Factors that affect the paging characteristics of user programs
in virtual storage systems are presented in tutorial form. Meas-
ures are suggested that can be taken to exploit the virtual stor-
age concept at the source language level in assembler, COBOL,
FORTRAN, and PL/L.

User program performance in virtual storage systems

by J. E. Morrison

Much of the existing virtual storage literature has dealt with
measuring, modeling, or otherwise anticipating system perfor-
mance under paging with the goal of developing system control
algorithms that can react intelligently in a wide range of situa-
tions."” The results of these investigations have laid the founda-
tion for today’s advanced virtual storage implementations. Some
of these investigations may leave the impression that user pro-
grams are not easily controlled in the way they use real storage
or, at least, that the programmer can contribute little to improving
the system’s overall paging characteristics. Historically this has
been a reasonable assumption because until recently there have
been relatively few virtual storage computing systems available.
Therefore, few user programs have existed that were written with
enough awareness of the virtual storage environment to truly ex-
ploit the technology.

This paper presents introductory principles and considerations
for individual program performance in virtual storage and some
programming techniques derived from them. The intent is to
improve the performance of individual programs running in a
virtual storage environment primarily, but not exclusively,
through reducing their paging demands. The effect of paging on
system performance and its dependence on the hardware and
software configuration is not covered in this paper. In very large
configurations, paging for a given program may be overlapped
with the execution of other programs and therefore may not
materially affect system performance. The entirely separate top-
ics of system performance, configuration selection, virtual stor-
age benefits that contribute to system throughput or programmer
productivity, and new ways to design applications are not con-
sidered.
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This discussion is motivated by several factors. First, regardless
of the situation, the more a person is aware of his environment,
the better he is prepared to take advantage of it. This does not
mean that everyone who writes programs for virtual storage
needs to be an expert on how it works, since one of the virtues
of the virtual storage concept is that most of its benefits accrue
without the user’s awareness of its use. However, a program’s
operating environment can be profitably exploited given a mini-
mal amount of background. An example of this type of exploita-
tion is that of including facilities to take advantage of overlapped
tape operations when multiple channels are available. The result
is the same whether the user understands channel overlap and
channel processing or not.

Secondly, many programmers write programs according to some
set of standards imposed either by their organizations or on
themselves by professional pride. Often these standards are
completely arbitrary or are simply habits. For example, defining
all FORTRAN arrays with COMMON statements is not an unusual
practice among FORTRAN programmmers even though the same
results come from the use of DIMENSION and using COMMON
only for those variables that require it. Similarly, a common hab-
it of COBOL programmers is to group all error processing rou-
tines together at the end of a program. Since many programmers
use sets of standards, they might as well be standards that im-
prove performance.

All material presented in this discussion pertains to the virtual
storage concept as implemented by 1BM, and is essentially free
of specific operating system implementation considerations. It is
assumed that the user write programs that reference a large ad-
dress space divided by the system into fixed-length units called
pages. A page boundary is any address evenly divisible by the
page size. The computer on which the program runs has avail-
able to it a certain amount of real storage divided into page-size
units called page frames. When the program is in execution,
address-space references are mapped into real-storage addresses
through the Dynamic Address Translation (DAT) facility. When
a program reference is made to an address not resident in main
storage, a page exception interrruption occurs signaling the need
to load the referenced page from external page storage. The
page frame that the referenced page will occupy is determined
by the page-replacement algorithm. 1t is assumed that a page is
never loaded until it is actually referenced (demand paging) and
that only pages whose contents have been changed in some way
are written to external page storage. It is further assumed that
all multiprogrammed programs compete for the same main stor-
age space so that higher priority programs are able to steal page
frames from lower priority ones. The nature of virtual storage
also dictates that the contents of those page frames being used
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for Input-Output (1/O) operations must be fixed in storage for
the duration of the 1/O operation and are thus removed from the
pool of page frames available for dynamic paging.

Principles of program performance.

In the study of program performance in virtual storage system,
two representations of the effect of paging have proved to be
particularly descriptive:

e The parachor curve.

e The working set.

