
This paper deals with the structure and use of indexes thatfacu-
itate the retrieval and storage of records based on a spec$c
value, value range, or value sequence of a givenjield of a record
within one or more data sets. Specijically, it examines general
index structures, maintenance, index entry compression, and
complex indexes as considered in the basic design of VSAM(l/ir-
tual Storage Access Method). Under complex indexes, indirect
secondary indexes and indexes to multiple data sets are consid-
ered.

Indexing design considerations
by R. E. Wagner

Indexes in the computer environment are functionally equiva-
lent to indexes in other environments. They are organized sets
of information used to facilitate a fast search of a set of entities.
For example, one of the most common indexes is the one at the
end of many books. This index allows a given word or phrase in
the book to be located fairly rapidly. The words in the book in-
dex represent the value or key on which the index is built, and
the page number is a pointer to where that word is used.

The base data on which an index is built can vary from such
unformatted material as the text of a book to such formatted
material as a payroll record with fixed length fields. Generally,
this paper deals primarily with a formatted base composed of a
set of similar records such as found in a payroll or inventory data
set. Some of the techniques, of course, do apply to indexes in
general.

Although indexes have been used in computers from the begin-
ning, the major use coincided with the availability of large, ran-
dom-access storage such as the IBM 1301 device. With the avail-
ability of this storage, it was more practical to handle only the
data required by a given process. This was not possible with
magnetic tape because of the sequential nature of the device and
of the lack of an update-in-place feature. With the ability to ac-
cess small segments of the data, a mechanism was required to
locate more quickly the data of interest. One of the methods that
emerged is indexing. For example, with an index built on part
numbers it was possible to locate a given inventory record much
faster than it was in the sequential tape environment and still
provide a way to process the data sequentially in part-number
order.

NO. 4 . 1973 INDEXING 35 1

age Access Method), and as such it examines various types of
indexes and their uses in terms of general structure, mainte-
nance, entry structure, and complexity. The section on general
index structure deals with the basic parts of an index and with
multiple-level, dense, and nondense indexes. The section on
maintenance covers the updating of an index and basic insertion
strategies. The section on entry structure considers ways in
which the entry can be represented in a minimum amount of
space. Under the topic of complex indexes, indirect, secondary,
and multiple data-set indexes are examined.

General index structure

The basic element of an index is an index entry. It is composed
of a single value and a pointer to a record that contains that val-
ue. To facilitate searching and maintenance, the entries are
placed in the index in ascending value order. If the index is
sufficiently large, it may be subdivided into index records that
contain multiple entries.

Consider an index containing 40,000 entries collected into 400
records, each of which contain 100 entries. To locate a given
value in this index using a binary search technique would re-
quire the examination of 16 entries in eight records. This repre-
sents a high search overhead if the examination requires an in-
put operation for each record. To minimize this, an index can be
built to index the original index. This new, second-level index
contains one entry for each record of the original index. The
entry contains the highest value in the original index record. For
the above example, the second-ievel index would contain 400
entries divided into four records.

Another index, or third-level index, could be built on the second
level. It would have only one record containing four entries.
With this new index, only three records need to be examined to
locate a given value.

index The original index, the index built on it, etc. are referred to as
levels levels of the index. The lowest level, or the original index, is

named the sequence set since it defines an ordering of the data
to which it points. The remaining levels are referred to as the
index set.

To locate a record with a given value via an index with multiple
levels, a specific set of index records is searched. This set is re-
ferred to as the search path and the records as the nodes in the
path. In the above-defined index structure, the number of nodes

352 WAGNER IBM SYST J

records, it is said to be a nondense index. A given set of data
records (data set) generally only has one nondense index since
only one contiguous physical ordering of the data is possible.

The nondense index offers a number of design trade-offs. Since
there are fewer entries in the index in general, it requires less
space, less maintenance, and less input-output transfers. But to
determine if a given key value exists in one of the records, it is
necessary to search the data records themselves. Therefore, if
the object of the search was to determine if a given value was or
was not present, the nondense index may require more process-
ing time than a dense index.

