
The PL/I Checkout  Compiler was designed to emphasize  pro- 
grammer  productivity  in  developing  programs,  even at the ex- 
pense of consuming extra machine  resources. We  explain the 
choices in the  design of the  compiler  that resulted from this 
emphasis.  The design is constrained by  the requirement  that  a 
subroutine  developed using this  checkout  compiler should be 
capable of executing  in  conjunction with code  generated by  a 
more conventional  compiler. The execution  environment  that 
supports  this  operation is described. 

PL/I is a  general-purpose  computer programming language suit- 
able  for  both scientific and commercial programming. It originat- 
ed when the language was specified by a committee comprising 
representatives  from IBM and  the user organizations SHARE and 
GUIDE.’ In both  its initial design and  subsequent  development, 
the language aimed to  provide a way of coding normal program- 
ming tasks quickly and efficiently. 

The  appearance of a programming language to its users  depends 
not  only  on  the language itself, but  also vitally on  the imple- 
mentations of the language. The first implementation of PL/I, the 
PL/I F Compiler for Operating  System/360 (os/360), was  intro- 
duced in 1966. Further facilities and  performance  have  been 
added in four  subsequent  versions of the F compiler. In 197 1, 
the F compiler was  superseded by a  pair of compilers,  the PL/I 
Checkout  Compiler  and  the PL/I Optimizing The 
Checkout  Compiler,  a program product  that  runs  under OS/360, 
raises  the programmer’s productivity while he is creating a cor- 
rect working program. If the working program is to  be used re- 
peatedly,  the Optimizing Compiler will generate, from this same 
PL/I source program, object  code  to  execute  the program more 
quickly. 

The use of two  compilers  operating  on  the  same  source program 
eliminates the compromises  that  an  all-purpose compiler must 
make between  assistance  for the programmer  and  optimum  use 
of the  hardware. The idea of a pair of compilers is not new but 
has  been carried further  than  ever b e f ~ r e . ~  

In  this  paper, we discuss  the  choices in the design of the  Check- 
out  Compiler  that  resulted from emphasizing programmer  pro- 
ductivity. We first discuss the aims,  constraints,  and  decisions 
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Figure 1 Program  with syntax errors 
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that influenced the design. Then we  describe  the  mechanisms  for 
implementafion of the  compiler. An outline of the implementa- 
tion appears in the Appendix. 

Aims 

Programmer  productivity  is  measured in terms of the time, ef- 
fort,  and  inconvenience that  the programmer  undergoes while 
developing a correct working program to fulfill some need.  Pro- 
ductivity is, of course, affected by factof-s  not related to  the com- 
piler; for  example, it is affected by the availability of the  computer 
and  whether or not  a  conversation  system  is  used. The main in- 
fluence of the compiler is in the  treatment of programmer mis- 
takes,  that  is,  discrepancies  between  the bFhavior of the program 
and fhg: behavior  that  the  programmer  intended. 

Mistakes fall into  three  classes-static,  dynamic,  and logical. 
Static  mistakes are those  that  can  be identified by examination 
of the written  program;  the program as written is not a valid 
construction in the programming language. Figure 1 shows an 
example of static mistakes. Dynamic  mistakes are defined as 
mistakes  that  become  apparent as the program executes.  An 
example is shown in Figure 2: Logical mhtakes  are  cases where 
the program is a correct  construction,  esecutes  without  apparent 
irregularity,  but  does  not fulfill. the  intention of the  programmer. 
As  an example,  the fqllowing statement  looks  suspicious  to  a 
human but  not  to  the compiler. 