A parachor curve is a graph of the total number of page excep-
tions that a program causes to occur when paging against itself
in a fixed amount of real storage, versus the amount of real stor-
age available to it for execution. It is usually observed that if a
program has less real memory available to it, then more page
exceptions will result as shown in Figure 1. For most observed
programs, there is a threshold point at which, if the amount of
real storage is decreased even further, the number of page ex-
ceptions increases very rapidly.

The parachor curve is descriptive in several ways. It shows how
much real storage a program requires to maintain a *“‘reasonable”
level of performance (for example, a degradation of five
percent). This area is shown as ORS (Optimal Real Storage) in
Figure 1. The parachor curve also gives a subjective view of
how sensitive a program is to real-storage limitations. In Figure
1, program A can be seen to be quite sensitive to the amount of
real storage available over the entire range of storage sizes
shown, whereas the number of page faults caused by program B
is essentially independent of real storage until very near its
threshold. Thus program B can be expected to be more predict-
able in multiprogramming situations.

The parachor curve for a given program is, however, a very
gross measure of performance. Since the parachor curve repre-
sents a program paging against itself, its shape may be radically
different in a multiprogramming situation where higher priority
programs are stealing pages from it." Also, if a program that has
occasional transient demands for many pages is multipro-
grammed on a machine with very large main storage relative to
its address-space requirements, paging rates will tend to be
lower than shown in the parachor curve since the transient de-
mand can be satisfied without requiring the program to page
against itself. For some programs, the shape of the curve may be
dependent on the data being processed although this is not nor-
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mally the case. The most obvious weakness of the parachor
curve is that it relates to the execution of an entire program, and
the real memory requirements of a program change during the
course of execution as does the amount of storage available to it.

A more general description of how a program uses its address
space is provided by the working set, the specific pages refer-
enced by a program over some arbitrary interval of time. One
can define a program’s working set as W (t, At), the pages refer-
enced in the time interval (z+— At, tr). The working-set size,
w(t, At), is the cardinality of W (7, Ar).

Key to the definition of working set is the concept that a pro-
gram does not have a single “working set” but rather has a
series of working sets depending on the time at which the mea-
surement starts and the interval over which it is taken. Obvious-
ly for At =0, W (¢, 0) and w(¢, 0) are zero since no page refer-
ences are possible in zero time. If one chooses to represent At
in terms of instruction executions (which is admittedly nonhomo-
geneous in time, but easily measured on a computer), then as Az
increases one would expect w(t, At) to grow in a fashion similar
to the curve in Figure 2 where N is the total number of pages ref-
erenced during execution. N is not necessarily the size of the pro-
gram and, in fact, is usually less since many programs never ref-
erence all of their address space. For example, some error rou-
tines may not be referenced in normal execution. Notice that no
such general plot of W (¢, At) is possible for all programs because
the specific page identifiers that constitute the working set are
entirely program dependent; that is, if the program’s total address
space is 40 pages long but only 15 pages are referenced during
execution, then it is irrelevant which 15 pages they are. The con-
cern is the order in which those 15 pages are referenced.

Figure 3 is a conceptual representation of the working sets of a
hypothetical program. Assume a Af interval of, for example,
1000 instruction executions. This figure illustrates the possible
ways working sets can change during execution:

* The working set size may stay the same but the contents may
change [W(2,2)=W(4,2)].

The working set may decrease in size [W(10,3) > W(12,2)]
but paging will still result if the contents are not constant
[(W({12,2) ¢ W(10,3)].

The working set size may change with no paging because the
contents of the new working set were also members of the
previous working set [W(10,3) C W(7, 1)]. ’

Both the working set size and contents may change [W (6, 2)
and W(7,1)].
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These observations lead to the conclusion that one would like
to keep the working-set contents as small and as constant as
possible to minimize the demand for real storage and thus mini-
mize paging.

A primary goal of programming for virtual storage is to achieve
locality of reference. Although locality is difficult to define pre-
cisely, it can be subjectively defined as keeping a program’s ad-
dress-space references (both instruction location and data
reference) confined to as few pages as possible for as long as
possible. If good locality is achieved, then the working set will
be both small and stable. Locality of reference is composed of
three distinct parts:

¢ Internal fragmentation.
¢ Density of reference.

* Program reference patterns.

