This paper deals with the structure and use of indexes that facu-
itate the retrieval and storage of records based on a specific
value, value range, or value sequence of a given field of a record
within one or more data sets. Specifically, it examines general
index structures, maintenance, index entry compression, and
complex indexes as considered in the basic design of vSAM (Vir-
tual Storage Access Method). Under complex indexes, indirect
secondary indexes and indexes to multiple data sets are consid-
ered.

Indexing design considerations
by R. E. Wagner

Indexes in the computer environment are functionally equiva-
lent to indexes in other environments. They are organized sets
of information used to facilitate a fast search of a set of entities.
For example, one of the most common indexes is the one at the
end of many books. This index allows a given word or phrase in
the book to be located fairly rapidly. The words in the book in-
dex represent the value or key on which the index is built, and
the page number is a pointer to where that word is used.

The base data on which an index is built can vary from such
unformatted material as the text of a book to such formatted
material as a payroll record with fixed length fields. Generally,
this paper deals primarily with a formatted base composed of a
set of similar records such as found in a payroll or inventory data
set. Some of the techniques, of course, do apply to indexes in
general.

Although indexes have been used in computers from the begin-
ning, the major use coincided with the availability of large, ran-
dom-access storage such as the IBM 1301 device. With the avail-
ability of this storage, it was more practical to handle only the
data required by a given process. This was not possible with
magnetic tape because of the sequential nature of the device and
of the lack of an update-in-place feature. With the ability to ac-
cess small segments of the data, a mechanism was required to
locate more quickly the data of interest. One of the methods that
emerged is indexing. For example, with an index built on part
numbers it was possible to locate a given inventory record much
faster than it was in the sequential tape environment and still
provide a way to process the data sequentially in part-number
order.

INDEXING

index
levels

The purpose of this paper is to present a general discussion of
indexing as considered in the basic design of vSAM (Virtual Stor-
age Access Method), and as such it examines various types of
indexes and their uses in terms of general structure, mainte-
nance, entry structure, and complexity. The section on general
index structure deals with the basic parts of an index and with
multiple-level, dense, and nondense indexes. The section on
maintenance covers the updating of an index and basic insertion
strategies. The section on entry structure considers ways in
which the entry can be represented in a minimum amount of
space. Under the topic of complex indexes, indirect, secondary,
and multiple data-set indexes are examined.

General index structure

The basic element of an index is an index entry. It is composed
of a single value and a pointer to a record that contains that val-
ue. To facilitate searching and maintenance, the entries are
placed in the index in ascending value order. If the index is
sufficiently large, it may be subdivided into index records that
contain multiple entries.

Consider an index containing 40,000 entries collected into 400
records, each of which contain 100 entries. To locate a given
value in this index using a binary search technique would re-
quire the examination of 16 entries in eight records. This repre-
sents a high search overhead if the examination requires an in-
put operation for each record. To minimize this, an index can be

built to index the original index. This new, second-level index
contains one entry for each record of the original index. The
entry contains the highest value in the original index record. For
the above example, the second-level index would contain 400
entries divided into four records.

Another index, or third-level index, could be built on the second
level. It would have only one record containing four entries.
With this new index, only three records need to be examined to
locate a given value.

The original index, the index built on it, etc. are referred to as
levels of the index. The lowest level, or the original index, is
named the sequence set since it defines an ordering of the data
to which it points. The remaining levels are referred to as the
index set.

To locate a record with a given value via an index with multiple
levels, a specific set of index records is searched. This set is re-
ferred to as the search path and the records as the nodes in the
path. In the above-defined index structure, the number of nodes

WAGNER IBM SYST J

Figure 1 Three-level balanced tree index

HIGH LEVEL

SECOND LEVEL

SEQUENCE SET

‘ VALUE | POINTER

Figure 2 Unbalanced index

examined is fixed and is independent of the specific search val-
ue. This type of an index is referred to as a balanced tree index.
If the number of nodes examined varies based on the specific
search value, the index is said to be unbalanced. An index can
be built originally as an unbalanced index to optimize the re-
trieval of certain records or may become unbalanced as a result
of insertions and deletions of values. Figures 1 and 2 illustrate a
balanced and unbalanced index, respectively.

