Presented are early developments of storage management tech-
niques, particularly those used in OS[360. Innovations intro-
duced by systems that use dynamic address translation are
traced. The impact of these techniques on current IBM System/
370 Operating Systems is described.

Functional structure of IBM virtual storage operating systems

Part I: Influences of dynamic address translation on operating
system technology

by M. A. Auslander and J. F. Jaffe

During the history of System/360, operating system function has
continuously increased. This is reflected in the growth of lan-
guage, device, and data handling facilities, among others, which
provide a rich environment for data processing. Such facilities
are currently supported by batch-oriented multiprogramming

systems. However, demands for interactive facilities, for larger
and larger numbers of concurrent users, and for significant shar-
ing of data among users are growing,.

The advent of the System/370 virtual storage systems reflects
the changing nature of user needs as well as technological inno-
vations, a trend that becomes clearer when one considers the
historical development of the general-purpose operating sys-
tem.'” The first operating systems were used in a single-user,
batch mode where the primary purpose was to automate many
of the operator functions. In such an environment, all computing
resources not used by the operating system (e.g., Central Pro-
cessing Unit (CPU), storage devices, etc.) were available to the
single running job. Although this is a desirable mode of opera-
tion for the programmer, sequential operation causes inefficient
utilization of resources, since not all jobs use all resources, and,
therefore. a substantial portion of the system resources are idle.
Significant increases in CPU power and the introduction of au-
tonomous Input/Output (1/0) that could be overlapped with
CPU activity reenforced the need for more efficient utilization of

AUSLANDER AND JAFFE IBM SYST J

systems resources. Multiprogrammiing, or the concurrent execu-
tion of several programs, was developed to meet this need. In
addition, multiprogramming mdde it possible to service large
numbers of users simultaneously through time sharing.

Stated in terms of the impact of these changes on the systems
themselves, the movement has been away froimn the static pre-
planned environment, to a more dynamic, interactive one. This,
in turn, has placed a greater burden on the system, particularly
in the area of resource management.

Main storage and 1/0 devices were the first resources to be con-
trolled by the system since they had to be shared between the
system and the user. This really was a rather static arrangement.
The operating system took what it needed and left the remainder
to the user program, merely preventing the user program from
overstepping its bounds. As more than one user program be-
came active in a concurrent manner, true resource management
became necessary for the execution-time allocation of main stor-
age, 1/0 devices, and the CpPU.

With the introduction of large direct-access storage devices
(DASD), it became important to share devices among users, and
this required a distinction to be madg¢ between data and devices.
Data management was thus created. As users fouhd that data
sets (units of allocatable data) were also a subdlvidable entity,
selected portions of which could be shared among users, the
concept of data-base management was established.

Each of these concepts has been continuously evolving over the
years —becoming more and more refined, providing more and
more of the necessary function. Although we could reasonably
discuss each of these resources, it is the management of the pro-
gram address space on which we will focus. For, in fact, the ev-
olution of the System/370 virtual storage systems is in large part
the story of the evolution of storage management technology.

The storage ménagement problem

Storage management is a crucial aspect of operating system de-
sign because storage is both a scarce resource and a resource
that is not easily shared. Storage is scarce for economic reasons,
and is difficult to share if the program address space and the ac-
tual physical address space in which it resides for execution are
considered equivalent. By the use of relocatable loading tech-
niques, initial assignment need not be at a fixed, preplanned lo-
cation. However, once space is assigned, all program address
references are made in terms of the actual physical locations,
and these locations must remain available throughout the entire

NO. 4 - 1973 INFLUENCES OF DYNAMIC ADDRESS TRANSLATION

resource
management

main
storage
pre-emptibility

execution. (References 4, 5, and 6 are given to clarify the dis-
tinction being made between “‘relocation” apd “dynamic address
translation.”)

It follows that attempts to treat main storage as a pre-emptible
resource cause difficulties. To clarify this point, let us contrast
the management of CPU and storage. The sharing of the CPU in
multiprogramming is a good example of the pre-emptive alloca-
tion of a resource. At any instant, the CPU is serving some pro-
gram. If that program cannot immediately proceed, or, if a more
important program must be executed, the CPU can be pre-empt-
ed from its first task and assigned to another task. Thus the CPU
can always be asgigned to work that is, momentarily, the most
important.

