
The PL/I Checkout Compiler was designed to emphasize pro-
grammer productivity in developing programs, even at the ex-
pense of consuming extra machine resources. We explain the
choices in the design of the compiler that resulted from this
emphasis. The design is constrained by the requirement that a
subroutine developed using this checkout compiler should be
capable of executing in conjunction with code generated by a
more conventional compiler. The execution environment that
supports this operation is described.

PL/I is a general-purpose computer programming language suit-
able for both scientific and commercial programming. It originat-
ed when the language was specified by a committee comprising
representatives from IBM and the user organizations SHARE and
GUIDE.’ In both its initial design and subsequent development,
the language aimed to provide a way of coding normal program-
ming tasks quickly and efficiently.

The appearance of a programming language to its users depends
not only on the language itself, but also vitally on the imple-
mentations of the language. The first implementation of PL/I, the
PL/I F Compiler for Operating System/360 (os/360), was intro-
duced in 1966. Further facilities and performance have been
added in four subsequent versions of the F compiler. In 197 1,
the F compiler was superseded by a pair of compilers, the PL/I
Checkout Compiler and the PL/I Optimizing The
Checkout Compiler, a program product that runs under OS/360,
raises the programmer’s productivity while he is creating a cor-
rect working program. If the working program is to be used re-
peatedly, the Optimizing Compiler will generate, from this same
PL/I source program, object code to execute the program more
quickly.

The use of two compilers operating on the same source program
eliminates the compromises that an all-purpose compiler must
make between assistance for the programmer and optimum use
of the hardware. The idea of a pair of compilers is not new but
has been carried further than ever b e f ~ r e . ~

In this paper, we discuss the choices in the design of the Check-
out Compiler that resulted from emphasizing programmer pro-
ductivity. We first discuss the aims, constraints, and decisions

NO. 3 - 1973 CHECKOUT COMPILER 3 15

Figure 1 Program with syntax errors

sclrr!Ci LI:>PI;lc
SI.yi'

that influenced the design. Then we describe the mechanisms for
implementafion of the compiler. An outline of the implementa-
tion appears in the Appendix.

Aims

Programmer productivity is measured in terms of the time, ef-
fort, and inconvenience that the programmer undergoes while
developing a correct working program to fulfill some need. Pro-
ductivity is, of course, affected by factof-s not related to the com-
piler; for example, it is affected by the availability of the computer
and whether or not a conversation system is used. The main in-
fluence of the compiler is in the treatment of programmer mis-
takes, that is, discrepancies between the bFhavior of the program
and fhg: behavior that the programmer intended.

Mistakes fall into three classes-static, dynamic, and logical.
Static mistakes are those that can be identified by examination
of the written program; the program as written is not a valid
construction in the programming language. Figure 1 shows an
example of static mistakes. Dynamic mistakes are defined as
mistakes that become apparent as the program executes. An
example is shown in Figure 2: Logical mhtakes are cases where
the program is a correct construction, esecutes without apparent
irregularity, but does not fulfill. the intention of the programmer.
As an example, the fqllowing statement looks suspicious to a
human but not to the compiler.

AVERAGE-PAY = MAN-COUNT / PAYROLLTOTAL;

The problems for the compiler can be discerned from these
examples. There are problems of detection; e.g., if an area of

I

3 16 MARKS IBM SYST J

over the internal form of the program and invokes the appro-
priate interpreter routines that operate through the internal form
and dictionary to process data.

internal There is great freedom of choice in deciding the internal form of
form the source program, the text that is being interpreted. We made

the following choices:

A three-address form in which temporary results are given
explicit names, in preference to a Polish notation in which the
temporaries are implicit, e.g.,

A = B + C x D ;

Three address form:

Multiply C D Temporary

I Add I I Temporary I i A

Polish postfix late access form:

I L

C

D

Multiply

B

Add

A

Assign

I
The more elegant Polish notation was rejected largely because
of the execution-time cost of computing the attributes of the
temporaries. For example, if A is a binary encoded number and
B is a decimally en,coded number, then the following formulas
give the precision aqd scale of A + B . (See Reference 5 for the
meaning of the parameters.)

r = M I N (CEIL (PB X 3.32) + 1, N1)
s = C E I L (ABS (Q B) X 3.32) X SIGN(QB)

I m = MIN (N , MAX (p -q , r -S) + MAX(q,s) + 1) I
n = MAX(q,s)

320 MARKS IBM SYST 1

Figure 3 Organization as an interpreter

INTERN-AL FORM

ENCODING

A = B + C '

INTERPRETEC
BEING DICTIONARY OF

PROGRAM VARIABLES
DATA BEING
PROCESSED

- VARIABLE A - 3 C

- A

VARIABLE C -
B

I C VARIABLE B

ADDITION
ROUTINE
INCLUDES

I l
INTERPRETER

ROUTINES

With the Polish notation, such attribute calculations would often
be required during execution. With explicit temporaries, the cal-
culations are made during compilation and recorded in the dic-
tionary.

