Forecasting, the evaluation of effects of various strategies, is
discussed. Emphasized are the quantitative techniques used in
forecasting and the formulation of equations to represent func-
tional relationships.

Also presented are two example forecasting applications — de-
mand analysis of a consumer product and a financial forecast-
ing model.

Forecasting techniques
by M. Aiso

Forecasting is currently becoming more important and complex
in the planning activities of business and government. Com-
puter-assisted forecasting helps to make these forecasts more
accurate.

One type of forecasting required in planning activities is, in
many cases, the evaluation of effects of various planned projects
or strategies such as investments or marketing promotion. An-
other type of forecasting, which simply sketches the future with-
out assuming particular changes in strategies, is the setting of a
standard against which the performance of a specific strategy is
evaluated.

Generally speaking, the forecast of the first type, an evaluation
of strategy, is performed by forecasting models that express
functional (also called causal) relations among relevant factors.
This type of model, if adequately formulated, can indicate the
turning points of future trends in response to possible changes in
management action. Detection of the turning points is one of the
most important concerns of forecasting in the planning process.
Therefore, the need for relational forecasting models has in-
creased substantially in industry at various organizational levels.

This paper emphasizes the use of relational models for forecast-
ing. Presented are a general review of forecasting techniques,
the formulation of equations to represent the relationships
among factors, the estimation of parameters in a model, the eval-
uation of a model, and forecasting using the established model.
An example forecasting program based on these techniques, the
1BM Forecasting And Modeling System (FAMS) program product,
is explalined and some example forecasting applications are dis-
cussed.
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For the reader who desires an overview of forecasting tech-
niques and applications, it is suggested that he read the following
section and then proceed to the section entitled “A forecasting
system.” The remainder of this paper is a more rigorous and
technical presentation of the mathematical equations used in
forecasting.

Forecasting techniques and considerations

Techniques of forecasting vary depending on the context of the
forecast. A number of forecasting techniques have been de-
veloped and can be classified into two major categories: qualita-
tive techniques and quantitative techniques. Qualitative tech-
niques are mainly based on human judgment, and future esti-
mates may be obtained through qualitative data such as experts’
opinions or information about special events. The DELPHI
methods and panel consensus are typical examples. They are
mainly used when data are scarce as when a product is first in-
troduced into a market. Quantitative techniques apply various
statistical techniques to historical time-series data for predicting
future events. These techniques can be divided into three
groups:

e Time-series analysis.
¢ Single-equation regression model.
e Simultaneous-equation regression model.

Time-series analysis attempts to discover underlying trend and
particular patterns from historical data. Based on the analysis,
forecasting is performed extending the trend of the past into the
future. In this type of forecasting a continuation of historical
patterns is assumed, and the influence of outside factors is not
taken into account.

Statistical forecasting is widely based on regression, a statistical

procedure to determine the relationships of, for example, sales

volume to various external indicators that are thought to have

significant influence on it. The following is an example where a,,
. . ,a, are the parameters to be estimated:

Sales volume = a, + a,(Price) + a,(Disposable personal in-
come) + a,(Amount of advertising)

In a relationship in which sales volume is influenced from price,
amount of advertising, and so forth, one can observe that sales
volume is likely, in turn, to influence price and amount of adver-
tising. For example,

Price = b, + b, (Sales volume) + b, (Costs)
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Table 1 Criteria for choosing forecasting techniques?

Techniques

Simultaneous-
equation
Time-series Single-equation regression
Criteria analysis regression model model

Consideration on

i N
external conditions o Yes Yes

Turning-point

. Yes
detection Yes

(limited to
seasonal or (limited )
cyclic change)

Consistent prediction

or related events No No

Dynamics of the

flow system No Yes

(limited )

Accuracy
Short term Fair to Excellent Good to Very Good Good to Very
(0-3 months) Good
Medium term Poor to Good Good to Very Good Very Good to
(3 months -2 years) Excellent
Long term (2 years and Very Poor Poor Good
up)

can be formulated simultaneously with the previous relationship
to form a two-way causation in sales volume and price. The
presence of a two-way causation makes a simultaneous-equation
model necessary (rather than the only approach to a single-equa-
tion model). Simultaneous-equation models have the ability to
describe more complex and mutually influencing relationships
by introducing as many equations as are necessary to represent
the relationship.