In the index set, an entry pointed to a set of values contained
within the lower-level index record. This was made possible by
the ordering of the entries in the lower levels of the index. If the
data itself is ordered on the indexed value, a sequence set entry
can point to a set of records. In this case, the sequence set entry
contains the value for the highest value in the data record set
and points to the first value of the set. If the sequence set con-
tains an entry for each data record, the index is said to be dense.
If a sequence set entry only resolves to a set of two or more

No. 4 - 1973 INDEXING

insertion

records, it is said to be a nondense index. A given set of data
records (data set) generally only has one nondense index since
only one contiguous physical ordering of the data is possible.

The nondense index offers a number of design trade-offs. Since
there are fewer entries in the index in general, it requires less
space, less maintenance, and less input-output transfers. But to
determine if a given key value exists in one of the records, it is
necessary to search the data records themselves. Therefore, if
the object of the search was to determine if a given value was or
was not present, the nondense index may require more process-
ing time than a dense index.

Maintenance

Whenever the data that is pointed to by a set of indexes is
changed by update, insertion, or deletion, it may be necessary to
alter the index itself. In the case of update, it involves a check to
see if the indexed value itself is changed and results in an index
update per index which has a value change. Deletion results
in the removal of entries that point to the deleted entities. Inser-
tion results in the adding of values. The maintenance of the in-
dex itself is secondary to the maintenance of the base data in
terms of insertion.

There are two basic insertion strategies, in-place and out-of-
place, and the one used is somewhat dependent on the indexes
involved. An index that has its entries ordered in the same se-
quence as the data to which it resolves is a prime index. If the
prime index structure takes advantage of this sequence, that is,
it is nondense, an in-place insertion strategy is required to main-
tain the nondense characteristic of the index.

The simplest insertion strategy is the out-of-place insertion. This
approach in its most basic form requires a single overflow area,
generally at the end of the data set, into which data insertions are
placed in a sequential manner. It may, however, make use of
space within the data set that was made available by record
deletions. This strategy works well with dense indexes, but se-
quential retrieval performance deteriorates as the number of in-
sertions increase. ISAM (Index Sequential Access Method) uses
a form of out-of-place insertion.'

The in-place insertion strategy is more complex and requires
multiple insertion areas. This type of insertion generally results
in data shifting and either chaining of records or the splitting of
record sets. The multiple insertion areas must be local to main-
tain a high level of sequential performance.

WAGNER IBM SYST |

There are two major drawbacks associated with in-place inser-
tion: integrity and secondary index maintenance. The integrity
problem is associated with the shifting of data, block or set split-
ting, and chaining in that the insertion of a given record may
affect other records. This problem can be minimized by writing
the updated records in a proper sequence and by minimizing the
number of chains. For example, the number of chains in 1SAM'
could be reduced by increasing the number of overflow records
in a physical block. Currently there is one overflow record in the
physical block. In general, each overflow physical block requires
a chain or pointer to the next block in the chain.

A secondary index has its entries ordered in a sequence that is
different from the data to which it points. As a result, a second-
ary index must be dense and must be updated whenever a data
record is shifted. This updating can be minimized if secondary
indexes do not point directly to the data. For example, they
could resolve to a unique prime key.

VSAM is an example of combined data and index organization
that was designed for in-place inserts. The major new elements
of this organization are control intervals and control areas. The
control interval is a set of contiguous records in sequence order
by prime key and is the set of records pointed to by a single
sequence set entry. The control area is space that contains a set
of contiguous control intervals in terms of the prime key. This
ordering within the control area is not necessarily physical. The
ordering is controlled by a single sequence set record. Figure 3
illustrates the vsAM indexed structure.”

To facilitiate insertion, the control interval can contain a vari-
able number of records and free space. If a control interval con-
tains no entries, it is available as a spare control interval within
the control area. A generalization of the VSAM insertion rules is
as follows:

. Locate the control interval into which the record is to be in-
serted.

. If there is space within the control interval, merge the record
to be inserted into the controt interval. The insertion has been
completed, and no index update is required. (This assumes no
multiple indexes.)

. If there is sufficient space within the control interval, check
to see if there is a spare control interval in this control area.

. If there is a spare control interval do the following:

Map the first half of the records from the target control in-
terval into the spare control interval along with the new rec-
ord if it fits with this sequence, and write the new control
interval.

