

are usually telephone lines or private wires. (Higher-capacity
links are being used in the ARPA Network and in military net-
works.) Physical remoteness between the systems is possible,
but is not a necessary part of the concept; there may be sound
reasons to link computers within the same building.

The essential nature of the kinds of networks discussed in this
paper is that they attempt to make the services of a variety of
systems available, in whole or in part, to the general user of each
system - without, however, tying the whole complex into a tight-
ly knit super-system. They are not oriented toward any special-
ized application, but aim to pool facilities for all purposes that
the needs of programmers and ingenuity of systems engineers
may suggest.

The participating systems in such a network may be the same,
but more commonly they are a rather diverse assortment. Ac-
cess to “more of the same” might motivate the pooling of sys-
tems through a communication network if the component sys-
tems are all identical. The incentive is even stronger when each
system has a specialty or two that the others lack. For example,
one might be a paging system, especially advantageous for oper-
ations such as text editing and on-line debugging; another might
be a batch system with a massive main storage that is more eco-
nomical for production runs. Linked into a network, the two
example system types offer the combined clientele the advan-
tages of both types.

Thus, the differentness of the systems participating in a network
is one of the incentives for its existence. At the same time, it is a
source of complications-just as being more and more things to
more and more people introduces complexity into an operating
system.

Data description in a single system

Before discussing complications that a computer network envi-
ronment introduces into data description, it might be well to re-
view some principal forms of data description required of the
user of a single system. These forms are grouped by the types of
system programs to which they are addressed.

Aspects of the data must be described to such a language pro-
cessor as an assembler, compiler, or interpreter. A language
processor is responsible for assigning locations to data and in-
structions, and for converting symbolic references into their
numeric form for use by the computer. A language processor is
also responsible for generating sequences of machine instruc-

258 FREDERICKSEN IBM SYST J

Device type on which data reside.
Reel or pack of data residence.
Tape file or disk track of data set residence.
Space required for new data set.
Reel or pack mounting required.
Data set readability by user and other programs at same time.
Postprocessing requirements.
Disposal of data set and storage after postprocessing.

The network environment

Consider now some progressively more ambitious types of
linkage among computers, working up to a network in which
arbitrary collections of data may be moved about among the
member systems. In connection with this last stage, a full-scale
problem of data definition arises. To simplify the discussion, we
generally consider the situation between just two systems, men-
tioning third systems only when their presence affects a princi-
ple. We speak of a remote - or target - system and the user’s own
system-or home system- as a matter of arbitrary perspective,
adopted for convenience in distinguishing two systems. The sys-
tems may be physically close, and the user may have access as
readily to one as to the other. The user’s own system is the one
from which he initiates whatever transaction we are discussing.

remote job If a user wants to submit a job to a remote system, then the op-
entry network erating system that schedules jobs at the remote system must be

listening to a communication line as well as to its local sources
of input (card readers, etc.). The job image that the user sends
must include whatever job control cards are usual at the remote
system.

That much is fairly obvious, but note that if the user’s own sys-
tem is also a batch operating system, he is now involved in writ-
ing job control cards for two jobs: one for his own system to
transmit the remote job, and the other for the remote job itself.
Typically, that does not end the matter. When the job is com-
pleted at the remote system, the user wishes to receive back his
output. Remote job entry (NE) is the term for this procedure.’’
For example, the remote system may merely assemble a user
program for later execution by the user’s own system. In this
case, it is preferable to receive punched-card output images over
communication lines instead of by mail.

Such an action brings still more system programs into play, both
remotely and locally. At the remote system, a program that
normally controls the punching must redirect its efforts to send
the card images over a communication line. And some user pro-
gram(s) must stand ready to receive the card images and make
them accessible to the user.

260 FREDERICKSEN IBM SYST J

Figure 1 Relationship of System/360 to the Attoched Support Processor

SYSTEM OUTPUT
FROM USER JOBS

In practice, the user may not want all of his output transmitted
to his home system; or he may want copies at both systems. He
may even wish to direct copies to third systems. In short, he
needs a means to indicate his intentions -and this, as always,
implies further control cards, or further parameters on existing
ones.

Remote job entry, such as we have been describing, is today a
fairly commonplace facility. For example, the Attached Support
Processor (ASP) system,3 used with the MVT level of Operating
System/360 (OS/360 with multiprogramming with a variable
number of tasks), offers such a facility. Briefly, modules of ASP
collect job inputs from various sources, perform some schedul-
ing functions over and above those of OS/360, and then feed the
jobs to the oS/360 system tasks that normally handle such job
inputs. Similarly, ASP modules intercept any output that the user
designates as a system output to be printed or punched by sys-
tem routines. Other ASP routines can then either put out the data
locally, or send one or more copies to other systems via commu-
nication lines.

This situation is visualized in Figure 1. ASP (considered here
only as a communication interface) is interposed between the
regular operating system and the communication line(s). It gives
remote systems a pathway to the local job input stream, and it
gives the local job output stream a pathway to outside systems.