There is no universal criteria to determine which forecasting
technique is best. Some suggested criteria of choosing better
forecasting techniques, summarized in Table 1, are now dis-
cussed.

Forecasting should consider and accommodate external condi-
tions —that is, reflect existing environments, possible anticipated
environmental changes, and potential policy changes. A capabil-
ity to detect forecast turning-points due to changes in strategy is
also a requirement. A forecasting technique should provide con-
sistent numbers for related events such as multiple forecasts of
sales, costs, and revenue. Additionally, a forecasting model
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should be able to express the dynamic nature of the model vari-
ables since they may have time-dependent and interacting influ-
ences among themselves. The accuracy of a forecast is depen-
dent on the adequacy of model formulation and treatment, but it
can be associated with particular techniques involved. Although
it is difficult for the author to indicate the accuracy of each
technique in general, some other effort has been expended in
this area and has been reported.”

Single-equation regression model

The single-equation regression model, which expresses a linear
relationship between a dependent variable Y and k- indepen-
dent variables X,, X,, . . ., X,, has a general form of:

Y,=b, +b,X,,+b,X,,+ - -+b X, tu

, n;, denoting n observations. The dependent
variable Y, can denote, for example, the sales amount of a prod-
uct, and the independent variable X, can indicate advertising
expenditure, and X, can represent the price of the product. The
u, is called disturbance (or error) that is added in the model
because of the following reasons:

¢ Human behavior consists of many relevant factors.
e Human response has unpredictable elements of randomness.
¢ Observation contains error.

In matrix notation, the model can be rewritten as:
y=Xb+u

where y={Y\Y, -+ Y,}

X=11X, -
L X,

Xkl
Xk2

Xy, anj
b:{ble PPN .bk}
u: {ulu2 2 . u”}

and {} denotes column vector. The constant (intercept) term b,

requires the insertion of a column of units in the X matrix.

Assumptions for the least-square estimation of unknown param-
eters are:

1. Eu)=0
The mean of disturbances is zero, for all ¢.
2. E(uu') = szln
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The variance of disturbances is a constant (s*), and the co-
vdtiance is zero, for all ¢.

. E(xu’')=0
x={X; Xy o Xy}
Each of the independent variables (X,, i=2, 3, - -, k;
t=1,2,----,r)is independent from the disturbance «, and
each of the independent variables is a set of fixed numbers.

. Xhasrank k <n
No exact linear relation exists between any of the indepen-
dent variables, and the number of observations exceeds the
number of coefficients to be estimated.

Let b denote the estimated values of b. The relationship then
becomes

y=Xb+e

where e represents residual. One should distinguish between dis-
turbance « and residual e. The disturbance u# shows the error in
y which is related to X through the unknown value of b; the re-
sidual e shows the error in y when it is related to X through an
actually estimated value of parameter b.

The coefficient b can be estimated in such a way that the squared
sum of residuals:

e'e=(y—Xb)'(y— Xb)

has the least value. To obtain the value b which minimizes ee,
e’e is differentiated and equated to zero:

ale’e) _ _oxry 1 ax'xb=0

ab
If X'X is nonsingular,
h=(X'X)"'X'y

and this is the estimate of unknown coefficient b.

The computation of (X'X)" is possible only if the matrix X'X is
nonsingular. If two or more independent variables are perfectly
correlated, the matrix becomes singular, and the computation of
its inversion (the computation of b estimates) is impossible; and
if the variables are highly correlated, the computed b values will
not be reliable. These phenomena are called multicollinearity.
Efficient ways of avoiding multicollinearity cannot always be
found, but some recommendations would be to purge inappro-
priate variables by checking simple correlations or to weaken
the relationship by transforming variables. An example is that of
taking the difference from the previous period.

After regression coefficients are estimated by the least-squares
estimation, the estimated structure of the model is evaluated to
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determine how well it represents reality. There are three types
of information that determine the effectiveness of the estimated
model:

¢ A priori information.
o Statistical test values.
¢ Comparison of actual and computed values.

