
Factors  that  affect  the  paging  characteristics of user  progrums 
in  virtual  storage  systems  are  presented  in  tutorial  form.  Meas- 
ures  are  suggested  that  can  be  taken  to  exploit  the  virtual  stor- 
age  concept  ut  the source language  level  in  assembler, COBOL, 
FORTRAN, and PL/I. 

User  program  performance in virtual  storage  systems 

by J. E. Morrison 

Much of the existing virtual storage  literature has dealt with 
measuring, modeling, or otherwise anticipating system  perfor- 
mance  under paging with the goal  of developing  system  control 
algorithms that  can  react intelligently in a wide range of situa- 
tions.”’ The results of these investigations have laid the  founda- 
tion for today’s advanced virtual storage  implementations.  Some 
of these investigations may leave  the  impression  that  user  pro- 
grams are  not easily controlled in the way they use  real  storage 
or,  at least,  that  the  programmer  can  contribute little to improving 
the system’s overall paging characteristics.  Historically this has 
been a reasonable  assumption  because until recently  there  have 
been relatively few virtual storage  computing  systems available. 
Therefore, few user  programs  have  existed  that  were  written with 
enough awareness of the virtual  storage  environment to truly ex- 
ploit the technology. 

This  paper  presents  introductory principles and  considerations 
for individual program performance in virtual storage  and  some 
programming techniques  derived from them. The intent is to 
improve  the  performance of individual programs running in a 
virtual storage  environment primarily, but  not exclusively, 
through reducing their paging demands.  The effect of  paging on 
system  performance  and its dependence  on  the  hardware  and 
software configuration is not  covered in this paper. In very large 
configurations, paging for a given program may be overlapped 
with the execution of other  programs  and  therefore may not 
materially affect system  performance. The entirely separate  top- 
ics of system  performance, configuration selection,  virtual  stor- 
age benefits that  contribute  to  system  throughput or programmer 
productivity,  and new ways to design applications are  not  con- 
sidered. 



This  discussion is motivated by several  factors.  First,  regardless 
of the  situation,  the  more  a  person is aware of his environment, 
the  better he is prepared  to  take  advantage of it.  This  does  not 
mean that  everyone  who  writes programs for virtual storage 
needs to be an expert  on how it works,  since  one of the  virtues 
of the virtual storage  concept is that most of its benefits accrue 
without  the user’s awareness of its use.  However, a program’s 
operating  environment  can  be profitably exploited given a mini- 
mal amount of background.  An  example of this  type of exploita- 
tion is that of including facilities to  take advantage of overlapped 
tape  operations when multiple channels are available. The result 
is the  same  whether the  user  understands  channel  overlap  and 
channel  processing or not. 

Secondly, many programmers  write  programs  according to some 
set of standards imposed either by their  organizations or on 
themselves by professional pride.  Often  these  standards are 
completely  arbitrary or  are simply habits. For example, defining 
all FORTRAN arrays with COMMON statements  is  not  an unusual 
practice among FORTRAN programmmers  even though the  same 
results  come from the  use of DIMENSION and using COMMON 
only for  those  variables that require  it. Similarly, a common  hab- 
it of COBOL programmers is to group all error processing  rou- 
tines  together at the  end of a program. Since many programmers 
use  sets of standards, they might as well be  standards  that im- 
prove  performance. 

All material presented in this discussion  pertains  to the virtual 
storage  concept as implemented by IBM, and is essentially  free 
of specific operating  system implementation considerations. It is 
assumed  that  the  user  write  programs  that  reference a large ad- 
dress  space divided by the  system  into fixed-length units called 
pages. A page boundary is any  address  evenly divisible by the 
page size. The  computer  on which the program runs  has  avail- 
able  to it a  certain  amount of real storage divided into page-size 
units called page  frames. When the program is in execution, 
address-space  references  are mapped into  real-storage  addresses 
through the  Dynamic  Address  Translation (DAT) facility. When 
a program reference is made to  an  address  not resident in main 
storage, a page exception interrruption  occurs signaling the  need 
to load the  referenced page from external page storage. The 
page frame  that  the  referenced page will occupy is determined 
by the page-replacement  algorithm. It is assumed  that a page is 
never loaded until it is actually referenced (demand  paging) and 
that only pages whose  contents  have been changed in some way 
are  written  to  external page storage. It is further  assumed  that 
all multiprogrammed programs  compete €or the same main stor- 
age  space so that higher priority programs are able  to  steal page 
frames from lower priority ones. The nature of virtual  storage 
also  dictates  that  the  contents of those page frames being used 
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for  Input-Output (UO) operations  must  be fixed in storage  for 
the  duration of the I/O operation  and are thus removed from the 
pool of page frames available for  dynamic paging. 