Consider the gnalogous situation for main storage allocation. As
a running program needs main storage, it can be assigned from a
pool of free space. Assume now that a program needs more
space than is free and that another, less important program, has
space. The operating system, to let the more important program
continue, should allow it to use the space occupied by the less
important program. However, the operating system must first
save the contents of the main storage occupied by the pre-empt-
ed program '(much as the cPU scheduler first saves the CPU reg-
isters before reassigning the CPU). Moreover, since the two
programs now share some common storage, they can never both
be available for CPU assignment simultaneously.

If a scheme like this were to be implemented, the interprogram
dependencies could lead to situations in which only one program
would be available for CPU assignment at a time. Since through-
put, system performance, and responsiveness are all dependent
upon the system’s ability to select the right job (not just a job)
from a set of ongoing jobs, the impact of such a limitation is ex-
tremely significant.

There are two practical ways out of this situation. The first is to
give up pre-emptibility of main storage. However, without pre-
emptibility, it is not possible to allow each program to request
more storage as needed, due to the danger of deadlock. For
example, if two programs are started whose aggregate main stor-
age needs exceed the available space, they may reach a point of
conflict in which each is requestjng storage, but in which the
remaining available space cannot satisfy either request. Without
pre-emptibility, since neither program can complete until one
has obtained additional main storage, a deadlock situation arises.
To avoid deadlock, each program must be restricted, before-
hand, to a maximum storage size. This solution, in one guise or
another, is reflected in the various System/360 Operating Sys-
tems (0S/360).

AUSLANDER AND JAFFE IBM SYST J

The other wdy out is to eliminate the need to return exactly the
same maih storage locations after a pre-emption. This ap-
proach —effectively distinguishing between program address
space and physical address space reminiscerit of the earlier dis-
tinction between data and devices as supported by the tech-
nique of dynamic address translation —is the vety essence of the
virtual storage systems.

The road to virtual storage systems has been a lolig one, that has
been marked by significant ddvances. To place these advances
into perspective, we proceed by examining the development of
storage management techniques in 0S/360, and then turn to the
path followed by systems utilizing dynamic address translation.

08/360

0S/360 was originally concelved as a complete multiuser sys-
tem. The designers recognized the need for dynamic allocation
of the computer main storage ameongst the system users. As we
now understand, it is extremely difficult to attain this goal with
the hardware that was then available. Thus, three versions of
0s/360 were finally developed: primary control program (PCP),
multiprogramming with a fixed number of tasks (MFT), and mul-
tiprogramming with a variable number of tasks (MvT). The ma-
jor difference follows from the storage management schemes
that they employ. In all cases, however, the physical address
space and the program dddress space are considered equivalent,
and the total usable program address spaee is limited to the size
of main storage remaining after system requirerhents have been
satisfied.

PCP reflected the most drastic simplification in that only one job
could be run at a time. Thus neither main storage nor the central
processor need be dynamically allocated. The operating system
itself occupies a certain portion of main storage, and the remain-
der is available for the currently running job. No multiprogram-
ming is allowed, and there are no contenders for main storage —
therefore, no consideration is needed for alloeatirig the available
user space. Main storage allocation in 0$/360 PCP is shown in
Figure 1. Here is a concrete case of total static allocation. As
has previously been pointed out, since most jobs cannot use all
of the available resources, significant portions of the system can
be underutilized.

08/360 was never intended to operate this way. Even the design
of the job input and output facilities assumed concurrency of
spooling and job execution. Concurrency was realized by the
introduction of multiprogramming of a restricted kind.