AVERAGE-PAY = MAN-COUNT / PAYROLLTOTAL; 

The problems  for  the  compiler  can  be  discerned from these 
examples. There  are problems of detection; e.g., if an  area of 

I 
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over  the internal form of the program and invokes the  appro- 
priate  interpreter  routines  that  operate through the internal form 
and dictionary to process  data. 

internal There is great freedom of choice in deciding the internal form of 
form the  source program, the  text  that is being interpreted. We made 

the following choices: 

A  three-address form in which temporary  results  are given 
explicit names, in preference  to  a Polish notation in which the 
temporaries are implicit, e.g., 

A = B + C x D ;  

Three  address form: 

Multiply C D Temporary 

I Add I I Temporary I i A 

Polish postfix late  access form: 

I L 

C 

D 

Multiply 

B 

Add 

A 

Assign 

I 
The more elegant Polish notation was rejected largely because 
of the execution-time cost of computing the  attributes of the 
temporaries. For example, if A is a binary encoded number and 
B is a decimally en,coded number,  then  the following formulas 
give the precision aqd scale of A + B .  (See  Reference 5 for  the 
meaning of the  parameters. ) 

r = M I N  (CEIL (PB X 3.32) + 1, N1) 
s = C E I L  (ABS ( Q B )  X 3.32)  X SIGN(QB) 

I m = MIN ( N ,  MAX (p -q ,  r -S)  + MAX(q,s )  + 1 ) I 
n = MAX(q,s )  
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Figure 3 Organization as an interpreter 
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With the Polish notation,  such  attribute  calculations would often 
be required during execution. With explicit temporaries, the cal- 
culations are made during compilation and  recorded in the  dic- 
tionary. 

Another  activity performed at compilation time tb  ease  the inter- 
pretation load is aggregate expansion. In PL/I, most  operations 
between aggregates, that is, arrays or structures,  are defined in 
terms of an  expansion  into  operations  on  the individual elements 
in the aggregate. By performing these  expansions at comijilation 
time, making the  three-address  code  reference individual eleT 
ments, we arranged  that  most  interpreter  routines did not need 
to  handle aggregates. Notice  that  whereas  this simplifies the in- 
terpreter, it does  not  speed  up  interpretation  since it makes  more 
text  to be interpreted. It would be faster  to  have  more  routines 
that  worked  directly  on aggregates. 

Although temporaries are made explicit, considerable  work is 
still left for  the  interpreter  routines. For example,  the ADD oper- 
ator is polymorphic  to  the  extent  that while the  arguments are 
known to  be numeric and similarly encoded,  there is not  a 
unique ADD operator  for  each  type of encoding.  Hence,  the 
ADD interpreter  routine will need to discriminate,  and  the  addi- 
tion may ultimately be performed by a  System/360  instruction 
for Add, Add  Decimal,  Add  Halfword,  Add  Normalized  Long, 
or Add  Normalized  Short within the  interpreter  routine. Also, 
alignment of the  operands may be required to allow for scaling. 
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Diagnostic  considerations  also  decided  the split between  check- 
ing at execution  time  and checking at compilation time. For 
example, if 2 is a floating point variable and  the  programmer 
writes COTO z, this could be  detected as an  error  at compilation 
time, or it could be left to  the  interpreter  routine  to find when 
executing  the GOTO statement.  Although it slows  the compila- 
tion rate,  there is a considerable  advantage  to making the  test  at 
compilation time. It ensures  that  the  error is detected  on  the first 
processing of the program irrespective of how good or bad the 
test  data  used in executing  the program is. If the  checking is left 
until execution time, there is a risk that  the  part of the program 
in error will not be exercised.  This principle is carried  through  to 
the  extent of sometimes  double checking, e.g., if a reference is 
made to an  element of a matrix, using a  subscript  that is both 
constant  and  larger  than  the  bounds of the  matrix, the  error will 
be detected  at compilation time;  and  detected again in execution 
by the mechanism that  checks  the  case  where  the  subscript is 
not a constant. 

subroutines PL/I has a number of built-in functions,  for  example,  the trigono- 
metric functions SIN and C O S ,  which are traditionally imple- 
mented by subroutines  written by the  compiler  writers  and sup- 
plied as  the PL/I library. The subroutines  needed  for  a  particular 
program are bound with the compiled code  for  the program prior 
to its execution  (Link  Edit in o s / 3 6 0  terms). To ensure  compati- 
bility with the Optimizing Compiler,  the  same  subroutines are 
used by  both  compilers.  This  set of subroutines is called the 
Common  Library. In  the  case of the  Checkout  Compiler,  the 
subroutines are bound into the appropriate  interpreter  routine 
when the  interpreter  routine is originally constructed.  Hence,  the 
user  does  not  require  a Link Edit  to include library  subroutines, 
an economy in the  use of the  hardware. 

