
The largest IBM programming eflort since the introduction of
OSl360, the virtual storage operating system OSlVS2-2 has
been designed to integrate efScient support for interactive, data
base, und data communications applications.

Discussed from the point of view of its designers are tradeofls,
options, and objectives of the architectural features related to
system parallelism, main storage exploitation, system resource
allocation, and system recovery.

Functional structure of IBM virtual storage operating systems
Part II: OS/VS2-2 concepts and philosophies

by A. L. Scherr

This paper discusses Release 2 of the IBM System/370 virtual
storage operating system (osIvs2-2) from the viewpoint of its
designers, who have provided the primary control programming
support for the large-scale models of the System/370 product
line-Models 145, 15511, 158, 16511, 168, and the shared main
storage multiprocessing versions of System/370, Models 158
and 168. The features of the operating system are described in
the context of goals that the designers have attempted to meet.
Since both oslvsz Release 1 and Release 2 are built on the base
of the System/360 Operating System for Multiprogramming with
a Variable number of Tasks (os/360 MVT), differences in design
and philosophy between the,two systems are compared through-
out this paper. It is assumed that the reader has a basic knowl-
edge of OS/360 MVT,~” and has been exposed to the overall con-
cepts of virutal storage: System/370, and O S / V S . ~ - ~

technological The operating system OsIvs2-2 represents such a thorough revi-
perspective sion of OS/360 MVT that, in many respects, it is a new system.

The need for a new control program base can best be under-
stood by considering several key points regarding OS/360 MVT.

os/vs2-2 is based on OS/360 MVT, which, in turn, is based on
Os/360 Release 1. The latter was designed to support useful
work in a machine having 32K bytes or more of main storage.

382 SCHERR IBM SYST J

OSIvS2-2 is aimed at supporting systems with substantially larg-
er main storage, and requires at least 768K bytes. OS/360 MVT
operates in an environment with at least 256K bytes of main
storage. Thus the minimum o s I v s 2 - 2 system is a factor of 3
larger than OS/360 MVT and a factor 24 larger than Os/360 Re-
lease 1.

Although OSi360 MVT is designed basically for batch processing
operations, it also supports activities such as interactive, data
base, and data communications applications. Most of the tech-
niques for this type of support were developed after the initial
system design.

As a consequence of these storage and application limitations,
0sIvs2-2 has been designed and oriented toward larger main
storage environments and the needs of more advanced applica-
tion areas and operational environments. These objectives have
been accomplished in essentially three major evolutionary steps.

The Time Sharing Option (TSO) was available in 197 1.’” An
extension of 0s/360 MVT, TSO is an integral part of O S / V S ~ - ~ .
TSO is designed to provide general-purpose time-sharing support
of o s / v s 2 - 2 - 0 ~ / 3 6 0 compatible programs. Available in 1972
was o s l v s 2 Release 1, which supports OS/360 MVT and TSO
functions in a virtual storage environment for System/370 ma-
chines with Dynamic Address Translation (DAT). Finally,
0sIvs2-2, previously outlined, is due to be available in 1974.
Each of these steps represents a major revision to the base
upon which they were built. Taken together, they have evolved
os/360 MVT into a fundamentally new system.

The overall design objectives for the new operating system-
o s / v s 2 - 2 - can be differentiated into the following categories:

Performance
Reliability and availability
Compatibility
Operating environment
New functions

The OSIvS2-2 design objectives in the area of performance can
be expressed in terms of responsiveness and parallelism. In an
interactive environment, these goals require minimization of the
effect of the execution performance of one application on anoth-
er and the minimization of software-imposed bottlenecks. An-
other goal has been to automate as much of the performance-
related installation activity as possible. That is, we have sought
to make the system more self-regulating and self-tuning, to pro-
vide for the dynamically changing allocation of resources to appli-
cations as their usage changes, and to give to the installation
more control and feedback in the area of performance.

NO. 4 1973 Os/vs?.-?. CONCEPTS A N D PHILOSOPHIES

It has been recognized that reliability and availability character-
istics of our systems have prevented many significant applica-
tions from being implemented. Because many proposed applica-
tions place the business of its users under the control of the
computer system, uncontrolled system failures could cause in-
tolerable losses.