No. 4 - 1973 INFLUENCES OF DYNAMIC ADDRESS TRANSLATION

Figure 1 0OS/360 PCP main stor-
age map

08/360 PCP

USER PROGRAM

0S5/360 PCP

0S/360 PCP

08/360 MFT

Figure 2 0OS/360 MFT main stor-
age map

0S/360 MFT

PARTITION 1

PARTITION 2

PARTITION 3

PARTITION 4

0S8/360 MFT

0S/360 MVT

To support multiprogramming, main storage must be shared
among several programs. The simplest solution to the storage
allocation problem (which could not be handled dynamically)
was the permanent partitioning of available main storage into a
number of pieces, each of which could support sequential pro-
cessing of the PCP variety. MFT permits an installation to allo-
cate a fixed number of partitions, each of a fixed size. An indi-
vidual job is then assigned to one of these partitions for execu-
tion. Main storage allocation in 0S/360 MFT is illustrated in Fig-
ure 2. If a job requires less than the predetermined main storage
allocated to its partition, that storage remains unused for the
duration of the job. Multiprogramming then takes place over the
partitions in use. Thus MFT provides dynamic allocation of CPU
and 1/0 resources among the jobs running in its several parti-
tions. In an environment where the main storage requirements
of the installation’s jobs are known in advance, are reasonably
homogeneous, and remain relatively unchanged, MFT is a
reasonable vehicle. : ‘

This solution has several important defects. Each job must be
designed to limit its peak main storage requirement to the size of
its partition. Thus if its requirements vary, it will of necessi-
ty underutilize the main storage allocated to it. Since each parti-
tion is used serially, a job that must spend a long time idle (e.g.,
waiting for a volume to be mounted) continues to hold its main
storage resource during that idle period. Finally, the available
main storage must be quasi-permanently divided into partitions
of fixed size. This leads to a compromise between a few large
partitions and many small partitions. Large partitions leave the
system underutilized when many small jobs are present, and
small partitions leave the system unable to service large jobs.

08/360 MVT, by performing a more dynamic allocation, removes
the necessity for making the compromises implied by 0s/360
MFT. Using the MVT option, the available main storage (i.e.,
that which is not used by the operating system) is divided into
contiguous storage locations called régions whose size is deter-
mined by job requirements. Originally, allocatjon was done at
job initiation time for the largest amount of maip storage needed
by a job at any point in its execution. Further refinements now
permit allocation on a step basis. Therefore, only the amount of
main storage needed by the executing step is reserved. Main
storage allocation as performed under 0S/360 MVT is shown in
Figure 3.

The 0S/360 MVT technique allows the number of running jobs to
vary according to their peak step main storage needs and thus
increases hardware utilization. Unfortunately, even this more
flexible form of dynamic allocation causes trouble. The problem
is that—as mentioned previously —once maig storage is assjgned

AUSLANDER AND JAFFE IBM SYST J

Figure 3 08/360 MVT main storage map at two instants of time

08/360 MVT 08/360 MVT

100K FREE 100K FREE

JOB A STEP 1 JOB A STEP 1
150K IN USE 150K IN USE

JOB B STEP 1
200K IN USE 200K FREE

JOB C STEP 1 JOB CSTEP 1
250K IN USE 250K IN USE

05/360 MVT 08/360 MVT

JOB B STEP 1 EXECUTING JOB B STEP 2 WAITING
100K UNUSED FOR A 250K REGION.
300K UNUSED

to a job, not only the space but the actual locations must be re-
served to that job. Thus a situation known as fragmentation
arises in which free main storage consists of small pieces that
could, in aggregate, support another job, but which are each too
small to be used. Fragmentation is illustrated in Figure 3. Two
successive time periods are shown; the left period precedes the
right period. During the earlier time period, step | of jobs A, B,
and C are executing and job B, step 1 completes. Next, on the
right, job B, step 2, which requires a 250K-byte region, is ready
to execute, but it cannot do so because of storage fragmentation.
Observe that, although there are 300K bytes of unused storage,
250K bytes of contiguous storage are not available for the execu-
tion of job B, step 2.

In addition, MVT is still plagued with the two other faults of
main storage preallocation. The maximum possible instanta-
neous requirement must be allocated for the duration of each
step, and this space remains in use even if a step must wait an
inordinate amount of time for some event. (Rollout-rollin, a fea-

NO. 4 - 1973 INFLUENCES OF DYNAMIC ADDRESS TRANSLATION

0S/360 MVT
time

sharing
option

virtual
storage

ture of MVT that attempts to address this question, is severely
limited by the requirement of returning a pre-empted job to its
original main storage locations).