A priori information. A priori information is the theoretical or
practical knowledge one possesses before attempting statistical
operations. Economic theory or business practice provides the
main source of knowledge. Examples of a priori information are
a combination of variables, and sign and magnitude of the pa-
rameters. In a combination of variables a set of independent
variables must give a plausible explanation of the dependent
variable in each estimated equation. Thus each variable and a
whole set of independent variables must be logically related to a
dependent (or explained) variable. The plus or minus sign and
magnitude of the parameters are not usually known beforehand
for all parameters. Some parameters, however, such as tax rates,
interest rates or marginal profit ratios, are roughly known with-
out applying estimation procedures and are checked with the
results of computation.

Statistical test value. From the result of estimation computation,
various measurements can be obtained to determine whether the
estimation is meaningful. Presented in the sections that follow
are four measurements which are most frequently used to test
the validity of the equation results. They are:

Coeflicient of determination.

The t-values for significance test of coefficients.
Standard error of equation.

Durbin — Watson d statistic.

The coefficient of determination, R®, is defined by:

n
2
> e
R'=1—-&1—
2
Ve
=1
using small letters to denote deviations from arithmetic means
(y,=Y,—Y). The second term in the right-hand side is the ratio
of the variation of residuals or “unexplained” to the total varia-
tion of the Y about their sample mean; that is, the second term
denotes the proportion of the variation that is not explained by
the least squares. Thus the value R indicates the proportion of
the variation in Y “explained” by the least-squares regression
equation. For instance R® = 0.78 means that 78 percent of the
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variations of the dependent variable Y about its mean can be ex-
plained by the independent variables X, (i = 2,3; - -k). R* = 1.00
is perfect correlation.

The degrees of freedom of 2:;1 e are n — k, and those of 2:;1 )
are n — 1. Generally speaking, the smaller the degrees of freedom,
the larger the coefficient of determination. This fact is incon-
venient for comparison of several regressions with different de-
grees of freedom. To facilitate comparison, the R® value can be
adjusted for the degrees of freedom. This is usually denoted by R*
and defined by:

2::":2/(”—/‘)
1—gny,z/(n—l)

D2

—1
— 1 — _RzL
1—(1 )n—k

k—1

— p2_ . p2
=R~ (1-R") —

To derive t-values for significance tests of coefficients for the
b;, assume that the disturbance « has a normal distribution. Now
the assumptions for « are:

The mean is zero.
The variance is a constant s”.
The covariance is zero.
The distribution is normal.
and the assumptions can be compactly written as:

uis N (0, sI).

Examining the distribution of 5, one obtains:
b= (X'X)"X"y
= (X'X)"'X'[Xb + u]
=b+ (X'X)"'X'u
Hence, any b, is equal to b, plus a linear function of # which has
a multivariate normal distribution. Thus b, has a normal distri-
bution.
The mean of b, is:
E(b) =E[b + (X'X)"'X'u]
=E(b) + (X'X) ' X'E(u)
=b
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The variance-covariance matrix of b, is:
E[(b—b)(6—b)]1=E[{X'X)"X'W}H{(X'X) "X 'u}']
=E[(X'X)" Xu'X(X'X)""]
= (X'X)X'E(uu ) X(X'X)™
=sX'Xx)"
The variance of Bi is the ith term of the principal diagonal of
(X'X)™" multiplied by s* (the variance of u;).
In summary b has a multivariate normal distribution specified by:
131. is N(b;, szaii)

where a;, is the ith principal diagonal element of (X'X)™". The
value e’efs” has an X ? distribution with n — k degrees of freedom.
Finally, e and b are determined to be independently distributed:

e=y— Xb
= (Xb+u)—X[(X'X)"'X' (Xb + u)]
=u—XX'X)"'X'u
=[I,— X(X'X)"' X" Ju
Substituting the above values gives the independence of e and b.
Ele(b—b)1=E[{l,— X(X'X)7"' X" }uu'X (X'X)™"]
=sX(X'X)"' =X (x'x)™"
=0

The t-distribution can be used for testing b, since b, is N (b,

s’a;), and S e;’ls’ has an independent X* distribution with
n — k degrees of freedom.

