A Data DictionarylDirectory System can provide centralized
control over data resources and data management. This paper
presents introductory concepts of data dictionaries, their capa-
bilities, and an example implementation approach.

Data Dictionary/Directories
by P. P. Uhrowczik

Data is a resource in both its physical and descriptive aspects.
Both should be managed as any other major organizational re-
source —that is, data needs to be available on an organization-
wide basis and thus requires centralized control. Described in
this paper is a Data Dictionary/Directory (DD/D) which pro-
vides such a method of centralized control over data manage-
ment.

A DD/D is a centralized repository of information about data de-
scriptions such as meaning, relationships to other data, responsi-

bility, origin, usage, and format. It is a basic tool within the data-
base environment that assists company management, data-base
administrators, systems analysts, and application programmers
in effectively planning, controlling, and evaluating the collection,
storage, and use of the data resource. This particular usage of a
DD/D is termed the management use mode."”

The process of application development and maintenance can be
further improved by extending the use of the DD/D to program-
ming systems—compilers, Data Base Management Systems
(pBMS) and so forth. The objective is to remove from applica-
tion programming much of the effort required to define and
manipulate data by prestoring data parameters in a machine-
readable DD/D so that object code and/or data base manage-
ment systems may instead perform the necessary data manipula-
tion. This usage of a DD/D is termed the computer use mode.
The following are examples of such capabilities.”

Data Mapping. In many existing systems, the user {program-
mer) deals with data in a way that is represented in Figure 1.
This method is sometimes referred to as the ‘“physical-equal-

UHROWCZIK IBM SYST J

Figure 1 The “physical-equal-logical” environment

USER - SYSTEM STORAGE DEVICE

DATA
STORED RECORD 1 ELEMENTS

-— A -— A

IﬁoEgl(g:I:DL 1 B PHYSICAL BLOCK

DATA
STORED RECORD 2 ELEMENTS

- A - A

LR%%'(%B 2 B PHYSICAL BLOCK

DATA
STORED RECORD n ELEMENTS

———— A e A

Iﬁ%g'gs\é n B PHYSICAL BLOCK

logical” environment since the users’ view of the data (the

logical view) is essentially the same as the manner in which the
data are stored physically. The user (and his resulting program)
is aware of the three levels of mapping. However, his program is
data dependent since changes to the physical representation of
data require changes to his program and a recompilation. This
limitation can be solved by removing the awareness of stored
records from the programmer, shifting it to a DD/D so that he is
aware only of the user level (as shown in Figure 2) and having
the computer perform all mapping.

Data conversion. During the mapping process, data can be con-
verted to a different format. For instance, the stored physical
piece of data may be two characters long and packed, but the
user may get it as five zoned-decimal characters.

Data compaction. Data could be stored in a compacted form
(encoded), but presented to the user in a more meaningful format
(decoded). For example, “COBOL PROGRAMMING EXPERIENCE”
can be stored as ‘01", but presented to the user as previously
shown. Also, an address field can be stored without intervening
blanks, but expanded fully when presented to the user.

NO. 4 + 1973 DATA DICTIONARY/DIRECTORIES

Figure 3 Logical record and file
definitions

USER REQUEST (PROBLEM PROGRAM)

USER 1D 87601

RETRIEVE FILE SEQUENTIALLY IN
SEQUENCE BY DEPT/MANNO

LOGICAL RECORD DEFINITION

READ ONLY
AGER
YRS OF SERVICE
JOB TITLE UPDATE

LAST APPRAISAL READ ONLY

AVAILABLE DATA SETS

PAYROLL
DATA SET

PERSONNEL
DATA SET

STORED RECORD
DEFINITION DEFINITION

MANNO (KEY) MANNO (KEY)
NAME PRIMARY NAME

SALARY N| DEPT
YTD GROSS JOB TITLE
DEDUCTIONS | SETS ISON | HIRE DATE
MANNO LAST APPRAISAL
MANAGER

STORED RECORD

Figure 2 Removing the awareness of stored records from the programmer

USER SYSTEM STORAGE DEVICE

FILE DATA SET 1 STORAGE DEVICE 1

A A c A

PHYSICAL BLOCK

DATA SET 2

PHYSICAL BLOCK

F

G

PHYSICAL BLOCK

DATA SET 3

D

PHYSICAL BLOCK

Input and update validation. Data entering a program (input) or
data entering physical storage (update) can be checked against
pre-established editing standards. For example, data can have a
specified format, and lie within a specified range of values.