That takes care of entry and egress at the remote system, but
what about the situation at the user’s own system: how does he
get through to the outside world; what program stands ready to
receive the returning output of his remote jobs? A small but use-
ful network that is operating at the IBM T. J. Watson Research
Center may prove illuminating in this regard. An evaluation of
this interactive-batch network, is given by H ~ b g o o d . ~

NO. 3 . 1973 DATA I N COMPUTER NETWORKS

Figure 2 Remote job entry network

SYSTEM1 360 MODEL 67
TSS1 360

SYSTEM1360 MODEL 67
CP-67/ CMS

BACKGROUND
RJE 9 1

TASK
VIRTUAL
RJE9 l

MACHINE

PUBLIC
STORAG
FOR US1
DATA SE

E
i R
:TS

SYSTEM
READER
TASKS

SYSTEM
OUTPUT

SYSTEM/36OMODEL 91
OS1360 MVT

ning at the Model 9 1 can contact one of the time-shared systems
only to forward a job output to a user after the job has com-
pleted its processing. No contact is possible between a user and
his remote job while it is running, nor between user programs
running simultaneously on two systems.

The principal motivation for the remote job entry network we
have just been considering is that it takes advantage of the differ-
ences among three operating systems. By this criterion, the
limitations are harmless, because there is normally no advantage
in moving a job from a batch system to a time-shared system.
Also a batch system user would not wish a job in the batch sys-
tem to tarry while that system interacts with a remote user.

There are other promising network applications, however, for
which such limitations are more serious. Suppose, for example,
that the principal attraction at another system is not its operating
system, but a program that has to be run there. This might occur
when the program uses a device that is not available at the
home system. The program might have to be used remotely be-
cause it is proprietary, or perhaps because it would be too costly
to duplicate on the user’s own system. Thus motivated, one may
seek a more comprehensive facility than remote job entry. The
situations that follow give insight into some desirable capabili-
ties of a more generalized remote job entry facility.

NO. 3 . 1973 DATA IN COMPUTER NETWORKS

Assume that one wishes to use a remote program as a kind of
remote subroutine of a program running on his own system.
That is, one might initiate a job on the remote system, then
communicate input values from a program running on the home
system and receive output values from the remote program.
Needed for such an operating mode is a communication inter-
face that allows user programs to interact with each other as
well as with the remote program.

A further requirement may be to forward more arbitrary forms
of input than those that can be embedded in the job input
stream. The remote program, for example, may require data
saved from a previous run, and may expect the data from tape
or disk. The user, however, does not necessarily have permanent
storage rights at the remote system. He needs to transmit the
data ahead of his job and put it temporarily on the required
medium. Likewise, one may have to retrieve more arbitrary
forms of output than those declared as system output. System
output is normally stored temporarily on spool space. Limita-
tions on the system output format are dictated by the system
routines available to postprocess it. Again, having worked up
his data at a number of systems, a given user may then have to
gather it together for a new job at any one of them.

Load leveling and system backup are two further network appli-
cations that require the transmission of arbitrary data sets from
system to system. In load leveling, a job and data sets used by
the job are shunted from a busy system to one whose current
processing load is lighter. The same is true when jobs are sent to
remote systems because the home system is down, assuming a
functional auxiliary home system and a communication line.

To handle conditions such as these, a communication interface
was designed and implemented at the IBM Research Center that
offers two new services. (1) Access is possible from a user pro-
gram on one system to a user program on another. Programs
that produce output other than system output can then, in many
cases, redirect the output to remote systems. (2) Data sets are
transmitted by the communication interface, or by programs
that the interface invokes by itself, without further intervention
by the user. The communication interface operates with the MVT
level of OS/360, at which level a number of user jobs may be
simultaneously working their way toward completion. At the
same time, system tasks accumulate input for other jobs and
postprocess the output of completed jobs.

In this milieu, the Communications Interface Task (CITASK)
operates as an additional system task that funnels messages
from the user jobs into the communication lines, and from the
communication lines to user jobs and/or the system input tasks.

264 FREDERICKSEN IBM SYST J

T o either user jobs or system tasks, CITASK looks like a magnet-
ic tape unit. Thus writing to certain dummy tape devices actual-
ly forwards material to CITASK, and reading from such devices
requests inbound messages from CITASK. The function of CI-
TASK is discussed in more detail in Reference 6. Here we simply
summarize CITASK by observing that this communication inter-
face or network subsystem, of which CITASK is a central part,
sends and receives arbitrary data sets. Given a description of a
data set, CITASK arranges for other components of the network
subsystem to perform the requested operation of either sending
or receiving a specified data set.

Because CITASK puts jobs into the system job stream, and be-
cause these jobs, like any user jobs, can communicate through
CITASK, the following two ways of forwarding data sets are
available. (1) CITASK generates a support job, which invokes a
utility program provided with the network subsystem. This utili-
ty reads the data set from its storage device on the local system
and writes it into the remote system via ClTASK or vice-versa
depending upon whether the request is to transmit or receive a
data set. (2) CITASK attaches a subtask to do the same thing.

Describing data for the network

It is necessary that CITASK be given a description of the data set scope
adequate for retrieval at the sending side or for placement at the
receiving side. Earlier in this paper we discussed various forms
of data description that are required by a single system. That
discussion is now enlarged upon for describing data for network
usage.

