An addressing space larger than main storage — virtual storage —
in System|[370 challenges the operating systém architect to
design a disk operating (DOS|VS) for superior program execu-
tion performancé.

Compared are the bases for program execution by DOS[IVS
with those of the earlier Disk Operating System. Increased sys-
tem versatility is presented in terms of storage management,
channel management, and program management.

Functional structure of IBM virtual storage operating systems
Part Ill: Architecture and design of DOS/VS

By J. P. Birch

The disk operating system for virtual storage in System/370—
DOS/VS —may be considered as an extrapolation of the disk op-
erating system for System/360—DOS—into the realm of IBM
computers that are equipped for virtual storage. DOS/VS is dis-
cussed in this paper from the points of view of its design and

structure and its application to the System/370 models equipped
for virtual storage. Virtual storage, which is an address space
that is larger than main storage, is discussed as it applies to
DOS/VS.

Inasmuch as a new line of hardware has evolved, one may ask
whether this might not be the appropriate time to introduce a
more uniform line of virtual storage operating systems. The
answer is one of the themes of this paper: the compatibility of
DOS/VS and DOS. Wlth such compatibility, the user can extend
his apphcatxon capablhty through the use of virtual storage, and
at the same time build upon and execute more efficiently his pres-
ent base of DOS application programs.

Another theme is that of the versatile capabilities of the operat-
ing system, which permit the programmer to concentrate more
freely on applications. Many environmental considerations that
impede DOS programmers—such as the planning of overlays,
sizes of partitions, and krowledge of the partitions in which ap-
plication programs are to run—have been greatly ameliorated in
DOS/VS. Also discussed are ways in which decisions formerly

NO. 4 - 1973 ARCHITECTURE AND DESIGN OF DOS/VS

Figure 1 DOS/VOS virual storage left to the system operator at job execution time have been sub-
map sumed by the design of DOS/VS and by the programmer.

224 BYTES
With the introduction of System/370, the relative costs of real
SHARED storage, central processing unit power, direct-access storage
AREA device speed and capacity have altered with respect to each
other as compared with System/360. Thus another design crite-
FOREGROUND rion of DOS/VS is that of optimizing the effects of the new sys-

i yRiuAL tem components so as to minimize job execution cost.
AREA
F2

Because of the architectural orientation of this paper, system
performance is discussed from a relative point of view, i.e., as a
Fa basis for choosing design options that are expected to maximize
performance in particular cases. In a System/360 DOs batch pro-
cessing environment, the number of jobs run per shift or per day
has often been a more important performance measure than the
speed of running a given individual job. In a mixed batch-tele-
processing environment, improved response time has been the
strategy. Of course, in any environment, the higher priority job
should acquire system resources ahead of lower priority jobs. A
system objective of ‘DOS/VS is to use system resources with
greater efficiency so as to achieve better balance between higher
and lower priority jobs.

F3

BACKGROUND

SUPERVISOR

Operating modes

The power of virtual storage and facilites for using it are embod-
ied in System/370 Models 115, 125, 135, 145, 15511, and 158. A

storage map for virtual storage in these models is shown in Fig-
ure 1. The size of the real address area (real storage) is speci-
fied for each of these models with a complementing virtual ad-
dress area to constitute a total storage size of up to 16 million
bytes. The System/370 Models previously mentioned can oper-
ate in either the real mode or the virtual mode. The real mode of
DOS/VS is similar to the DOS environment in that paging is not
involved. A type of application for which the real mode is pre-
fered is one in which there are time dependencies, such as mag-
netic character reading and processing. Here the time available
for processing is relatively fixed, and there is no time available
to bring in pages from peripheral storage. Therefore, all pages
in such fixed-processing-time applications are held in real
storage.

virtual In the virtual mode, the system may execute in as many as five
mode variable-size multiprogramming partitions, consisting of four
foreground programs (F1-F4) and one background partition, all
ranked by priority. Virtual addresses within a program are con-
verted to real addresses within main storage by the Dynamic
Address Translation, DAT, facﬂlty which is similar in principle

BIRCH 1BM SYST J

for all models of System/370. Channel programs are translated
from virtual to real addresses by virtual storage management,
which is discussed in the next section in conjuriction with the
channel indirect addressing feature of the channels and integrated
device adapters and controllers.