The introduction of timesharing to 0S/360 MVT took place in the
form of the Time Sharing Option. In the case of timesharing,
responsiveness to user requests and support of multiple users
becomes exceedingly important. In cases where users have fre-
quent interactions with the system or effectively use little CPU,
the main storage reserved is unused for significant periods of
time (while the user is typing in information, receiving informa-
tion, thinking, etc.). Therefore, the system must share main stor-
age among several ongoing programs. TSO uses a swapping tech-
nique to achieve this objective. That is, a user’s program space
is written out to auxiliary storage (drum or disk) when it is inac-
tive, and is brought back into main storage upon his next inter-
action. (This can also be done when time slicing with several
CPU-bound users). However, a user’s program—due to the
problems discussed earlier in this paper —must be reloaded into
the same storage locations from which it was removed. There-
fore, even though there are several TSO regions operating, the
region to which a user is initially loaded is the one in which he
must continue to run.

Dynamic address translation

During the period of increasing function in general-purpose op-
erating systems, significant work was going on in the area of
dynamic address translation. Before proceeding into a discus-
sion of these systems and their innovations, let us define dy-
namic address translation.” The concept is simply stated as fol-
lows:

. An address space(s) (virtual storage) is defined that may
exceed the size of main storage.

. All main storage references are made in terms of virtual stor-
age addresses,

. A hardware mechanism is employed to perform a mapping
between the virtual storage address and its current physical
location.

. When a requested address is not resident in main storage, an
interruption is signaled, and the required data can be brought
into main storage.

The Atlas system is generally accepted as the originator of the

one-level storage system (virtual storage).”'® Thus, Atlas was

the first system to establish the distinction between program
address space and physical address space. This concept enables
an address to be *“ . . . an identifier of a required piece of infor-

AUSLANDER AND JAFFE IBM SYST J

mation but not a description of where in main memory that piece
of information is.”® By so doing, a natural outgrowth was the
ability to make the program address space larger than the physi-
cal address space. Thus, programs were no longer constrained to
the size of main storage.

Dynamic address translation and the notion of paging were used
to implement this facility. Paging is the technique of dividing
both main storage and program address space into fixed-size
blocks in a manner that is transparent to the user. By dividing
the program address space into blocks, a reference to any ad-
dress within a block causes that entire piece to be brought into
main storage. This technique dramatically reduces the size of
the tables used for mapping virtual addresses to physical ad-
dresses. In addition, since programs tend to access many con-
tiguous or neighboring addresses during their execution, the
number of page faults—or times when an address is not found
resident in main storage —is diminished. This, in turn, reduces
paging activity and improves performance. By establishing a con-
vention that divides main storage and virtual storage into equal-
size fixed blocks, the fragmentation problem is solved. That is,
when a page is no longer needed and a new page is required, the
new page can replace the old one without leaving sections of
unused main storage.

Thus, the Atlas system provided dynamic storage allocation.
Dynamic address translation made it unnecessary for pages to
be returned to any specific locations, thereby making pre-emp-
tion safe, and making possible the support of address spaces

larger than main storage. The concept of dynamic address trans-
lation solves many of the problems previously discussed.

Another major innovation occurred in the IBM M44/44X sys-
tem."’ This system introduced the concepts of multiple address
spaces and —a natural outgrowth —the “‘virtual machine.” These
concepts are at the heart of CP/67 and vM/370. The basic idea
here is to allow each user to have a virtual storage space of the
maximum possible size. This was done by establishing a unique
identifier for each active user that could be associated with a set
of page tables (maps for address translation). If each user has a
separate set of page tables then, in fact, each user has a unique
virtual address space. The concept of the virtual machine is real-
ly a restatement of this concept in terms of what the user sees—
a total set of system resources seemingly unshared with other
users. Such a machine looks the same to the user each time he
runs a job. The environment is clear and constant.