PL/I allows the  execution of a program to divide  into  tasks. 
These  tasks  then  execute  independently  except  where  they  are 
deliberately  synchronized  by the program. This makes it difficult 
to investigate  errors,  since  the  circumstances  surrounding  an 
error in one  task may be changed by another  task  before  there is 
time for  the  circumstances  to  be  shown  to  the  programmer. We 
decided on a level of automatic  synchronization so that all tasks 
were  suspended  when  one  was in error.  This is implemented by 
having an  interpreter  routine  to  dispatch  the PL/I tasks  instead of 
using o s D 6 0  mechanisms.  This  routine  is  used  to  interpret  the 
PL/I activities relating to tasking, such as the WAIT statement, 
and  whenever  used, it decides  on  the  basis of priorities which 
PL/I task should continue  execution.  Since all the  tasks in a pro- 
gram are known, it can  test  for  the  “deadly  embrace”  situation, 
where  each  task is waiting for  the  others  to  do something before 
it can  proceed. 
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A program that  attempts  to  use  the  value of a variable without 
previously giving a value to tha.t variable is clearly in error. 
There  are  various  ways of detecting  this,  none of them  perfect. 
One  method is to  put a flag (i.e., a bit to record yes/no) in the 
dictionary  entry  for the variable,  the flag indicating whether or 
not  the variable has  yet  been assigned a  value. The flag can  then 
be  checked when the variable is used. The shortcoming of this 
method is that data  arrays,  (for  example a matrix)  have only 
one  dictionary  entry. It follows that  this method is unable  to 
cope with situations  where one element of a  matrix  has been 
given a value and  another  has  not. The same  shortcoming  ap- 
plies to  any replicated  data,  such as  the AUTOMATIC data of 
RECURSIVE procedures. 

Another method of detecting uninitialized variables is to  provide 
flags with the  data so that  there is one flag for  each  data  item. 
This  method  has  complications when parts of a variable can  be 
accessed (e.g., a substring of a string of characters),  but  detec- 
tion can  be made perfect.  Unfortunately the  extra  space  occu- 
pied by  the flags effectively alters  the size of the  data  items. For 
the  Checkout  Compiler  alone  to  do  this would violate the  com- 
patability constraint. For the Optimizing Compiler to allocate 
space  for flags it did not  use would be contrary  to  the efficiency 
objectives of the Optimizing Compiler. 

The method  actually  adopted is to  put  a bit pattern  to  indicate 
“uninitialized” within the  space  allocated  to  the  data  item. As an 
example of this, an unnormalized floating-point value is put in a 
floating-point data item to  indicate  that  the item is uninitialized, 
since floating-point arithmetic in PL/I is done with normalized 
values. The method  works  perfectly when an “impossible value” 
can  be found for  the  data  type  and  even  works  reasonably well 
in some  cases  where  every  possible bit pattern is a  possible real 
value for  the  data  type.  For  instance, in the case of a character 
string, a value is used to  denote “uninitialized,” which will not 
normally be  required by the program because it is not  a  charac- 
ter  that normal printers  can  print.  In  the  rare  case of programs 
that  do require  the  particular  value  to  be  available  for  a  charac- 
ter, a compiler option  can  be  selected  that  makes  the  character 
available for  that use. 

Mechanisms 

The total size of the  code  required  to  interpret all of PL/I is 
about 250,000 bytes.  Because a particular program will not  use 
all the facilities of PL/I, the  requirement  for  a  particular program 
may be in the  range of 120,000 bytes.  And  because  the  state- 
ments in any  short  section of the program tend  to  use  less  func- 
tions than  the whole program, the transient  requirement may be 
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60,000 bytes. The code  must  be in main storage  to  be  executed, 
so economy in the ,use of main storage follows from adapting  the 
set of interpreter  ioutines, which is in main storage,  to  the prog- 
ress of the program. 