The shared virtual storage. area shown in Figure 1 is used to
hold access methods and a list of pointers (Directory) to a Core
Image Library (programs) instead of each application program
having to hold these access methods separately. Shared virtual
storage is discussed in more detail later in this paper.

Programs executed in the virtual mode are paged in and out of
main storage in 2K-byte pages, which is to say that only those
parts of the active programs that are reqtnred for immediate
execution need be in real storage. As other parts of the pro-
grams are required, DOS/VS is designed to page in the necessary
parts.

Studies of DOS revealed several problems experienced by users
that could be eliminated in the DOS/VS system design. The con-
straint of having three fixed-sizé partitions had been a limitation
on users who were running larger programs. Co,jrespondingly,
the fixed-size partitions had used storage inefficiéntly when
smaller programs were being executéd.

One solution to the large- program limitation had been the struc-
turing of overlay programs. The difficult techmque of overlay
programming had only to do with adapting a program to its envi-
ronment and had nothing to do with the application. To avoid
the difficulties of overlaying, some users found that it was pref-
erable to divide a given application into several steps and run
each step separately.

In teleprocessing applications, as another case-study example, it
was found that partitions tended to have large real-storage re-
quirement variations. Real storage was found to be wasted when
traffic was light because it continued to hold unused code and
data. When traffic was heavy, teleprocessing applications often
suffered response-time degradation because it was not possible
to retain all the required code and data within real storage.

Experiences such as these motivated the decision to design vir-
tual storage support around five variable-size partitions within
the 16 million byte (maximum) virtual storage configuration.
The designers also concluded from their studies that in many
cases it would be possible to increase the level of multiprogram-
ming with little or no overcommitment of real storage by in-
creasing the available storage via storage paging. The specific
storage paging algorithm is based on the following criteria.

No. 4 - 1973 ARCHITECTURE AND DESIGN OF DOS/VS

partition
design

paging
algorithm

1. Minimum number of pageins is of first importance because a
task or partition cannot execute until a pagein is complete.

2. Minimal number of instructions in the paging algorithm is
vital because the CPUs of the models in which DOS/VS runs
are relatively slower than those in which 08/vs1, 0s/vs2, and
vM/370 execute. (Thus the overall DOS/VS supervisor size
and number of instructions executed in the supervisor are
crucial to maintaning optimum operation rates.)

. Minimum number of pageouts is also very important because
paging 1/0 competes with other 1/0 operations for channels
and the control unit. '

Also, DOs/vs does not include pageout ahead. Therefore, in
some cases, it may be necessary to do a pageout operation be-
fore a pagein operation.

A working-set algorithm is used in DOS/VS because storage is
expected to be used cyclically. A working set is the set of pages
that have been used during a fixed period of time. Pages occupy
specified spaces, called page frames, in main storage.

The working-set algorithm operates as follows. A list of pages
used during the given time period is maintained, i.e., the working
set. Frame numbers of pages that are not in the working set are
kept in another list. These latter pages are eligible for replace-
ment and are placed in two queues in first-in-first-out (FIFO)
order as follows:

. Pages that are unchanged since the last time they were
brought into main storage, and that also have not been refer-
enced during that time period.

. Pages that have been modified since the last time they were
brought into main storage, but not referenced during the time
period.

The algorithm first replaces pages in the first queue in FIFO or-
der and updates a page-frame table. When the first queue has
been exhausted, the procedure is to pageout from the second
queue and update the table.

The working-set algorlthrn is one of the Class 2 algorithms de-
scribed by Belady.' This simply means that information is kept
about pages in main storage as opposed to not keeping such in-
formation (Class 1), on the one hand, or extending the record
keeping to peripheral storage, (Class 3), on the other hand.

The pure first-in-first-out algorithms that were studied were
found to adjust poorly to the cycllc nature of the application
programs being considered and, ;herefore page selection of FIFO
algorithms was poor. Algorithms based purely on Least Recently

BIRCH IBM SYST J

Used (LRU) criteria tend toward excessive pageouts, because
they do not give sufficient weight to unchanged pages. More com-
plex algorithms such as those that use anticipatory pageout tech-
niques and a multialgorithm approach were found to exces-
sively increase the resident supervisor size, relative to the benefit
gained.

