The performance of different features of system software can be
compared efficiently by means of rapid, on-line switching be-
tween the versions. This technique of on-line switching has been
applied to determine the effects of page replacement algorithm,
time-slice length, and user priority setting in the CP-67 time-
sharing system.

Experimental evaluation of system performance
by Y. Bard

Developers of computer systems are frequently faced with a
choice among several possible implementations of a given func-
tion. Similary, the operator of a computer system faces a choice
in setting adjustable parameters built into the system. In each
case, the alternative that optimizes system performance is
sought. While analytic or simulation models may sometimes as-
sist in making the choice, it is true that in most cases only actual
running tests of the various alternatives can provide definitive
answers. But even when all the variations can be tested on a real
system, it is not easy to obtain meaningful results. One has the
choice between performing the tests on a carefully controlled
benchmark job stream, or on the system in an actual uncon-
trolled working environment. In the first case, the results may be
inapplicable except to the specific benchmarks chosen, and a
realistic benchmark stream is often hard to come by (this is par-
ticularly true for time-sharing or real-time computer systems).
In the second case, random fluctuations in the magnitude and
nature of the load placed on the system make it difficult to com-
pare the results obtained under different system versions. Con-
sequently, although performance evaluation is still possible, data
must be gathered over a fairly long period of time. For instance,
different versions of the Cp-67 time-sharing system'” were com-
pared by Bard® under actual operating conditions. However,
several months’ worth of data were required. To meet the objec-
tives outlined above, results must be forthcoming at a faster
pace.

If two versions of a system are to be compared, it is desirable to
run them alternately in some pattern that would compensate for
the random load fluctuations. One such experiment has been
described by Margolin, Parmelee, and Schatzoff.* The purpose
of that experiment was to compare two versions of the CP-67
system that differed in the method of handling free storage re-

BARD IBM SYST J

quirements. A system incorporating the old free storage algo-
rithm was run on Monday and Thursday of one week and on
Tuesday and Wednesday of the next week. A new free storage
algorithm was run on Tuesday and Wednesday of the first week
and Monday and Thursday of the second week. Measurements
taken in the course of these two weeks revealed a considerable
reduction in CPU overhead required by the new algorithm. The
new version also seemed to account for a slight increase in use-
ful throughput (e.g., problem state cpuU utilization, and user 1/0
rates), but the significance of the increase was open to doubt. It
is our purpose here to show how on-line experimentation can
produce significant results in shorter periods of time.

Performance optimization

The stated objective of conducting experiments is to optimize
the system’s performance. This cannot, in principle, be done
unless one defines a performance objective function whose value
is to be minimized or maximized. Unfortunately, one is usually
interested in several different aspects of performance, and a sin-
gle objective function is hard to come by. It is not our intention
to prescribe such an objective function here. Rather, we show
how the results of the same set of experiments can be evaluated
in the light of several different performance criteria, such as
throughput rates and response time. Thus, even though different
performance criteria may be thought appropriate in different
cases, the experimental technique remains valid.

Even if the performance criterion is well-defined, optimization is
rarely achieved in one experiment that compares two versions
or several settings of a small number of parameters. Such an
experiment is usually only one stage in a series of experiments,
in which a larger number of parameters are varied over wider
ranges. This paper concerns itself primarily with a technique for
conducting each single experiment in the series. Techniques for
designing a series of experiments are briefly alluded to in the
section on extensions at the end of this paper.

On-line experimentation

To achieve the desired objectives, it is usually required to com-
pare the performance of two or more versions of the system.
These versions may differ simply in the settings of some param-
eters (e.g., time-slice length), or may contain different algo-
rithms for performing certain functions (e.g., page selection or
task dispatching). The time required to obtain significant mea-
sures of performance differences between these versions is min-
imized if the loads under which these versions are tested are