We previously noted three major classes of data description:

Details about variables and data structures required by a
language processor and possibly by an application program
Information used by system I/O routines for transferring data
between external media and main storage
Data descriptions needed by system routines that allocate
resources

The network subsystem just discussed does not concern itself
with data descriptions required by a language processor. Rather,
the network subsystem moves arbitrary bodies of data from ex-
ternal storage on one system to external storage on another (or
into the job stream of the target system, if that is appropriate).
Optionally, the data can be printed or punched at the receiving
system. Some reorganization is possible, but only that which
affects I/O routines at the target system, e.g., changes in record
format or blocking factors. It suffices simply that the data be

NO. 3 . 1973 DATA IN COMPUTER NETWORKS 265

routines. Further analysis of the data into fields, variable types,
arrays, and so forth is deemed to be the user’s responsibility.

Most batch operating systems allow data attributes in the sec-
ond category - those required for the input/output routines -to
be specified either in the user’s program or in control cards that
accompany his job. Resource-allocating attributes, on the other
hand, are typically communicated only by control cards. Thus,
the combined information may perhaps not be thought of as a
single data description, and one may reasonably quibble whether
an item such as device type really describes data. However, rel-
ative to the network subsystem’s use of the data, the one kind of
information is as necessary as the other. As a matter of fact, the
network subsystem carries this perspective even farther. For
example, accounting information, which is required to authorize
the service of forwarding or receiving the data, is also part of the
data description. If such information were not provided as part
of the data descrbtion. it would have to be provided separately.

roof.

protocol This is not to say that every one of the attributes listed under
one category or another must be stipulated explicitly on every
occasion by the user. Much of this information may be available
at the sending side in a system catalog, in labels associated with
existent data sets, or by the application of default values. For
this reason, the support program that is invoked by CITASK at
the sending side is responsible to embroider the data description
it has been given by the user, and forward it to the target system
in a (generated) request to receive the data set.

The step-by-step interplay proceeds as follows. The user writes
a protocol message to CITASK at the system (not necessarily his
own) that is to send the data set. This message, in its simplest
form, contains only sufficient description to authorize the ser-
vice and locate the data set. A discussion of a more comprehen-
sive network protocol is given by McKay and Karp in this is-
sue.7 In response, CITASK invokes the proper support program
for sending the kind of data set in question. The support pro-
gram composes a message for the target system, a
that the data set be received. All information that the support
program finds out about the data set -from labels or otherwise -
is merged with the description provided by the user. Thus en-
larged, the description is received by CITASK at the target sys-
tem, and used to invoke a suitable program for receiving the
data set.

protocol message has been acknowledged by that system. Also,

266 FREDERICKSEN IBM SYST J

Thus far we have described a network in which CITASK and
os/360 MVT are installed at both the source and the target sys-
tem. The network subsystem, however, was designed so as to be
easy for other types of systems to link with it, as long as they
match the subsystem's line discipline and cooperate with the
sort of interplay sketched in previously. It is generally undesir-
able to limit a network to systems of one kind, for, as we have
found, the very differences among systems can be a powerful
motivation for linking them together.

Having accepted this objective, there are two major complica-
tions in the description of data. Different systems use different
representations of data and different file conventions, as well as
different external storage media, resource allocating procedures,
etc. Data descriptions that are meaningful at the source system
may have to be specified in different terms for the receiver.
Also, even where the two systems are alike, the data description
at the source may have to differ from its description at the target
system. This is particularly true of where-to-find-it information,
but other attributes frequently differ as well.

The first of these difficulties becomes particularly acute when
data is moved between systems with radically different system
architecture. Suppose, for example, that one system represents
integers in a 32-bit word, whereas another uses words of 36 bits.
Perhaps one system represents characters for external display in
an eight-bit code, and the other uses six bits. One system may
devote seven bits to the exponent in floating-point numbers, and
the other devotes only six. When the differences between the
systems are this severe, the simple transfer of records from ex-
ternal storage at the source to external storage at the target is
inadequate.

To compensate for such architectural differences, either of two
procedures are used. Each application program that is to use the
records must be coded with a specific knowledge of the conver-
sions to be performed upon the specific records that are sent to
it. Alternatively, each data set must be preceded by a descrip-
tion not only of its file characteristics sufficient for placement on
external storage, but also of its contents, down to the level of
individual variables and their decomposition into bit strings.
This description must itself be in a form that can be interpreted
anywhere in the network.

The first alternative would be an impossible impediment to net-
work usage. It would require every application program that
used data from afar to be written with that fact in mind, and with

NO. 3 ' 1973 DATA IN COMPUTER NETWORKS 267

are written at remote systems is frustrated under the first re-
quirement. The necessity of doing things that way might serve to
characterize a special-purpose network as opposed to a general-
purpose one.

This difficulty has been widely recognized, and there has been a
great deal of interest in working out a standard data description
language. A description in such a language would accompany
each data set transmitted from one system to another and be
used in either of two techniques. Each application program that
is intended to be shared through the network is designed to look
for the data description associated with each data set it uses, and
make any necessary conversions. Alternatively, utility programs
are available at each system that uses the data description to
convert the data set into a standard local representation.

the MICIS One design that opts for the first of these approaches has been
standard put forth by a group of users associated with the MERIT comput-

er network.8 This network connects the three largest universities
in Michigan. Two of the three systems in the network are IBM
System/360 Model 67’s; the third is a CDC 6500. Various gen-
eral-purpose statistical application programs are available at the
different universities. A proposed Michigan Interuniversity
Committee on Information Systems (MICIS) standard for data
description aims to facilitate the transmission of data among the
systems for end use by these program^.^

The data description itself is written in a standard set of charac-
ters that are encoded the same way in all computers of the net-
work. Each data description starts with a bootstrap record that
indicates the layout and placement of the data description itself.
(Parts of the description may be interspersed with groups of data
in the file.)