Principles of program  performance. 

In  the  study of program performance in virtual storage  system, 
two  representations of the effect of  paging have  proved  to be 
particularly descriptive: 

The  parachor  curve. 

The working set. 

A parachor curve is a graph of the total number of page excep- 
tions that a program causes to occur  when paging against itself 
in a fixed amount of real storage,  versus  the  amount of real stor- 
age available to it for  execution. It is usually observed  that if a 
program has  less real memory available to  it,  then more page 
exceptions will result as shown in Figure 1.  For most  observed 
programs,  there is a threshold point‘at  which, if the  amount of 
real  storage is decreased  even  further,  the  number of page ex- 
ceptions  increases  very  rapidly. 

The  parachor  curve is descriptive in several  ways. It shows how 
much real storage  a program requires  to maintain a  “reasonable” 
level of performance (for example,  a  degradation of five 
percent).  This  area is shown as ORS (Optimal Real Storage) in 
Figure 1. The parachor  curve  also gives a subjective view of 
how sensitive  a program is to  real-storage limitations. In  Figure 
1, program A can  be  seen  to  be quite  sensitive to  the amount of 
real storage available over  the  entire range of storage  sizes 
shown,  whereas  the  number of page faults  caused by program B 
is essentially  independent of real storage until very  near its 
threshold. Thus program B can be expected to be more  predict- 
able in multiprogramming situations. 

The parachor  curve  for  a given program is,  however,  a very 
gross  measure of performance.  Since  the  parachor  curve  repre- 
sents  a program paging against itself, its  shape may be radically 
different in a multiprogramming situation  where higher priority 
programs are stealing pages from it: Also, if a program that  has 
occasional  transient  demands  for many pages is multipro- 
grammed on a machine with very large main storage  relative  to 
its address-space  requirements, paging rates will tend  to be 
lower  than  shown in the  parachor  curve  since  the  transient  de- 
mand can be satisfied without requiring the program to page 
against itself. For some  programs, the  shape of the  curve may be 
dependent on the  data being processed although this is not  nor- 
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mally the  case.  The  most  obvious  weakness of the parachor 
curve is that it relates to  the execution of an  entire  program,  and 
the  real memory requirements of a program change during  the 
course of execution as  does  the  amount of storage available to it: 

A more general description of how a program uses  its  address working 
space is provided by the working set ,  the specific pages refer- set 
enced by a program over  some  arbitrary interval of time. One 
can define a program’s working set as W ( t ,  A t ) ,  the pages refer- 
enced in the time interval ( t  - A t ,   t ) .  The working-set size, 
w ( t ,  A t ) ,  is the cardinality of W ( t ,  At)  . 

Key to  the definition of working set is the  concept  that  a  pro- 
gram does not have a single “working set”  but  rather  has  a 
series of working sets  depending  on  the time at which the mea- 
surement  starts  and  the  interval  over which it is taken.  Obvious- 
ly for At = 0, W (  t, 0) and w ( t ,  0) are  zero  since no page refer- 
ences  are possible in zero time. If one  chooses  to  represent At 
in terms of instruction  executions  (which is admittedly nonhomo- 
geneous in time, but easily measured  on a computer), then as At 
increases  one would expect w ( t ,  At)  to grow in a fashion similar 
to  the  curve in Figure  2  where N is the total  number of pages ref- 
erenced during execution. N is not necessarily the  size of the pro- 
gram and, in fact, is usually less  since many programs neverref- Working growth 

erence all of their  address  space.  For  example, some error rou- 
tines may not  be  referenced in normal execution.  Notice  that  no =~ 
such general plot of W ( t ,  At)  is possible for all programs  because g; 
the specific page identifiers that  constitute  the working set  are - - ----- - - - 
entirely program dependent;  that  is, if the program’s total  address $; 
space is 40 pages long but only 15 pages are referenced  during 2 3  
execution, then it is  irrelevant which 15 pages they are. The con- ’ 
cern is the  order in which those 15 pages are referenced. E TIME 

Figure 3 is a  conceptual  representation of the working sets of a 
hypothetical program. Assume a At interval of,  for  example, 
1000 instruction  executions.  This figure illustrates  the possible 
ways working sets  can  change during execution: 

The working set size may stay  the  same  but  the  contents may 
change [ W ( 2 ,  2)  = W ( 4 ,  2) l .  