The concept of segmentation was a third innovation in the evo-
lution of dynamic address translation systems. The Burroughs

B5000 used a variable size entity —a segment —to contain logical

NO. 4 - 1973 INFLUENCES OF DYNAMIC ADDRESS TRANSLATION

multiple
address
spaces

segmentation

portions of programs and data and used the segment as the basic
unit of allocation.’””* Segmentation has two major distinctions
from the Atlas type system previously described. The most ob-
vious difference is the fixed-versus variable-size unit of storage
allocation. The second distinction is that segmentation intro-
duces a less arbitrary subdivision of a program. That is, instead
of dividing a program into fixed-size blocks that are not logically
distinguished from each other, programs are divided into pieces
that correlate with the user’s view of his program’s logical con-
struction. He can meaningfully refer to segments by name.

TS$S/360 used the notion of segments in quite a different way. In
that system, a segment is a collection of one or more fixed-
length pages where a page is the basic unit of storage allocation.
Whereas segments can be shared and protected as entities (al-
though not directly by name), the primary rationale is an imple-
mentation issue, i.e., reduction of the space required for page
tables, since only page tables for active segments need be kept
in main storage. In addition, although a portion of the file system
is also included in the user address space, data and programs
are, in the main, handled differently.

16

MULTICS'>™® combines the concepts previously described. On

the one hand, the entire address space —including data—is con-
tained in named segments, each of which can be protected and
shared. On the other hand, a segment is made up of one or more
fixed-size pages that are used for storage allocation. Thus both
the user concern for dealing with logical named entities and the

system concern for minimizing main storage fragmentation are
dealt with.

System/370 virtual storage systems

In the System/370 virtual storage systems, we see the conver-
gence of two major trends: the multifunction capability for which
the System/360 operating systems have been noted, and a signif-
icant portion of the technological advances demonstrated in the
various systems that have used dynamic address translation.

The System/370 virtual storage systems are the result of apply-
ing the technique of dynamic address translation to the storage
allocation problems of 0S/360. As we have seen, 0S/360 MFT and
08/360 MVT reflect two possible techniques for main storage allo-
cation at the job-step level. Both are ultimately limited by the
need to allocate to each job step an amount of real storage suffi-
cient for its most extreme need.

Although the System/370 virtual storage systems provide virtual
storage for computation, they have retained the 08/360 file sys-

AUSLANDER AND JAFFE IBM SYST J

tem. Thus the persistent storage of the system continues in
terms of data sets, volumes, and devices. The retention of the
0S/360 data set system, and the ability to do standard 1/0, have
been realized by implementing a simulation of the dynamic ad-
dress translation mechanism for the data channels. This channel
program translation approach leads to a high degree of compati-
bility between the nonvirtual storage 0S/360 and the virtual stor-
age operating system. Thus many programs written for 08/360
can be carried over with little or no change. The need for this
compatibility is the best justification for choosing this approa,ch
rather than introducing a segment oriented file system.

0s/vs1 and 08/vs2 Release 1 are exploitations, in the 0S/360 MFT
and 08/360 MVT architectures, respectively, of dynamic address
translation.'”"® By applying these techniques, a single main stor-
age of maximum possible size (i.e., 16 million bytes) is simu-
lated, and job step oriented allocation is performed within this
virtual storage. Because the main storage is so large, this fixed
allocation is expected to be able to serve the needs of most in-
stallations.

Of course, the System/370 configurations do not contain 16 mil-
lion bytes of main storage. Rather, the physical storage is dy-
namically {on an instant by instant basis) assigned to support
the actual computing needs of the job in progress. A job that
requests 200,000 bytes and uses only 100,000 bytes, reserves
200,000 bytes of virtual storage but uses (at most) 100,000
bytes of real main storage. If several job steps are running con-
currently, real main storage is assigned first to one, then another,
as the real computing demands require. Thus truly dynamic
main storage allocation, never practlcal on System/360 hard-
ware, is now functioning.

As we have seen, the single virtual storage provides true dy-
namic main storage allocation. For job mixes previously run in
smaller stares, the sharing of 16 million bytes normally causes
no problem. However, 16 million bytes can be a limitation. This
is particularly true if some of the workload is interactive. In
such a case, a number of Jjobs —all using parts of virtual storage,
but normally dormant— can consume the 16 million byte space.
(The problem is rare without some form of normally dormant
job, since a collection of active jobs that fill the virtual storage
usually overloads other system resources).