If necessary, the bootstrap then describes the representation of
various types of numbers present in the file (reflecting machine-
dependent formats). This is followed by an indication whether
further descriptions are in terms of rows or columns. (Each ac-
tual group of data is transmitted as an array.) Then there are
descriptors for the location of each variable within the typical
(data) record for the group, its format (possibly one of those for
which conversion requirements were specified earlier), etc.

In short, data is described down to the level of individual vari-
ables, grouped in arrays. This is the kind of data description dis-
cussed earlier under the scope of the required description in the
first category: descriptors required by language processors
and/or application programs. There is no escaping this level of

268 FREDERICKSEN IBM SYST J

description if radically different systems are to cooperate useful-
ly in the network.

While the approach is a necessary one for networks that include
heterogeneous computer types, it presents some obvious diffi-
culties. First, application programs must be written to take ac-
count of the information in the data description. Programs can-
not simply be written for local use and then shared as an after-
thought. They must be written as required, and then they can
accept data from anywhere. Second, it is a formidable (and per-
haps impossible) task to invent a single set of data descriptors to
cover all the known applications in a manner acceptable to
everyone who uses it.

The MICIS standard is avowedly oriented toward statistical ap-
plications, for which reason it includes some unusual descrip-
tors, such as the specification of missing values. To adapt MICIS
equally well to other applications, and to the way of thinking of
non-FORTRAN programmers, would probably require an exces-
sive amount of additional detail. Indeed, no limit is in view.
Each new class of applications that arises is likely to require
special-purpose descriptors analogous to the missing-value de-
scriptors of statistical usage.

The authors of the MICIS standard liken their data description to
user labels on a tape. The comparison is apt, since making use of
the description is not a function of the network interface (i.e., of
system programs), but of the end-use application programs. At
the same time, the currency of the standard might be somewhat
wider than one normally associates with user labels, since a
broad class of potential users may be able to make use of the
same standard.

The OS/360 MVT network subsystem, as we have already noted,
offers a more limited service. It transfers data sets from external
storage on one system to external storage on another. No effort
is made to describe the data at the level of variables and bit
strings for the benefit of end-use programs. This means that traf-
fic between the network subsystem and any truly alien system is
only minimally facilitated. When the data arrives at its target,
the end-use program is on its own to decipher it.

While this is somewhat circumscribing, there are two weighty
justifications for starting at this level. The problem of describing
data at the level required for rlo and resource allocating routines
is challenging in its own right, especially when the operating sys-
tems in the network include a wide variety of conventions and
options. For the medium-term future, and perhaps even in the
long run, the earliest and heaviest buildup of traffic is likely to

NO. 3 . 1973 DATA IN COMPUTER NETWORKS

occur within families of closely related computers, not among
conglomerations of widely differing systems.

Variety is a motivation for the linkage of systems into networks,
but it is also an obstacle. Ideally, the kind of variety that is help-
ful can be achieved without the kind of variety that is most trou-
blesome. It is attractive to contemplate the use of two operating
systems whose strong points are complementary. The prospect
of having access to other configurations of main storage and pe-
ripheral devices is similarly attractive. The use of another sys-
tem under the same operating system, but with different options
could also be very useful.

Coping with differences in basic data representation and in-
struction sets is difficult. In general, that kind of variety adds
burdens rather than versatility. It is a cost to be weighed against
whatever advantages may be offered by the good kinds of vari-
ety.

Among systems that use a common representation of data at the
level of individual variables, the description at this level can be
dispensed with. It is possible for such systems to share a pro-
gram without its having been written with that objective in mind.
It suffices to inform the remote user what data the program ex-
pects and how it should be laid out in the external records. No
extra layer of description is required for data conversion.

When a sufficient set of descriptors has been determined for
moving data between external storage on any two systems of the
network, supplemental (and separate) descriptions can be
worked out to deal with the further problems arising from het-
erogeneous data representations at the individual systems, The
latter descriptions can be tailored to the requirements of dif-
ferent end-use programs, and can remain transparent to the data-
moving routines. Thus their status is similar to user labels.

Input/output and resource allocating descriptions

We now discuss the more restricted problem to be handled by
the network subsystem, that of sufficiently describing data to
move it from the external storage of one system to the external
storage of another. The two systems may have different operat-
ing systems, but we assume that they have a common represen-
tation of data. Even these assumptions leave something of a
challenge-different file conventions and different ways of con-
ceiving and requesting resources, wherein such differences pre-
clude a simple transfer of control card parameters and/or data
set labels.

270 FREDERICKSEN IBM SYST J

Even at a single system, the profusion of options and conven-
tions offered by an operating system such as os/360 MVT are
impractical to use if the system does not offer a number of ab-
breviations describing the more common situations and does not
offer ways of automating such descriptions by cataloged pro-
cedures, retrieval from data set labels, etc. Therefore, the lan-
guage of data descriptions for network interchange should make
full provision for abbreviations, summary descriptors, default
values, and the like. Moreover, to the extent possible, such a
language should be backed up at each system by software that
supplies the information automatically.