The working set may decrease in size [ W (  10,3 ) > W (  12,2)] 
but paging  will still result if the  contents  are  not  constant 
[W(12,2) Q W ( l 0 , 3 ) 1 .  

The working set size may change with no paging because  the 
contents of the new working set  were  also  members of the 
previous working set [ W (  10,3) C W ( 7 ,  l ) ] .  

Both the working set size and  contents may change [ W ( 6 ,  2) 
and W ( 7 ,  l ) ] .  
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Figure 3 Example working sets 
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These observations lead to the conclusion that one would  like 
to keep the working-set contents as small  and as constant as 
possible to minimize the demand for real storage and thus mini- 
mize  paging. 

locality of A primary  goal of programming for virtual storage is to achieve 
reference locality of reference. Although  locality  is  difficult to define pre- 

cisely, it  can  be subjectively defined as keeping a program’s ad- 
dress-space references (both instruction location and data 
reference) confined to  as few  pages as possible for as long as 
possible. If  good  locality is achieved, then the working set will 
be  both  small and stable. Locality of reference is composed of 
three distinct parts: 

Internal fragmentation. 

Density of reference. 

Program reference patterns. 

Locality is sometimes confusing because good  locality of refer- 
ence in no  way  implies that storage references must  be close to 
each  other; rather, the implication is that they concentrate in as 
few  pages as possible. It makes  no  logical  difference whether the 
working set is  made  up of one block of contiguous pages or an 
equal number of pages scattered throughout the entire address 
space. 
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Internal fragmentation, occurring in any storage management 
system  where  storage is allocated in fixed-size blocks, refers  to 
the  situation  where  a block is allocated  but  not completely used. 
An example is a 5K CSECT aligned on  a page boundary,  execut- 
ing  in a  system using 4 K  pages. The result is 3 K  of unusuable 
real storage.  Internal fragmentation creates  a different problem 
than external  fragmentation.  External  fragmentation  occurs in 
systems where storage is allocated in variable length segments 
(as in OSIMVT) resulting in the problem of having enough total 
storage  free to do something but  not being able  to  use it because 
the individual fragmented areas  are  too small. External fragmen- 
tation results in storage  that  cannot be allocated.  Internal frag- 
mentation results in storage  that is allocated  but  cannot  be  used. 

There  are two  manifestations of internal fragmentation. Physical 
fragmentation occurs when program modules do not  occupy  an 
integral number of pages. In  this  case,  the fragmented storage is 
never  referenced. Temporal  fragmentation, which has the  same 
effect as physical fragmentation,  occurs  when  the page is  full of 
programs or  data, and different parts of a page are  not used to- 
gether in time. 

In  order  to differentiate between  these  two  forms of fragmenta- 
tion the temporal form of internal fragmentation will be referred 
to  as density of reference. A page is densely  referenced if most 
of its  address  space is used whenever  the page is active in real 
main storage. 

Another element of locality of reference is the manner in which 
address  references are generated by the program. The afgo- 
rithmic  aspect of program design refers to the  sequence in which 
data  areas and executable  code are referenced so that  unproduc- 
tive paging  is avoided. In the  context of this  discussion,  the 
placement of data  areas is not an algorithmic consideration, but 
rather  an  element of fragmentation.  Some of these  techniques 
are discussed in subsequent  sections. 

The  concepts of locality, internal fragmentation, and density of 
reference can be illustrated by examples  that show how a  pro- 
gram can excel in one of the  areas  and still be  a  poor  performer 
because it  is deficient in the others.  For these  examples, and 
others  that follow, a  format  developed by Hatfield that illus- 
trates how a program uses its address  space will be adopted.3 
These examples are sections of working programs. 

In Figures 4 through 7 the horizontal scale is time measured in 
instructions  executed, and the vertical scale is address  space 
measured by bytes. Page boundaries are shown as solid lines and 
CSECT boundaries are shown in the left margin. The page size is 
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Figure 4 Fragmentation within a CSECT 
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assumed to be 4K. The dark  areas  are  storage  references. A solid 
dark  area  indicates  concentrated  references  to  a  set of contiguous 
addresses. A dot  or thin vertical line indicates  a single or very 
small number of references to  some location. It is assumed  that, 
except  for  Figure 7, the time unit is the  execution of 10,000 in- 
structions. 