1973 INDEXING

Figure 3 VSAM indexed structure

CONTROL AREA 1

CONTROL INTERVAL

1

CONTROL INTERVAL

2

CONTROL INTERVAL

3

\\

CONTROL INTERVAL

SEQUENCE SET

RECORD 1

AN

i

HIGH LEVEL

|

INDEX CONTROL AREA n

|

CONTROL INTERVAL

1

CONTROL INTERVAL

2
SEQUENCE SEY

CONTROL INTERVAL
RECORD n

3

K""‘“\.

N

CONTROL INTERVAL

i

Update the sequence set record for the control area by in-
serting an entry for the activated control interval, and write
the updated sequence set record.

Map the second half of the records of the target control inter-
val into the first half of the target control interval. Merge the
record to be inserted if it fits into this sequence. Write the
updated target control interval.

. If there is no spare control interval do the following:

Allocate a new control area and a new sequence set record.
Map the first half of the target control area intervals into the
new area and build the sequence set record for the new area.
Write the new control area and sequence set record.

Insert an entry into the high-level index for the new se-
quence set record.

Update the target sequence set record by making the first
half of the control intervals spare control intervals and write
the record.

WAGNER IBM SYST J

& The insertion can now be done via Rule 4 because half of
the control intervals in the original target and new control
area are spares.

Entry structure and compression

The index entry is composed of a specific value and a pointer
and is the basic building block of the index. Since an index gen-
erally is too large to reside in primary storage, performance can
be optimized by minimizing the size of the index. The previous
section defined a nondense index that accomplished this by min-
imizing the number of entries, but this approach is restricted to
prime indexes. In this section, reduction of the size of indexes is
examined in terms of the entry itself. This can be done by mak-
ing either the pointer or entry smaller. Three approaches are
considered. The first deals with pointer compression, the second
and third with key compression.

In contrast to the savings in terms of /O transfers and space, the
compression techniques in general require additional CPU time.
Also, the key compression approaches require that the data it-
self must be examined to determine if a given key value does or
does not exist.

The first method, concerning pointer compression, only applies
to nondense prime indexes. Since the entry in a sequence set
points to a set of contiguous records, the pointers only have to
resolve to a set rather than to individual records. If the record
sets pointed to by a given sequence set record are fully con-
tained within a single area and the record set size is fixed, the
contents of the area can be implied from the sequence set record
rather than the individual entries. Under these conditions, the
pointer within an entry can be reduced to n bits where the maxi-
mum number of record sets that can be addressed by a single se-
quence set record is less than two to the nth, The resulting record
format is as follows:

ENTRY 1 ENTRY 2

BASE POINTER | VALUE RRS | VALUE RRS

To calculate the address of the record set, the RRS (Relative
Record Set) is multiplied by the RRS size and is added to the
base pointer.

The second and third methods deal with the values within the
entries for key compression. Thus far an entry contained a

complete value. This is not necessary if the value can be repre-

No. 4 - 1973 INDEXING

pointer
compression

key
compression

binary
compression

Figure 4 Binary search index across 15 values

Entry Bit position 0 Pointer 1 Pointer Data values

N

. 0010 0010
. 0010 1000
. 0010 1011
. 0011 0010
0011 0100
. 0011 1010
. 0100 1000
. 0100 1010
. 0101 0011
. 0101 1100
. 0101 1101
. 1001 0000
. 1001 0101
. 1010 0101
. 1101 0110

|
=0 NN R NI = W

i
Do

}

|
Q0 == h O\ W h NGO

N OO~ N AW =
|
<>

WO AW~

AW ANTDA NN NN~
omMmpuomgmgommm
ool
OUUmUmO OO mmmm
1] i
e

Figure 5 Search paths for the index illustrated in Figure 6

Data value Search entries in order Path length

0010 0010 El, E2, E3, E4

0010 1000 El, E2, E3, E4, E5
0010 1011 El, E2, E3, E4, E5
0010 0010 E1, E2, E3, E6, E7
0011 0100 El, E2, E3, E6, E7
0011 1010 El, E2, E3, E6

0100 1000 El, E2, E8, E9

0100 1010 El, E2, E8, E9

0101 0011 El, E2, E8, E10
0101 1100 El, E2, E8, E10, El1
0101 1101 E1l, E2, ES, E10, El1
1001 0000 El, E12, E13,E14
1001 0101 El, E12,E13, E14
1010 0101 El, E12, E13

1101 0110 El, E12

MNwunuhuuunh bbb hUhnnna s

Average path length

sented in a path to the degree necessary to locate the data. Meth-
od two deals with a binary compression technique and method
three with a character compression technique.