Maintenance

Whenever the data that is pointed to by a set of indexes is
changed by update, insertion, or deletion, it may be necessary to
alter the index itself. In the case of update, it involves a check to
see if the indexed value itself is changed and results in an index
update per index, which has a value change. Deletion results
in the removal of entries that point to the deleted entities. Inser-
tion results in the adding of values. The maintenance of the in-
dex itself is secondary to the maintenance of the base data in
terms of insertion.

insertion There are two basic insertion strategies, in-place and out-of-
place, and the one used is somewhat dependent on the indexes
involved. An index that has its entries ordered in the same se-
quence as the data to which it resolves is a prime index. If the
prime index structure takes advantage of this sequence, that is,
it is nondense, an in-place insertion strategy is required to main-
tain the nondense characteristic of the index.

The simplest insertion strategy is the out-of-place insertion. This
approach in its most basic form requires a single overflow area,
generally at the end of the data set, into which data insertions are
placed in a sequential manner. It may, however, make use of
space within the data set that was made available by record
deletions. This strategy works well with dense indexes, but se-
quential retrieval performance deteriorates as the number of in-
sertions increase. ISAM (Index Sequential Access Method) uses
a form of out-of-place insertion.'

The in-place insertion strategy is more complex and requires
multiple insertion areas. This type of insertion generally results
in data shifting and either chaining of records or the splitting of
record sets. The multiple insertion areas must be local to main-

There are two major drawbacks associated with in-place inser-
tion: integrity and secondary index maintenance. The integrity
problem is associated with the shifting of data, block or set split-
ting, and chaining in that the insertion of a given record may
affect other records. This problem can be minimized by writing
the updated records in a proper sequence and by minimizing the
number of chains. For example, the number of chains in ISAM'
could be reduced by increasing the number of overflow records
in a physical block. Currently there is one overflow record in the
physical block. In general, each overflow physical block requires
a chain or pointer to the next block in the chain.

A secondary index has its entries ordered in a sequence that is
different from the data to which it points. As a result, a second-
ary index must be dense and must be updated whenever a data
record is shifted. This updating can be minimized if secondary
indexes do not point directly to the data. For example, they
could resolve to a unique prime key.

VSAM is an example of combined data and index organization
that was designed for in-place inserts. The major new elements
of this organization are control intervals and control areas. The
control interval is a set of contiguous records in sequence order
by prime key and is the set of records pointed to by a single
sequence set entry. The control area is space that contains a set
of contiguous control intervals in terms of the prime key. This
ordering within the control area is not necessarily physical. The
ordering is controlled by a single sequence set record. Figure 3
illustrates the vSAM indexed structure.2

To facilitiate insertion, the control interval can contain a vari-
able number of records and free space. If a control interval con-
tains no entries, it is available as a spare control interval within
the control area. A generalization of the VSAM insertion rules is
as follows:

I

1 . Locate the control interval into which the record is to be in-
serted.

2. If there is space within the control interval, merge the record
to be inserted into the control interval. The insertion has been
completed, and no index update is required. (This assumes no
multiple indexes.)

3. If there is sufficient space within the control interval, check
to see if there is a spare control interval in this control area.

4. If there is a spare control interval do the following:

Map the first half of the records from the target control in-
terval into the spare control interval along with the new rec-
ord if it fits with this sequence, and write the new control
interval.

INDEXING 355

Figure 3 VSAM indexed structure

CONTROL AREA 1

CONTROL INTERVAL I
/bu I CONTROL INTERVAL

CONTROL INTERVAL

SEQUENCE SET

HIGH LEVEL

INDEX CONTROL AREA n I
CONTROL INTERVAL

CONTROL INTERVAL

SEQUENCE SET

CONTROL INTERVAL

Update the sequence set record for the control area by in-
serting an entry for the activated control interval, and write
the updated sequence set'record.
Map the second half of the records of the target control inter-
val into the first half of the target control interval. Merge the
record to be inserted if it fits into this sequence. Write the
updated target control interval.

5. If there is no spare control interval do the following:

Allocate a new control area and a new sequence set record.
Map the first half of the target control area intervals into the
new area and build the sequence set record for the new area.
Write the new control area and sequence set record.
Insert an entry into the high-level index for the new se-
quence set record.
Update the target sequence set record by making the first
half of the control intervals spare control intervals and write

The insertion can now be done via Rule 4 because half of
the control intervals in the original target and new control
area are spares.