Figure 4 shows how fragmentation  and  density of reference 
problems  can  occur within a single CSECT. This program section, 
which consists of executable code only,  has  two  distinct  phases, 
each with a different problem. The first phase is badly fragment- 
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Figure 5 
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ed, using three pages rather  than  the single page actually  needed. 
Page 20 in the  second  phase  shows  very  poor  density of reference. 

The program in Figure 5 illustrates how fragmentation  can  re- 
sult  when cSECTs are combined.  In  this  case,  the CSECT labeled 
REJECT crosses  a page boundary  unnecessarily. By the simple 
expedient of exchanging the order of CSECTs RETECT and PRINT, a 
4K page is saved  through  part of the execution. 

Figure 6 depicts  poor  density of reference  that  can  be  corrected by 
packaging routines with concurrent  execution  into  common pages. 
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Figure 6 
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Figure 7 is an illustration of how a program's working set  can 
be decreased by attention  to algorithmic considerations. In this 
figure, the time unit is the  execution of 1000 instructions. The 
process shown is the collection of free  storage blocks during exe- 
cution of an interactive program. In Figure 7A, the  process  covers 
several pages over  a fairly short period of time, and  covers  the 
same pages over  a  very  short period when the  data is collected. 
The working set  can  be reduced significantly, as shown in Figure 
7B, by simply performing the  operation  more  frequently. 
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Figure 7 Algorithmic aspects 
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The  objective, in summary,  is  to  control a program’s  working- 
set  dynamics in such a  way  that minimum paging results.  This  can 
be  accomplished  by  concentrating  on  locality of reference,  inter- 
nal fragmentation,  and  density  of  reference.  Techniques  for 
achieving  these  results  are  discussed in later  sections. 

In multiprogramming  systems,  programs  compete  with  each 
other  for  system  resources  such  as  devices, CPU time,  channel 
time,  and  (in os) the svc transient  areas. In  virtual  storage  sys- 
tems,  since  the level  of  multiprogramming  is  likely to be  high, 
another  consideration  arises-the availability  of  page frames  to 
meet  transient  demands  for  storage  from  one  or  more  concurrent- 
ly executing  programs. 

The  parachor  curve,  shown earlier,  demonstrates  how a pro- 
gram’s  paging performance is affected by varying  the  amount of 
real storage  available  to it. The implicit assumption in this  curve 
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is that  the program is running in a fixed amount of storage  and is 
paging against itself. In a multiprogrammed system,  the  shape of 
the  curve can be drastically  changed  depending on the  real-stor- 
age  demands of concurrently  executing  tasks with higher priority, 
and how well the page-replacement algorithm treats  this  particu- 
lar job.  The stability of the program’s working set, while shown  to 
some  extent in the  parachor  curve,  becomes  more critical when 
multiprogramming because pages not  referenced  for  short  periods 
of time are more likely to be lost if the working set  requirements 
of concurrently  executing  programs do not  vary in a compatible 
way. 

It becomes  somewhat more crucial in virtual  storage  systems to 
not only balance  the CPU and I/O workload,  but  also  to match 
working sets. A study by Brawn and  Gustavson at IBM’S Re- 
search  Division  indicates that optimizing programs  for virtual 
storage to minimize real-storage  contention during multiprogram- 
ming results in greater total throughput gains than are realized 
from the  performance  improvements of the individual programs.4 
In  an operating  system  that  deactivates low priority tasks in peri- 
ods of heavy paging, the  result should be fewer  deactivations in 
systems with relatively small main storage  capacities. 

Program design for virtual storage 

The preceding discussion  presented  some of the  performance 
considerations  and  concepts implicit in the virtual storage  con- 
cept.  The subject of  how to  exploit  these  concepts is now ad- 
dressed.  The topic of reducing the paging demands of individual 
programs is emphasized  because  this is an  area  over which the 
application  programmer  can  exert  some  control.  This  reduction 
is achieved by maintaining awareness  that  the program will 
execute in virtual storage  and by using experience  to  develop 
program design guidelines and coding techniques  that will ex- 
ploit the  technology. The payoff  is a program that  executes well 
in a broad range of  main storage  sizes  and,  hence, in a  variety of 
multiprogramming situations. In addition, the resulting program 
may  well be  easier to design,  code,  and  test  because it is gener- 
ally easier to apply virtual storage  performance principles to 
programs  after  the  fact  than it  is to  develop  a program to rigid 
storage  constraints  at  any  time. 