No.3 - 1973 SYSTEM PERFORMANCE EVALUATION

Table 1 DUSETIMR wait time equalized. This can be achieved if one switches rapidly between
between observations” the versions under consideration. If the versions could be alter-
Number of DUSETIMR nated every few minutes, say, then there would be little likeli-
logged-on wait time hood that version 1 sees, on the average, a consistently heavier
users (sec) or lighter load than version II. Since it is impractical to shut
down one version and load the other one every few minutes, it is
1000 . .
851 necessary to code the system in such a way that the versions
724 can be switched on the fly, without impairing any system func-
gg tions. This is usually possible when versions differ in the settings
447 of parameters: it is only necessary to store the desired values in
380 the appropriate locations. When different algorithms are to be
324 compared, it is necessary to assemble all of them into the system
%i and to provide a switch into which a transfer to the desired ver-
100 sion can be stored. To automate the experiment, the following
170 setup is suggested: It is assumed that a software monitor that
igg “wakes” up periodically and collects system performance data is

available.

The program that collects the measurements should be given the
28 or more privilege of storing parameter or switch values into the system.
In this way, the switching of versions can be synchronized with
*Does not include DUSETIMR running .
time the collection of data:

. Store the initial parameter value.

. Take several observations at the usual intervals.
. Store the alternate parameter value.

. Repeat step 2.

. Return to step 1.

In deciding how many observations should be taken between
switches, the following considerations arise: The switching from
one version to another may give rise to transient effects, and
data taken before these effects have died out should be discard-
ed. For instance, suppose observations are to be made at one-
minute intervals. The two versions under consideration differ in
the page replacement algorithm (see Example 1 below). We
know that the system reads pages at a rate of about 50 per sec-
ond and that main storage holds about 100 user pages. There-
fore, the average page residence time is two seconds, and only
the first observation taken after a switch is likely to be affected.
To achieve the best load balancing, it is desirable to switch
as often as possible, which in this case would mean once every
two observations. As a result, however, 50 percent of all obser-
vations would be discarded. Usually, a batch size somewhat in
excess of two observations yields the best compromise between
losses of information due to (1) discarded data, and (2) load
fluctuation. A method for determining the optimal batch size and
the required total number of observations is described
elsewhere.’

BARD IBM SYST J

Table 2 Synthetic benchmark characteristics

Benchmark Virtual CPU time Virtual SIO operations Pages
designation (msec) to disk referenced*

Trivial 1 0
Mixed 260 75
I/O-bound 560 225
CPU-bound 690 0

*Exclusive of I/O routines

The proposed technique is obviously not applicable in all situa-
tions. The system variations that are to be compared may be so
incompatible that one simply cannot switch between them on
the fly. Or, the transient effects may be so long that switching
can only occur very infrequently. The power of the technique is
so strong, however, that it will often be worthwhile to plan and
implement the various versions specifically so as to permit rapid
switching.

Data collection and reduction

We describe below three experiments that were run on a CP-67
system™® at the Cambridge Scientific Center. The performance
of the system is monitored around the clock by a program called
DUSETIMR (see Bard®). This program remains dormant for a
specified time period that depends on the number of users on the
system (see Table 1). It then “wakes up” and runs a set of four
synthetic benchmarks’ which are designed to exercise system
resources in given proportions (see Table 2). The running time
of each benchmark is recorded, as are the contents of various
counters maintained by CP-67. The system was instrumented in
such a way that on every nth running, DUSETIMR could store a
value that effected the switch from one version to another. The
three examples given here illustrate the use of the method for
choosing between system algorithm implementations, for tuning
adjustable parameters, and for evaluating the effects of priority
assignments.

The data reduction procedures used to obtain the results de-
scribed in the examples are quite simple. Suppose two versions
of the system are being compared. The observations are sorted
into two subsets, depending on the version in effect at the time
of the observation. If necessary, the first observation(s) from
each batch is discarded. Each one of the two data sets is then
analyzed separately. For instance, to produce Figure 1, each
data set is further divided into subsets, the kth subset containing
those observations in which the number of active users® is 2k-1
or 2k. The average value of percent problem state time is now
computed for each subset. The averages from both sets are then

No.3 - 1973 SYSTEM PERFORMANCE EVALUATION

page
replacement
algorithm

306

Comparison between page replacement algorithms — CPU

n
«Q
c
=
o
-

@
=}

PERCENT PROBLEM STATE TIME

—— — ALGORITHM 1
ALGORITHM 2

ACTIVE USERS

plotted against the number of active users, producing the two
curves of Figure 1. To produce Figure 3, the original sets were
again broken up into subsets corresponding to the number of
active users, but the subdivision was coarser. The distribution of
mixed benchmark completion times was determined within each
subset, and the 75 percentile of that distribution was plotted
against the number of active users.