Entry structure and compression

The index entry is composed of a specific value and a pointer
and is the basic building block of the index. Since an index gen-
erally is too large to reside in primary storage, performance can
be optimized by minimizing the size of the index. The previous
section defined a nondense index that accomplished this by min-
imizing the number of entries, but this approach is restricted to
prime indexes. In this section, reduction of the size of indexes is
examined in terms of the entry itself. This can be done by mak-
ing either the pointer or entry smaller. Three approaches are
considered. The first deals with pointer compression, the second
and third with key compression.

In contrast to the savings in terms of rlo transfers and space, the
compression techniques in general require additional CPU time.
Also, the key compression approaches require that the data it-
self must be examined to determine if a given key value does or
does not exist.

The first method, concerning pointer compression, only applies
to nondense prime indexes. Since the entry in a sequence set
points to a set of contiguous records, the pointers only have to
resolve to a set rather than to individual records. If the record
sets pointed to by a given sequence set record are fully con-
tained within a single area and the record set size is fixed, the
contents of the area can be implied from the sequence set record
rather than the individual entries. Under these conditions, the
pointer within an entry can be reduced to II bits where the maxi-
mum number of record sets that can be addressed by a single se-
quence set record is less than two to the nth. The resulting record
format is as follows:

ENTRY 1 ENTRY 2

BASE POINTER VALUE RRS VALUE RRS

To calculate the address of the record set, the RRS (Relative
Record Set) is multiplied by the RRS size and is added to the
base pointer.

The second and third methods deal with the values within the
entries for key compression. Thus far an entry contained a
complete value. This is not necessary if the value can be repre-

INDEXING

Figure 4 Binary search index across 15 values

Entry

I
2
3
4
5
6
7
8
9

10
I 1
12
13
14

Bit position

1
2
4
5
7
5
6
4
7
5
8
2
3
6

0 Pointer
-___

E -2
E - 3
E -4
D - 1
D-2
E -7
D-4
E -9
D-7
D-9
D- 10
E-13

D-12
E -14

I Pointer

E - I 2
E -8
E -6
E -5
D-3
D-6
D-5
E -10
D-8
E - l l
D-11
D- 15
D- 14
D- 13

Data values

1. 0010 0010
2. 0010 1000
3. 0010 1011
4. 0011 0010
5. 0011 0100
6. 0011 1010
7 . 0100 1000
8. 0100 1010
9. 0101 0011

10. 0101 1100
11. 0101 1101
12. 1001 0000
13. 1001 0101
14. 1010 0101
15. 1101 0110

Figure 5 Search paths for the index illustrated in Figure 6

Data value Search entries in order Path length

2.
1.

3.
4.
5.
6 .
7.
8.
9.

10.
11.
12.
13.
14.
15.

0010 0010
0010 1000
0010 1011
0010 0010
0011 0100
0011 1010
0100 1000
0100 1010
0101 0011
0101 1100
0101 1101
1001 0000
1001 0101
1010 0101
1101 01 10

E l , E2, E3, E4
El , E2, E3, E4, E5
El , E2, E3, E4, E5
E l , E2, E3, E6, E7
E l , E2, E3, E6, E7
El , E2, E3, E6
E l , E2, E8, E9
E I , E2, E8, E9
E l , E2, E8, E l 0
El , E2, E8, E10, El 1
El, E2, E8, E10, E l l
E l , E12, E13, El4
E l , E12, E13, E14
El , E12, E13
E l , E12

4
5
5
5
5
4
4
4
4
5
5
5
5
3
2

Average path length 4 113

sented in a path to the degree necessary to locate the data. Meth-
od two deals with a binary compression technique and method
three with a character compression technique.

binary An approach using binary compression (binary trees) was de-
compression veloped by L. J . Woodrum. The basic concept is as follows.

Given two values, they can be placed into two slots based on
the value of the first bit (starting from the left) in which the bit
value differs. For example, the values “ 10 lo” and “ 100 1” can
be placed into two slots based on the third bit in each. The index
entry for these values then could be represented in the following
manner.