Thus the reliability levels of our systems have tended to make
certain user applications infeasible. The objective of osIvs2-2 is
to make a quantum jump forward by providing significantly
greater levels of reliability and availability.

Compatibility for users of previous systems -at the object and
load module level for code, at the Job Control Language (JCL)
level for job streams, and at the command language level for in-
teractive users and operators - are fundamental requirements.
Investments of users of System/360 and osI360 in programming
and education on these systems must be protected. Facilities
have been added to the new operating system to provide ways
for existing functions to continue to be used.

The operating environment of the new operating system should
depend less on operations personnel for decision making. Situa-
tions where system performance is adversely affected by the
speed with which the operator performs his role should be elimi-
nated. In its broader scope, osIvs2-2 must provide support for
multiple systems that are connected either by shared main stor-
age or by shared direct-access storage devices or telecommuni-
cations lines. A complex of systems might include connections
of both types. Consolidation of the control and operational inter-
faces of such a complex in a consistent way is a significant re-
quirement.

Requirements for new functions in osIvs2-2 derive from the
objectives previously discussed as well as from the overall
objective of providing enhanced support for interactive, data-
base, and data-communication applications. An important new
item in this category is the Virtual Storage Access Method
(VSAM) , which provides improved data base support.

In connection with new system functions, another objective for
O S / V S ~ - 2 is to provide support for multiple applications running
concurrently in a single system complex. Such a complex may
include multiple CPUS connected as described previously. There
are three key requirements for successful multiple concurrent
application executions. Error isolation is required so that fail-
ures in one application do not affect the successful operation of
other applications or the system itself. Security is also necessary
in order that data or functions intended for one application can
be protected against access by other programs in the system.

I 384 SCHERR IBM SYST J

Dynamic resource allocation should make it possible for appli-
cation programs in the system to be given resources commensu-
rate with their current usage. As this usage shifts, the system
must be capable of reapplying its resources appropriately.

The design objectives just discussed have consistently influ-
enced the following topics related to oslvsz-2, which are the
main topics of this paper:

Parallelism
Main storage exploitation
Workload management
System resource allocation

Parallelism

A number of components of 0sIvs2-2 have been redesigned so
as to reduce or eliminate perfOrmance bottlenecks that were
created in OS/360 MVT and were carried over into 0slvs2 Re-
lease 1. The resulting effect on the performance of the system is
that a given program should experience substantially less delay
due to interference from other programs. One effect of these
redesigned components is that queues created by the system for
various resources and services should be shorter and cause less
delay to the programs being served. Compared and described
now are changes.in the following areas relating to parallelism:

Job queue
Data set and device allocation
Data set cqtalog
TSO region
Control program synchronization in multiprocessing
CPU dispatching

In an OS/360 MVT or Oslvs2 Release 1 system, the SYSl. SYS- job queue
JOBQE data set is used to store information that describes the
queue of jobs to be executed by the system. Also controlled by
the same data set are the queue of output from completed jobs
to be printed, punched, etc. by the system, and status informa-
tion relating to-among other things - the data sets and I/O de-
vices being used by jobs in execution.

All of this data can be divided into two categories. One category
relates to interregion information that is used for communications
among scheduling components in different regions of the system.
The other case concerns intraregion information used as a work
area for the process of scheduling a particular job and for com-
munication between the scheduler and data management (e.g.,

NO. 4 . 1973 OSIVS2-2 CONCEPTS AND PHILOSOPHIES 385

OPEN and CLOSE). The primary reasons for the presence of this
information in s Y s l . s Y s ~ o e Q ~ rather than main storage is to help
reduce the main storage requirements of the system and to pro-
vide audit trails on a direct-access storage device for use in recov-
ery after a system failure.

If either the Houston Automatic Spooling Priority system
(HASP) or the Asymmetric Multiprocessing system (ASP)'" is
used to perform I/O spooling, a secondary job queue is intro-
duced into the system that contains data similar to the interre-
gion information in SYSI.SYSJOBQE.