Another activity performed at compilation time tb ease the inter-
pretation load is aggregate expansion. In PL/I, most operations
between aggregates, that is, arrays or structures, are defined in
terms of an expansion into operations on the individual elements
in the aggregate. By performing these expansions at comijilation
time, making the three-address code reference individual eleT
ments, we arranged that most interpreter routines did not need
to handle aggregates. Notice that whereas this simplifies the in-
terpreter, it does not speed up interpretation since it makes more
text to be interpreted. It would be faster to have more routines
that worked directly on aggregates.

Although temporaries are made explicit, considerable work is
still left for the interpreter routines. For example, the ADD oper-
ator is polymorphic to the extent that while the arguments are
known to be numeric and similarly encoded, there is not a
unique ADD operator for each type of encoding. Hence, the
ADD interpreter routine will need to discriminate, and the addi-
tion may ultimately be performed by a System/360 instruction
for Add, Add Decimal, Add Halfword, Add Normalized Long,
or Add Normalized Short within the interpreter routine. Also,
alignment of the operands may be required to allow for scaling.

NO. 3 * 1973 CHECKOUT COMPILER

aggregate
expansion

Diagnostic considerations also decided the split between check-
ing at execution time and checking at compilation time. For
example, if 2 is a floating point variable and the programmer
writes COTO z, this could be detected as an error at compilation
time, or it could be left to the interpreter routine to find when
executing the GOTO statement. Although it slows the compila-
tion rate, there is a considerable advantage to making the test at
compilation time. It ensures that the error is detected on the first
processing of the program irrespective of how good or bad the
test data used in executing the program is. If the checking is left
until execution time, there is a risk that the part of the program
in error will not be exercised. This principle is carried through to
the extent of sometimes double checking, e.g., if a reference is
made to an element of a matrix, using a subscript that is both
constant and larger than the bounds of the matrix, the error will
be detected at compilation time; and detected again in execution
by the mechanism that checks the case where the subscript is
not a constant.

subroutines PL/I has a number of built-in functions, for example, the trigono-
metric functions SIN and C O S , which are traditionally imple-
mented by subroutines written by the compiler writers and sup-
plied as the PL/I library. The subroutines needed for a particular
program are bound with the compiled code for the program prior
to its execution (Link Edit in o s / 3 6 0 terms). To ensure compati-
bility with the Optimizing Compiler, the same subroutines are
used by both compilers. This set of subroutines is called the
Common Library. In the case of the Checkout Compiler, the
subroutines are bound into the appropriate interpreter routine
when the interpreter routine is originally constructed. Hence, the
user does not require a Link Edit to include library subroutines,
an economy in the use of the hardware.

PL/I allows the execution of a program to divide into tasks.
These tasks then execute independently except where they are
deliberately synchronized by the program. This makes it difficult
to investigate errors, since the circumstances surrounding an
error in one task may be changed by another task before there is
time for the circumstances to be shown to the programmer. We
decided on a level of automatic synchronization so that all tasks
were suspended when one was in error. This is implemented by
having an interpreter routine to dispatch the PL/I tasks instead of
using o s D 6 0 mechanisms. This routine is used to interpret the
PL/I activities relating to tasking, such as the WAIT statement,
and whenever used, it decides on the basis of priorities which
PL/I task should continue execution. Since all the tasks in a pro-
gram are known, it can test for the “deadly embrace” situation,
where each task is waiting for the others to do something before
it can proceed.

322 MARKS IBM SYST J

A program that attempts to use the value of a variable without
previously giving a value to tha.t variable is clearly in error.
There are various ways of detecting this, none of them perfect.
One method is to put a flag (i.e., a bit to record yes/no) in the
dictionary entry for the variable, the flag indicating whether or
not the variable has yet been assigned a value. The flag can then
be checked when the variable is used. The shortcoming of this
method is that data arrays, (for example a matrix) have only
one dictionary entry. It follows that this method is unable to
cope with situations where one element of a matrix has been
given a value and another has not. The same shortcoming ap-
plies to any replicated data, such as the AUTOMATIC data of
RECURSIVE procedures.

Another method of detecting uninitialized variables is to provide
flags with the data so that there is one flag for each data item.
This method has complications when parts of a variable can be
accessed (e.g., a substring of a string of characters), but detec-
tion can be made perfect. Unfortunately the extra space occu-
pied by the flags effectively alters the size of the data items. For
the Checkout Compiler alone to do this would violate the com-
patability constraint. For the Optimizing Compiler to allocate
space for flags it did not use would be contrary to the efficiency
objectives of the Optimizing Compiler.