A good example of the interactive use of 0s/vS2 Release 1 is
TSO. If each TSO user were given a private section of the address
space, the initial space might be consumed. Thus TsO is realized
through the use of time-sharing regions, much as it was in 08/360
MVT. These regions are shared through a form of virtual swap-

ping.

No. 4 - 1973 INFLUENCES OF DYNAMIC ADDRESS TRANSLATION

0S/VS1 and
0S/VS2
Release 1

0S/VS2 Release 2

Another problem with sharing a single virtual storage is that
programmers must still act to conserve the addressability used
by théir programs. If they do not, several programs that should
be able to run concurrently in the single virtual storage may not
fit.

The solution to these weaknesses, and ultimately the most natu-
ral solution to the storage allocation problem, is the multiple vir-
tual storage approach of 0S/vs2 Release 2. As we have pre-
vigusly described, computer architects have expanded on the
Atlas idea by désigning systems in which each user has his own
virtual main storage. Again, the hardware/software techniques
of dynamic, address translation and paging provide real main
storage for just those sections of virtual storage that need to be
accessable.

In 0s/vs2 Release 2, this approach is used to provide each job
step with its own virtual PCP environment, wherein PCP exists in
an apparent 16 million bytes. All the storage space not allocated
to coritrol program use is available to user programs and there is
minimal cost for the possibility of using it. Significant cost
comes only for its actual use. Thus the programmer does not
have to limit his use of addresses to make multiprogramming
possible. Beyond this, he sees the same sized address space, no
matter what the current fesburces and work load of the installa-
tion.

With this advance, TSO can be realized by providing a separate
virtual storage for each user, just as for any other job. When the
TSO user is thinking, the control program releases real main
storage allocated to his job for use by other, more active jobs.

In this mannet, 0S/vS2 Release 2 supports the shared use of a
System/370 computer. Each sharer can request CPU, main stor-
age, and 1/0 paths as needed, leavirig the operating system to
allocate the available hardware in support of these requests as
required.

Paging implementation considerations

The idea of paging is straightforward and solves many problems.
It makes dynaimic storage allocation safe, and allows the pro-
grammer to ighore the constraint of available physical storage
size. If the technique is to be useful, however, it must not lead to
unacceptable cost.

When a program is paged, the operating system controls the
movement of pieces of the program and its working data be-
tween main storage and secondary storage. This mechanism

AUSLANDER AND JAFFE IBM SYST J

serves to replace the strategies of overlay and spill files that are
used to fit programs into conventional systems. The standard
approach to realizing paging decisions is to collect information
about the characteristics of programs as they run. Broadly
speaking, the system attempts to keep available those pages of
the program and its data that are used frequently, and to send un-
used sections to secondary storage. The system also attempts to
control the level of multiprogramming so that each active pro-
gram has enough pages in main storage to run efficiently.

The details of page replacement algorithms have been studied"”
during the development of paging systems, and techniques
evolved for making these decisions reasonably well. The success
of a paging algorithm, however, still depends on the programs it
is dealing with. As an example, it is possible to write a program
in a way that makes the amount of main storage needed for effi-
cient execution greater than the main storage available. When
this happens, that program usually performs poorly. The best a
good paging algorithm can do is to prevent that poorly written
program from affecting the other users of the system.

In addition to that of page replacement technique, an issue that
has been long discussed is the optimal page size. As page size
increases, more data are transferred with each page, and fewer
page faults occur. However, larger pages lead to increased traffic
between main and secondary storage and an increased amount
of wasted main storage. Studying these issues is made more
difficult because the page size of a machine is usually fixed by its
design, making comparison experiments difficult.

The practical aspects of paging do lead the programmer to con-
sider the fact that his program address space is being paged.
This is particularly true if his program strains the capacity of the
system. In this case, the programmer must remember that only a
certain portion of his program address space is in main storage
at any instant and design his program to work under that con-
straint.

