp def simr 1 1 1
R;

dsim
R;

start m v m i n t f
S IMR 111 COUPLE BY SIMD
EXECUTION BEGINS. . .
TYPE THE SIMR DEVICE ADDR (3 D I G I T S) .

1 1 1
PLEASE GIVE DEVICE TYPE:2314/3330/3340
3 3 3 0
I F ERROR GENERATING MODE IS DESIRED TYPE YES.

150

OR H I T CARRIAGE RETURN FOR NORMAL EXECUTION

PLEASE TYPE YES FOR MESSAGE MODE OR H I T RETURN FOR NONMESSAGE MODE
Y e s

TO DISABLE DEBUG MODE TYPE DIS--TO ENABLE H I T CR

Figure 10 Message mode

SI0 1
ccw C O W D

1 SEER

I SET F I L E MASK

U SEARCH I D - 3 TIC

SEEK TI(-00000000000000000000000000000~00

COMPARE 0 0 0 6 A 5 7 7 0 0 0 1 2 6 D O 00000005
ID NOT FOUND

5 T I C
U SEARCH ID =

COMPARE 0 0 0 6 1 1 5 7 1 0 0 0 1 2 6 0 0 00000005
ID NOT FOUND

5 T I C
P SLARCH I D -
6 READ DATA

COMPARE 0 0 0 6 A 5 7 7 0 0 0 1 2 6 D O 0 0 0 0 0 0 0 5

TYPE SI0 NUMBER WHERE MESSAGES SHOULD BEGIN, TYPE 1
TO PRINT THE F I R S T CHANNEL PROGRAM

1

ating, and debug. Figure 9 is an example of SIMR logging with a
sample of each option as it occurred in the real simulation of a
device.

Selection of the optional message mode results in the printing of message
messages at the console describing the commands as they are option
being simulated. A count is maintained indicating the number of
times each command is executed. It appears in the format of
Figure 10.

Another capability provided in the message option is SKIP,
which enables the user to specify when these messages should
start printing on the terminal, i.e.,

TYPE SI0 NUMBER WHERE MESSAGES SHOULD BEGIN. TYPE 1
TO PRINT THE FIRST CHANNEL PROGRAM
1

When the error-generating mode is selected, the following mes- error-generating
sage is issued before simulation of every channel command. option

debug
option

Figure 1 1 Addresses of DSlM
tables

CONTINUE

If 1, 2, 3 is selected, DSIM produces a channel-condition device-
end condition and the selected error. These errors are also re-
flected in the SIMD channel status word. This mode of operation
assists the system programmer to test various error-recovery
procedures and assists the application programmer in testing
I/o-related error conditions in his program. This option can be
extended, via programming, to produce any desired error condi-
tions that the user wishes to produce.

By selecting the debug mode, the user receives the addresses of
various DSIM tables that are valuable in verifying the correct-
ness of the processing or assisting in isolating errors when they
occur. Figure 11 contains examples of these type-outs.

The ccw table contains the ccws issued by 10s. DSIM, after
printing these addresses, halts so that the user can display the
contents of the tables.

Restrictions

DSIM simulates the user device in the SIMR machine as long as
the operating system or the application program does not in-
clude any timing dependencies or any dynamically modified
channel programs. Dynamically modified channel programs are
those that are changed between the time the SIO instruction is
issued and the end of I / O operations; i.e., changed by the chan-
nel program or the CPU. The record-overflow feature, which is a
means of processing logical records that span track boundaries
within a cylinder, is not supported. Not all hardware errors are
now simulated, although appropriate software could be written
to accomplish the pretense of an error of one’s choice.

Measurements

The creation or access of a data set on a direct-access device
involves at least three specific activities at the device level:
seeking (selecting the desired track on the device), searching
(finding the desired record on the track), and reading or writing.
The device characteristic tables identify timings appropriate to
each of these functions. DSIM provides the measurement of the
time required for the execution of these functions using the
aforementioned timings. The channel and the control unit tim-
ings are not produced; however, provision has been made for
this type of extension. In addition, DSIM reports the amount of
space that was utilized, i.e., the number of tracks used, and the
amount of data generated. Totals on the various commands is-