Locality is sometimes confusing because good locality of refer-
ence in no way implies that storage references must be close to
each other; rather, the implication is that they concentrate in as
few pages as possible. It makes no logical difference whether the
working set is made up of one block of contiguous pages or an
equal number of pages scattered throughout the entire address
space.
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Internal fragmentation, occurring in any storage management
system where storage is allocated in fixed-size blocks, refers to
the situation where a block is allocated but not completely used.
An example is a 5K CSECT aligned on a page boundary, execut-
ing in a system using 4K pages. The result is 3K of unusuable
real storage. Internal fragmentation creates a different problem
than external fragmentation. External fragmentation occurs in
systems where storage is allocated in variable length segments
(as in OS/MVT) resulting in the problem of having enough total
storage free to do something but not being able to use it because
the individual fragmented areas are too small. External fragmen-
tation results in storage that cannot be allocated. Internal frag-
mentation results in storage that is allocated but cannot be used.

There are two manifestations of internal fragmentation. Physical
fragmentation occurs when program modules do not occupy an
integral number of pages. In this case, the fragmented storage is
never referenced. Temporal fragmentation, which has the same
effect as physical fragmentation, occurs when the page is full of
programs or data, and different parts of a page are not used to-
gether in time. ‘

In order to differentiate between these two forms of fragmenta-
tion the temporal form of internal fragmentation will be referred
to as density of reference. A page is densely referenced if most
of its address space is used whenever the page is active in real
main storage.

Another element of locality of reference is the manner in which
address references are generated by the program. The algo-
rithmic aspect of program design refers to the sequence in which
data areas and executable code are referenced so that unproduc-
tive paging is avoided. In the context of this discussion, the
placement of data areas is not an algorithmic consideration, but
rather an element of fragmentation. Some of these techniques
are discussed in subsequent sections.

The concepts of locality, internal fragmentation, and density of
reference can be illustrated by examples that show how a pro-
gram can excel in one of the areas and still be a poor performer
because it is deficient in the others. For these examples, and
others that follow, a format developed by Hatfield that illus-
trates how a program uses its address space will be adopted.’
These examples are sections of working programs.

In Figures 4 through 7 the horizontal scale is time measured in
instructions executed, and the vertical scale is address space
measured by bytes. Page boundaries are shown as solid lines and
CSECT boundaries are shown in the left margin. The page size is
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Figure 4 Fragmentation within a CSECT
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assumed to be 4K. The dark areas are storage references. A solid
dark area indicates concentrated references to a set of contiguous
addresses. A dot or thin vertical line indicates a single or very
small number of references to some location. It is assumed that,
except for Figure 7, the time unit is the execution of 10,000 in-
structions.

Figure 4 shows how fragmentation and density of reference
problems can occur within a single CSECT. This program section,
which consists of executable code only, has two distinct phases,
each with a different problem. The first phase is badly fragment-
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Figure 5 Fragmentation between CSECTs
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ed, using three pages rather than the single page actually needed.
Page 20 in the second phase shows very poor density of reference.

The program in Figure S illustrates how fragmentation can re-
sult when CSECTs are combined. In this case, the CSECT labeled
REJECT crosses a page boundary unnecessarily. By the simple
expedient of exchanging the order of CSECTs REJECT and PRINT, a
4K page is saved through part of the execution.

Figure 6 depicts poor density of reference that can be corrected by
packaging routines with concurrent execution into common pages.
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Figure 6 Density of reference
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Figure 7 is an illustration of how a program’s working set can
be decreased by attention to algorithmic considerations. In this
figure, the time unit is the execution of 1000 instructions. The
process shown is the collection of free storage blocks during exe-
cution of an interactive program. In Figure 7A, the process covers
several pages over a fairly short period of time, and covers the
same pages over a very short period when the data is collected.
The working set can be reduced significantly, as shown in Figure
7B, by simply performing the operation more frequently.
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Figure 7 Algorithmic aspects
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The objective, in summary, is to control a program’s working-
set dynamics in such a way that minimum paging results. This can
be accomplished by concentrating on locality of reference, inter-
nal fragmentation, and density of reference. Techniques for
achieving these results are discussed in later sections.