An approach using binary compression (binary trees) was de-
veloped by L. J. Woodrum. The basic concept is as follows.
Given two values, they can be placed into two slots based on
the value of the first bit (starting from the left) in which the bit
value differs. For example, the values “1010” and “1001” can
be placed into two slots based on the third bit in each. The index
entry for these values then could be represented in the following
manner.

WAGNER IBM SYST J

Figure 6 Binary tree index with a sequential list

Entry Bit position 0 Pointer 1 Pointer

[\S]

|
[=]

|
(=]
1
— 00 — LN A\ W th O\ 00—
—

|
——= O IO BN = B W

mmmmmrlnmmmmm
— e \D 00 N1 N BN

|
<

|
—
—_

W

CormomcoCoomomm
i

CmmeC s e m e m e e mmm
[
=3

AWNXATIR AN NDNEDN -

[
—_—
N A

L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 L-10 L~11 L-12 L-13 L-14 L-15
DI D2 D3 D4 D5 Dé6é D7 D8 D9 D10 DIl DI12 Di3 Di4 DiIs

Bit Position 3
Zero Entry Address of “1001” record
One Entry Address of “1010” record

If a new value “0111” was added to the index, the resulting two-
level index can be built:

Level 1
Bit Position 1
Zero Entry Address of “0111”" record
One Entry Address of level 2 entry
Level 2
Bit Position 3
Zero Entry Address of “1001” record
One Entry Address of “1010” record

Figures 4 and 5 illustrate this type of an index and its search
paths. The notation E — n refers to entry n and D — n to data
value n.

Although the binary tree approach provides a satisfactory means
of direct retrieval of a specific value, it presents some problems
in terms of sequential value ordered retrieval because the point-
ers to the data are not in sequence order within the index. One
method of minimizing this shortcoming is to make the entry
pointer offsets into a list of data pointers ordered by key value.
The list of pointers could then be used for sequential processing
and the binary tree for direct processing. Figure 6 illustrates this
modification to the index illustrated in Figure 5.

NOo. 4 - 1973 INDEXING

Figure 8 Full key

character
compression

compression index

FL|/ValuelPointer

02/AE/PTR
11/L/PTR
I1/N/PTR
10//PTR
03/BAK/PTR
21/N/PTR
22/RB/PTR
31/L/PTR
31/N/PTR
30//PTR
20//PTR
I3/EAT/PTR
30//PTR
21/H/PTR
21/N/PTR
20//PTR

AEGER
ALESS

ANNET
ARENA
BAKEN
BANGS
BARBA
BARLO
BARNE
BARTH
BATES

BEATY
BEAUD
BEHEN
BENDE
BERBE

Figure 7 Full key compression

Key P

z
'11
h

(low value)
AEGER
ALESS
ANNET
ARENA

BAKEN
BANGS
BARBA
BARLO

BARNE
BARTH
BATES

BEATY

BEAUD
BEHEN
BENDE
BERBE
(high value)

—WWW RANWA DR WW =N

WWWh NWARS RAWWe~ PDNN—|
PRDRNMNW mRWW WRRNO - |
O—= = O WOO = —mN—WwW O =N

Character compression was developed by H. K. Chang, W. A.
Clark, C. T. Davies, K. A. Salmond, and T. S. Stafford.” It
eliminates characters from a key based on the actual characters
that identify it from other keys. For example, to tell the difference
between “‘apples” and “‘application” only the fifth letter is re-
quired. There are two types of character compression, front and
rear. The front compression of “apples” and “application” would
result in “‘es” and ‘‘ication”. The rear compression is “apple”
and “appli”’. These two forms of compression can be combined
with the resultant values “e€” and “i”. Of course, the values “e”’
and “i” by themselves are not sufficient, but it illustrates the
general concept.