There  are two disciplines that  can be applied to program de- 
velopment in order  to  exploit virtual storage: 

Packaging. 
Algorithmic techniques. 

Packuging is the  process of locating procedure  and  data  areas in 
such a way that good locality, fragmentation and density of ref- 
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pages or of pages scattered throughout the  address space. 
Experience  has  shown,  however,  that internal fragmentation 
is  reduced if the working set is made up of contiguous 
blocks of pages.8 

6. Use optimizing compilers wherever possible since  they gen- 
erate  less  code  and  therefore  create  less DAT overhead. 

Programming for virtual storage 

General guidelines for program design, regardless of the lan- 
guage in use,  are now discussed. Each guidline presented is im- 
plementable using an assembler language and,  to  a  somewhat 
lesser  extent, high-level languages. Specific considerations  for 
PLll, FORTRAN and COBOL are presented in subsequent  sections. 
The following list is not  comprehensive as it is probable  that 
more guidelines will be recognized as experience is gained with 
virtual storage  systems: 

1.  Remove exception  and error-handling routines  from  the 
mainline of the program to increase  the  density of reference 
of the most heavily used pages. Put  these  routines  into 
pages of their  own, if possible, because they will probably 
never be used in normal execution of the program. All error 
conditions should be examined in the mainline to avoid un- 
necessary  entry  into  another page. Low-use code  that is not 
exception  code  (such as housekeeping and initialization 
routines) should be inline unless the routines  are so big that 
the density of reference is materially affected. 

2. Initialize each  data  area  just prior to its first use rather  than 
initializing all at the beginning of the program. This may 
prevent pages containing data  areas from being loaded un- 
productively. In addition, if a large area is  reserved so that  a 
worst-case condition can  be handled, it should not be initial- 
ized until it is known how much is needed. 

3. Reference  data in the  order in which it is stored  and/or  store 
data in the  order in which it is referenced. This is particu- 
larly true of arrays. If an  array is stored by columns (as in 
FORTRAN), complete all references to a single column be- 
fore moving to the  next. The  order in which data  areas  are 
referenced is, of course, of no  consequence if the  entire area 
fits into  a single page. Most page-replacement algorithms 
tend to  favor pages that  have been used recently. Therefore 
if a  procedure  causes  a large sequential span of storage  to be 
traversed,  the direction of scan should be reversed in alter- 
nate  passes. 

4. Store  data as close as possible to  other  data used concur- 
rently,  and in the same page if possible. Also,  store  data 
used only by specific subroutines along with the  subroutine 

228 MORRISON IBM SYST J 





14. Consider segmenting large arrays  and  data  areas  into page- 
size units  and processing the segments instead of the whole 
area. For a detailed discussion of this topic, refer to McKel- 
lar  and Coffman." 

15. Consider using virtual storage  for  scratch files to  reduce IlO 
overhead  and page fixing. This  technique  must be evaluated 
in the  context of the program, the  size of the file and  its fre- 
quency of use. 

16. Segment programs that  have well-defined, long-running 
phases by function even if it means duplicating code to im- 
prove working-set stability. 

17. Make common data  areas more productive by using the 
same area  for different data in the different phases of a pro- 
gram. This is of particular value when several independent 
subroutines using a common data  area  can  share  the storage 
for  their  unique  work  areas. 

18. Consider batching input to a  computational  subroutine  (for 
example square  root or trigonometric functions) by "look- 
ing ahead" to  see  what values are needed  and computing the 
results all at once  rather  than making separate calls for  each 
argument  to avoid repeated calls. 

19. Whenever possible, use  the subpooling technique for assign- 
ing dynamic storage. When properly implemented, this  tech- 
nique insures  that  items in the  same subpool are  stored 
close  together. 

20. If possible, avoid situations  where  instructions or operands 
cross page boundaries as this  can  cause  extra  address- 
translation overhead  and  the loading of extra pages. 