To obtain Figure 4, those observations were extracted (from
each set) that were not exceeded by any other observation in
the values of both virtual disk 1/0 operations per second and
percent problem state time. These so-called “‘Pareto-maximal”
observations are plotted for both sets. The curves joining these
points represent the limits of the observed operating regions of
the two system versions. '

Examplies

The purpose of the first experiment was to select the better of
two page replacement algorithms. A page replacement algorithm
is a method for choosing which user page should be removed

BARD IBM SYST J

Figure 2 Comparison between page replacement algorithms — paging

o
o

PAGE READS PER SEC

= == ALGORITHM 1
ALGORITHM 2

0
N
™~
=

ACTIVE USERS

from main storage to make room for a new page that is to be

brought in from auxiliary storage at a user’s request. The two
algorithms are described in Item 1 of the Appendix.

For this experiment, a batch size of five observations was cho-
sen. As noted above, the average page residence time is about
two seconds. Hence, transient effects were judged to be short,
and only the first observation in each batch needed to be dis-
carded. The experiment was run for five days, and some of the
results are plotted in Figures 1 through 4. It is worth noting that
the results for each day when taken separately were almost as
conclusive.

Figure 1 shows that as soon as the number of active users ex-
ceeds 22, Algorithm 2 delivers up to 10 percent more CPU time
to the users. Figure 2 shows that this increase in CPU utilization
is actually obtained with a decrease in paging activity. Figure 3
shows that Algorithm 2 considerably improves the completion
time of the mixed benchmark. Similar improvements were noted
for the trivial and 1/0-bound benchmarks. One verifies easily
that the probability of obtaining such results if Algorithm 2 is
not, in fact, superior to Algorithm 1 is practically nil. Hence, at

No.3 - 1973 SYSTEM PERFORMANCE EVALUATION

Comparison between page replacement algorithms—mixed benchmark
completion times

———— —— ALGORITHM 1

75 PERCENTILE OF COMPLETION TIMES (SEC)

ALGORITHM 2

ACTIVE USERS

least under the load conditions encountered in the course of this
experiment, the superiority of Algorithm 2 is established beyond
doubt.

An additional illustration of the superiority of Algorithm 2 is
given in Figure 4, which shows the Pareto-maximal observations
on the variables problem state and user disk 1/0 operations per
second. These points represent the outer limits of the system’s
observed operating ‘region. The larger extent of the operating

BARD IBM SYSTJ

Figure 4 Comparison between page replacement algorithms —boundary of operating
region

VIRTUAL DiSK 1/0 OPERATIONS PER SEC

=x==—— ALGORITHM 1

—&—— ALGORITHM 2

PERCENT PROBLEM STATE TIME

region under Algorithm 2 suggests that the system’s capacity for
performing useful work has been increased.

Figure 5 clearly illustrates the power of the switching technique.
It might have been argued that the superiority of Algorithm 2
was so clear that any measurement technique would have suf-
ficed. It so happened, however, that on two of the days of the
experiment (October 18-19, 1971) system response was rela-
tively fast, whereas on two other days (October 21-22) the
response (with same number of active users) was relatively
slow. Had the experiment been conducted by running Algorithm
1 on the first two days and Algorithm 2 on the last two days,
then, as shown in Figure 5, one would have concluded that Al-
gorithm 1 provided the faster response time!