Thus the chosen algorithm has been found to meet the algorithm-
selection criteria very well, and has also been especially efficient
in operations involving overcommitment. It has been estimated
that some large programs without overlays and overcommitted
by three hundred percent may run better than programs with
overlays and overcommitted by twenty percent. Programming
for good performance in a virtual storage environment is dis-
cussed2 in greater detail in the DOS/VS System Management
Guide.

The page replacement algorithm selected for DOS/VS has also
been found to meet the minimum-pageout criterion, and the con-
trol program size remains satisfactorily small. Interference
among paging I/O operations, other 1/0 operations, and process-
ing meets design specifications. Paging 1/0 is discussed in greater
detail in the section on channel management.

Regardless of the efficacy of the paging algorithm, there may
come a point at which there is no longer sufficient real storage
available to execute all active programs concurrently. Allowing
the system to attempt to continue executing under these condi-
tions is likely to cause an overall system performance degrada-
tion. DOS/VS, however, has been designed to detect excessive
overcommitment and to take corrective action by suspending
the execution of the lowest-priority virtual partition. This action
frees real main storage for executing the remaining programs. If
the suspension of one partition does not improve performance to
within system tolerances, suspensions continue until only one
program is being executed. Suspending other partitions in a
batch-teleprocessing environment when message traffic is at a
peak not only gives added real main storage to the teleprocess-
ing partition, but also gives that program more CPU time, faster
access to control program services, and faster access to devices.
The partition suspension action is taken on a priority basis, with
the lowest-priority partition being suspended first, because, prior
to the low-priority partition suspension, it is competing (albeit on
a low-priority basis) with the teleprocessing partition for the
CPU, 1/0 devices, and control program services.

DOS/VS attempts to overlap paging 1/0 with other processing.
Since, in other multiprogramming environments, the system can
be successful in overlapping 1/0 with processing, little effort has
been given to trying to optimize the paging 1/0 itself. Although

No. 4 - 1973 ARCHITECTURE AND DESIGN OF DOS/VS

storage
management

paging 1/0

paging 1/0 is overlapped, no sophisticated 1/0 techniques —such
as dynamically modifying channel programs while they are run-
ning —are used. Keeping the Control Program size small is be-
lieved to be more important. The accomplishment of this objec-
tive tends to further reduce the need for paging because more
real storage is available to the application.

When paging 1/0 is occurring in one partition, the system switch-
es to another partition. A similar situation exists when there is
multitasking within a partition, where the system switches tasks
if it encounters a page fault within the task that is currently exe-
cuting. As part of our system design approach, we took account
of the fact that many DOS users had written their own multitask-
ing support. To avoid forcing users to convert their own multi-
tasking support, which would create a compatibility problem, a
user exit has been provided to allow user-written multitasking
mechanisms to be aware of page exceptions and pagein comple-
tions. In this exit, the user-written multitasking mechanism
should be able to do its own task switching so as to overlap pag-
ing 1/0 operations.

The overlapping of paging 1/0 with other processing becomes
more complicated when a page fault occurs while a Supervisor
service is being processed. The worst case is to lock the entire
Supervisor. There are two ways to prevent this. The first is to
make the function re-entrant. (In Supervisor routines that are
not re-entrant, when one task wants to use the Supervisor anoth-
er task cannot do so.) In re-entrant Supervisor routines, if a
page exception occurs while a Supervisor function is being pro-
cessed for one partition, that partition waits until the page is
brought into real storage. While the first partition is waiting for
the page to be brought in, another partition can execute the
same Supervisor function. Many frequently used Supervisor
functions are re-entrant. Where re-entrance is not practical, a
gating-locking structure is used to lock a specific portion of the
Supervisor while paging is in progress. Should another partition
attempt to use a locked function, it is queued up on the lock, and
the system attempts to execute another partition.

Channel management

Mentioned earlier in this paper is the fact that computer systems
that use DOS/VS are equipped with dynamic address translation
(DAT) capability in the CPU, and that data addresses for instruc-
tions are translated by the cPu. Before channel programs can be
executed by the channel, the Supervisor must translate virtual
channel program addresses into real channel program addresses
because the channel does not have address translation capability.
An alternative approach, considered but rejected for lack of

BIRCH IBM SYST J

Table 1 Value of increased blocking and double buffering in three cases of file
maintenance

CPU Value of Value of
time increased blocking double buffering

Low High Medium
Medium Medium Medium
High Medium Negligible

Low Negligible High
Medium Medium Medium
High Medium Negligible

Low Medium Medium
Medium Medium Medium
High Medium Negligible

DOS-DOS/VS compatibility, is that of requiring the user to re-
compile (and in some cases recode) his programs so that they
can be executed under DOS/VS.