We noted earlier that even when the source system and the tar-
get system are of identical types, the data description that ap-
plies at the source system may have to be retouched for the re-
ceiving side. For example, the data set may reside on a private
disk pack at the sending side and have a particular volume serial
number. At the receiving side, however, the data may be placed
on public storage assigned by the system. As another example, it
may be desirable to shorten blocked records at the receiving
side if the devices used there have a smaller track length.

For this reason, a double list is used as the basic form of the
data description as follows

SND (.), RCV (.) or simply (.), (.)

where the (.) represents contents, and SND and RCV are
optional mnemonics that represent SEND and RECEIVE.

Within the parentheses are various parameters needed to move
the data set from source to target. These parameters are attri-
butes of the data, although, as previously explained, some have
to do with the description of devices and other matters required
for performing the service. Each attribute is considered as hav-
ing two values-one value that applies to the sending side and
another value that applies to the receiving side. For most param-
eters, these values are identical. Therefore, to save unnecessary
writing, a convention is observed whereby the value of an attri-
bute given in the SND list is assumed to apply to both sides un-
less it is explicitly overridden by exception values in the RCV
list. If all values are identical at both sides, the RCV list is omit-
ted entirely.

The double list is a solution to the part of the send-receive prob-
lem wherein systems that use the same set of descriptors may
require different values to describe the same data set. Also, both
the source system and the target system may be remote from the
system at which the transmission request originates. There is,
however, a subtle point that might escape first notice.

DATA IN COMPUTER NETWORKS

meaning as it can by unspoken agreement. Wherever the context
requires that an attribute have a value, there is a default value.
The user who wants to write programs in the language with any
degree of proficiency must know the defaults. However, the
default values that come naturally at the sending system differ
from those at the receiving side.

For example, consider what to do with the data set if one of the
two programs that cooperate in sending and receiving data sets
should terminate with an error. At the sending side, in the ab-
sence of other instructions, one normally wishes to keep the data
set, assuming it resided originally on external storage. At the
receiving side, it is more natural to scrub the suspect copy that
has been received, provided this can be done without disturbing
its surroundings.

A consequence of assigning each attribute a value for the sender
and a value for the receiver is that each value must also have
two default values. A list that apparently calls for common treat-
ment (default it at both sides) may mean to assign appropriately
different values at the two systems.

data A much greater difficulty is that different operating systems do
elements not talk the same language about data, resources, or services.

One attack upon this problem requires collecting every parame-
ter that may be used by any of the systems expected in the net-
work, analyze the parameters into their finest elements, and as-
sign a name to each element.

A data description then consists of a list of values for these
atomic attributes and is complete for the purposes at hand if
both sender and receiver can get what they need out of it. The
language itself consists, in principle, of a word for every need.
Excess repertoire can always be ignored. In general, each sys-
tem is expected to contribute all the information it can, and ex-
tract whatever information it needs.

The idea of analyzing the attributes into a common set of ele-
ments is that different systems can then reassemble the elements
into the parameters that each system uses. Parameters tend to
differ from system to system not so much in meaning as in the
way each system bundles meanings. OS/360, for example, com-
bines the following five different questions into the LABEL pa-
rameter of a DD card: (1) Which of several files is this one on a
tape? (2) Are standard labels employed? (3) Is a password re-
quired? (4) Is the file going to be used this time for input or out-

Other information- that bears upon the retention period is
embedded in the DISP parameter.

272 FREDERICKSEN IBM SYST J

Another operating system that handles tape drives is likely to
require at least some of the information listed above, but there is
no compelling reason why the other operating system should
wrap particular values into one parameter, nor why possible
values for the retention period should be separated into two pa-
rameters. Such groupings reflect only a particular implementa-
tion of the services that are called for.

Any given pair of systems could perhaps have programs for ex-
tracting what they needed out of each other’s parameters, but
that quickly gets cumbersome as more systems are encompassed
and unusable if one system does not know the character of the
other. It is better that each system know how to break down its
own parameters into the common currency.

Of course, the immediate price is that each system must be able
to extract from this common currency what it needs, and assem-
ble the particles into its own-style parameters. CITASK and its
support programs do exactly this and ignore or pass along any
information they have no use for.

Needless to say, this approach offers no way to describe at one
system another system’s facility for which it has no functional
equivalent. Under CP-67/CMS, for example, a CMS virtual ma-
chine offers no facilities for processing an Indexed Sequential
data set. No combination of elementary attributes can be ex-
pected to describe such a data set to CMS, when no such data
organization is within its ken. But then, no such description is
needed at a system that can do nothing with it.

On the other hand, comparable facilities that have different
names at two systems can be described straight-forwardly, using
the two-valued attribute feature. For example, under appropriate
conditions, a Physical Sequential data set from a system under
OS/360 can be sent to a system using TSS/360 and filed as a Vir-
tual Sequential data set. An appropriate description of the data
is as follows:

S N D (. . ., DSORG=PS, . . .), RCV (. . ., DSORG=VS, . . .)

This does not imply that an interface comparable to CITASK, that
is, one capable of acting upon this description, has been imple-
mented for TSS/360. Here we are talking only about the adequacy
of the language.

All possible contents of the SND and RCV lists are not detailed
here.6 Some highlights, however, that show interesting touches
due to the network environment are presented.