The aim of the next experiment was to test the effect of the in-
teractive and noninteractive (see Appendix, Item 2) time-slice
lengths on system performance. Two values were chosen for
each time slice: ¢, = 200 and 300 milliseconds, and ¢, = 3000 and

No.3 - 1973 SYSTEM PERFORMANCE EVALUATION

Figure 5 Page replacement algorithms —comparison of results by day

40

ALGORITHM 1
10.21-22

ALGORITHM 2
10.21-22

75 PERCENTILE OF MIXED BENCHMARK COMPLETION TIMES

ALGORITHM 1
10.18-19

ALGORITHM 2
10.18-19

ACTIVE USERS

5000 milliseconds. Each cycle in the experiment consisted of 20
observations, including batches of five observations taken under
each one of the four possible combinations of time-slice values.
A pseudo-random number generator was used to vary the order
in which the four combinations occurred within each cycle.
Transient effects were judged to be short, and consequently only
the first observation was discarded from each batch. The experi-
ment was run over a period of one week.

Some of the results are shown in Figure 6, which displays the 75
percentile of the mixed-benchmark completion times. Here, the

BARD IBM SYSTJ

values ¢, = 300 and ¢, = 3000 seem to be superior. Otherwise, it
appeared that system performance on the whole was quite insen-
sitive to time-slice lengths within the range of tested values.

The values used in CP-67 version 3.1 are actually the ones that
favor our mixed benchmark, which is similar in structure to a
very short compilation or assembly.

The aim of the third experiment was to determine how a specific =~ user
user’s performance would be affected by his assigned priority P, priority
(see Appendix, Item 3). For the purposes of the experiment,

the DUSETIMR program was allowed to set its own value of P,

prior to running its set of benchmarks.

In the course of the experiment, successive observations were
taken with P cycling through the values 1, 50, and 98. The re-
sults are shown in Figure 7. It appears that P has only a slight Time slice experiment
effect on response when there are no more than 25 active users _'m"::e:, ben:hm,k
on the system, but the effect becomes quite spectacular beyond completion times
that point. An essentially even response is assured to the user
with priority level 1, while the average user (P, = 50) suffers
considerable degradation and the P = 98 user practically grinds
to a standstill. Note that the 25 active-user level is also the one
at which system throughput levels off (see Figure 1). Beyond
this level, one user can buy improved performance only at the
expense of other users.

N
=]

t (MSEC) t, {MSEC)

200 3000
200 5000

-
o

300 3000
300 5000

75 PERCENTILE OF COMPLETION TIMES (SEC)
S

Extensions

The experimental method described here can be useful as a sys-
tem development tool by assisting the developer in choosing
algorithms and parameter values. However, when one considers
the diversity of applications that a general-purpose computer
must serve, it becomes clear that no one algorithm or parameter
setting will be optimal for all installations. It is then necessary to
select the best settings —i.e., tune the system —for each installa-
tion. Furthermore, since the work load at any given installation
may change with time, both in quality and quantity, it is neces-
sary to retune the system periodically or continuously in an
adaptive manner. The problem is similar to that of “tuning” a
petroleum refining unit to the crude oil feed, or a chemical pro-
cess to the raw chemicals that constitute its inputs. The EVOP
(EVolutionary OPeration) technique,” which has been used ex-
tensively in the optimization of chemical and other industrial
processes, may also be applicable to computer systems. In this
technique, one selects a set of adjustable parameters, and one
performs a sequence of experiments in which the values of these
parameters are adjusted in a systematic manner within a well-
defined operating region. The results are evaluated, the operat-

ACTIVE USERS

NO.3 - 1973 SYSTEM PERFORMANCE EVALUATION

Figure 7 Effect of priority on mixed benchmark completion times

o~
=3
(=3

75 PERCENTILE OF COMPLETION TIMES (SEC)
@
=]

=3
o
w0
<

ACTIVE USERS

ing region is shifted in the direction indicated as most likely to
improve performance, and a new series of experiments is run.
The technique described in this paper would be used to conduct
each individual experiment in the series.

In a stationary system, this cycle is repeated until the best oper-
ating region is located. In a system whose characteristics change
with time, EVOP is carried on indefinitely in an effort to track the
changing optimum conditions. While a fair amount of effort must
go into the implementation of EVOP, it does provide a systematic
manner for tuning the system, and this is particularly important
when the system is so complex that intuitive prediction of the
effects of various parameter changes is well nigh impossible.