Within the technique chosen, data management access methods
have been designed into DOS/VS to minimize the effect on through-
put of channel program translation. The basic concept is to trans-
late channel programs only at the time the 1/0 request is issued
(EXCP time). In deciding on this approach, a method was con-
sidered and rejected that would have required a second transla-

tion at the time the physical 1/0 command is issued. Such an
approach would have caused a delay in reinstructing the chan-
nel, which would have been especially noticeable in the DOS/VS
environment where relatively high-speed 1/0 devices (e.g., the
IBM 3340 disk storage unit) are sometimes matched to relatively
low-speed CcPUs (e.g., System/370 Model 115).

The tradeoff is the flexibility of altering the channel program af-
ter the EXCP has been issued. This is regarded as a fair exchange,
since channel program alteration is typically not done in DOS/VS
access methods. In those rare cases for which it is necessary,
the access method locates and alters the translated copy of the
channel program.

The effect and value of blocking and double buffering differ in
the DOS environment from DOS/vS, where 1/O is relatively fast
compared to the cpuU. User experimentation is required to op-
timize the effect of increasing the blocking factor and using dou-
ble buffering under these conditions. Our experiences with three
cases of 1/0 operations are given in Table 1. These cases are
summarized as follows:

1973 ARCHITECTURE AND DESIGN OF DOS/VS

channel
programs

blocking and
doubie
buffering

Case 1. One file is used more than the others, as exemplified by
a program that merges files.

Case 2. Two files, both on the same channel, have greater usage
than others, as in a file maintenance program with sequen-
tial input and output.

Case 3. Two files, on different channels, have greater usage
than others.

In all three cases, of course, the CPU time required to process a
record is an important consideration. In Case 3, the double buff-
ering should first be tried on the slower device if the device
types are unlike. Also, an increase in blocking factor or the in-
troduction of double buffering may cause an increase in paging
activity.

Despite the efficiency of channel program translation, there
remain situations where serious degradation can occur. Pro-
grams with very high 1/0 rates—such as sorts, for example —
tend to have high system channel translation overhead. Degra-
dation is especially noticeable if the sort is running in a multipro-
gramming environment where the total CPU usage is high.
DOs/VS has the capability of allowing user programs to do
their own channel program translation, as exemplified by the
IBM program SORT/VS. User programs rarely have 1/O rates as
high as that of a sort. Therefore, the system design favors the
blocking and double buffering techniques previously discussed
before attempting to use a more specialized channel program
translation.

In addition to the classic benefit of multiprogramming — the abili-
ty to execute one program while another is waiting for 1/0 —an-
other factor has been found to be very important in DOS/vS. The
use of Rotational Position Sensing devices allows for the over-
lapping of multiple 1/0 requests.

When, in a multiprogramming system, an 1/O interruption occurs
during the processing of an EXCP, it is possible to reinstruct the
channel quickly without the saving, restoring, and dispatching
overhead that was required by DOS. DOS/VS had introduced a
standardized saving and restoring of all registers throughout the
Supervisor, whereas, in the DOS Supervisor, each routine selec-
tively does the saving and restoring. Although the saving and
restoring of all registers by DOS/VS are slower than selective
saving, there is the overall benefit in a multiprogramming system
of making it possible to branch from routine to routine in the
Supervisor. The DOS/VS method is based on studies showing
that, with this method, the total number of Supervisor instruc-
tions required to execute a job stream in a multiprogramming
environment is lower than the number required for executing the
same job stream in a single batch environment.

BIRCH IBM SYST J

Program management

One of the functions of DOS that has been a performance and
operational bottleneck has been that of the fetching of programs.
At link editing time, it has been necessary to specify the starting
address in main storage into which a program is to be loaded.
This has meant that multiple copies of the same program would
be required if a program were to be executed in more than one
partitibn. Thus, if a subroutine were to be used in common by a
number of programs, it would typically be link edited with each
program. This has made the maintenance of such subroutines
difficult. A cumbersome alternative in the DOS environment
would have been for the user to write a self-relocating program.