High-level languages 

The program design guidelines presented in the previous section 
are generally applicable regardless of the specific programming 
language used.  Each language does,  however,  present  a different 
program structure  that should be  considered when designing 
programs. The particular  areas of interest  are modules created 
and included by the compiler, and the method of data  storage 
employed. Knowledge of how high-level language programs are 
structured and how data  areas  are located enables  control to be 
exerted by the programmer to improve locality of reference. For 
example, COBOL data  areas  that  have  concurrent  use  can  be lo- 
cated  close  together by  defining them sequentially. The following 
high-level language guidelines are intended to accomplish the 
same  purposes as those  presented previously. Three widely used 
languages are  discussed: FORTRAN, COBOL, and PLII. Since  there 
is some  dependency  on  the specific compiler implementation, 
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the  compilers  considered are os FORTRAN IV H Extended, ANS 
COBOL Version 4, and  the OS PL/I Checkout  and Optimizing 
~ o m p i l e r . ~ ~ ’ ~ ~ ’ ~ ~  

There  are several  devices in the FORTRAN language that  can be 
used to  improve  virtual  storage  performance. Two  aspects of 
FORTRAN are particularly pertinent: 

FORTRAN stores  arrays by column. 

The data  areas  that  are  reserved in the module produced by 
the FORTRAN compiler are in different main storage  areas  for 
COMMON, working storage (DIMENSIONed arrays  and self- 
defining variables),  and FORMAT statements. 

Consider  the following fragment of a FORTRAN program that ini- 
tializes an array  to  zeros. 

REAL*8 X (256,lO) 
DO 10 I = 1,256 
DO 10 J = 1, 10 

10  X(1, J) = 0 

Each column of the  array  X will take  up  exactly  one  2K page 
(8 X 256 = 2048).  Notice  that, although the  array is stored by 
columns, it is being zeroed by row, which means  that a different 
page is  being referenced for  every single execution of line 10 
(see  Figure 8) .  By the simple expedient of changing the DO loop 
to  work in the array by columns, it can be coded  as: 

DO 10 J = 1, 10 
DO 10 I = 1, 256 

10 X(1, J )  = 0 

Thus  the operation of the  loop  concentrates in one page at a 
time instead of ten. 

It is more difficult to  keep  array  references in storage order for 
more complex operations.  Matrix multiplication requires  one of 
the  arrays being multiplied to  be  referenced in the wrong way as 
shown by the following program fragment that  calculated the 
M X N inner  product, C,  of matrices A (M X L)  and B (L X N) .  
(Note  that matrix C is filled  in  by rows): 

D O 2 0 I = l , M  
D O 2 0 J = l , N  
SUM = 0 
DO 10 K =  1, L 

10 SUM = SUM + A  (I ,  K ) * B ( K ,  J )  
20 C(1, J )  = SUM 

This  routine can be improved by causing references to columns 
of B and  C  to  proceed  such  that all references  to  one column are 
made before moving to  the next: 
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Figure 9 Representation of FOR. 

TRAN object module 

PROGRAM 

CODE A 

PROGRAM DATA B 

I COMMON I 

M1 = O  
I3 = - 1  
D O 2 0 J = l , N  
D O 2 0 I = l , M  
SUM = 0 
I3 = -13 
M l = M l + I 3  
D O l O K = l , L  
SUM = SUM + A ( I ,  M I ) * B ( M I ,  J )  

1 0 M l = M 1 + 1 3  
2 0  C(I ,  J )  = S U M  

In  addition,  this  code  reverses  the  direction of scan  across rows 
of A on every pass. The effectiveness of reversing the  direction 
of scan  (and  thus  the  penalty  for including the  extra  code)  de- 
pends  on  the  size of the  array  and  the priority of the program. 

The paging  efficiency  of many algorithms can be improved by 
considering the  amount of parallelism possible in the  computa- 
tion and  then using a  storage  reference  pattern  that  exploits  the 
parallelism to minimize working-set requirements. 

FORTRAN creates  separate CSECTS for  each  separately compila- 
ble module. Each  procedure CSECT contains  code  and local vari- 
ables.  Other CSECTS in a FORTRAN program are named COM- 
MON, blank COMMON and  library  subroutines. 

FORTRAN'S use of different areas  for local variables and COM- 
MON allows programs  to be segmented by function. Working 
storage is a part of the module generated by the compiler and 
stays relatively close to the  generated  code. COMMON appears  at 
link-edit time and is always  the  last  (highest  address)  area in the 
load module as depicted in Figure 9. This organization allows us 
to pool data used by all programs in COMMON and  segregate 
data  used in specific routines in a very  natural way. 