Test-data generation. System-generated test data with charac-
teristics as described in the DD/D can be presented to the user.

Logical record and file definitions. A user is generally interested
in processing only certain data elements forming a logical record
and desires that these logical records be presented to him in a
certain sequence. In Figure 3, the user defines his logical record
as a series of element names and states his desire to process
the file (a set of qualifying logical records) sequentially in a
DEPT/MANNO sort sequence. The fact that the file comes physi-
cally from two different data sets is predefined in the DD/D.
Thus the system can deliver the logical records properly assem-
bled in the requested sequence. The user and the program code

UHROWCZIK IBM SYST J

Figure 4 Hypothetical use of a Data Dictionary/Directory

DESCRIPTION TIME

") COMMON DATA
M1 DESCRIPTIVE
NGUAGE DATA
Rty ADMINISTRATION

N

COMPILE TIME

SOgRCE COMPILERS

OBJECT
CODE

SYMBOLIC DATA REFERENCES

-

DD/D
ON LINE
PD/D INTERFACE

N~

EXECUTION TIME

OBJECT
CODE*

SECURITY CHECKS, LOGICAL RECORD REQUEST
EDITING RULES,
MAPPING INFORMATION,
USE STATISTICS

DD/D
ON LINE
DD/D INTERFACE

PHYSICAL RECORD REQUEST

ACCESS PHYSICAL ACCESS ORGANIZA-
METHODS

*COMPILER'S OR INTERPRETER'S RESULTING CODE

do not define or know about the payroll and personnel data sets.
Changes in these data sets affect only the unique DD/D descrip-
tion and not the program.

JCL Generation. Job Control Language (JCL) statements for
physical data sets can be automatically generated as required by
the particular operating system in use. This not only eliminates
the user’s preoccupation with JCL, but it can also facilitate mi-
gration to different operating systems.

Access to distributed data bases. Data bases or portions of data
bases may be physically stored in different locations on different
computers, linked via data communication facilities. Some loca-
tions may store and access only local data; others may access
data from other locations as well. The DD/D (one at each
location) describes where physical data is located. A user re-
questing certain data need not be concerned about its physical
location. The DBMS upon receiving the request can decide, with
the information provided by the DD/D, whether to satisfy the
request from the local data base or to forward it to a different
location.

No. 4 + 1973 DATA DICTIONARY/DIRECTORIES

Physical-data usage characteristics. At program-execution time,
the DD/D can be used to store statistical information about phys-
ical accesses to individual data elements.

Some of these capabilities do exist today to a limited extent in
some higher level languages such as Generalized Information
System (GIs) and Interactive Query Facility (IQF), and in some
DBMSs such as Information Management System (IMS). The
capabilities of these systems are achieved by predefining data
descriptions in three different DD/Ds, one for each product.*® ¢
The differences occur in the data-description input language,
content, and format of the DD/Ds. The multiplicity of DD/Ds in
these products merely reflects independent developments, but
an objective should be to achieve a single DD/D to be used
by most systems. The use of this single DD/D could then be
extended to other languages (for example, COBOL, PL/I, and
assembler) to satisfy their own data-definition requirements in-
stead of relying on the individual data descriptions that each
programmer has to supply, or their own common sources of
definitions such as COPYLIB in COBOL and MACLIB in assembler.

Figure 4 illustrates how this hypothetical DD/D could be used.
First, the data descriptions are built in the DD/D via some com-
mon data-descriptive language. An approach to such a language
is referenced.” At compile time, individual compilers reference
the DD/D to produce the appropriate object code. At execution
time, the resulting object code or the DBMS references the DD/D
to satisfy the request for data and performs the required data
manipulations. Note that the DD/D acts merely as a common
repository for data descriptions.

Concepts of a Data Dictionary/Directory System

Thus far, a DD/D has been defined as a centralized repository of
data descriptions. The following discusses a Data Dictionary
Directory System (DD/DS) — that is, how different users interact
with a DD/D and what some of the possible outputs are. De-
scribed is a DD/DS that has some immediate practical uses with
present hardware and software capabilities and is therefore more
oriented toward the management-use mode. Future hardware
and software developments will undoubtedly extend its scope
and use, especially in the computer use area.’ The following are
DD/DS aspects to be considered:

» Objectives of a DD/DS.
» Capabilities required.