Inside the parentheses, both lists may consist entirely of key-
word parameters separated by commas or they may start with a

NO. 3 . 1973 DATA IN COMPUTER NETWORKS

single positional parameter optionally followed by keyword
parameters. To keep sublists to a minimum, an effort has been
made to define the attributes so that each operand is atomic,
that is, operands do not involve multiple subparameters.

First, we take up the positional parameter, which optionally
heads the list. Writing any value for this parameter is inter-
changeable with writing the bundle of keyword parameters
stated to be its equivalent. Some keyword parameters are not
detailed here, but the context should make their meaning clear.

Bundled attributes are provided for ease of use, whereby stan-
dard bundles of attributes are defined and given network-wide
names. One or another of these names may be used as the posi-
tional parameter of an attribute list. If so used, it absolves the
user of writing any keyword parameters that are encompassed in
its meaning, unless he wants to override part of the bundle he
has invoked.

As always, the desire to say things in few words competes with
the need to have words for everything. Having broken down the
attributes into elementary components so that each system in
the network can recombine them in its own way, we apply
names to the following recombinations that are common for the
purposes of the network.

CARDS describes card images that are stored and transmitted in
fixed blocks, which is tantamount to writing RECFM=FB, LRECL=
80; nothing more is implied.

JOB describes card images that are stored and transmitted in
fixed blocks. At the receiving system, however, the card images
are to be fed into the job stream. Specifying this attribute is
equivalent to Writing RECFM=FB, LRECL=SO, and QUEUE=RDR.

TAPERECS is the first (data) file on one reel of a tape that con-
forms to local standards on each system. It is considered legiti-
mate for standards with respect to header and trailer labels, den-
sity, and device type to differ at the sending and receiving sys-
tems. The communication interface is expected to make its own
provisions for describing the type of device implied at its own
shop.

Header and trailer labels are not transmitted as such. If, how-
ever, header labels are standard at the sending side, the sending
program is expected to expand the user’s description from the
information in the label so that labels may be constructed by the
receiving system if needed. Of course, if header labels are not
standard at the sending system, the user must provide in his

FREDERICKSEN IBM SYST J

description any information necessary to the receiver that is or-
dinarily gleaned from the headers.

There is no precise keyword equivalent for TAPERECS, which
is equivalent to writing UNIT = valuel and LABLTYPE = ValUe2,
where valuel and value2 are standards in force at the system
where TAPERECS is interpreted.

This parameter is especially useful in a network because the
user may know that he wants his data put on tape, but may be un-
familiar with the labeling conventions and unit types at the re-
mote system. There is an analogous keyword for disk records.

We turn now to the keyword parameters. Unlike the values just
described for the positional parameter, keyword parameters
need not be meaningful throughout the network. The subset
chosen applies to the systems involved and to the case at hand.
The value given to an item by writing a keyword parameter
(other than DESC) takes precedence .over any value it may be
given by an attribute bundle called for in the same list. The ef-
fect is as though each bundle were a cataloged description made
up entirely of substitutable parameters.

Prearranged datu set descriptions that make sense throughout a
computer network are difficult to define, because of the variety
of operating systems that may be encountered. At the same
time, much of the traffic may take place within families of sys-
tems, the members of which could easily agree among them-
selves as to what is useful and common. Also, a handful of de-
scriptions may cover ninety percent of the information required
in ninety percent of the cases at a particular installation.

To provide for descriptions whose currency is only local or in-
formal, the following keyword parameter is provided:

DESC = description-name.

This parameter, like the positional parameter of the previous
discussion, names a bundle of attributes. The difference is that
the positional parameter names a bundle that every party to the
communication network undertakes to interpret according to
standard specifications (insofar as possible), whereas DESC
names a description that is prearranged among some group of
users and the installations with which they deal. In the latter in-
stance, it is the user’s business to know what the description
means at the system(s) he addresses.

The DESC parameter can be thought of as invoking a cataloged
description although nothing is implied as to the location of the
catalog (i.e., in external storage or internal to the communication
interface).

NO. 3 . 1973 DATA IN COMPUTER NETWORKS

Editing procedures may be specified by users to reorganize
or edit data in ways that are not provided for by the commun-
ication interface. Editing could in principle be accomplished
by a separate job, but it is often more economically performed
in the process of sending and receiving the data. Both to accom-
modate the user and to relieve the interface of providing for
every possible case, therefore, the following escape hatch is
provided:

EDITOR = procedure-name or E = procedure-name

specifies a procedure or program that does the sending and/or
receiving (depending which list(s) it occurs in).

Processing queue is provided at the receiving system so that the
user can direct the data set to be placed in a named processing
queue. The form for this request is as follows:

QUEUE = queue-i.d. or Q = queue-id.

Also there is the following standard form:

QUEUE = RDR

which has the meaning that the data set is to be placed in the
(batch) job stream of the system. This feature illustrates an in-
teresting point of view that arises in a network environment.
From the standpoint of the communication interface, passing
blocks of data from the communication line to a support job that
stores them away on external storage is pretty much the same
operation as passing blocks of data to the sysem program that
takes in jobs. Hence, to submit a remote job, it suffices to ask
the system to receive a data set with the special attribute Q = RDR.

At an OS/360 system, if queue-i.d. is a single character in the
range A-Z or 0-9, it is taken as a queue being processed for out-
put, that is, in os /360 terminology, an output class to be specified
in a SYSOUT parameter.