In most OS/360 MVT and OS/vs2-1 installations, the
SYSl.SYSJOBQE data set is a major bottleneck primarily because
of the high usage of the intraregion information. As a result, this
data set is often placed on a high-speed device and/or an other-
wise low-usage I/O channel.

In Os/vS2-2, the SYSl.SYSr0BQE data set and the bottleneck that
it creates are eliminated. This is accomplished by moving the
intraregion information associated with each job to a separate
area of virtual storage called the Scheduler Work Area (SWA).
Each job has its own SWA, and each can be accessed in parallel
via the paging mechanism. The interregion information is con-
solidated into the job queue that is maintained by the osIvs2-2
counterparts of the HASP and ASP J E S ~ , and JES3 (Job Entry Sub-
systems 2 and 3 I .

Access to this job queue does not interact with SWA access.
Because SWA does not automatically provide audit trail informa-
tion for recovery, a special journal is created for this funciton
and is stored by JES2 or J E S ~ in its direct-access spool space.

data set The process used to allocate devices, space on devices, and data
and device sets is heavily serialized in OS/360 MVT and in OSlvs2-1. Seriali-

allocation zation occurs not only with allocation for batch jobs, but also for
TSO dynamic data set allocation, and for the deallocation pro-
cess that occurs during end-of-job processing. In most cases,
only one execution of any one of these processes can occur at a
time. It is possible that tape or direct-access volume mounting
may also be a part of this serialized processing. If a particular
allocation request in os/360 MVT or in OslvS2-1 requires a de-
vice that is busy or off-line, all allocations are halted until the
request is satisfied. The result of these serializations is that the
process has been a serious bottleneck, and has caused excessive
response times for allocation requests. In certain cases, seriali-
zation has seriously limited the overall performance of the sys-
tem. The reason for the serialization of the OS/360 MVT alloca-
tion appears to be a result of a design philosophy that expected

In OSIvS2-2, the allocation mechanism has been redesigned to
provide its services with as much parallelism as possible. Allo-
cations for data sets on permanently mounted direct-access de-
vices are not serialized except for the few instructions that are
used to update certain control blocks in main storage. (This
point is discussed later in this paper in connection with locking).
Allocation requests of this type are the most common ones, and
the program structure of allocation has been oriented to mini-
mize the processing time for these requests.

Serialization of volume mounting has been eliminated except for
the case where the system has exhausted the space on perma-
nently mounted volumes for temporary data-set storage. In this
case, all requests for temporary data-set space wait for the com-
pletion of the volume mounting.

Serialization for device allocation occurs at the device-type lev-
el. That is, a request for a direct-access drive can be processed in
parallel with a tape drive request. Moreover, the servicing of re-
quests for two different types of direct-access drives (e.g., the
IBM 3330 and the IBM 2314) can be executed simultaneously.
The installation can define groups of devices within a type for
parallel processing, such as the 3330 drives on a particular chan-
nel. Device allocation occurs in a predetermined sequence that is
alterable by the installation on the basis of one device type at a
time. In this way, deadlocks among simultaneously executing
allocations are prevented.

The net result of the redesign is that the allocation process ceas-
es to be bottleneck, and response-oriented requests can be serv-
iced without the delays previously introduced by the queuing
of other requests.

The OS/360 data set catalog design also dates back to original data set

release of os/360 in 1966. This design was oriented toward ap- catalog
plications that involved a relatively small number of entries
(e.g., several hundred). This catalog becomes slow and difficult
to manage as the number of entries and the update activity in-
crease. In many contemporary installations, the number of cata-
log data sets has grown into the thousands. As a result, the cata-
log can become a serious performance bottleneck.

In o s I v s 2 - 2 , the data set catalog is implemented using an in-
dexed VSAM data set.' In contrast to the OS/360 catalog, the
indexed VSAM structure is related to the size and structure of
the storage devices and the catalog itself rather than merely to
the data set names.