From the definition of t- distribution,

B,—b,)/sVa,

\/<s_12§"1€j2)/ (n—k)
] b, — b,
\/jzl ejz/(n—k)\/a_;

is obtained, which follows the t-distribution with n — k degrees of
freedom, where a; is the ith principal diagonal element of
(X' x)™.

A hypothesis that a certain regression coefficient b, is zero —that
is, the independent variable X; has no effect on the dependent
variable Y —can be tested by computing a specific value 7, as :
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b,

1

\/i ejz/(n—k)\/a:

j=1

t¢=

Assuming a significance level of e percent, and a value of ¢, from
the t-distribution table with » — k degrees of freedom is ob-

tained, the test of the hypothesis is:

If [t = 1, the hypothesis is rejected.
o If |t,| <1, the hypothesis is accepted.

It is an often-accepted practice to consider as meaningful only
those variables with a t-value of at least plus or minus 2.0.”

The dispersion of the values computed by the regression equa-
tion in fitting the historical data may be measured by the vari-
ance of the disturbance u of the equation. However, since « is
not directly observable, the residual e is used. From the sum of
squared residuals and the division by its degrees of freedom, the
estimated value of the variance of equation S” is obtained as:

§*=(e’e)/(n—k)

The positive square root of S° is the standard error of equation.
The smaller the standard error of equation is, the better the re-
gression results. It can be expected, for example, two thirds of
the observations may fall within a range of plus or minus one
standard error from the estimate of the equation.

Durbin-Watson d Statistic. One of the assumptions on the dis-

turbance u in the application of the least-squares estimation is
that the u has zero variance; that is, the # is non-autocorrelated.
If this assumption is not satisfied, the variance of the regression
coefficient becomes large so that the use of the regression model
for prediction is not justified. To test whether the assumption is
satisfied, the Durbin-Watson d statistic is calculated from resid-
uals e, as follows:

n

2
E (et - et-l)
t=2

>e

t=1
The Durbin-Watson d statistic table gives upper (d,) and lower
(d,) limits of the significance levels of d. The test of the hypo-
thesis that « has no autocorrelation is as follows:

d=

Ifd = d,, or 4 — d, = d, the hypothesis is rejected.

Ifd, = d = 4 — d,, the hypothesis is accepted.

Ifd, <d<d,ord4—d,<d < 4—d, the test is inconclu-
sive.

NO. 2 -« 1973 FORECASTING TECHNIQUES




forecasting

Figure 1 Distribution of d

INCONCLUSIVE INCONCLUSIVE
—

PROBABILITY OF DENSITY OF d

|
|
|
|
|

POSITIVE NO AUTOCORRELATION NEGATIVE
AUTOCORRELATION AUTOCORRELATION

A diagrammatic representation of the test is shown in Figure 1.
As the figure illustrates, a d-value of about 2 is often considered
as meaningful to conclude that « has no autocorrelation.

Comparison of actual and computer values. In each estimated
equation y = Xb + e, observed values for independent variables
(X,, X,,- -, X,) are substituted to obtain the estimate of the de-
pendent variable, ¥, for each period:

$=Xb

The discrepancy, or residual e, between the observed value y
and the estimated value y is computed and examined for each
period. This method, sometimes referred to as the partial
method, is applicable to only one equation—namely, a single-
equation model or to each individual equation in a simultaneous-
equation model.

The period for which data for the estimation is available is called
the sample period. The period subsequent to the sample period
and for which the future values are to be forecasted is called the
forecast period. If the values of independent variables for the
forecast period are available, the forecasted values of the depen-
dent variable can be calculated in the same way as the partial
method. The independent values are provided by means of:

External information.

Policy or management objectives.

Other techniques such as extrapolation by growth rates.
Other models such as a master or sub-model.

IBM SYST J




Simultaneous-equation regression model

In the following simultaneous-equation model:
Ylt = Cll + bl2Y2t + C12X1t + ult
Yo =y T byY oY

a—n) T Uay

Y, and Y, are to be forecasted, and they are called endogenous
variables, Y,,_,, in the second equation is a lagged endogenous
variable. The values of X, are always given from outside the
model; hence, X, is called an exogenous variable. The exoge-
nous variables and the lagged endogenous variables are called

predetermined variables.