User identijcation has the following keyword:

USERID = name-of-user or u = name-of-user

This information provides accounting information for sending
and receiving services not otherwise accounted for at an OS/360
system when a subtask rather than a support job is set up to
provide the service.

User information is also used to log on at a time-sharing system
such as ~ s s / 3 6 0 or to compose a JOB card - when appropriate -at
a batch system such as os /360 . The same information provides
unique qualification for data set names when so requested.

FREDERICKSEN IBM SYST J

If the user omits this information- and if it is available at the
sending system- the communication interface or the support
program to which it delegates the work should add available in-
formation to the user-supplied list. In the OS/360 MVT network
subsystem, available information is supplied by the support pro-
grams. The necessity of the information depends on the context
and on the conventions that are in force at the receiving system.

Note that the network environment constrains the size to be
stated in terms of blocks because the direct access units at the
receiving system may be of a different type than those at the
sending system. That is, the capacities of a track or cylinder
may not correspond, and size specifications in terms of these
units that are valid at one side may be too large or too small at
the other.

Volume access is another parameter that is influenced by the
network environment. Accessibility relates to the physical vol-
ume of the disk pack on which a data set resides or is to be
placed. This item of information is provided in OS/360 Job Con-
trol Language as a subparameter of the VOLUME parameter in a
DD card. In that environment, volume access assumes either of
the two values “public” or “private.” In the network environ-
ment, it is convenient to make the item a separate attribute, and
add the following additional value to its range:

VOLSTAT = status Or VST = status

Here “status” may be given one of the following values:

PUBLIC (or PU) -public volume
PRIVATE (or PR) - private volume
NETWORK (or NW) -volume dedicated to network usage

PUBLIC and PRIVATE have their usual meanings. A NETWORK
pack is a public volume that is dedicated to network usage in the
following two respects: (1) it is permanently mounted whenever
the communication interface is active; and (2) the communica-
tion interface is able to access it. In practical terms, this means
that the communication interface itself can perform the task of
retrieval or storage, thus bypassing the need to set up a support
job.

The volume access parameter brings up the point that it may be
desirable to distinguish between public status with respect to
local users and public status with respect to network operations.
Actually, since OS/360 lacks facilities to enforce the concept of
ownership, the OS/360 MVT network subsystem as currently im-
plemented does not do so either. Declaring a volume to have

FREDERICKSEN IBM SYST J

NETWORK status merely makes it easier and more economical
for the network user to have it transmitted from or received
onto.

A number of other parameters are specified for commonplace
attributes of the data and the external storage media on which it
resides or is to be placed. For example, there are keywords for
data set organization (DSORG), physical unit (UNIT), volume
identifier (VOL), block size (BLKSIZE), record format (RECFM),
and logical record length (LRECL). These and others are not de-
tailed here because they have their usual meanings.

Concluding remarks

We have distinguished the following three major classes of data
description that are typically supplied in a program or in control
cards

Variables, fields, and other structures, together with their
interrelationships as needed by language processors and ap-
plication routines in a program library, etc.
Input/output devices, file conventions, record layouts, etc.,
as they affect the transfer of data from external storage to
main storage.
Data set locations, size, access rights, disposition after pro-
cessing, etc., as required by the system resource allocating
routines.

Of these, some, all, or none may accompany a data set as a de-
scriptor message whenever the data is transmitted within a com-
puter network. It depends on the type of network- the variety
of systems in the network, the variety of file types whose trans-
mission is supported, and the degree of assistance to be under-
taken by communication interfaces or other system programs.

In the IBM Research remote job entry network discussed, only
minimal data descriptor messages are required. Those messages
are the returning output from the batch system preceded by a
record giving the user i.d., job name, and DDNAME with which
the data set is associated in the job. The user is unaware of this
record, since it is created by one communication interface and
absorbed by the other. A minimal descriptor is possible in this
example because of certain facts about the network design con-
straints that simplify data description. The batch system (OS/360)
takes in only card images whose destination is known to be the
system job queue. The system returns only output that can be
handled by some ASP postprocessing module. The bulk of the
work is done by the user, who describes his data to the batch
system in the DD cards of the job itself. (An additional ASP con-

I NO. 3 . 1973 DATA IN COMPUTER NETWORKS 279 I

trol card is embedded in the job for each output data set that is
to be transmitted.) The communication interface at TSS/360 or
C P - ~ ~ / C M S undertakes no more than to receive variable-length
records, store them in a data set or a spool space associated with
the user, identify them for the user by incorporating the job
name and DDNAME into the data set name at TSS/360 or the file-
name-filetype at C P - ~ ~ ~ C M S , and advise the user that the data set
has arrived.

Discussed in another environment is the MERIT network, among
three universities in Michigan that shows the impact of including
different computer types in the network, particularly where they
use basically different data representations and instruction sets.
Since the user cannot send the application programs to a system
with a different instruction set, it is attractive to send data to the
program. But the ability to accept data from remote systems of
unspecified type requires that the application or utility program
be written to look for one or more associated descriptor records
in a standard form that describes data down to the level of ar-
rays, variables, and bit strings.