In the OSI360 MVT version of TSO, time-sharing user jobs share TSO
regions of main storage. Several such regions can be created, but region

NO. 4 * 1973 OS/VS2-2 CONCEPTS A N D PHILOSOPHIES 387

Figure 1 OS/VSP-1 virtual stor-
age map

after a user is assigned to a particular region, his job can be exe-
cuted only from that region of main storage. Hence, TSO users in
the system are divided into groups with one group per region.
Since only one time-sharing user job can be executing in a re-
gion at a time, the number of time-sharing regions determines
the level of multiprogramming for time sharing. Also, the situa-
tion arises in which one region is relatively lightly loaded com-
pared to the other (s) , with no effective corrective action possi-
ble.

In oslvs2-1, the situation is fundamentally the same with the
only real difference being that the time-sharing user regions are
allocated from a 16-megabyte virtual address space rather than
real main storage. As a result, TSO jobs use only that main stor-
age that is required for their active pages rather than, as in
OS/360 MVT, using a region the size of which is determined by
the size of the largest job to run in that region.

I

Figure 1 shows a typical storage map of OSlvs2-1 with TSO.
Two time-sharing user regions are shown each with a group of
users (A,B,C . . . and X,Y,Z . . .). Their placement in the
map is a function of when they were created by the operator and
what else was in the map at the time they were created. The TSO
control region, created when the operator starts TSO, contains
extensions to the control program that support unique TSO func-
tions. The TCAM (Telecommunications Access Method) region
contains the primary buffers for the TSO terminals and the pro-
grams that control them.

In osIvS2-2, the concept of a time-sharing region shared by TSO
user jobs has been eliminated. Referring to Figure 2, conceptual-
ly what has been done is to transform the entire system into a
single TSO region that extends from the top of the lower system
area to the bottom of the upper system area. All jobs - including
TSO users and operator-started jobs-that previously ran in
unique regions now share the same address space. Multipro-
gramming, however, can now occur at any level and in any
combination. Thus, for TSO, the level of multiprogramming can
be adjusted by the system according to the TSO load. TSO pro-
grams can now be executed in any combination, and the TSO
regions and their potential for imbalance have been eliminated.

In OSIvs2-2, the specialized TSO functions that were previously ~

performed in the TSO control region have now been integrated
into the main line of the control program. The control region is ,
thus eliminated and all of the following functions previously
handled by this special region have been integrated into the main i
line control program:

Swapping- now used to control the level of multiprogram-

1

I 388 SCHERR IBM SYRT 1

Figure 2 OS/VS2-2 storage map

/f """"_ ~

2124 BYTI

I
J

TSO Y

B i

/

OSIVS2-2

TSO A

ostvs2-2

I
p o B

-
/'

/
TCAM

-
/
/

T

J

.

"_
/

0

I
I
I
I
I
I
I
I
I
I

ming; also replaces the OSl360 MVT rollout/rollin function.
TSO driver-replaced by a generalized program to control
the entire system in the System Resources Manager.
TSO link pack area-moved to the System Link Pack Area.
Secondary terminal hufers-moved to TCAM.

In the OS/360 MVT version of TSO, the concept of a Local Super-
visor Queue Area (LSQA) was introduced. The LSQA, adjacent to
the user's region, is used to hold all job-related control blocks that
were formerly held in a system-wide pool (called the System
Queue Area-SQA). In Os/360 MVT, only TSO jobs use the LsQA
so that these control blocks can be easily located and swapped.
In OSlvS2 all jobs use LSQA, for the same reason.

Figure 3 shows the storage layout map of a user region in
o s l v s 2 - 2 as well as the contents of the system areas in greater
detail. The nucleus contains the interruption handlers, the non-
pageable supervisor (including the dispatcher, IOS, and the pag-
ing mechanism itself), and nonpageable control blocks. The
fixed Link Pack Area (LPA) contains sharable re-entrant pro-
grams, which are made permanently resident by installation op-