Concluding remarks

The operating system started as a means for controlling the se-
quential use of a computer more efficiently than a machine oper-
ator could do himself. As computers have grown larger, faster,
and more able to support independent concurrent operations,
operating systems have grown to provide for the simultaneous
shared use of such systems. Thus multiprogramming, originally
developed to make still more efficient use of the hardware, has
become essential in its own right with the development of inter-
active computing.

NO. 4 - 1973 INFLUENCES OF DYNAMIC ADDRESS TRANSLATION

IBM operating systems have followed this evolution with a se-
ries of increasingly sophisticated multiprogramming mecha-
nisms. We have shown that these mechanisms can be character-
ized as resource managers, and that the management of main
storage was a perennial problem for 0s/360 caused by its inabili-
ty to distinguish program address space from physical address
space. The introduction of dynamic address translation in Sys-
tem/370 has provided a solution to the storage allocation prob-
lems of 0s/360. Thus the initial effect of this feature is an opera-
tional improvement for current workload. Virtual storage, how-
ever—just as multiprogramming —can also be a virtue in itself.
As programmers use the increased capabilities of the virtual
environment, they should find it easier to accomplish their goals.
This effect derives from their freedom to ignore many of the
space limitations that complicate programming in limited stor-
age. The consequences of this change may turn out to be the
real story of virtual systems.

CITED REFERENCES

1. S. Rosen, “Electronic computer: a historical survey,” Computing Surveys
1, 1,7-36 (March 1969).

2. S. Rosen, “Programming systems and languages 1965-1975,” Communica-
tions of the ACM 15,7, 591-600 (July 1972).

3. R. F. Rosin, “Supervisory and monitor systems,” Computing Surveys 1,
1, 37-54 (March 1969).

. B. W. Arden, B. A. Galler, T. T. O’Brien, and F. H. Westervelt, “Program
and addressing structure in a time-sharing environment,” Journal of the
ACM 13, 1, 1 -16 (January 1966).

. G. 0. Collins, “Experience in automatic storage allocation,” Communica-
tions of the ACM 4, 10, 436 -440 (November 1961).

. W. C. McGee, “On dynamic program relocation,” IBM Systems Journal
4,3, 184-199 (1965).

. P.J. Denning, “Virtual memories,” Computing Surveys 2,3, 153 - 189 (Sep-
tember 1970).

. C. H. Devonald and J. A. Fotheringham, ““The Atlas computer,” Daramation
7,5,23-27 (May 1961).

. J. Fotheringham, “Dynamic storage allocation in the Atlas computer, in-
cluding the use of a backing store.” Communications of the ACM 4, 10,
435-436 (November 1961).

. T. Kilburn, D.B.G. Edwards, M. J. Summer, and F. H. Summer, “*One-level
storage system,” IRE Transactions on Electronic Computer EC-11, 2,223 -
235 (April 1962).

. R. W. O’Neill, “Experience using a time sharing multiprogramming systems
with dynamic address relocation hardware,” AFIPS Conference Proceedings,
Spring Joint Computer Conference 30,611-621 (1967).

. Burroughs Corporation, “The descriptor—a definition of the B500 informa-
tion processing system,” Detroit, Michigan (1961).

. W. Lonegram and P. King, “Design of the B500 system,” Datamation 11,
11, 24-28 (November 1965).

. F. B. MacKenzie, ‘“Automated secondary storage management,”” Datamation
11, 11, 24-28 (November 1965).

AUSLANDER AND JAFFE IBM SYST J

. A. Bensoussan, C. T. Clingen, and R. C. Daley, “The MULTICS virtual
memory, concepts and design,” Communications of the ACM 15, 5,308 -318
(May 1972).

. J. Dennis, “Segmentations and the design of multiprogrammed computer
systems,” Journal of the ACM 12,4, 589 -602 (October 1965).

. See the article by A. L. Scherr in this issue.

. See the article by J. P. Birch in this issue.

. L. A. Belady, “A study of replacement algorithms for a virtual-storage com-
puter,” IBM Systems Journal 5,2, (1966).

INFLUENCES OF DYNAMIC ADDRESS TRANSLATION 381