One can  take  advantage of this by grouping data  into  the  data 
area  closest  to  the  code that  uses  it,  instead of arbitrarily putting 
all data in COMMON. Additionally, if the problem logic permits, 
one  can  segment a large mainline program into  several smaller 
programs,  each with its own working storage  area as a  method 
of locating data  near  the  code  that  uses it. 

When designing FORTRAN programs,  one should be  aware  that 
although compiler-generated code is generally read-only,  the 
page containing the  code may be changed because implicitly- 
defined variables, loop-control work areas,  address  constants, 
and  other internal variables are compiled into  the  same module 
as  the  code.  This  organization  restricts efforts to  separate  read- 
only and changed areas  for small routines. Other guidelines for 
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1. Define explicit variables in an  order  such  that  data  items 
used  together are defined sequentially. 

2. Consider  separating high-order dimensional arrays  into  ar- 
rays  that  have only a single plane so that  they  can be better 
stored  for  the  sequence of accesses  across them." 

3.  Compact  sparse  arrays  to  conserve  real  storage  and  reduce 
fragmentation. 

4. EQUIVALENCE all possible  areas  to  save  real  storage in 
COMMON. 

5 .  Constants  and  literals  are  stored in a unique area.  There- 
fore, assign constant  values  to local variables at  the begin- 
ning of the program to achieve  better locality of reference. 

6. Because FORMAT statements  are stored  separately,  consider 
putting all formatted READS and WRITES in a separate  sub- 
program and  then grouping I/O action,  Avoid the  use of 
implied DO loops in I/O statements as this  causes  repeated 
returns  to  the calling program. 

7. Use statement  functions  instead of external  subroutine calls 
for  short  functions  as  these  functions  are compiled directly 
into  the module. 

8. Group  code so that it uses  data from areas  that  are  close 
together. 

nitions such as X*X instead of X**2.I4 
9. Reduce calls to library subroutines by using recursive defi- 

Of the widely used, high-level languages, COBOL at first appears 
to offer the application programmer the  least flexibility for vir- 
tual  storage tuning. The very  nature of the COBOL language en- 
courages the programmer to write rather  large, monolithic pro- 
grams with well-defined mainline logic which is exactly  what  one 
would like in a  virtual  storage  system. It would appear  that  ap- 
plication design techniques that capitalize  on virtual storage 
concepts  (for  example,  the  use of virtual storage  for  work files 
and large tables) would be the most fruitful area  to investigate. 
On  the  other  hand, virtual storage  can  improve the performance 
(with  respect  to  storage  utilization) of many COBOL programs 
because many COBOL programs  have  error  routines  that are sel- 
dom executed. 

Some specific coding techniques follow: 

1. Group FDS by function  and define files that  are  used  togeth- 
er in sequence. 

2. Files  that  are used together should be OPENed  in the  same 
statement. This will cause  their buffers to  be close  together 
and improve locality of reference as buffers are processed. 
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3.  Do not  use ALTERNATE AREAS unless  needed for a Special 
reason. The net effect of the  alternate buffer is to  separate 
data  areas. 

4. Avoid the  use Of SAME RECORD AREA, as this  causes buff- 
ers  to be separated from files not using this  option. 

5 .  Group references  to DIRECT files because buffers for  these 
files are  stored  separately from sequential files. 

6. Working storage is allocated in the  order in which areas  are 
defined. Thus organize working storage  according to  the 
rules  already  given,  such as putting items  that are used  to- 
gether in nearby definitions. 

7. Exercise good COBOL coding techniques in USAGE clauses 
and length definitions to avoid  the  overhead  and potentially 
poor  density of reference  caused by unnecessary  execution 
of conversion subroutines." 

8. Put all exception-handling routines  together at  the  end of 
the program or, if possible, in a  separate program. Excep- 
tion-handling routines should be  ordered in the  frequency of 
execution. 

9. If virtual  storage is used to  store a work file, define that  area 
either first or last in working storage  to avoid separating 
other working storage  items from each  other by a large span 
of addresses. 

10. In ANS COBOL, the segmentation feature  can  be used to 
align PROCEDURE DIVISION code.  Using  this  feature, a sep- 
arate CSECT is generated that can  then be aligned to a page 
boundary or sequenced by the linkage editor  to minimize 
fragmentation.  Since all buffers and  data  areas  stay in the 
root  segment, it may be  desirable  to  break  up WORKING 
STORAGE by coding the called program as a subroutine. 