to a region in o s l v s 2 - 1 or OS/360 MVT. User storage is allocated

NO. 4 1973 o s l V s 2 - 2 CONCEPTS AND PHILOSOPHIES 389

Figure 3 Detailed OSIVS2-2 stor-
age map

SYSTEM QUEUE AREA

PAGEABLE LINK PACK AREA

- - -” - - - _” -.
/

ADDRESS
PRIVATE

SPACES

I COMMON SYSTEM AREA

I

AND
LOCAL SYSTEM QUEUE AREA

SCHEDULER WORK AREA

USER STORAGE I

4 FIXED LINK PACK AREA

1
NUCLEUS

from the bottom of the space; the System Queue Area (Local)
and System Work Area (swA) spaces are allocated from the
top. The Common System Area (CSA) is used as a communica-
tion area between private address spaces. This area is required
because two private address spaces cannot be directly ad-
dressed simultaneously. The CSA is used by such components
as TCAM, JES3, and the supervisor for this purpose. The page-
able LPA is used for sharable, re-entrant programs that are paged.
The SQA is used for nonpageable system control blocks that re-
late to information for multiple jobs or private memories of in-
formation that cannot be in the LSQA. This information is re-
quired even if the private address space is swapped out.

multiprocessing In a shared main storage multiprocessing system, the fundamen-
locks tal performance objective is to make full use of the CPus avail-

able to the system. One of the primary requirements for meeting
this objective is to structure the control program so that it, too,
can be executed on both CPUS simultaneously. The reason the
control program might be unable to be run in parallel is that cer-
tain control information might be accessed and updated simulta-
neously, causing an error. Thus, such accessing must be syn-
chronized.

390 SCHERR IBM SYST J

In OS/360 MvT, synchronization is accomplished by disabling the
system for interruptions. Prior to the use of information whose
access must be synchronized, an interruption-disabling instruc-
tion is executed. After the information has been used, the sys-
tem is again enabled for interruptions. In the OS/360 MVT multi-
processing support, inter-cpu synchronization is accomplished
by having a single lock (or interlock) that prevents both CPUS
from being disabled at the same time. The second CPU spins in a
loop waiting for the first CPU to be enabled. If the proportion of
time during which the system is disabled is relatively low, this
approach does not lead to significant interference between the
two CPUS. For example, if one CPU is disabled twenty percent of
the time, the interference is approximately four percent (0.2 X
0.2). On the other hand, in a communication or data-base
environment where there are many interruptions to handle and
heavy use of control program services, the interference can be
significant. For example, if the proportion of disabled time on
one CPU is fifty percent, the interference between the two CPUS
is approximately twenty-five percent (0.5 X 0.5).

In o s I v s 2 - 2 , multiple locks-instead of a single lock-are used,
and they are defined for specific groups of control blocks and
functions. Prior to the use or updating of control information,
the specific lock (or in some cases locks) is obtained. The sys-
tem does not have to be disabled for interruptions while a pro-
gram holds a lock. Disabling occurs when the program is not
prepared to handle interruptions. Either or both of the CPUS may
be disabled at a given time.

The following are some of the specific types of locks:

Local lock-used to synchronize services within a private
address space. There is one local lock per private address
space.
Dispatcher lock-used by the dispatcher and others when
referring to CPU work queues.
Cornmon services lock - used to synchronize supervisor serv-
ices that involve shared address space.
Input/output (I / O) supervisor locks - one per type of control
block and logical I/O channel, which are defined to allow for
parallel interruption processing.
Paging locks -one for real main storage and one for auxiliary
storage.

Other locks are defined for services such as VTAM and JES3,
and in some cases, two or more locks are required for a particular
operation. The latter locks must always be obtained in a specific
order to prevent the possibility of the deadlock situation arising
when two programs simultaneously request the same locks in a

NO. 4 . 1973 OS/VS2-2 CONCEPTS AND PHII-OSOPHIES 39 I

different order. A system-wide order for obtaining locks is
enforced by the central lock management service routine that is
entered to obtain and release all locks.

The net result of this design is to substantially reduce the inter-
ference between multiprocessing CPUS. Elements of the control
program that hold different locks, regardless of whether they are
disabled, can execute in parallel. The relatively large number of
locks provides that the utilization of any one lock is small, and
thus interference for a given lock is minimal.

Main storage exploitation

Since the introduction of OS/360, the relative costs of main stor-
age, auxiliary storage, and central processing units have shifted
significantly. In osIvS2-2, the goal is to take advantage of the
relatively lower cost of main storage to provide improved per-
formance characteristics.