To build an index using this concept, it is necessary to expand it
to allow a given compressed entry to identify the given entry
from all previous and all following entries. Consider the three
values “annex”, “apples”, and “‘application”. The difference

699

between “annex” and “apples” is a “p” in the second position.
The difference between “apples™ and “application” is an “e” in
the fifth position. The two differences can be combined to form
the value ““pple,” which has one character front-compressed and
has a length of four. The resultant compressed value can be rep-
resented in a number of different ways. One of these is “ppli.”
In the previous case, an equal condition results in a hit, and in the
latter case, a less-than condition results. Figures 7 and 8 illustrate
full key compression and the resultant index based on the follow-

ing set of definitions and rules.

WAGNER IBM SYST J

Figure 9 Search for “BATES”

FL|ValuelPointer Condition

02/AE/PTR AEGER
11/L/PTR ALESS
11/N/PTR ANNET
10//PTR ARENA
03/BAK/PTR BAKEN
21/N/PTR BANGS
22/RB/PTR BARBA
31/L/PTR BARLO
31/N/PTR BARNE
30//PTR BARTH
20//PTR BATES
13/EAT/PTR BEATY
30//PTR BEAUD
21/H/PTR BEHEN
21/N/PTR BENDE
20//PTR BERBE

Id

A(l

> E(1)

)
F
F
F

<
<
) <
A(3) > E(3)
A(3) > E(3)
A(3) > E(3)
j<F

j<F

) <F
j=Fand L=0

NN NOOOOSOO
NN OOOO
o o0

W L L WD W) U et e
R

LVSILUS IR FS IR USROS R o R el

Definitions for construction

1. The current key is the value to be compressed.
2. The previous key is the previous boundary value to be distin-
guished from the current key.
. The next key is the next boundary value to be distinguished
from the current key.
. The initial value is the lowest and the last value is the highest
within the constraints of the system.
. Character positions are numbered from the left starting with
one.

Construction rules

. Calculate P, the position in which the previous and current
key differ.

. Calculate N, the position in which the current and next key
differ.

. If P equals N, save the Pth character of the current key, set
the front compression to P — 1, and the length to one.

. If P is greater than N, set the front compression to P — 1,
and set the length to zero. It is not necessary to save any por-
tion of the current key. An alternate rule is to set the front
compression to N — 1. Since VSAM uses the P — 1 value as
the front compression value, the examples in Figures 9 and
10 use it.

. If P is less than N, set the front compression to P — 1, save
the Pth through the Nth characters of the current key, and
set the lengthto N + 1 — P.

NO. 4 - 1973 INDEXING

Figure 10 Search for “BEHEN"

Input Output
FLIValuelPointer j 1 J 1

02/AE/PTR AEGER
I11/L/PTR ALESS
11/N/PTR ANNET
10//PTR ARENA
03/BAK/PTR BAKEN
21/N/PTR BANGS
22/RB/PTR BARBA
31/L/PTR BARLO
31/N/PTR BARNE
30//PTR BARTH
20//PTR BATES
13/EAT/PTR BEATY
30//PTR BEAUD
21/H/PTR BEHEN
21/N/PTR BENDE
20//PTR BERBE

(2

) <
1<
j<
)<
1<
1<

OmT T T T~

< A(3) > E(3)
. j<F
b4) L exhausted

WWRNNRNNNNE = === -
WRIN) — ot et it e 2 OO = O
B W NN RN N = e

Figures 9 and 10 illustrate the searching of the index defined in
Figures 7 and 8 for the values BATES and BEHEN based on the
following set of definitions and rules.

Definitions and initializations for searching

1. The search value is A, which is a vector of characters 4 (1)
through A (m). The subscript j is used to reference the indi-
vidual characters and has a range of values from 0 to m— 1.

. The index entry value is E, which is a vector of characters E
(1) through E(L) where L is the length of the compressed
value. The subscript k is used to reference the individual
characters and has a range of 1to L.