& Possible users.
& System overview,

UHROWCZIK IBM SYST J

The general objectives of a DD/DS are to:

Prevent unplanned redundancy and inconsistency in applica-
tion systems development in the areas of source-data collec-
tion, processing, secondary storage, and information to users.
Reduce application systems development and implementa-
tion lead times and costs.

Reduce applications modification lead times and costs.
Allow for establishment and enforcement of standards re-
lating to data usage and data responsibility (format, meaning,
validity, timeliness, and so forth).

Although these objectives are similar to the often-cited objectives
of a DBMS, to a certain degree these can be achieved even outside
of a DBMS environment by means of a DD/DS. However, the
combination of a DD/DS and DBMS can achieve these objectives
to a much higher degree than can either by itself. For example,
it is frequently stated that a DBMS facilitates the elimination of
data redundancy. While it is true that a DBMS will facilitate the
implementation of application systems that process non-redun-
dant data, it in itself will not detect data redundancy. Today,
data redundancy/inconsistency can be detected only by humans
(as opposed to computers) who have some means of recognizing
it; this can also be achieved using a DD/DS.

Depending upon the particular environment, some combination
of the following capabilities has to be present in the DD/DS to
achieve the stated objectives:

A generalized methodology for clearly describing data char-
acteristics, relationships and uses. Examples are meaning,
origin, relationships to other data, responsibility, users, and
format.

Determination of whether a data element has been previous-
ly defined in the DD/D or is inconsistent with previously de-
fined data.

Control of the usage of multiple versions of the same item.
The ability to cross-reference any item described in the DD/D.
A method of accessing the DD/D to answer unpredictable,
selective types of business planning questions.

Production of standard documentation in the areas of pro-
cesses, data bases, data sets, segments and element defini-
tions.

Production of striuctured source-data definition statements for
inclusion in source code by programmers for all program-
ming languages. This capability would also include the
acceptance of existing source-data definitions as input to the
DD/D to help in the initial data collection process.

Production of macro definitions for use by specific data base

NO. 4 ¢ 1973 DATA DICTIONARY/DIRECTORIES

objectives
of a DD/DS

system
overview

Figure 5 Possible users of DD/DS capabilities

&
&
$§
2
(<)
s
<

. GENERALIZED DEFINITION
OF DATA

. REDUNDANT/INCONSISTENT
DATA DETECTION

. VERSION CONTROL

. WHERE USED

. PLANNING [NQUIRY

. COMMON DOCUMENTATION

. GENERATION OF DATA DIVI-
SION SOURCE DEFINITIONS

. GENERATION OF MACRO
PARAMETERS

MANAGEMENT USE COMPUTER USE

management systems., As in the previous case, the accep-
tance of existing DBMS data-definition macros could help in
the initial data collection process.

As suggested by the capabilities of a DD/DS, a variety of users
can interface with the DD/D. Management use of the DD/D in-
cludes non-data processing users (such as application systems
planners and spontaneous users of the organizations’ data bank)
and data-processing-oriented users (such as DP management,
data base administrators, systems analysts, and programmers).®
A computer use of the DD/D, although in its infancy today, in-
cludes compilers, interpreters, and Data Base Management Sys-
tems. Figure 5 shows a selection of capabilities these users would
be interested in.

Figure 6 depicts a possible system flow for a DD/DS. However,
the reader is cautioned against assuming that every capability
shown must exist in order to have a viable DD/DS since both
users and the extent of required capabilities will vary from one
environment to another depending on the problems the DD/DS
has to solve.

The bottom portion of Figure 6 is the same as Figure 5 since it
represents the projected DD/DS users and capabilities. The DD/D
block is the common repository of data description information.
Data administration is the function (person) that maintains the
DD/D through communications with the users. Numbers 1
through 8 indicate the different types of information provided to
the different users discussed earlier. The dotted lines for 7 and 8
indicate that currently this is an indirect usage because compil-

UHROWCZIK IBM SYST J

Figure 6 A DD/DS overview

DATA
ADMINISTRATION

COMPUTER USE

I © M m O O W »

e e

ers presently depend on their own source-data descriptions li-

braries as do DBMSs. Thus the DD/D could be used initially to
feed these private DD/Ds instead of duplicating the effort.