In OS/360 and in OSlvS2-I, main storage is used strictly to hold
programs or-more precisely - to hold the images of programs.
The addition of main storage to a system has been motivated
primarily by the need for more programs or larger programs in
main storage. Ordinarily, additional capacity is used to enable
new and larger applications to be run or to tune the operation of
existing programs in a system, typically by removing overlay
structures. The only other productive use of additional capacity
is to increase the level of multiprogramming. However, when
CPU and/or channel usage approaches one-hundred percent,
there can be no further performance gain from increasing the
level of multiprogramming.

In the past, increased performance in this situation has been
achieved either by higher speed CPUS and I/O devices or by
redesigning applications and/or system programs to use main
storage to reduce CPU and I/O activity. Such redesign can take
many forms, a simple example of which is using a directly ad-
dressed main storage work area rather than putting information
on a disk or a drum. In this way, not only is I/O activity eliminat-
ed, but so is the attendant CPU activity necessary to schedule
I/O, to translate channel programs, to handle interruptions, to
support task switching generated by programs waiting for I/O to
complete, and so forth.

Certainly, in many environments, there are data sets whose
usage is high enough to warrant making at least a part of it resi-
dent on a higher speed device or even, perhaps, in main storage.
In fact, there are environments where some blocks of data re-
ceive higher usage than some of the pages of a program. Ideally,

392 SCHERR IBM SYST J

Figure 4 Example service rates

0 100 200 300 400 500

ed for no longer than the specified slice size. However, the re-
sulting response time seen by terminal users cannot be directly
derived. Moreover, when improved responsiveness is required -
whether to increase’ or decrease the time slice size (or even
which parameter to change) is difficult to determiine.

osIvs2-2 emphasizes the provision of controls that relate more
directly to the external performance characteristics of the oper-
ating system. The primary parameters are expressed as rates at
which jobs of various categories ate executed. These rates are
called service rates in O S / V S ~ - ~ and they allow control over re-
sponsiveness and turnaround time for particular jobs or groups
of jobs. To be more precise, the service rate for a particular job
is a linear combination of its CPU time, the number of channel
programs started (MCPS) for user I/O, and the product of the
number of assigned pages of main storage and the number of
seconds of CPU time received while they are assigned.

Each of the three factors is multiplied by an installation-specified
constant and summed as follows:

Service rate = A (CPU sec) + B (EXCPS) + C(CPU page-sec)

Another dimension added to provide for dynamic control is the
ability to specify different service rates for various categories of
jobs ad the load on the system changes.

zoatal axis represents the rate of service, and the -vertical axis
shows Bur categories of user jobs, A, B, C , and D. Curve 1
show’s that user sets A and B, which are assumed to be execut-
ing interactive jobs, are given the highest Service rate. User set

lower service rate. User set D has other batch jobs, and has the
lowest service rate. Each job in the respective user sets is serv-

osIvs2-2 CONCEPTS AND PHILOSOPHIES 395

I provide acceptable performance for kach other job categories.

osIvs2-2 produces a report that shows the turnaround time or
the time-sharing response time for each set together with the
actual service rate achieved during the reporting period. In this
way, service rate and resporisiveness can be related, and adjust-
ments can be made on the various service rates. The report also
shows the number of jobs (or time-sharing transactions) started
and finished during the measurement period.

I

As was stated previously, the system attempts to give each job
in execution the service rate specified for its category. As jobs
are added to the system, it may no longer be possible to give
each of them the required service rate. In this case, other serv-
ice-rate curves (2 and 3) may be drawn to indicate the contin-
gency action taken by the operating system. Curves 2 and 3
show that no degradation is to occur for jobs in category A.
There is a slight degradation called for in categories B and C,
and set D is degraded the most. The system attempts to operate
as far to the right as possible and interpolates between curves
when necessary. Extrapolation occurs if the operating point falls
below curve 3 (or above curve 1) . The system report indicates
the average curve number used during the reporting period. For
example, a load of 2.3 implies that jobs have, on the average, a
service of 0.3 of the distance from curve 2 to curve 3.