In DOS/VS, operations scheduling is done by the operator, and a
relocating loader loads programs into any of the five partitions.
The relocating loader resolves the program addresses when it
loads the program. The elimination of multiple copies of a pro-
gram eases program maintenance.

The fact that a great deal of time had previously been spent in
simply searching for programs is the reason that the ordering of
programs iri the library has had a dramatic effect on system per-
formance. In DOS, both the Program Directory (pointers) and
the programs themselves (Core Image Library) are maintained
in first-in-first-out order.

The fetching mechanism and library structure have been
changed in DOS/VS to improve system performance. The Core
Image Library Directory (pointers) is now maintained in alpha-
betic order and the programs (Core Image Library) are held in
first-in-first-out order. Thus a gain has been achieved in search-
ing for programs in the library. Although this means that the ear-
lier format of DOS private libraries is no longer usable, the gains
are considered worth that degree of incompatibility.

Although the program search mechanism has been improved in
DOS/VS particularly for the environment in which there is a large
real storage and a large amount of fetching, a program search
mechanism cannot be eliminated entirely. The System Dijrectory
List, which contains pointers directly to the program modules,
resides in virtual storage. Fetching performance is thus im-
proved, especially for transients and program phases thai are
frequently called by an active program.

The storing of copies of programs used in common by a number
of application programs in each application program partition, as
is the case with DOS, has been found to be wasteful of real stor-
age. Therefore, the shared virtual area is provided in DOS/VS to
allow such commonly used programs to be shared and concur-

NO. 4 - 1973 ARCHITECTURE AND DESIGN OF DOS/VS

relocating
loader

program
library and
directory

shared
virtual
area

réntly executed by other programs in multiple partitions. As was
mertioned earlier in this paper, the shared virtual area can hold
access methods and pointers to the Core Image Library.

Job management

Improved Job management techmques in DOS/VS have contribut-
ed greatly to the increase in jobs processed per day over our
prevmus experience with DOS. A large contributing factor to-
ward improved job throughput efficiency is increased operator
efficiency. In the DOS environment, the operator is required to
handle cards and make a great many object-time decisions. In-
corporited into DOS/VS is a library of cataloged procedures that
smooth job-to-job transitions espemally for productlon jobs. Job
control statements, which are sets of contrpl stgtements that
cause a Job to be executed, can be placed in the procedure li-
brary to greatly reduce operator card handlipg and typing. The
user need not be aware of the system configuration or under-
stand the job control statements to begin 'execqting a job by ys-
ing a cataloged procedure.

DOS requires the explicit specification of physical device ad-
dresses with the requirement that, for example, the operator as-
sign spec1ﬁc devices at object time or that a program can run
only in one specific partitign. DOS/VS incorporates the capablhty
of generic device allocation, by which the operating system as-
signs the devices. Generic device allocation allows the job con-
trol statements (including catalog procedures) to specify a de-
vice type —such as a tape unit—and volume serial number, if
necessary. DOS/VS is designed to make the logical decision of
which physical device to assign. Besides increasing operator
efficiericy, generic device assignment also improves multipro-
grammiing efficiency.

Concluding remarks

DOS/VS repres:(ants a significant set of enhancements, to the Disk
Operating System. The addition of virtual storage Sup;ilort addi-

tiona) partitions, and the relocating loader, among other items,
extends the ability of the user to perform mult1programm1ng
operations on System/370. Demands on the system operator are
reduced, as are thgse on the scheduling function at the user in-
stallation. This type of operation, however, may require some
changes in thinking by many DOS users, especially in consider-
ing factors that affect the total productivity of an entire com-
puter installation.

BIRCH IBM SYST J

CITED REFERENCES

1. L. A. Belady, “A study of replacement algorithms for a virtual-storage com-
puter,” IBM Systems Journal 5,2, 78 - 101 (1966).

2. IBM DOS|VS System Management Guide, IBM Systems Reference Library,
Form GC33-5371, IBM Corporation, Data Processing Division, White
Plains, New York 10604.

ARCHITECTURE AND DESIGN OF DOS/VS 411