ACKNOWLEDGMENTS

The author is indebted to Dr. M. Schatzoff for suggesting the
idea of performing system evaluation experiments, to L. Wheel-
er for providing the switching mechanism in cp-67, and to M.

BARD IBM SYSTJ

Fleming for placing the facilities of the Cambridge Scientific
Center computer installation at our disposal for these experi-
ments.

CITED REFERENCES AND FOOTNOTE

1. CP-67{CMS System Description Manual, Form No. GH20-0802-2, Inter-
national Business Machines Corporation, Data Processing Division, White
Plains, New York (1971).

. R. A. Meyer and L. H. Seawright, “A virtual machine time-sharing system,”
IBM Systems Journal 9, No. 3, 199-218 (1970).

. Y. Bard, “Performance criteria and measurement for a time-sharing system,”
IBM Systems Journal 10, No. 3, 193216 (1971).

. B. H. Margolin, R. P. Parmelee, and M. Schatzoff, “Analysis of free storage
algorithms,” IBM Systems Journal 18, No. 4, 283 -304 (1971).

. Y. Bard, A Technique for Performance Comparison of System Software
Features, IBM Cambridge Scientific Center Technical Report No. 320-2081,
Cambridge, Massachusetts (1972).

. CP-67 Program Logic Manual, Form No. GY20-0590-1, International Busi-
ness Machines Corporation, Data Processing Division, White Plains, New
York (1971).

. W. Buchholz, “A synthetic job for measuring system performance,” IBM Sys-
tems Journal 8, No. 4, 290-298 (1969).

. An active user is one who has consumed some CPU time in the preceding
observation period. Typically, at our installation, the number of active users
was observed to be about two thirds of the number of signed-on users.

. G. E. P. Boxand N. R. Draper, Evolutionary Operation, John Wiley and Sons,
New York, New York (1969).

Appendix

CP-67 maintains a table of all pages in main storage and a pointer
that cycles around this table. CP-67 also maintains, at any given
moment, a list of “in-queue” users, and these are the only ones
eligible to receive service at that time. The manner in which this
list is maintained is further discussed below.

The two algorithms may now be described as follows:

Algorithm 1: Move the pointer around the table until a page be-
longing to a user not in queue is found. If no such page is found
in a complete trip around the table, select the next page for re-
moval.

Algorithm 2: Select the next page if its reference bit is off.
Otherwise, turn the reference bit off, move the pointer down one
page, and repeat. Note: The reference bit is turned on whenever
the user references the page in the course of running his pro-
gram. The bit is turned off when the user is removed from in-
queue status.

These algorithms correspond to those implemented in Versions
3.0 and 3.1 of CP-67, respectively.

No. 3 - 1973 SYSTEM PERFORMANCE EVALUATION

CP-67 separates the “in-queue” users into two classes: interac-
tive users, who are said to be in Q,, and noninteractive users,
who are in (,. Roughly speaking, a user starting a new task is
placed in Q,, where be is allotted up to ¢, milliseconds of CPU
time. If he is not finished, he becomes a Q, candidate. When Cp-
67 decides that there is room, the user is placed in Q, where he
may receive up to ¢, milliseconds of cpU time. If not yet fin-
ished, he is made a Q, candidate again, and will be eligible for ¢,
more milliseconds when next readmitted into Q,, and so on until
he is finished (or until there is an interruption from his console,
whereupon he returns to Q). The quantities ¢, and ¢, are called
the Q, and Q, time slices, respectively.

A user’s priority to enter Q, is determined by the following for-
mula:

P=P, +4T

where P is a number between zero and 98 permanently assigned
to the user by the installation manager, and T is the time (in
seconds since system start-up) at which the user became a Q,
candidate. When room in main storage allows, the candidate
with lowest value of P is admitted. It is the practice at the Cam-
bridge Scientific Center’s Cp-67 installation that practically all
users are assigned the value P, = 50.

IBM SYST J