System resource management

Given the workload objectives of an installation as specified to
the workload manager, the objective for the resource manage-
ment algorithms is to achieve maximum utilization of the hard-
ware configuration. All algorithms, including workload man-
agement and the necessary data gathering facilities, have been
centralized into the System Resources Manager (SRM). The ra-
tionale behind this centralizatibn is simply that the interaction be-
tween the various algorithms used to manage the systeni is high
enough to Warrant coordination of their actions. Moreover, hav-
ing all of these routines in a single component allows improve-
ments and modifications to be made more easily. Philosophically,
the SRM is an extension of the TSO driver concept so as to cover
the entire system.

I The functions performed by the SRM include the following:

110 load balancing-choosing devices for data-set alloca-

Heuristic dispatching - for jobs in specified sets, giving higher
tion so as to provide balanced use of I/O channels.

I 396 SCHERR IBM SYST J

priority to those that are cpu-bound, so as to maximize re-
source utilization and throughput.
Paging control-controlling paging activity and the number
of unused blocks of main storage.
Time sharing - swapping, time slicing, and controling the lev-
el of multiprogramming.

The last two items are closely related in that the amount of pag-
ing activity in the system is controlled in two ways. Individual
jobs in main storage are periodically examined and unused pages
in main storage are claimed, copied out to auxiliary storage,
if necessary, and the main storage space is placed on the avail-
able list. This examination occurs at a frequency that is deter-
mined individually for each job, and depends on the amount of
time the job has executed since the last examination. The intent
of this algorithm is to assure that each job, when it is in main
storage, is allotted sufficient main storage to avoid excessive
paging. Normally, this algorithm is not sensitive to the overall
load on the system, and, therefore, the amount of main storage
allotted to a job should be relatively independent of the other
jobs in the system.

The second aspect of the paging control algorithm monitors the
number of free main storage pages. When the number of pages
falls below a given threshold, the algorithm causes a job to be
removed from main storage. A job is added in main storage
whenever another threshold is exceeded. Adding and removing
jobs is done by an operation called “swapping” or “block pag-
ing,” wherein all job pages are transmitted to generally contig-
uous sectors in direct-access storage. Selection of a job for
swapping is usually based on the service rate criteria described
earlier in this paper. The job that is selected for removal is the
one that is farthest ahead of the service rate targeted for its user
set.

Swapping out also occurs whenever a job enters a so-called “long
wait” situation. Typically, this is a time-sharing job waiting for
input from the corresponding terminal user. Analogous situa-
tions are recognized for other types of jobs with the same result.

The overall effect of the SRM (coupled with the workload man-
agement facilities and the elimination of system bottlenecks) is
that the performance of the system is easier to tune. Tuning is
essentially the manipulation of bottlenecks in the system so that
their usage is balanced. Because of the significantly fewer bottle-
necks and because of the dynamic resource balancing done by
the system, the effort required on the part of the installation to
tune the system is significantly reduced. One effect is that the
number of static performance parameters that need to be speci-

NO. 4 e 1973 OSIVS2-2 CONCEPTS AND PHILOSOPHIFS 391

fied is reduced as is their criticality. Another result should be a
reduction in the need for dynamic intervention by the operations
staff in correcting resources imbalances and in making tradeoffs
between resource utilization and workload scheduling require-
ments.

Recovery

A major portion of the osIvs2-2 design is aimed at significantly
improving the reliability and availability of the system. Reliabili-
t y is a measure of the frequency of occurrence of software er-
rors; availability is a measure of the effect of these errors. Per-
fect reliability of the system is achieved by having an error-free
implementation of a correct design. Many techniques exist for
design verification and testing, but, in the final analysis, reliabili-
ty is ultimately established by testing the resulting programs.