New entries, as well as modifications to the DD/D, are not done
directly by users, but only by the data administration function via
some common data-descriptive language. For example, systems
analysts submit new data specifications (11 in Figure 6) which
are reviewed for completeness and checked for redundancy and
inconsistency before being entered into the DD/D by data admin-
istration. A new entry might be assigned a proposed status if
multiple users have to approve the descriptions, Similarly, the
data-base administrator may submit new definitions or changes to
segments or data bases, the system analysts may submit changes
to records or data elements (new versions), and the programmers
may request authorization to access- portions of the organiza-
tional data bank via their programs. In each case requests are
checked for validity and impact (if any) on other application
systems, and all affected users are informed of the proposed
enhancements and changes. General agreement must be reached
before the change is entered into the DD/D with a permanent
(approved) status.

NO. 4 - 1973 DATA DICTIONARY/DIRECTORIES

entities

340

The suggested capabilities of compilers and DBMSs (14, 15 in
Figure 6) to update the DD/D directly are shown with dotted
lines since these capabilities are presently not available. Never-
theless, compilers could maintain the portion of the DD/D that re-
lates programs to usage of data sets, records and elements; the
DBMS could maintain statistics on the actual physical usage of
data elements.

The content and organization of a bb/D

As suggested by the aforementioned capabilities of a Data Dic-
tionary/Directory System, the DD/D must contain information
about all the main components of an application system which
may be composed of processes (manual or automated), transac-
tions, reports, source documents and the supporting data (ele-
ments, segments, data sets, data bases, and so fourth). These
varied objects and the data itself are termed entities.

Certain characteristics of entities are self-evident (or intrinsic) to
the entity itself, such as the length of an element or its represen-
tation format. There are other characteristics, however, that are
imposed by environmental factors (not intrinsic to the entity)
such as the meaning of a data element, its membership in a par-
ticular segment, and the specification of who is reponsible for its
validity. Both the intrinsic and the environmental characteristics,
collectively, are referred to as entity descriptions.

A DD/D then, is a repository of entity descriptions about the en-
tities that form an application system. Note that the entity itself,
such as an actual data element or a program described in the
DD/D, does not exist in the DD/D.

The following are the basic entities necessary to define an applica-
tion system and its supporting data."® They will be presented in
a hierarchical form (for example, elements form groups, ele-
ments and groups form segments).

e FElement (EL) —the smallest independent unit of data that can

be referenced by a process (for example, number of depen-
dents, sex of employee).
Group (GR) —a grouping of logically related elements and/or
groups. (Also called grouped data items, logical segments, or
logical records). Typically this is the user’s view of his data,
such as structured definition of a logical record in a COBOL
program; the grouping of month, day and year into DATE; the
grouping of elements with the same security codes; the set of
elements referenced by a program; an 1Ms logical segment,
and so forth.

UHROWCZIK IBM SYST J

Figure 7 Entity relationships described in o DD/D

SYSTEM (SY)

DATA SET (DS)

PROCESS (PR)

TRANSACTION (TR) DATA BASE (DB)

REPORT (RE) GROUP (GR) PHYSICAL SEGMENT (PS)

/

SOURCE (SO) ELEMENT (EL)

1=ENTITY RELATIONAL DESCRIPTIONS

NO.

Physical segment (PS)—the smallest unit of accessible data
residing on external storage. It is typically a record type in an
0S data set or a segment in an IMS physical data base.

Data set (Ds) — (Also called a physical file). Grouping of
physical segments on external storage. Normally a data set
consists of one or more physical segment types organized in

some physical fashion.

Data base (DB)—one or more related data sets or data bases.
In the case of IMS, a physical data base is formed by one or
more data sets while a logical data base is the interrela-
tionship of one or more physical data bases.

Process (PR) —a procedure (job step, program, or unit
procedure) that accomplishes a specific data processing task.
It may be a computer program or a manual procedure (for
example, Payroll Master File purge program).

Job (10, —a self-contained set of related processes that
forms a unit in itself. Typically it is a DOS or OS job such as a
general payroll master file update.

System (SY)—a combination of jobs (also called application
system) that satisfies a complete area of information-pro-
cessing requirements, such as a payroll/personnel system or
an inventory system.

Transaction (TR)—a specific set of input data that triggers
the execution of a specific process or job. The transactions
may be batched and then presented to the process, or each
transaction may invoke the process as it occurs, as in a real-
time environment.