Also examined is another ISM Research network supported by
an experimental os /360 MVT network subsystem. Here the par-
ticipating systems are assumed to be of like architecture, i.e., us-
ing the same internal representations of data. However, the
hardware configurations, operating systems, and available ser-
vices may all differ. It is desired to be able to call for the retriev-
al of an arbitrary data set at any system in the network, its trans-
mission to any other system, and its storage, execution, or ser-
vicing at the target system on the basis of a standard descriptor
message. At least some of the systems offer a challenging vari-
ety of options as to file conventions, resource specifications, and
the like. With this for a problem, the need for data descriptions
at the variable and bit-string level disappears. On the other
hand, input/output and resource-allocating classes of descriptors
become prominent.

As the description is provided for the benefit of system pro-
grams and/or utility programs at both the sending and receiving
sides, the description must describe the data for both. This leads
to double-valued attributes -and, in some cases, double-valued
defaults, one for the sender, and one for the receiver.

One way to incorporate into a single description the information
required by two systems that might offer different services. con-
ceive of resources differently, and talk differently about things
like files is to analyze the parameters used by each system into
atomic elements, with as much commonality as possible. The
description is then encoded in terms of these elements and put
together again at each system in its own way. As much as possi-

FKEDERICKSEN IBM SYST J


~~~ 

ble, the  onus of this  description is placed on  the  system  pro- 
grams  and utility programs  themselves. The sending utility pro- 
gram, for example,  rounds  up as much information as it can  from 
data  set labels and  other  sources  and  adds  this  to  the  description 
provided for  the receiver. 

The data  description language used by the OS/360 MVT network 
subsystem  copes with these  problems. It includes in each  de- 
scription a SEND list of attributes and (to  the  extent  that they 
differ) a RECEIVE list.  Defaults are systematically  worked  out to 
be  natural  for the side(s) at which they apply. The breakdown of 
attributes  into  atomic  components is compensated by provision 
for bundled descriptions  that  put  them  together again in such 
groups as may prove  convenient. 

The network influences certain  commonplace  parameters,  such 
as  data  set names, which may need to  be  rendered unique by a 
convention  observed  throughout  the  network. 

For  the near-term  future, it is likely that  most  computer  network 
traffic  will be of the ME variety among computers of like type. 
For this,  elaborate  communication  protocol  and  data-description 
messages are unneeded.  Protocol  messages that pass  between 
systems  can be generated  by  system programs. The user’s role 
consists merely of supplying control  cards  for his job, with per- 
haps  some  extra  cards to control routing of the  output.  If  the 
user  wants  to  get  back  data  other  than the usual printed  or 
punched  output,  he  must do something in his program to  put  the 
data  into  one of those  two  forms and then  reconvert it at his 
home  system. 

Even in the long run, it is unlikely that  massive data  sets will be 
transmitted  across  communication lines. There  are economic 
limitations and time  constraints on this. It is foreseeable, how- 
ever,  that  as  network usage builds up,  there will be a mounting 
demand  for  services  that  shuttle  moderate  size data  sets of all 
types among systems with a minimum of rearrangement by the 
user. This prospect  prompts  interest in network-oriented data 
description languages such as have been discussed.  Naturally, 
users  want to write  the  least they can in any  particular  context 
and to  have the ability to  express anything  that  needs  to be ex- 
pressed  on  occasion. Reconciling these  objectives is a key step 
in making computer  networks  attractive. 

ACKNOWLEDGMENTS 
The author wishes to  cite J .  W. Meyer  and R. Nachbar  for  their 
roles in the  development of the remote job  entry system (RJE91) 
for  the  System/360 Model 9 1. 

NO. 3 . 1973 DATA IN COMPUTER NETWORKS 



CITED  REFERENCES 
1. D. W. Barron, Computer  Operating  Systems, 23 and 105 - 106, Chapman and 

Hall,  Ltd.,  London, England. 
2. The  Comtre  Corporation, A. P. Sayers,  Editor, Operating  Systems  Survey, 

79-80,  Auerbach Publishers, New  York,  New  York (1971). 
3. IBM  Systeml36O  and  System/37O  Attached  Support  Processor  System (ASP), 

Version 2 ,  System  Programmer’s  Manual, Form  GH20-0323-8,  Ninth Edi- 
tion,  International  Business Machines  Corporation,  Data Processing  Division, 
White  Plains, New  York  10604  (March 1971). 

4. W. S. Hobgood, “Evaluation of an interactive-batch system  network,” IBM 
SysternsJournalll,  No. 1 , 2 -  15  (1972). 

5.  R. A. Meyer  and L. H. Seawright, “A virtual  machine  time-sharing system,” 
IBM  Systems  Journal 9, NO. 3, 199-218 (1970). 

6. D. Fredericksen, L. Loveless, J. Rooney,  R.  Ryniker, S. Seroussi,  and A. 
Weis, OS1360  Network  Interface  User’s  Guide, IBM  Research  Report  RA 
23 (#15638), IBM Thomas J .  Watson Research  Center,  Yorktown  Heights, 
New  York 10598‘(1971). 

7. D. B. McKay and D. P. Karp,  “Protocol  for a computer network,” in this 
issue. 

8. The  MERIT  Computer  Network:  Progress  Report  for the Period July 1969- 
March  1971, Publication 0571-PR-4,  Reproduced by the  National  Technical 
Information Service,  PB 200 674. 

9. M.  Donaldson, S. Robinovitz, and B. Wolfe, Preliminary  Draft:  Proposed 
MICIS  Standardfor  Data DeScription, Michigan Interuniversity  Committee 
on Information Systems  (December 1970). 

282 FREDERICKSEN 