1 1. The COBOL facility for dynamic loading and deleting of 
modules should be evaluated carefully before  use, as this is 
accomplished by the  virtual  storage  concept. 

PLA pL/r offers the  programmer  function  and flexibility in program 
design,  and  also offers many features  that  can  be of value when 
considering virtual storage. 

PL/I generates CSECTS under  the following circumstances: 

For each PROCEDURE (Two CSECTs are  generated-one 
containing only code  and  another  containing INTERNAL 
variables). 



For compiler-generated  subroutines. 

For library  subroutines. 

These CSECTS can be sequenced by the linkage editor  to im- 
prove locality of reference  and  to  reduce  internal  fragmentation. 
Additional  pertinent  facts  concerning PL/I that  are of value when 
designing programs are: 

PL/I stores  arrays by row. 

Some PL/I functions,  such as record 1/0, cause  subroutines 
to be loaded dynamically. 

Automatic  storage, which is the  default, is formatted  every 
time  a different procedure is entered. 

All PL/I code,  whether  declared  reentrant or  not, is read- 
only. 

The following are guidelines for use in PL/I programs designed 
for  virtual  storage  systems: 

1. Define variables used by specific subroutines  as STATIC IN- 
TERNAL so they will be  close  to  the  code  that  references 
them. 

2. Define every variable possible as STATIC. This is particularly 
true  for  arrays  and  data  structures. 

3.  Avoid the  use of the INITIAL attribute in automatic  storage. 

4. CONTROLLED and BASED storage offer considerable flexibil- 
ity in structuring  storage. Locality can be controlled by 
judiciously assigning areas  to BASED variables  chosen so that 
areas  that  have  concurrent  use  are assigned to  the same var- 
iable. 

5. Multitasking requires  extra real storage. 

6. Make variable declarations  consistent  across  and within pro- 
cedures  to avoid unnecessary  execution of service  subrou- 
tines. 

Organizing existing programs 

Since program performance  problems in virtual storage are often 
the  result of abusing the virtual storage  concept by undisciplined 
programming practices, existing program libraries do not often 
require  extensive modification. If,  however, it becomes  necessary 
to consider a particular  situation,  the program organization prin- 
ciples stated  earlier  can be applied to programs  that  were  not 
originally designed for virtual storage. In many cases good results 
can be achieved by determining which are  the high and low-use 
modules, defining page-alignment requirements, and link editing 
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the program modules in the  order  that gives the best locality of 
reference. In this procedure,  no  code  changes  are  required. High 
and low-use modules can  be  determined with program traces, 
entry  counters,  or from knowledge of the dynamics of the pro- 
gram3 

If  the program had been in an overlay  structure,  and  the  over- 
lays  removed,  the  segments should be aligned to page bounda- 
ries.  However, it is possible  for  an  overlay program that  has 
good locality in its segments,  very  dense  use of overlay  pages, 
long execution times in segments,  and  changes in most of the 
overlay  pages,  to  have  a  performance  advantage  over the same 
program with its  overlays  removed. The  exact advantage  de- 
pends on the operating  system  implementation,  the  program logic, 
the  overlay segment length,  and  the  system configuration. 

When packaging an existing program for  virtual  storage, it may 
be necessary  to break some  modules  into  separate modules or  to 
move  code  around within a module to  increase  density. It is sel- 
dom necessary to otherwise recode  routines unless program tech- 
niques are used that  cause wide ranges of address  space  to be 
referenced. 

Compiler-dependent  service  subroutines  can  also  be packaged 
by function. For example,  I/O-related  routines  can be put to- 
gether as can related  data  conversion  routines. Packaging order 
can be determined through the  use of program traces,  cross-ref- 
erence listings, and Program Logic Manuals.  Most  service rou- 
tines are fairly small;  hence  several  can profitably be combined 
into  a page. 

Concluding remarks 

Introductory principles of program performance in virtual stor- 
age  have been presented  to give a perspective of the virtual  en- 
vironment  for  systems  designers  and programmers. It is recog- 
nized that  the list of guidelines presented is not  comprehensive 
as many more useful techniques will be  developed as experience 
is gained with virtual storage  systems. It is hoped  that  these 
program design considerations  and  the programming guidelines 
will assist  these  users in their  future virtual storage program 
development. 
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