Similarly one  can  argue  that  only  part of the internal form being 
interpreted  need  be in storage at  any time,  only  part of the dic- 
tionaries,  and  only  some of the  data  that  the program is process- 
ing. There is a  trend  toward perfoming the swapping with hard- 
ware.637 A software implementation has  to  be  selective  and  has 
to  consider the unit of swapping, the  rate of change,  and  location 
freedom. 

Because of the  amount of it,  interpreter  code  has  to  be  swapped. 
The unit of swap is an  interpreter  routine,  rather  than a fixed 
number of bytes of code.  This is because it is likely that if part 
of a routine  for a particular  function is going to be needed,  then 
most of the  code in the  routine  has a high chance of being need- 
ed,  and  also  for  convenience,  since  the  interpreter  routine will 
naturally  exist  on  disk  storage as a unit. Note  that swap-out is 
unnecessary  since the routine  does  not  alter  during  execution, 
and so can be loaded  from the disk copy whenever  needed. 

If the internal form of the program being interpreted is divided 
into  equal  segments of about 2000 bytes,  these will be good units 
because  the  sequential  nature of program execution  makes it 
likely that if any,  part of the segment is exercised,  then  a signifi- 
cant  part will be. The value of equal  segments  depends  on  the 
style in which people write programs. We have  not  done  any ex- 
periments  to  judge  whether  other  units,  such as the  code com- 
prising a DO group, would be noticeably better. An individual 
item in a  dictionary is not  a good unit because it is only about 20 
bytes in size,  and  an  arbitrary segment of dictionary is not  a good 
unit because  there is insufficient correlation  between  reference  to 
an item and  reference to its neighbors. The complete  set of items 
relating to a PL/I external  procedure  does form a  natural  unit 
because  the  symbols  for that external  procedure  are  irrelevant 
during the  execution of another  extemal  procedure. 

The rate  at which the  set of interpreter  routines  required  to  exe- 
cute a program changes is an  attribute of the particular program. 
However,  most  programs  are organized so that relatively long 
continuous  periods are  spent in different functional subdivisions 
of the program. 

Some  items in storage  depend  for  their  successful  use  on  the 
particular  storage  address at which they are located.  This  means 
that  they  cannot  be simply swapped out of one location  and  into 
another. For example, an  interpreter  routine, which is Sys- 
tem/360  machine  code, may contain within itself the  storage  ad- 
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dress of one of the  instructions in the routine. Each time such  a 
routine is loaded into main storage this value has to be set up 
according to the location at which the  routine is loaded. It is 
possible to write disciplined code  that  does  not need relocation, 
but  there is some loss in speed and flexibility which was not  de- 
sirable for  the Common Library. 

A worst  case  occurs when one unit of swapping contains  a  stor- 
age address of something within another unit. This would occur 
if data  was adaptively loaded and  contained PL/I POINTER data. 

On the basis of the  considerations  above,  the  Checkout  Com- 
piler uses swapping of interpreter  routines, segments of the inter- 
nal form being interpreted, and dictionaries  for  external pro- 
cedures  but  does  not  swap  the  data being processed. 

Our scheme of adaption required two facilities in  main storage storage 
management not present in OS/360: management 

The ability to  extend  an allocated area of storage contiguous- 
ly. This is needed,  for example, in  building the dictionary be- 
cause  its size only becomes apparent as the  declarations in 
the PL/I program are  processed. 

A third state for an item in storage. The operating system re- 
gards storage as either  free, i.e., having no contents and ljeing 
available for use,  or allocated and,  hence, totally unavailable. 
Interpreter  routines,  for example, need a  state  that is stronger 
than  free,  (because it is desirable  that  the  routine remain in 
storage until next use) but weaker than allocated (because 
there may not  be enough storage  for all routines to be allo- 
cated in storage). 

These  storage managment facilities were constructed from the 
more primitive operating system facilities. 