The method actually adopted is to put a bit pattern to indicate
“uninitialized” within the space allocated to the data item. As an
example of this, an unnormalized floating-point value is put in a
floating-point data item to indicate that the item is uninitialized,
since floating-point arithmetic in PL/I is done with normalized
values. The method works perfectly when an “impossible value”
can be found for the data type and even works reasonably well
in some cases where every possible bit pattern is a possible real
value for the data type. For instance, in the case of a character
string, a value is used to denote “uninitialized,” which will not
normally be required by the program because it is not a charac-
ter that normal printers can print. In the rare case of programs
that do require the particular value to be available for a charac-
ter, a compiler option can be selected that makes the character
available for that use.

Mechanisms

The total size of the code required to interpret all of PL/I is
about 250,000 bytes. Because a particular program will not use
all the facilities of PL/I, the requirement for a particular program
may be in the range of 120,000 bytes. And because the state-
ments in any short section of the program tend to use less func-
tions than the whole program, the transient requirement may be

NO. 3 * 1973 CHECKOUT COMPILER

60,000 bytes. The code must be in main storage to be executed,
so economy in the ,use of main storage follows from adapting the
set of interpreter ioutines, which is in main storage, to the prog-
ress of the program.

Similarly one can argue that only part of the internal form being
interpreted need be in storage at any time, only part of the dic-
tionaries, and only some of the data that the program is process-
ing. There is a trend toward perfoming the swapping with hard-
ware.637 A software implementation has to be selective and has
to consider the unit of swapping, the rate of change, and location
freedom.

Because of the amount of it, interpreter code has to be swapped.
The unit of swap is an interpreter routine, rather than a fixed
number of bytes of code. This is because it is likely that if part
of a routine for a particular function is going to be needed, then
most of the code in the routine has a high chance of being need-
ed, and also for convenience, since the interpreter routine will
naturally exist on disk storage as a unit. Note that swap-out is
unnecessary since the routine does not alter during execution,
and so can be loaded from the disk copy whenever needed.

If the internal form of the program being interpreted is divided
into equal segments of about 2000 bytes, these will be good units
because the sequential nature of program execution makes it
likely that if any, part of the segment is exercised, then a signifi-
cant part will be. The value of equal segments depends on the
style in which people write programs. We have not done any ex-
periments to judge whether other units, such as the code com-
prising a DO group, would be noticeably better. An individual
item in a dictionary is not a good unit because it is only about 20
bytes in size, and an arbitrary segment of dictionary is not a good
unit because there is insufficient correlation between reference to
an item and reference to its neighbors. The complete set of items
relating to a PL/I external procedure does form a natural unit
because the symbols for that external procedure are irrelevant
during the execution of another extemal procedure.

The rate at which the set of interpreter routines required to exe-
cute a program changes is an attribute of the particular program.
However, most programs are organized so that relatively long
continuous periods are spent in different functional subdivisions
of the program.

Some items in storage depend for their successful use on the
particular storage address at which they are located. This means
that they cannot be simply swapped out of one location and into
another. For example, an interpreter routine, which is Sys-
tem/360 machine code, may contain within itself the storage ad-

324 MARKS IBM SYST 1

dress of one of the instructions in the routine. Each time such a
routine is loaded into main storage this value has to be set up
according to the location at which the routine is loaded. It is
possible to write disciplined code that does not need relocation,
but there is some loss in speed and flexibility which was not de-
sirable for the Common Library.

A worst case occurs when one unit of swapping contains a stor-
age address of something within another unit. This would occur
if data was adaptively loaded and contained PL/I POINTER data.

On the basis of the considerations above, the Checkout Com-
piler uses swapping of interpreter routines, segments of the inter-
nal form being interpreted, and dictionaries for external pro-
cedures but does not swap the data being processed.

Our scheme of adaption required two facilities in main storage storage
management not present in OS/360: management

The ability to extend an allocated area of storage contiguous-
ly. This is needed, for example, in building the dictionary be-
cause its size only becomes apparent as the declarations in
the PL/I program are processed.

A third state for an item in storage. The operating system re-
gards storage as either free, i.e., having no contents and ljeing
available for use, or allocated and, hence, totally unavailable.
Interpreter routines, for example, need a state that is stronger
than free, (because it is desirable that the routine remain in
storage until next use) but weaker than allocated (because
there may not be enough storage for all routines to be allo-
cated in storage).

These storage managment facilities were constructed from the
more primitive operating system facilities.