In multiprogramming systems, programs compete with each
other for system resources such as devices, CPU time, channel
time, and (in OS) the SVC transient areas. In virtual storage sys-
tems, since the level of multiprogramming is likely to be high,
another consideration arises —the availability of page frames to
meet transient demands for storage from one or more concurrent-
ly executing programs.

The parachor curve, shown earlier, demonstrates how a pro-
gram’s paging performance is affected by varying the amount of

real storage available to it. The implicit assumption in this curve

NO. 3 - 1973 USER PROGRAM PERFORMANCE

multiprogramming



is that the program is running in a fixed amount of storage and is
paging against itself. In a multiprogrammed system, the shape of
the curve can be drastically changed depending on the real-stor-
age demands of concurrently executing tasks with higher priority,
and how well the pagé-replacement algorithm treats this particu-
lar job. The stability of the program’s working set, while shown to
some extent in the parachor curve, becomes more critical when
multiprogramming because pages not referenced for short periods
of time are more likely to be lost if the working set requirements
of concurrently executing programs do not vary in a compatible
way.

It becomes somewhat more crucial in virtual storage systems to
not only balance the cpuU and 1/O workload, but also to match
working sets. A study by Brawn and Gustavson at IBM'S Re-
search Division indicates that optimizing programs for virtual
storage to minimize real-storage contention during multiprogram-
ming results in greater total throughput gains than are realized
from the performance improvements of the individual programs.*
In an operating system that deactivates low priority tasks in peri-
ods of heavy paging, the result should be fewer deactivations in
systems with relatively small main storage capacities.

Program design for virtual storage

The preceding discussion presented some of the performance
considerations and concepts implicit in the virtual storage con-
cept. The subject of how to exploit these concepts is now ad-
dressed. The topic of reducing the paging demands of individual
programs is emphasized because this is an area over which the
application programmer can exert some control. This reduction
is achieved by maintaining awareness that the program will
execute in virtual storage and by using experience to develop
program design guidelines and coding techniques that will ex-
ploit the technology. The payoff is a program that executes well
in a broad range of main storage sizes and, hence, in a variety of
multiprogramming situations. In addition, the resulting program
may well be easier to design, code, and test because it is gener-
ally easier to apply virtual storage performance principles to
programs after the fact than it is to develop a program to rigid
storage constraints at any time.

There are two disciplines that can be applied to program de-
velopment in order to exploit virtual storage:

e Packaging.
* Algorithmic techniques.

Packaging is the process of locating procedure and data areas in
such a way that good locality, fragmentation and density of ref-
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erence results, Algorithmic techniques can be used to control the
order in which data areas are used or procedures executed. In
the following discussion these two disciplines are freely inter-
mixed, but it is generally obvious which type is being consid-
ered. The results that can be expected from the use of these
guidelines are not quantified because of the extremely wide
range of possible situations. Among the variables that affect the
ultimate improvement possible are the size of main storage, sys-
tem options chosen (such as resident functions), the external
page storage device, level of multiprogramming, the degree to
which these and other guidelines are used, and the nature of the
application. It is not possible, therefore, to assign a value to
each suggestion given or to validate it in a consistent way. Pre-
cedence, which validates that such measures do have genuine
benefit, does exist in the literature.””**

The following can be considered a philosophy of program design
for virtual storage systems. These general principles are essen-
tially independent of program function or language.

1. Concentrate on programs that consume significant system
resources. Program design techniques for virtual storage
tend to be valid for all sizes of main storage, but offer great-
er potential in systems with high storage utilization. Pro-
grams that do not run often or long, or do not require a sig-
nificant portion of available main storage, are clearly of less
concern than programs that dominate the system or are
scheduled to a deadline.

. Emphasize the reduction of short-term storage requirements
even if the program’s total size increases. The objective is to
reduce and stabilize the working set of each significant
phase of the program. The program’s total size is of less
consequence since only the active phase uses real storage.

. Do not attempt to capitalize on unique characteristics of
individual operating system implementations. Programs of
this type are generally more difficult to test and maintain,
and thus defeat much of the concept of virtual storage. It is
interesting to note, however, that many virtual storage im-
plementations tend to favor programs written with good lo-
cality without any other measures being taken. Techniques
such as “fixing through false reference” enhance perfor-
mance artificially and at the expense of system throughout.”