Although advances have been made in recent years in the areas
of design and testing techniques, error-free systems of the size
and complexity of osIvs2-2 are still a long way off. As an exam-
ple of a key problem in achieving high reliability, consider a soft-
ware system whose minimum mean time to failure (MTF) goal is
thirty days. Assume that an MTF of five days has been achieved,
and that there are n failure-causing errors remaining in the sys-
tem. If the software is being tested simultaneously on m hard-
ware systems, and if each error has equal frequency of occur-
rence, and if each error is corrected immediately after it occurs,
it takes approximately 15 (n / m) days to reach a thirty-day relia-
bility level. Assuming one-thousand errors (i.e., one error per
thousand lines of code in a million-line system) and ten test sys-
tems, the required elapsed testing time is fifteen hundred days or
about four years running seven days a week. This approach to
error correction is clearly ineffective. Error detection can be
accelerated by careful selection of testing environments with
emphasis on maximal load and stress situations, but clearly an-
other approach is also required.

It should be noted in passing that, although the testing and de-
bugging assumptions used in this example are quite optimistic,
systems with a mean time to failure of thirty days or more are
expected to be needed by the end of this decade, if not today.

To achieve high availability in osIvs2-2, the decision was made
to complement the testing efforts by including programs whose
purpose it is to recover from the errors that do occur. These
programs are an integral part of osIvs2-2 and are specialized
recovery routines, each associated with a particular control pro-
gram function. Thus, the dispatcher has a recovery routine de-
signed for it, as do the interruption handlers and other system

398 SCHERR IBM SYST J

environments, the tradeoffs and decisions are extremely difficult
to decide. The intent of this paper has been to give insight into
the thinking behind the major new elements of the osIvs2-2 de-
sign.

OSIvS2-2 is the largest IBM programming effort since the intro-
duction of OS1360 in 1966. osIvs2-2 integrates many items into
the overall system that previously were special-purpose options,
such as TSO, ASP, HASP, and shared main-storage multiprocess-
ing. The major new features that have been incorporated into
osIvs2-2 are recovery facilities, VSAM, virtual IIO, the System
Resources Manager, the workload manager, and enhanced vir-
tual storage support.

The metamorphosis of osI360 into osIvs2-2 represents a signifi-
cant shift in emphasis toward the requirements of response-ori-
ented, interactive, data-base, data-communications applications.
o s l v s z - 2 is intended to be the base for the development of these
types of applications in the 1970s.

ACKNOWLEDGMENT
The o s / v s 2 - 2 design is the accomplishment of a large number of
IBM programmers whose contribution to this paper the author
gratefully acknowledges.

CITED REFERENCES

1. IBM System1360 Operating System, MVT Guide (OS Release 21 1, IBM
Systems Reference Library, Form No. GC28-6720, IBM Corporation, Data
Processing Division, White Plains, New York 10604.

2. “The functional structure of OS/360,” IBM Systems Journal 5, 1 (1966).
3. Introduction to Virtual Storage in Syitem1370, Student Text, Form No.

GR20-4260, IBM Corporation, Data Processing Division, White Plains,
New York 10604.

4. IBM Sysfeml370,’ OSlVS2 Planning and Use Guide, Form No. GC28-
0600, IBM Corporation, Data Processing Division, White Plains, New
York 10604.

5 . IBM Systernl370, Introduction f o OSIVSZ Release 2, Form No. GC28-
0661, IBM Corporation, Data Processing Division, White Plains, New
York 10604

6.’ OS/VS2 Planning Guide for Release 2, Form No. GC28-0667, IBM Corpo-
ration, Data Processing Division, White Plains, New York 10604.

7. A. L. Scherr and D. C. Larkin, “Time-sharing for OS,” AFIPS Conference
Proceedings, Fall Joint Computer conference 37, 113 - 1 I?, AFIPS Press,
Montvale, New Jersey (1970).

8. IBM System1360 Operating System Time Sharing Option Guide, OS Re-
lease 21.7, IBM Systems Reference Library, Form No. GC28-6698, IBM
Corporation, Data Processing Division, White Plains, New York 10604.

9.‘ OSlVS Virtual Storage Access Method (VASM) Planning Guide, Form
No. GC26-3799, IBM Corporation, Data Processing Division, White
Plains, New York 10604.

10. IBM System1360 and Systeml370, ASP Version 3, Asymmetric Multipro-
cessing System, General Information Manual, Form No. GH20-1173, IBM
Corporation, Data Processing Division, White Plains, New York 10604.