Rules for searching

1. Ifj equals F then do the following:
a. If L equals zero, this is the entry of interest.
b. If 4 (j + 1) equals E(k), then do the following:
(1) Stepjtoj+ 1.
(2) Stepktok + 1.
(3) If the compressed key is exhausted (k < L), repeat th
rule 1 b. ' :
(4) If the compressed key is exhausted (k = L), this is the
entry of interest.
c. If A+ 1) is greater than E(k), step to the next entry and
repeat the rules. '
d. If A(j + 1) is less than E(k), this is the entry of interest.
2. Ifj is greater than F, this is the key of interest.
3. If j is less than F, then step to the next entry and repeat the
rules.

362 WAGNER IBM SYST J

A major shortcoming of the compressed-value index as cur-
rently defined is the requirement to search it in a serial fashion.
This means that for an index with 1000 entries, the number of
entries searched to locate a given key on the average is 500; the
maximum is 1000. This effect can be minimized by dividing the
index into records and building higher-level indexes. The diffi-
culty with this approach is the number of levels required and the
length of the search path. For example, if the index contains
40,000 entries and the record contains 20 entries, a four-level
index is required.

Another approach to overcoming this shortcoming is to con-
struct a different type of index record in which two or more lev-
els are incorporated in a single record.’ To do this, two addition-
al rules must be added to the compression rules, and the defini-
tion of the previous key must be clarified. The additional rules
for two levels per record are as follows:

1. Divide the record into n sections that on the average can con-
tain n entries.

2. In the beginning of each section, construct an offset to the
last (high) entry of the section.

The selection of the previous key to be used in compression is
integral to the construction of multiple-level indexes and non-
dense indexes as well as multiple levels within the same record.
As originally defined, the previous key is the previous boundary
value. For nondense indexes, it is the last key compressed. For
multiple-level indexes, it is the last key compressed at this level.
When two levels are incorporated into a single record, the pre-
vious key depends on the type of entry being built. If it is a sec-
tion entry (the last in the section), the previous key is the last
key compressed in the previous section. Otherwise, it is the pre-
viously compressed key.

Take note that the definition of the next key has not been al-
tered. Figure 11 illustratés the entries for a two-level, sectional-
ized index with a section size of three. Figure 12 illustrates the
search through the index for the entry “BEHEN” using the pre-
vious search rules plus one additional rule. The new rule is that
the values of j and k are reset to their input values after the pro-
cessing of a level that is a high level or a section entry. Input
values are defined to be the values used to start the evaluation of
a given entry.

As a result of sectionalizing the index record to include two lev-
els, the average number of entries examined in searching for a
given key is the square root of n where #n is the number of en-
tries in the record. Table 1 compares the search time in terms of
entries examined for an index record with 50 entries.

NO. 4 - 1973 INDEXING

cascading
index

Figure 11 Two-level sectionalized index with compressed keys

First level Second level
Normal Section Normal Section
F L Value F L Value F L Value F L Value

AE
L

Complex indexes

A complex index is used to obtain a search value for another
index that is the merger of two or more indexes, or that is a
combination thereof. An index that yields a search value for
another index is called a cascading index. A merger of two or
more indexes results in concatenated keys or pointers to multi-
ple data sets, or a combination of both.

An index is a cascading index” if its sequence set entry pointers
yield a value on which another index is built. For example, if an
index based on the field values for name yields a sequence set

WAGNER IBM SYST J

Figure 12 Search for “BEHEN"

Input Output
Entry examined j ok Jj k Condition

03BOR 0 1 1 2 A(2) > E(2)
CHANGE LEVELS AND
RESET j AND k

04BARN 1 2 A(2) > E(2)

11E L EXHAUSTED
CHANGE LEVELS AND
RESET j AND k

13EAT 2 3 A(3) > E@3)

2IN 3 A(3) < E(3)
CHANGE LEVELS AND
RESET j AND k

f<F
L EXHAUSTED

Table 1 Search time comparison

Full key Compressed Keys
binary search sectionalized

Minimum 1 1
Maximum 6 16
Average 6 8

pointer in the form of serial number and another index based on
serial number points to the actual data records, the original in-
dex based on name is a cascading index.

The cascading index provides a number of advantages in terms
of maintenance of secondary indexes when the primary index is
a nondense index. Since nondense indexes require that inserts
are made in place and that this may result in the shifting of data,
indexes that point directly to the data in this environment must
be updated as a result of the shift. This updating can be elimi-
nated if the secondary index resolves to a primary key instead of
a direct pointer.