. Optimize the main line for the normal case.

5. Because locality of reference applies only to the working
set, the important consideration is to keep storage refer-
ences confined to pages that would normally tend to be in
main storage at the same time. It is logically immaterial
whether the working set is made up of contiguous blocks of
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pages or of pages scattered throughout the address space.
Experience has shown, however, that internal fragmentation
is reduced if the working set is made up of contiguous
blocks of pages.’

. Use optimizing compilers wherever possible since they gen-
erate less code and therefore create less DAT overhead.

Programming for virtual storage

General guidelines for program design, regardless of the lan-
guage in use, are now discussed. Each guidline presented is im-
plementable using an assembler language and, to a somewhat
lesser extent, high-level languages. Specific considerations for
PL/1, FORTRAN and COBOL are presented in subsequent sections.
The following list is not comprehensive as it is probable that
more guidelines will be recognized as experience is gained with
virtual storage systems:

1. Remove exception and error-handling routines from the
mainline of the program to increase the density of reference
of the most heavily used pages. Put these routines into
pages of their own, if possible, because they will probably
never be used in normal execution of the program. All error
conditions should be examined in the mainline to avoid un-
necessary entry into another page. Low-use code that is not
exception code (such as housekeeping and initialization
routines) should be inline unless the routines are so big that
the density of reference is materially affected.

. Initialize each data area just prior to its first use rather than
initializing all at the beginning of the program. This may
prevent pages containing data areas from being loaded un-
productively. In addition, if a large area is reserved so that a
worst-case condition can be handled, it should not be initial-
ized until it is known how much is needed.

. Reference data in the order in which it is stored and/or store
data in the order in which it is referenced. This is particu-
larly true of arrays. If an array is stored by columns (as in
FORTRAN), complete all references to a single column be-
fore moving to the next. The order in which data areas are
referenced is, of course, of no consequence if the entire area
fits into a single page. Most page-replacement algorithms
tend to favor pages that have been used recently. Therefore
if a procedure causes a large sequential span of storage to be
traversed, the direction of scan should be reversed in alter-
nate passes.

. Store data as close as possible to other data used concur-
rently, and in the same page if possible. Also, store data
used only by specific subroutines along with the subroutine
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code, especially if its size is significant with respect to the
size of the page.

. Group high-use buffers and data areas together in common

storage. This can be accomplished in assembler language by
the use of coM and Q-type address constants.

. Align large buffer areas to page boundaries. Since buffer

areas are fixed in storage during I/O, careless alignment can
result in extra pages being fixed. The most efficient size for
buffers, from a paging standpoint, is the length of a page
aligned on a page boundary. Other factors such as file pack-
ing, I/O transmission time, error recovery, and the possibili-
ty that very large 1/O buffers may cause extra paging should
be taken into consideration when selecting buffer size. Note
that using fewer large buffers reduces the amount of channel
program translation.

. If possible, separate read-only data from areas that will be

changed. This could save page-out operations in a highly
utilized system since unchanged pages are never written to
external page storage. Notice that this conflicts with Guide-
line 4. Generally locality considerations are more important
to consider than strict separation of read-only and read-
write areas.

. When using assembler language, avoid the use of literals and

literal address constants unless precautions are taken to in-
sure that the literals are inserted in the same page. This can
be accomplished using LTORG (literal origin).

. Put seldom-used subroutines inline if they are not so big that

poor density of reference results. An alternative is to put all
the low-use, but required, subroutines into a page of their own.

. Put subroutines that have nested calls in sequence. That is, if

main calls A, calls B, calls C, then put A, B, and C together.

. Avoid the use of elaborate search strategies for large data

areas. Avoid the use of large, linked lists if these techniques
cause a wide range of addresses to be referenced. Methods
of using list structures are referenced.” The use of binary
search for sequential tables spanning many pages should be
carefully evaluated. Useful alternatives to binary search are
hashing entries for direct access, or resequencing the table
by frequency of use so that a sequential search may be used.

. Send subroutine arguments by value, if possible, instead of

by address.