A program that is a mixture of Optimizing and  Checkout Com- mixtures 

piler output may refer to  the  same  data from these different parts of output 

of the mixture. This  can happen in several ways: the  data may 
be a  parameter passed from one  procedure  to  another, or there 
may be  an  external variable known to  both  procedures, or a file 
may be written on by one  procedure and read by the  other.  The 
internal representation of the  data, both in storage  and  on  a file, 
is chosen  to be the same for  both compilers. When parameters 
are passed from a  procedure from the Optimizing Compiler to  a 
Checkout  one,  what actually happens is that  control  passes to a 
section of Checkout Compiler output with register one  contain- 
ing the  address of a list of the storage addresses of the parame- 
ters in accordance with Os/360 and oslvs (virtual  storage) con- 
ventions. The Checkout Compiler has set up the dictionary 
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items relating to the  parameters to indicate that they should be 
reached by this indirect route.  Hence, processing operates  on  the 
same  data in the  same  representation. 

When a  Checkout  procedure  passes variables as parameters  to 
one from the Optimizing Compiler, the dictionary items for  the 
variables are  not specially constructed. The interpreter routine 
that implements the call from one  procedure  to  another  uses  the 
normal dictionary items to build the list of the  storage  addresses 
of the  parameters. The  code from the Optimizing Compiler then 
addresses  the  data via this list. 

In  the  case of external variables, the Linkage Editor  ensures 
that  both  procedures  refer  to  the  same  data.  Consider first the 
simpler case of two  procedures from the Optimizing Compiler 
that  refer to the same external variable. The output of the Op- 
timizing Compiler consists of machine code and also  control 
information. The control information uses  the symbolic name of 
the variable and tells the os1360 Linkage Editor of a location that 
is to  be filled with the  address of that  external variable. Hence, 
each of the  procedures  can in execution pick up, from a location 
known to it, the  address of the variable. In  the  case of a pro- 
cedure from the Optimizing Compiler together with a  Checkout 
procedure,  the mechanism is essentially the  same. 

The checkout compilation does  not  produce machine code, but 
it does  produce  the  control information. Thus no special ac- 
tion is required from the Linkage Editor  to allow these pro- 
cedures to share  external variables. 

Summary 

The Checkout Compiler was developed to work in harness with 
the Optimizing Compiler to provide an exceptional level of sup- 
port  for  the PLlI language. The Checkout Compiler was designed 
particularly to  increase  the productivity of programmers in their 
development of programs. In meeting this objective,  certain 
constraints had to  be  taken  into  consideration, chief of these 
being compatibility with the Optimizing Compiler. Some design 
choices  were made for performance reasons. 
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Appendix: Implementation of the Checkout Compiler 

The compilation consists essentially of three  passes  over  the 
program. The first pass  reads in the  source program, isolating 
each name, keyword,  and  operator.  Most simple errors  are de- 
tected by the  syntactic analysis in this pass. The output of the 
first pass  consists of two files, one  for  the DECLARE statements, 
one  for  the  rest of the program. 

The second pass over  the DECLARE statements  expands fac- 
tored attributes, and the third pass  enters  the explicitly declared 
symbols in the dictionary. (If  the LIKE attribute is used,  there is 
an extra  pass  over  the DECLARE statements  to make the substi- 
tutions specified by the LIKE attribute.) 

The second pass over  the  rest of the program relates  the names 
used there to the corresponding dictionary items and adds dic- 
tionary items  for  names  not explicitly declared. The third pass 
converts  the program into  the  three  address  instructions  that  are 
to  be  interpreted. 

It is theoretically possible to compile PL/I with just two  passes 
over  most of the program. However,  the requirement that  attri- 
butes should be available in a dictionary when the  instructions 
are finally generated,  and  the  fact  that  a  declaration of a variable 
may come  after  the first appearance of the variable, make three 
passes  a  practical minimum. 

The compile time storage layout, illustrated in Figure 4, allows 
for growth of the dictionary as declarations are processed, and for 
a fluctuating stack of workspace  for  the compiling process. The 
space  between  these two is competed for dynamically by the 
compiler’s routines  and  the program being compiled. This  dy- 
namic behavior allows the compiler to make good use of what- 
ever  amount of storage is available. 

The storage  layout in execution is depicted in Figure 5. 
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