This solution does affect the efficiency of searching secondary
indexes because both the secondary and primary indexes must
be manipulated. This cost can be minimized by the physical
structure of the data in secondary storage and by additional pri-
mary storage.

NO. 4 + 1973 INDEXING

concatenated
keys

concatenated
pointers

In a number of cases, a search of a given set of data is based on
two or more keys called concatenated keys. This type of search-
ing can be handled via multiple indexes, one per search key. If
the searching requirements are such that multiple indexes are
only needed for searches involving multiple keys, these indexes
can be merged into a single index. The entry in this type of an
index is composed of multiple values and a single point. For
example, if the merged indexes were based on the keys a, b, and
¢, the entry could be the concatenated key a.b.c followed by a
single data pointer.

This type of an index has the two disadvantages of size and lim-
ited search. If the size of the key is increased, the entry becomes
larger, and the index tends to have more levels. This can be min-
imized by using fully compressed keys. Past observations indi-
cate that the length of the fully compressed key is more or less
independent of the size of the key. The search of an index with
concatenated keys is limited in terms of the order of concatena-
tion. For example, if the key is a.b.c, the index can be searched
on a, a.b, and a.b.c but cannot be efficiently searched on b, b.c,
or c¢. If the compression results really eliminate the size constraint
and there is a requirement for this type of searching, multiple,
concatenated key indexes may be the answer.

In certain environments, multiple sets of data may have a value
in common. In many cases, this value is a data identifier and, as
such, is a candidate for indexing. For example, a payroll set of
data and a personnel set both contain name and serial number.
An index built on a common value could be constructed so that
its sequence set entries contain pointers for both sets of data

resulting in concatenated pointers.

The major advantages of this type of an index are minimum
space requirements and accessing when both sets of information
are desired. The space savings are only in terms of eliminating
the multiple occurrences of the key. The entry is therefore only
smaller in terms of the size of the multiple entries; it is larger
than one of the original entries. The major disadvantage is in the
resulting size of the entry due to increasing the size of the total
index such that the number of levels may increase. This problem
becomes significant if the number of accesses to the single sets
are more important than space and access to the multiple sets.

In certain cases, the pointer itself can be reduced in size. Con-
sider the above example in which personnel and payroll had the
serial number and name fields in common. If they both had a
simple prime index based on serial number, they could share an
index based on name provided that its sequence set entries had
its pointers in the form of prime key values, i.e, the serial num-
bers.

WAGNER IBM SYST J

This type of an index can be used to interrelate data records that
have common data fields in a way similar to that of hierarchical
data organizations.

Summary comment

A significant amount of work has been done in the area of gen-
eral indexing in terms of simple indexing. This is reflected in the
development of access methods such as vSaM. Very little work
has been done on complex indexes. The only example given in
this paper is the cascading indexes of c1cs.” Future work could
include an expansion of the items discussed under complex in-
dexes. In particular, some attention should be given to the rela-
tionships between different sets of data. A limited set of these
relationships are provided by hierarchical data structures provid-
ed by systems such as the Information Management System.

CITED REFERENCES

1. IBM System{360 Operating System Indexed Sequential Access Method,
Form No. Y28-6618, IBM Corporation, Data Processing Division, White
Plains, New York.

. OS/VS Virtual Storage Access Method (VSAM) Planning Guide, Form No.
GC26-3799, IBM Corporation, Data Processing Division, White Plains,
New York.

. H. K. Chang, “Compressed indexing method,” IBM Technical Disclosure
Bulletin 11, No. 11(April 1969).

. W. A, Clark, 1V, C. T. Davies, Jr., K. A. Salmond, T. S. Stafford, High-Level
Index-Factoring System, United States Patent Number 3,646,524 (February
29, 1972).

. W. A. Clark, IV, K. A. Salmond, T. S. Stafford, Methods and Means for
Generating Compressed Keys, United States Patent Number 3,593,309
(January 2, 1969).

. R. E. Wagner, “Searching a compressed index,” to be published in the /BM
Technical Disclosure Bulletin (1973).

. Customer Information Control System; OS-Standard Program Description,
Form No. SH20-0605, IBM Corporation, Data Processing Division, White
Plains, New York.

INDEXING

367