. If a subroutine repeatedly references storage in a different

pattern than the rest of the program, compact the data to a
workable format before the subroutine starts instead of
gathering the data during the process.
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. Consider segmenting large arrays and data areas into page-
size units and processing the segments instead of the whole
area. For a detailed discussion of this topic, refer to McKel-
lar and Coffman."’

. Consider using virtual storage for scratch files to reduce 1/O
overhead and page fixing. This technique must be evaluated
in the context of the program, the size of the file and its fre-
quency of use.

. Segment programs that have well-defined, long-running
phases by function even if it means duplicating code to im-
prove working-set stability.

. Make common data areas more productive by using the
same area for different data in the different phases of a pro-
gram. This is of particular value when several independent
subroutines using a common data area can share the storage
for their unique work areas.

. Consider batching input to a computational subroutine (for
example square root or trigonometric functions) by “look-
ing ahead” to see what values are needed and computing the
results all at once rather than making separate calls for each
argument to avoid repeated calls.

. Whenever possible, use the subpooling technique for assign-
ing dynamic storage. When properly implemented, this tech-
nique insures that items in the same subpool are stored
close together.

. If possible, avoid situations where instructions or operands
cross page boundaries as this can cause extra address-
translation overhead and the loading of extra pages.

High-level languages

The program design guidelines presented in the previous section
are generally applicable regardless of the specific programming
language used. Each language does, however, present a different
program structure that should be considered when designing
programs. The particular areas of interest are modules created
and included by the compiler, and the method of data storage
employed. Knowledge of how high-level language programs are
structured and how data areas are located enables control to be
exerted by the programmer to improve locality of reference. For
example, COBOL data areas that have concurrent use can be lo-
cated close together by defining them sequentially. The following
high-level language guidelines are intended to accomplish the
same purposes as those presented previously. Three widely used
languages are discussed: FORTRAN, COBOL, and PL/I. Since there
is some dependency on the specific compiler implementation,
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the compilers considered are OS FORTRAN IV H Extended, ANS
COBOL Version 4, and the 0S pPL/I Checkout and Optimizing
Compiler.'""***

There are several devices in the FORTRAN language that can be ~ FORTRAN
used to improve virtual storage performance. Two aspects of
FORTRAN are particularly pertinent:

* FORTRAN stores arrays by column.

e The data areas that are reserved in the module produced by
the FORTRAN compiler are in different main storage areas for
COMMON, working storage (DIMENSIONed arrays and self-
defining variables), and FORMAT statements.

Consider the following fragment of a FORTRAN program that ini-
tializes an array to zeros.

REAL*8 X (256,10)
DO 10I=1, 256
DO 10J=1, 10

10 X(1,J)=0

Fach column of the array X will take up exactly one 2K page
(8 X 256 = 2048). Notice that, although the array is stored by
columns, it is being zeroed by row, which means that a different

page is being referenced for every single execution of line 10 Figure 8 Array Storage in

(see Figure 8). By the simple expedient of changing the DO loop FORTRAN

to work in the array by columns, it can be coded as: PAGE [T T TG COLUMN
1 T T U xese |t

DO 10J=1,10 X2 2
DO 101=1, 256 X3 3

10 X(1,J)=0

Thus the operation of the loop concentrates in one page at a
time instead of ten.

It is more difficult to keep array references in storage order for
more complex operations. Matrix multiplication requires one of
the arrays being multiplied to be referenced in the wrong way as
shown by the following program fragment that calculated the
M X N inner product, C, of matrices A (M X L) and B (L X N).
(Note that matrix C is filled in by rows):

DO20I=1,M

DO 20J=1,N

SUM=0

DO 10K=1,L
10 SUM = SUM + A (I, K)*B(K, J)
20 C(IL,J) = SUM

This routine can be improved by causing references to columns
of B and C to proceed such that all references to one column are
made before moving to the next:
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Mi1=0
I3 =—1
DO20J=1,N
DO201I=1,M
SUM =0
I3=-13
M1=M1+13
DO 10K=1,L
SUM = SUM + A(I, M1)*B(M1, J)
10 M1=MI1+13
20 C(1,J) =SUM

In addition, this code reverses the direction of scan across rows
of A on every pass. The effectiveness of reversing the direction
of scan (and thus the penalty for including the extra code) de-
pends on the size of the array and the priority of the program.