4 - 1973 DATA DICTIONARY/DIRECTORIES

Figure 8 Variable-length
physical segment
used in example 1

PSt I EL1 ! EL2 lEL3 I EL4 i

GR1

Figure 9 DD/D description of
example 1

1=0CCURS VARIABLE NUMBER OF
TIMES UP TO TEN

Figure 10 Transaction format
used in example 2

TR1 ELS EL3

TRANSACTION PARAMETER
CODE

Figure 11 DD/D description of
example 2

1= UPDATE MODE

342

Report (RE) —information presented to a person. Typically it
is the result of some process and can take the form of a print-
ed listing, or a display on a video-display terminal, and so
forth.

Source (50)—the medium (source document) from which data
are being captured.

Other entities are not precluded. In certain environments, where
users are a very important component of an application system,
it may be desirable to define USERS as an entity.

The gree?t/ variety of relationships that can exist among the enti-
ties are’ summarized in Figure 7. The blocks represent specific
entity descriptions while the arrows represent the relationships
among the entities. The depicted direction of the arrows may be
thought of as the ‘““component” (explosion) relationships among
entities. For instance, a data set is composed of physical seg-
ments; a process can be composed (or make use) of data sets,
specific segment types, specific elements of the segment, and so
forth. These “component” types of relationships, recognized and
manipulated by the DD/DS, provide some of the capabilities pre-
viously discussed such as the documentation of data sets and
physical segments, the generation of data-definition statements
for compilers, and the determination of the necessary resources
supporting an application system.

On the other hand, the inverse of the direction of the arrows in
Figure 7 represents the “where used” (implosion) relationships
among entities. For example, a specific data element may be used
in different processes or be part of different segments. The recog-
nition of this type of relationship allows the DD/DS to provide the
where-used capability. Numbers next to arrows represent de-
scriptions that have meaning only in terms of a specific relation-
ship between two entities. In Figure 7, for instance, the number
1 may represent the fact that a specific program is updating a
certain data element. These types of descriptions are termed en-
tity relational descriptions. (The IMS-oriented reader will recog-
nize this as intersection data.) To further illustrate how entities
are described in a DD/D, the following examples are used to
show, graphically, four different types of descriptions. The
graphical representation used is identical to that previously ex-
plained.

Example 1. Assume a variable-length physical segment
(Ps1) as depicted in Figure 8, residing on a data set (DS1).
Elements (EL3) and (EL4) form a group (GR1) which can
be repeated a variable number of times up to maximum of
ten times per record. Element (EL2) comes originally from
source document (SO1) and element (EL3) is used in reports
(RE1) and (RE2). This is represented in Figure 9.

UHROWCZIK IBM SYST J

Example 2. Assume a terminal-entered transaction (TR1)
that invokes program (PR1). The program accesses data set
(Dpst) and updates element (EL3) of physical segment
{ps1). The transaction (TR1) has the format shown in Fig-
ure 10. The DD/D description of these facts can be repre-
sented as shown in Figure 11.

Example 3. Assume a physical, IMS data base (DB1) resid-
ing on three data sets (Ds2), (Ds3) and (DS4). The struc-
ture of the data base record is illustrated in Figure 12. The
program (PS2) is read-sensitive to physical segment (PS2)
and references only element (EL1). The DD/D description
of these facts is represented in Figure 13. Note that although
program (PR2) does not have to declare data sets, it does
declare the physical segment (PS2) even when it references
only one of its elements (EL1). This reflects a “physical-
equal-logical” environment which allows us to use the physi-
cal segment (PS2) as the component of (PR2).

Example 4. Assume that in addition to the previously de-
fined data base (DB1) we have also described a second phys-
ical data base (DB2) in the DD/D, with a unidirectional re-
lationship as shown in Figure 14. A logical data base (DB3)
can now be described with the data-base record structure
depicted in Figure 15. Also described is a program (PR3)
that is update-sensitive to (GR2), specifically updating only
element (EL9). The DD/D description of these facts is rep-
resented in Figure 16. Note that this example is outside of
the “‘physical-equal-logical” environment since the new IMS
segment (GR2) is composed of certain elements from two
different physical segments (ps3) and (Ps4). Thus a group
to define this logical segment needs to be used.