358 WAGNER IBM SYST J

Dl D2 D3 D4 D5 D6 D l

Bit Position 3
Zero Entry Address of "
One Entry Address of "

character
compression

Figure 8 Full key
compression index

FLlValuelPointer

02lAElPTR AEGER
I IILIPTR ALESS
1 IINIPTR ANNET
IOllPTR ARENA
03lBAKlPTR BAKEN
2IINlPTR BANGS
22/RB/PTR BARBA
3 I/L/PTR BARLO
31lNlPTR BARNE
30llPTR BARTH
20I1PTR BATES
13lEATlPTR BEATY
30IlPTR BEAUD
21IHIPTR BEHEN
21/N/PTR BENDE
20IlPTR BERBE

360

Figure 7 Full key compression 1
P N F L Value I

(low value)
AEGER
ALESS
ANNET
ARENA
BAKEN
BANGS
BARBA
BARLO
BARNE
BARTH
BATES
BEATY
BEAUD
BEHEN
BENDE
BERBE

(high value)

-

1
2
2
2
1
3
3
4
4
4
3
2
4
3
3
3

-
2
2
2
1
3
3
4
4
4
3
2
4
3
3
3
1

-

0
1
1
1
0
2
2
3
3
3
2
1

3
2
2
2

2
1

AE
L
N

-

BAK
N
RB
L
N

EAT

H
N

Character compression was developed by H. K. Chang, W. A.
Clark, C. T. Davies, K. A. Salmond, and T. S. Staff~rd.”~ I t
eliminates characters from a key based on the actual characters
that identify it from other keys. For example, to tell the difference
between “apples” and “application” only the fifth letter is re-
quired. There are two types of character compression, front and
rear. The front compression of “apples” and “application” would
result in “es” and “ication”. The rear cornmession is “amle”

with the-resultant values “e” and Y’.-Of course, the values “e”
and “i” by themselves are not sufficient, but it illustrates the
general concept.

To build an index using this concept, it is necessary to expand it
to allow a given compressed entry to identify the given entry
from all previous and all following entries. Consider the three
values “annex”, “apples”, and “application”. The difference
between “annex” and “apples” is a “p” in the second position.
The difference between “apples” and “application” is an “e” in
the fifth position. The two differences can be combined to form
the value “pple,” which has one character front-compressed and
has a length of four. The resultant compressed value can be rep-
resented in a number of different ways. One of these is “ppli.”
In the previous case, an equal condition results in a hit, and in the
latter case, a less-than condition results. Figures 7 and 8 illustrate
full key compression and the resultant index based on the follow-
ing set of definitions and rules.

WAGNER IBM SYST J

I Figure 9 Search for "BATES"

Input Output
FL/ValurlPointer j I j 1 Rule Condition

02/AE/PTR AEGER 0 1 0 1 I.c. A (1) > E(1)
I I/L/PTR ALESS 0 1 0 1 3. j < F
1 l /N/PTR ANNET 0 1 0 1 3. j < F
lO//PTR ARENA 0 1 0 1 3 . j < F
03/BAK/PTR BAKEN 0 1 2 3 1 .c A(3) > E(3)
2l /N/PTR BANGS 2 3 2 3 1 .c A(3) > E(3)
22/RB/PTR BARBA 2 3 2 3 1 .c A(3) > E (3)
3 1 ILIPTR BARLO 2 3 2 3 3 . j < F
31/N/PTR BARNE 2 3 2 3 3. j < F
30//PTR BARTH 2 3 2 3 3. j < F
20//PTR BATES
13/EAT/PTR BEATY
30//PTR BEAUD
21/H/PTR BEHEN
21/N/PTR BENDE
20//PTR BERBE

I

2 3 2 3 1.a j = F a n d L = O

I

Dejinitions for construction

1. The current key is the value to be compressed.
2. The previous key is the previous boundary value to be distin-

3. The next key is the next boundary value to be distinguished

4. The initial value is the lowest and the last value is the highest

5. Character positions are numbered from the left starting with

guished from the current key.

from the current key.

within the constraints of the system.

I one.

Construction rules I
1. Calculate P , the position in which the previous and current I
2. Calculate N , the position in which the current and next key

3. If P equals N , save the Pth character of the current key, set
differ.

the front compression to P - 1, and the length to one. I
I 4. If P is greater than N , set the front compression to P - 1 ,

and set the length to zero. It is not necessary to save any por-
tion of the current key. An alternate rule is to set the front
compression to N - 1 . Since VSAM uses the P - 1 value as
the front compression value, the examples in Figures 9 and
10 use it.

5. If P is less than N , set the front compression to P - 1, save
the Pth through the Nth characters of the current key, and
set the length to N + 1 - P.