The paging efficiency of many algorithms can be improved by
considering the amount of parallelism possible in the computa-
tion and then using a storage reference pattern that exploits the
parallelism to minimize working-set requirements.’’*"*

Figure 9 Representation of FOR-

TRAN object module FORTRAN creates separate CSECTs for each separately compila-

ble module. Each procedure CSECT contains code and local vari-
PROGRAM DATA A ables. Other CSECTs in a FORTRAN program are named COM-
A CODE A MON, blank COMMON and library subroutines.

PROGRAM DATA B s . .
5 FORTRAN’s use of different areas for local variables and COM-
MON allows programs to be segmented by function. Working
PROGRAM{ DATA ¢ storage is a part of the module generated by the compiler and

CODE B

¢ CODE © stays relatively close to the generated code. COMMON appears at

link-edit time and is always the last (highest address) area in the
load module as depicted in Figure 9. This organization allows us
to pool data used by all programs in COMMON and segregate
data used in specific routines in a very natural way.

COMMON

One can take advantage of this by grouping data into the data
area closest to the code that uses it, instead of arbitrarily putting
all data in COMMON. Additionally, if the problem logic permits,
one can segment a large mainline program into several smaller
programs, each with its own working storage area as a method
of locating data near the code that uses it.

When designing FORTRAN programs, one should be aware that
although compiler-generated code is generally read-only, the
page containing the code may be changed because implicitly-
defined variables, loop-control work areas, address constants,
and other internal variables are compiled into the same module
as the code. This organization restricts efforts to separate read-
only and changed areas for small routines. Other guidelines for
use in FORTRAN programs are:
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. Define explicit variables in an order such that data items
used together are defined sequentially.

. Consider separating high-order dimensional arrays into ar-
rays that have only a single plane so that they can be better
stored for the sequence of accesses across them."

. Compact sparse arrays to conserve real storage and reduce
fragmentation.

. EQUIVALENCE all possible areas to save real storage in
COMMON.

. Constants and literals are stored in a unique area. There-
fore, assign constant values to local variables at the begin-
ning of the program to achieve better locality of reference.

. Because FORMAT statements are stored separately, consider
putting all formatted READs and WRITESs in a separate sub-
program and then grouping I/O action. Avoid the use of
implied DO loops in I/O statements as this causes repeated
returns to the calling program.

. Use statement functions instead of external subroutine calls
for short functions as these functions are compiled directly
into the module.

. Group code so that it uses data from areas that are close
together.

. Reduce calls to library subroutines by using recursive defi-
nitions such as XX instead of X*%2."*

Of the widely used, high-level languages, COBOL at first appears
to offer the application programmer the least flexibility for vir-
tual storage tuning. The very nature of the COBOL language en-
courages the programmer to write rather large, monolithic pro-
grams with well-defined mainline logic which is exactly what one
would like in a virtual storage system. It would appear that ap-
plication design techniques that capitalize on virtual storage
concepts (for example, the use of virtual storage for work files
and large tables) would be the most fruitful area to investigate.
On the other hand, virtual storage can improve the performance
(with respect to storage utilization) of many COBOL programs
because many COBOL programs have error routines that are sel-
dom executed.

Some specific coding techniques follow:

1. Group FDs by function and define files that are used togeth-
er in sequence.

2. Files that are used together should be OPENed in the same
statement. This will cause their buffers to be close together
and improve locality of reference as buffers are processed.
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. Do not use ALTERNATE AREAS uniess needed for a special

reason. The net effect of the alternate buffer is to separate
data areas.

. Avoid the use of SAME RECORD AREA, as this causes buff-

ers to be separated from files not using this option.

. Group references to DIRECT files because buffers for these

files are stored separately from sequential files.

. Working storage is allocated in the order in which areas are

defined. Thus organize working storage according to the
rules already given, such as putting items that are used to-
gether in nearby definitions.

. Exercise good COBOL coding techniques in USAGE clauses

and length definitions to avoid the overhead and potentially
poor density of reference caused by unnecessary execution
of conversion subroutines."

. Put all exception-handling routines together at the end of

the program or, if possible, in a separate program. Excep-
tion-handling routines should be ordered in the frequency of
execution.