In the previous section eleven different application system enti-
ties were identified for which we need descriptions in the DD/D.
They all have different characteristics, and therefore need dif-
ferent descriptions. Some descriptions are common to all entities
and others to only some entities. Table 1 provides one set of
possible entity descriptions.9 As in the case of entities, a specific
DD/D implementation may contain only a few of the descriptions
shown or perhaps others not shown. Most of the attributes are
self-explanatory. Those not self-explanatory are explained in the
Appendix.

An example DD/D implementation
Although a DD/DS oriented exclusively toward the management
use mode can be developed by individual users, it is obvious that

if the DD/D is to be helpful in the computer use mode, the DD/D

No. 4 -+ 1973 DATA DICTIONARY/DIRECTORIES

Figure 12 Structure of data base
records used in
example 3

DB1

PS2 ELY ELE

Figure 13 The DD/D description
of example 3

1=READ MODE
2 = READ MODE

Figure 14 Second physical data
base used in
example 4

entity
descriptions

figure 15 Data base record
structure

DB3

EL1 EL6

GR2 EL9 | EL10

343

Table 1 Entity descriptions

Entity descriptions Entities
DS DB PR JO SY TR RE SO

LABLE (Unique ID)

VERSION

STATUS (Proposed, concurred, approved, effective)
SPECIFICATION RESPONSIBILITY
CONTENT RESPONSIBILITY

LAST CHANGED DATE

TEXTUAL DESCRIPTION (Common name,
meaning, purpose)

DESIGNATOR (A set of key words that best
describes the meaning)

SYNONYM (Other DD/D entry with same meaning
but different label)

*LENGTH (Characters)

*MODE (Bit string, character string, packed decimal,
simple floating point)

*PRECISION (For numeric elements)
*JUSTIFICATION (right, left)
*PICTURE (For display purposes only)

*EDIT RULES (Constant, range of values, edit mask,
table)

DERIVATION ALGORITHM (For calculated
elements)

*KEY

*INDEX
UNIT (pounds, inches, dollars)
*SEQUENCE (The sequential position that this item

occupies in the membership)
LANGUAGE SYNONYM (such as COBOL name)
VOLUME (Number of data set or data base records)

GROWTH FACTOR (Growth in the number of
records in a given time period)

ORGANIZATION (SAM, VSAM, HIDAM, etc.)
SECURITY (Security code for read, update)
DESTINATION

MEDIUM (Card, disk, tape, video)

SORT SEQUENCE (Name of elements/groups upon
which the sequence is maintained)
*UPDATE RULES (IMS use)
*PROCESSING OPTIONS (IMS use)

*PARENT (For IMS, who is the parent of the
segment in this DB)

*RELATION (For IMS, the 4 basic relationships:
PP, LP, PCH, LCH)

PROGRAMMING LANGUAGE
PROGRAM TYPE (Batch, TP)

MEMBERSHIP (Entities of which this item is a
member or is being referenced by)

*Entity relational descriptions (intersection data in IMS terminology).

344 UHROWCZIK IBM SYST J

and the proper interfaces should be defined, implemented, and
supported by the developers of compilers and DBMSs. The pur-
pose of this section then is not to suggest a user implementation,
but to further clarify some of the previously discussed concepts
through an example implementation approach. The example
assumes that, in addition to the capabilities shown in Figure 5,
control of the use of IMS data bases in addition to OS data sets is
also required.

Six entities are needed at this level (although more could be
handled such as transactions, jobs, and sources) with some of
their associated entity descriptions:

Element.

Group.

Physical segment.
Data set.

Data base.
Process.

Since the relational aspect can be handled conveniently via DL/,
it is used to organize the DD/D.

Six physical data bases (illustrated in Figure 17) contain all the
DD/D data and establish the relationships shown in Figure 18.
The root segments contain entity descriptions such as LABEL,
VERSION, SPECIFICATION RESPONSIBILITY, and so forth (see
Table 1). The data bases are sequenced on LABEL/VERSION. The
TEXT segment contains the TEXTUAL DESCRIPTION and the DES-
IGNATOR. Note that there is no direct relationship between PR
and EL. Since all the elements referenced by a program can also be
defined as a group, one may use the relationship PR-GR to define
“usage,” where the group has been defined by means of GR-EL.
The alternative is to provide the PR-EL relationship directly.

The GR segment of the GR data base points to its own root seg-
ment. A logical data base may expand this usage to ‘“‘compo-
nent” GR and “where-used’” GR as depicted in Figure 19.