A program that is a mixture of Optimizing and Checkout Com- mixtures

piler output may refer to the same data from these different parts of output

of the mixture. This can happen in several ways: the data may
be a parameter passed from one procedure to another, or there
may be an external variable known to both procedures, or a file
may be written on by one procedure and read by the other. The
internal representation of the data, both in storage and on a file,
is chosen to be the same for both compilers. When parameters
are passed from a procedure from the Optimizing Compiler to a
Checkout one, what actually happens is that control passes to a
section of Checkout Compiler output with register one contain-
ing the address of a list of the storage addresses of the parame-
ters in accordance with Os/360 and oslvs (virtual storage) con-
ventions. The Checkout Compiler has set up the dictionary

NO. 3 1973 CHECKOUT COMPILER 325

items relating to the parameters to indicate that they should be
reached by this indirect route. Hence, processing operates on the
same data in the same representation.

When a Checkout procedure passes variables as parameters to
one from the Optimizing Compiler, the dictionary items for the
variables are not specially constructed. The interpreter routine
that implements the call from one procedure to another uses the
normal dictionary items to build the list of the storage addresses
of the parameters. The code from the Optimizing Compiler then
addresses the data via this list.

In the case of external variables, the Linkage Editor ensures
that both procedures refer to the same data. Consider first the
simpler case of two procedures from the Optimizing Compiler
that refer to the same external variable. The output of the Op-
timizing Compiler consists of machine code and also control
information. The control information uses the symbolic name of
the variable and tells the os1360 Linkage Editor of a location that
is to be filled with the address of that external variable. Hence,
each of the procedures can in execution pick up, from a location
known to it, the address of the variable. In the case of a pro-
cedure from the Optimizing Compiler together with a Checkout
procedure, the mechanism is essentially the same.

The checkout compilation does not produce machine code, but
it does produce the control information. Thus no special ac-
tion is required from the Linkage Editor to allow these pro-
cedures to share external variables.

Summary

The Checkout Compiler was developed to work in harness with
the Optimizing Compiler to provide an exceptional level of sup-
port for the PLlI language. The Checkout Compiler was designed
particularly to increase the productivity of programmers in their
development of programs. In meeting this objective, certain
constraints had to be taken into consideration, chief of these
being compatibility with the Optimizing Compiler. Some design
choices were made for performance reasons.

CITED REFERENCES A N D FOOTNOTE
1 . G . Radin and H. P. Rogoway, “NPL: Highlights of a new programming lan-

guage,” Communications of the ACM 8, No. 1 , 9 - 17 (January 1965).
2. OS PLll Checkout Compiler: General Information Manual, Form No.

GC33-0003, IBM Corporation, Data Processing Division, White Plains,
New York.

3. OS PLll Optimizing Compiler: General Information Manual, Form No.
GC33-0001, IBM Corporation, Data Processing Division, White Plains,
New York.

326 MARKS IBM SYST J

4. F. C. Duncan, “Implementation of ALGOL 60 for the English Electric
KDF9,” The Computer Journal 5, No. 2, 130- 132 (1962).

5. PL/ l Language Spec$cations, Form No. GY33-6003, IBM Corporation,
Data Processing Division, White Plains, New York.

6. D. Sayre, “Is automatic folding of programs efficient enough to displace man-
ual?” Communications o f f h e A C M 12, No. 12,656-660 (December 1969).

7. Swapping as used here is not identical with page swapping used in the IBM
System/370. The compiler was written initially to run under OW360 rather
than os/vs.

Appendix: Implementation of the Checkout Compiler

The compilation consists essentially of three passes over the
program. The first pass reads in the source program, isolating
each name, keyword, and operator. Most simple errors are de-
tected by the syntactic analysis in this pass. The output of the
first pass consists of two files, one for the DECLARE statements,
one for the rest of the program.

The second pass over the DECLARE statements expands fac-
tored attributes, and the third pass enters the explicitly declared
symbols in the dictionary. (If the LIKE attribute is used, there is
an extra pass over the DECLARE statements to make the substi-
tutions specified by the LIKE attribute.)

The second pass over the rest of the program relates the names
used there to the corresponding dictionary items and adds dic-
tionary items for names not explicitly declared. The third pass
converts the program into the three address instructions that are
to be interpreted.

It is theoretically possible to compile PL/I with just two passes
over most of the program. However, the requirement that attri-
butes should be available in a dictionary when the instructions
are finally generated, and the fact that a declaration of a variable
may come after the first appearance of the variable, make three
passes a practical minimum.

The compile time storage layout, illustrated in Figure 4, allows
for growth of the dictionary as declarations are processed, and for
a fluctuating stack of workspace for the compiling process. The
space between these two is competed for dynamically by the
compiler’s routines and the program being compiled. This dy-
namic behavior allows the compiler to make good use of what-
ever amount of storage is available.

The storage layout in execution is depicted in Figure 5.

NO. 3 1973 CHECKOUT COMPILER