The general form of a linear model containing g simultaneous
relations (endogenous variables) and k predetermined variables
can be written in matrix form as:

By, + Cx,= u,

where:
B = Coefficient of endogenous variables
={h, - -p

11 19

by by,
= Coeflicients of predetermined variables

=[¢c, - CUJ

ey

and y, x,, and u, are column vectors at time ¢ of endogenous
variables, predetermined variables, and disturbance, respectively:

ylt xll 1t

_y”’_J ._x’"J LMQ’_J
The model in the form of By, + Cx,=u, is called a structural
form model.
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If the matrix B is nonsingular, we can define the reduced form
model as:

y,=—B7'Cx,+ B,

The reduced form model expresses the endogenous variables y,
in terms of predetermined variables x,. The forecast is to obtain
the values of y, given the values of x,. Thus the reduced form
model is convenient for computing the forecast of endogenous
values.

From the reduced form model, it is evident that each element of
the endogenous variable vector y, is related with every element
of the disturbance vector u,. This means if, for example, in the
first equation (y,, equation) endogenous variables other than y,,
(such as y,,, y,, and so forth) appear in the equation, those en-
dogenous variables y,,, y,, and so forth have a dependency on
Uy,
This fact that some of the independent variables have dependen-
cy on the disturbance violates the assumption of:

E(xu')=0

in the least-squares estimation when we apply the least-squares
estimation to an equation that contains the endogenous variables
as independent variables in the equation.

The two-stage least squares (TSLS) technique is a widely accept-
ed method of estimation procedure in a simultaneous equation
model containing the estimation problem previously described.
The TSLS technique is applied to each individual equation in a
simultaneous model. Thus we can consider the ith equation of
the model and let it be expressed as:

y=Yb+Xct+u

where:

e yis the column vector of n observations on the endogenous
variable to be forecasted by this equation.
Y, is the n X g matrix of the observations on the other cur-
rent endogenous variables included in the equation (ex-
plaining endogenous variables).
b is the column vector of g coefficients associated with Y.
X, is the n X k matrix of the observations on the predeter-
mined variables appearing in the equation.
e cis the column vector of k coefficients associated with X ,.
ey is the column vector of n disturbances.

The TSLS technique purges the explaining endogenous variables
Y, of the stochastic components associated with the disturbance

u in two stages. In the first stage, the least-squares estimation is
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applied to the parameters of explaining endogenous variables
(b) regressing on the predetermined variables appearing in the
model (denoted by X), and the computed Y, matrix is obtained.

Y,=Xb
=XX'X)"X'Y,

This regression is justified since X has no correlation with u. In
the second stage, y is regressed on Y, and X, and the result of
the TSLS estimate is:

[5] _ [YY ?I’Xl]"‘[?,’y ]

é XY, X'X X,y

The evaluation and forecasting methods for a simultaneous-
equation model are basically the same as those for a single-

equation model except for the following two methods that take
simultaneity into consideration:

& Total method.
& Final method.

The total method applies to all equations in a simultaneous-
equation model. In the reduced form equation:

-1 -1
y=—B Cx,+B u

observed values of predetermined variables x, are substituted for
all periods to estimate values y,, and the differences (residuals)
between actual values and estimated values are computed. This
method has the advantage of checking the simultaneous nature
of the model, whereas it is impossible to do so with the partial
method. However, if the model has lagged endogenous variables
to express the dynamic nature of the system, the total method
fails to check how well the model can be used as a simulation
tool because it uses observed values of lagged endogenous vari-
ables instead of values calculated by the model.

The total method enables the model-builder to improve his si-
multaneous equation model, in which lagged endogenous vari-
ables are involved, by comparing the results with those of the
following final method. Since the total method regards the lagged
endogenous variables as purely exogenous, it cuts off the effects
of the time lags of endogenous variables. This makes the calcu-
lations so simple that the model-builder could tell the cause of
any possible deficiency in his model related with time-lag feed-
back mechanism.