NO. 4 * 1973 INDEXING 361 I

I Figure 10 Search for “BEHEN”

I FLIVuluelPointer j l j 1 Rule Condition I
02IAEIPTR AEGER 0 1 0 1
1 1 ILIPTR ALESS

1 .c
0 1 I 1 3.

1 I INIPTR ANNET
l0llPTR ARENA

0 1 0 1 3.
0 1 0 1 3.

03/BAK/PTR BAKEN 0 1
21/N/PTR BANGS

1 2 1.c

22lRBlPTR BARBA
1 2 1 2 3.
1 2 1 2 3.

3 l /L/PTR BARLO 1 2 1 2 3.
3 1/N/PTR BARNE 1 2 1 2 3.
30IIPTR BARTH 1 2 1 2 3.

30//PTR BEAUD 2 3 2 3 3 .
2 I /H/PTR BEHEN 2 3 3 4 l .b(4) L exhausted -,-’ I
2 1 /bJ/PTR BENDE
20IIPTR BERBE I

Figures 9 and 10 illustrate the searching of the index defined in
Figures 7 and 8 for the values BATES and BEHEN based on the
following set of definitions and rules.

I Definitions and initiulizutions for searching

1. The search value is A, which is a vector of characters A (1)
through A (m) . The subscript j is used to reference the indi-
vidual characters and has a range of values from 0 to m - 1 .

2. The index entry value is E, which is a vector of characters E
(1) through E (L) where L is the length of the compressed
value. The subscript k is used to reference the individual
characters and has a range of 1 to L.

I

Rules for searching

1. I f j equals F then do the following:
a. If L equals zero, this is the entry of interest.
b. If A (j + 1) equals E (k) , then do the following:

(1) S t e p j t o j + 1 .
(2) Step k to k + 1.
(3) If the compressed key is exhausted (k < L) , repeat the

(4) If the compressed key is exhausted (k = L) , this is the

c. If A (j + 1) is greater than E (k) , step to the next entry and

d. If A (j + 1) is less than E (k) , this is the entry of interest.
2. I f j is greater than F , this is the key of interest.
3. I f j is less than F , then step to the next entry and repeat the

rule 1 b.

entry of interest. 1

repeat the rules.

rules.

362 WAGNER IBM SYST J

concatenated In a number of cases, a search of a given set of data is based on
keys two or more keys called concatenated keys. This type of search-

ing can be handled via multiple indexes, one per search key. If
the searching requirements are such that multiple indexes are
only needed for searches involving multiple keys, these indexes
can be merged into a single index. The entry in this type of an
index is composed of multiple values and a single point. For
example, if the merged indexes were based on the keys a, b, and
c, the entry could be the concatenated key a.b.c followed by a
single data pointer.

This type of an index has the two disadvantages of size and lim-
ited search. If the size of the key is increased, the entry becomes
larger, and the index tends to have more levels. This can be min-
imized by using fully compressed keys. Past observations indi-
cate that the length of the fully compressed key is more or less
independent of the size of the key. The search of an index with
concatenated keys is limited in terms of the order of concatena-
tion. For example, if the key is a.b.c, the index can be searched
on a, a.b, and a.b.c but cannot be efficiently searched on b, b.c,
or c. If the compression results really eliminate the size constraint
and there is a requirement for this type of searching, multiple,
concatenated key indexes may be the answer.

concatenated In certain environments, multiple sets of data may have a value
pointers in common. In many cases, this value is a data identifier and, as

such, is a candidate for indexing. For example, a payroll set of
data and a personnel set both contain name and serial number.
An index built on a common value could be constructed so that
its sequence set entries contain pointers for both sets of data
resulting in concatenated pointers.

The major advantages of this type of an index are minimum
space requirements and accessing when both sets of information
are desired. The space savings are only in terms of eliminating
the multiple occurrences of the key. The entry is therefore only
smaller in terms of the size of the multiple entries; it is larger
than one of the original entries. The major disadvantage is in the
resulting size of the entry due to increasing the size of the total
index such that the number of levels may increase. This problem
becomes significant if the number of accesses to the single sets
are more important than space and access to the multiple sets.

In certain cases, the pointer itself can be reduced in size. Con-
sider the above example in which personnel and payroll had the
serial number and name fields in common. If they both had a
simple prime index based on serial number, they could share an
index based on name provided that its sequence set entries had
its pointers in the form of prime key values, i.e, the serial num-
bers.

366 WAGNER IBM SYST J

INDEXING 367