The segment RELATION of the pS data base contains the physi-
cal segment name to which this particular segment is related and
in which manner (for example, physical parent, logical parent,
physical child, logical child).

Additionally, the segments PS and GR of the DB data base may
contain the PARENT attribute and the sequence number in the
data base (bottom-down, left to right); the PS segment contains
RULES.

A number of logical data bases can be constructed depending on
the environment. A typical example is illustrated in Figure 20.

NO. 4 - 1973 DATA DICTIONARY/DIRECTORIES

Figure 16 The DD/D description
of example 4

1= UPDATE MODE
2= UPDATE MODE

Figure 17 Six example physical data bases

Figure 18 Relationships of six

example physical data
I GR

bases
5

=] [g—l fe] [l [

@ =

E:]

£

SEGMENTS REPRESENT POINTER SEGMENTS ALONG
WITH ENTITY RELATIONAL DESCRIPTIONS (INTERSECTION DATA IN IMS
TERMINOLOGY). THEY ALL PARTICIPATE IN BIDIRECTIONAL
LOGICAL RELATIONSHIPS IN THIS EXAMPLE. FOR EXAMPLE,
SEGMENTS (@ AND (@ ARF THE SAME, PAIRED.

Figure 19 Expansion of a logical
data base

COMPONENT WHERE-USED
GR GR

The initial data collection can be faéil’itéted by using the DBD
and PSB Macro definitions to extract many attributes for some
segments. (A post-compiler could aid in the PR-GR update.)

Concluding remarks

This paper has explored an approach to improving the develop-
ment and maintenance process of application systems. When it

346 UHROWCZIK IBM SYST J

Figure 20 Construction of logical data bases

[RELAT)ON TEXT

is recognized that data is a major organizational resource and
hence should be managed as such, a solution emerges. Proper
management of the data resource can be achieved via a central
data-administrating function whose responsibility is controlling
the specifications and uses of data resources.

Central control is made possible by the use of a Data Diction-
ary/Directory System which provides a variety of services to a
number of different users. In addition, the use of a central Data
Dictionary/Directory can be extended in the future to compilers
and data base management systems for futher productivity im-
provements.

Although the benefits of a DD/D apply to any environment, the
combination of a DD/DS and DBMS is even more effective. While
it is possible for a DD/DS to exist by itself without a DBMS, it is
beginning to be recognized that a DD/DS is a prerequisite for a
successful DBMS installation.

Appendix: Entity descriptions

This appendix discusses some of the entity descriptions shown in
Table 1.

A label is a unique indentifier for each specific entity described
in the DD/D. The label can also be used as the entity name when
used in a program (for example, record name, element name,
IMS-segment name, and program name). While it is desirable
that a single label be used for all references to an entity, this
objective may not be achievable in all cases since programming
standards may call for a special type of name that may prevent
uniqueness. In this case, the language synonym name (described
later) can be used to avoid ambiguity.

A version is a number assigned when a new entity description is
created with the same meaning and label as a previously defined

NO. 4 - 1973 DATA DICTIONARY/DIRECTORIES

version

textual
description

designator

entity. For example, a new version of a segment having slight
differences in composition from a previous version that may
eventually replace the presently used version. The combination
of label and version is used to identify a specific entity described
in the DD/D.

A textual description is a user-oriented, free-text definition of a
particular entity. It should contain at least the description of the
common name, meaning and purpose. In the case of elements
that contain codes, a description of each code value should be
provided. If the code list is extensive, the entry should indicate
where the code values are explained (for example, number of
code standard or data set containing the table).

A designator is a short, user-oriented identifier constructed from
a controlled list of keywords. This is the description that will
provide a rudimentary indication of possible redundancies/in-
consistencies. For example, if one were dealing with a textual
description of an element which indicates that it represents the
number of dependents that an employee declares for tax deduc-
tion purposes, the resulting designator would probably contain
the following keywords:

COUNT
EMPLOYEEE
DEPENDENTS
TAX
DEDUCTION

The DD/DS should provide a key-word-in-context (KWIC) or
key-work out-of-context (KWOC) index of these keywords as
related to DD/D labels (or an online text search capability) so
that an analyst looking at a new element and knowing only its
general meaning can choose some keywords and use the index
(or search capability) to determine whether the element has been
previously defined.