The final method also applies to all equations in a simultaneous-
equation model when the model represents time-dependent dy-
namic nature by including lagged endogenous variables. In the
reduced form equation, observed values of exogenous variables
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are substituted for all periods. However, actual values of lagged
endogenous variables are used only before the initial time peri-
od, and the values computed by the model are substituted for
subsequent periods. This means that the computed endogenous
values are fed back to the model and this method tests the dy-
namics of the model due to time lag. If the simultaneous-equa-
tion model does not contain lagged endogenous variables, the
final method gives identical results with the total method.

From a structural form model having g relations in the form of:

By, + Cx,= u,

the reduced form model was obtained:

y,=—B'Cx, + By,

If the original structural form model is multiplied by a g X g
nonsingular matrix A4, the resuiting model is:

(AB)y, + (AC)x,= Au,
If the reduced form is derived from the new model, the result is:
v, =—(AB) (AC)x, + (AB) 'Au,

=—B"'Cx,+ B™'u, (for (4B)"'=B"'4™")

f

Hence, both the original and new models give an identical re-
duced form which means that the models with different values
for all the parameters will generate the same distribution of de-
pendent variables conditional upon the values of predetermined
variables and disturbances. In this case, the estimated results of
the original model and the new model are said to be observation-
ally eqnivalent in that they may have exactly the same implica-
tions about observable phenomena. This point is known as the
identification problem in the context of simultaneous-equation
models. The problems is that many different sets of coefficients,
(B,C) and (AB,AC), may be obtainable from a set of observa-
tions (y, x,) and it is impossible to conclude which coefficients
represent the true model.

The general rule for determining the identification status of any
given structural equation is derived as follows. The structural
equations with estimated coefficients of B and C are:

By, + Cx,=0

On the other hand, least-squares estimators of reduced form
coefficients can be obtained as:

v, = Px,

By substituting for y, from the reduced form into the structural
form, the following results:
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BPx,+ Cx,=0
orBP=—C

The following are denoted for the ith equation:

g, = number of endogenous variables included in the ith equa-
tion
gap = & — &, Where g is the number of endogenous variables in
the simultaneous-equation model

k, = number of predetermined variables (including a constant
term) included in the ith equation

koo =k — k, where k is the number of predetermined variables
(including a constant term) in the simultaneous-equation
model.

We can assume that the coefficients of the ith equation (b; and
¢,) are arranged in such a way that the nonzero elements appear
first, being followed by the zero elements. This can be written
as:

b= [b,0,,]
¢; = [CAOOO]

where:

by=1[byb, by, 1 X g, vector

0,0,=1[00 0] 1xg,, vector
c, = [y -+ - ol 1 X ko vector

Ooo=[00'0] leooVeCtor

The matrix P can also be partitioned in a corresponding way:
P= I:PAO PAOO ]

P AAY P AAQC
and the ith equation can be regarded as:
[bA OAA][PAO PAOO }=_[Co 000]
P AA0 P AA0 0
From this, the following are obtained:
bAPA° =—Cy """~ (a)

byProo =000 - (b)

If (b) can be solved for b,, then c, can be solved from (a). The
vector b, contains g, — 1 unknown coefficients since one of the
b’s in the structural equation is unity.
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Figure 2 FAMS program modules and files

FAMS PROGRAM MODULES

MODULE PURPOSE

DATA FILES
FILE CREATION DATA FILES

FILE MAINTENANCE

HISTORICAL
DATA

DATA ANALYSIS
TRANSFORMATION

MODEL FILES TIME-SERIES FORECASTING

STRUCTURAL ESTIMATION OF PARAMETERS

FORM CALCULATION QF STATISTICAL
TEST VALUES

REDUCED FORECASTING BY MODELS FORECAST
FORM DATA

COMPARISON
TABULATION
TRANSFORMATION OF FORECAST
ANALYSIS

A necessary condition is that in order to obtain a solution for the
g, — 1 unknowns in b,, the number of equations in (b) must be
at least g, — 1, namely:

kooigA'—l

In other words, the number of predetermined variables excluded
from the equation must be at least as great as the number of
endogenous variables included less one.