. If virtual storage is used to store a work file, define that area

either first or last in working storage to avoid separating
other working storage items from each other by a large span
of addresses.

. In ANS COBOL, the segmentation feature can be used to

align PROCEDURE DIVISION code. Using this feature, a sep-
arate CSECT is generated that can then be aligned to a page
boundary or sequenced by the linkage editor to minimize
fragmentation. Since all buffers and data areas stay in the
root segment, it may be desirable to break up WORKING
STORAGE by coding the called program as a subroutine.

. The coBoL facility for dynamic loading and deleting of

modules should be evaluated carefully before use, as this is
accomplished by the virtual storage concept.

PL/1 offers the programmer function and flexibility in program
design, and also offers many features that can be of value when
considering virtual storage.

PL/1 generates CSECTs under the following circumstances:

For each PROCEDURE (Two CSECTs are generated—one
containing only code and another containing INTERNAL
variables).

For each variable declared as STATIC EXTERNAL.

For each file declaration.
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¢ For compiler-generated subroutines.

* For library subroutines.

These CSECTs can be sequenced by the linkage editor to im-
prove locality of reference and to reduce internal fragmentation.
Additional pertinent facts concerning PL/I that are of value when
designing programs are:

® PL/I stores arrays by row.

¢ Some PL/1 functions, such as record 1/O, cause subroutines
to be loaded dynamically.

Automatic storage, which is the default, is formatted every
time a different procedure is entered.

All pL/1 code, whether declared reentrant or not, is read-
only.

The following are guidelines for use in PL/1 programs designed
for virtual storage systems:

1. Define variables used by specific subroutines as STATIC IN-
TERNAL so they will be close to the code that references
them.

. Define every variable possible as STATIC. This is particularly
true for arrays and data structures.

3. Avoid the use of the INITIAL attribute in automatic storage.

. CONTROLLED and BASED storage offer considerable flexibil-
ity in structuring storage. Locality can be controlled by
Jjudiciously assigning areas to BASED variables chosen so that
areas that have concurrent use are assigned to the same var-
iable.

. Multitasking requires extra real storage.

. Make variable declarations consistent across and within pro-
cedures to avoid unnecessary execution of service subrou-
tines.

Organizing existing programs

Since program performance problems in virtual storage are often
the result of abusing the virtual storage concept by undisciplined
programming practices, existing program libraries do not often
require extensive modification. If, however, it becomes necessary
to consider a particular situation, the program organization prin-
ciples stated earlier can be applied to programs that were not
originally designed for virtual storage. In many cases good results
can be achieved by determining which are the high and low-use
modules, defining page-alignment requirements, and link editing
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the program modules in the order that gives the best locality of
reference. In this procedure, no code changes are required. High
and low-use modules can be determined with program traces,
entry%counters, or from knowledge of the dynamics of the pro-
gram.

If the program had been in an overlay structure, and the over-
lays removed, the segments should be aligned to page bounda-
ries. However, it is possible for an overlay program that has
good locality in its segments, very dense use of overlay pages,
long execution times in segments, and changes in most of the
overlay pages, to have a performance advantage over the same
program with its overlays removed. The exact advantage de-
pends on the operating system implementation, the program logic,
the overlay segment length, and the system configuration.

When packaging an existing program for virtual storage, it may
be necessary to break some modules into separate modules or to
move code around within a module to increase density. It is sel-
dom necessary to otherwise recode routines unless program tech-
niques are used that cause wide ranges of address space to be
referenced.

Compiler-dependent service subroutines can also be packaged
by function. For example, I/O-related routines can be put to-
gether as can related data conversion routines. Packaging order
can be determined through the use of program traces, cross-ref-
erence listings, and Program Logic Manuals. Most service rou-
tines are fairly small; hence several can profitably be combined
into a page.

Concluding remarks

Introductory principles of program performance in virtual stor-
age have been presented to give a perspective of the virtual en-
vironment for systems designers and programmers. It is recog-
nized that the list of guidelines presented is not comprehensive
as many more useful techniques will be developed as experience
is gained with virtual storage systems. It is hoped that these
program design considerations and the programming guidelines
will assist these users in their future virtual storage program
development.
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