Another use could be to group data elements with equal or simi-
lar sets of keywords (one match, two matches, and so forth) and
then to analyze them for redundancy/inconsistency. Still another
use could be for a spontaneous user of the organizations’ data
bank to apply the same technique to find the description of a
certain element he might be interested in, when he knows only
its general meaning.

Designators were originally used in IBM’s Advanced Adminis-
trative System (AAS) and subsequently in the Installed User
Program-Data Dictionary/Directory System.”’ This tech-
nique includes ordering the keywords in the designator in a hier-
archical fashion from the most general keyword to the most spe-

UHROWCZIK IBM SYST J

cific keyword. To improve readability some null words are in-
serted between keywords and, since the most common null word
is the preposition “‘of,” the technique is referred to as the OF
LANGUAGE.

A few keywords seem to appear in most designators. They are
called class words since they provide a basic classification of
data:

NAME (identifier)

CODE

COUNT (quantity)

AMOUNT (currency)

DATE

TEXT

FLAG (yes or no)

CONTROL (delimiters, carriage control characters, and so forth)
CONSTANT (such as message)

Consistency and accuracy of the set of keywords are best pro-
moted when designators are assigned centrally (by data adminis-
trators) from the textual descriptions, instead of letting the users
define them. In the case of AAS, their keyword dictionary con-
sists of approximately 3000 keywords and very few appear in
more than 30 designators. Thus the analyst has a good chance
of having a look at fewer than 30 designators, even if he can
think of only one keyword. Note in Table 1 that the designa-
tor is suggested as a likely description of only elements, groups
and physical segments. There is no particular reason for not ex-
tending its use to other entities, but since the value of the desig-
nator is limited to redundancy/inconsistency-detection when
dealing with a large number of items, it is questionable how
valuable it might prove for the other entities.

A synonym is a pointer to another entity described in the DD/D
that has the same meaning but a different label. It is very likely
that the two entity descriptions will have identical (or similar)
designators, but this fact in itself is not sufficient to assume
that the synonyms are the same. Assume, for example, that
the designators for two elements are the same but the source or
the frequency of update or the input validation criteria are dif-
ferent. This decision will most likely be made by the users or
analysts on a case-by-case basis.

A derivation algorithm is a description of how a calculated ele-
ment (an element that is derived from another element s is ob-
tained and what elements are involved in the calculation. It can
be a free-text description, a PL/1 description, and so forth. It is
used for both real data (calculated data that are stored) and vir-

No. 4 - 1973 DATA DICTIONARY/DIRECTORIES

synonym

derivation
algorithm

membership

350

tual data (calculated data that are not stored). An item of virtual
data described in the DD/D exists only at the element level and
has no membership in a physical segment, but may be a member
of a group.

A membership consists of entities in which a particular entity is
referenced. For example, an element has membership in a physi-
cal segment, and in a program that references it.

CITED REFERENCES

1.

John J. Cahill, “A Dictionary/Directory Method for Building a Common
MIS Data Base,” Journal of Systems Management 21, No. 11 23-29
(November 1970).

. C. J. Bontempo and D. G. Swanz, “Data Resource Management,” Data

Management 11, No. 2, 31-37 (February 1973).

. Introduction to Data Management Student Text, Form SC20-8096, IBM

Corporation, Data Processing Division, White Plains, New York.

. Generalized Information System Application Description Manual, Form

GH20-0574, IBM Corporation, Data Processing Division, White Plains,
New York.

. Interactive Query Facility-IMS/360 Users Reference Guide, Form GH20-

1223, IBM Corporation, Data Processing Division, White Plains, New
York.

. IMS|360 Version 2 Systems and Application Description Guide, Form

SH20-0910, IBM Corporation, Data Processing Division, White Plains,
New York.

. “Basic requirements for a data base management system,” Basic data base

requirements project, Information Management Group, Information Sys-
tems Division, GUIDE (November 1, 1972).

. “The Data Base Administrator,” Data base administration project, Informa-

tion Management Group, Information Systems Division, GUIDE (Novem-
ber 3, 1972).

. 1UP Data Dictionary|Directory System, Form SH20-1105, IBM Corpora-

tion, Data Processing Division, White Plains, New York.

. J. H. Wimbrow, “A large-scale interactive administrative system,” IBM

Systems Journal 10, No. 4,260-282 (1971).

UHROWCZIK IBM SYST J