A necessary and sufficient condition for identification is that the
number of independent equations in (b) is g, — 1, namely:

rank (PAOO) =E8p 1

In summary, the identification problem can be stated as reducing
the values of parameters of the structural form (B and C) from a
knowledge of the reduced form parameters (P). The identifica-
tion problem is associated with each structural equation in a
model.

A forecasting system

An example batch-mode forecasting system for System/360
and/370 Disk Operating System (DOS) and System/360 and /370
Operating System (0S) is the 1BM program product, Forecasting
And Modeling System (FAMS)." This program is a collection of
statistical and data-handling routines based on the previously
described forecasting techniques:

» Time-series analysis.
» Single-equation linear model.

« Simultaneous-equation linear model.
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Table 2 Example partition sizes required for PAMS

Number of Number of Number of Partition size
equations variables observations DoOs OS

20 30 14 52K 70K
50 90 30 84K 102K
100 160 35 184K 202K

The equation (single or simultaneous) is based on regression or
given by definition. The linear model (single or simultaneous)
includes nonlinear combination of predetermined variables, and
log-linear transformation.

FAMS provides a capability for creation and maintenance of data
files, analysis and transformation of data, qualification of fore-
casting models, forecast of future values, and analysis of fore-
casted results. It also provides for updating of models, statistical
tests, and summaries and comparisons to analyze and evaluate
the models and their forecasted results.

There are five program modules in FAMS:

Data file (FILE).
Pre-analysis (PRAN).
Estimation (ESTI).
Forecast (CAST).
Post-analysis (POST).

Their functions are depicted in Figure 2. Also shown are the
four different kinds of permanent user files (model and data
files) from which the information on the data and model is trans-
ferred to relevant module functions. Specific functions and fea-
tures of the program modules are described in the appendix. The
size of the model depends on the available partition size of main
storage. Table 2 shows some example partition sizes in K bytes.

Example forecasting applications

Two examples of the application of functional relations in fore-
casting are now discussed.

A forecasting model can perform demand analysis of a con-
sumer product. For example, the model could analyze the de-
mand of food products. This model, whose flow is shown in Fig-
ure 3, represents the demand and supply between consumer and
distributor, and between distributor and producer. The following
equations comprise the model:
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Figure 3 Demand analysis model
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Y, = food consumption per capita

Y, = disposable income per capita

Y, = production of agricultural products

Y, = production prices (received by farmers for food products)
Y, = retail prices of food products

X, = net investment per capita

X, =time
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Demand function from consumer to distributor (1). Determin-
ing factors of this function are the retail price and personal in-
come. As for the income, both the values of current period and
those of previous period are considered. The values of the pre-
vious period explain an inertia of consumption behavior. The
changes in habits and taste of consumers are introduced by an
exogenous variable of time X,

Supply function from distributor to consumer (2). Assuming the
demand and supply are balanced, the supply function can be
represented by using the same variable Y, (consumption) as the
dependent variable. The supply is explained from the retail price
and the production amount. The time X, denotes changes in fab-
rication and marketing.

Income function (3). The income of the previous period and
investments can explain the current level of income. This equa-
tion has a characteristic of statistical definition equation.

Supply function from producer to distributor (4). The supply to
distributors is explained from two main factors: a quick re-
sponse to the current production prices and one-period delayed
response to the price. The time X, represents a trend of the in-
crease of people engaged in production.

Demand function from distributor to producer (5). The demand
from distributor to producer is considered to be measured by
knowing how much of the retail price is received by producers.

A second example is a financial forecasting model, depicted in
Figure 4. The general framework of the model consists of a giv-
en, external, usually uncontrollable environment such as interest
rates, price index, Gross National Product (GNP), and a seasonal
dummy (a variable representing a temporal effect of different
seasons). The model also contains major items of financial state-
ments (balance sheet and profit loss sheet) that are forecasted,
taking into account the relationships between major items of
financial statements as well as other relevant factors. This model
has many uses, some of which are:

To investigate a financial behavioral structure.

To estimate future values of major financial items.

To analyze profit versus owned capital ratio.

To investigate the relation between profits and expenses.

To evaluate a potential competitiveness.

To compare financial structures between companies or in-
dustries.

Thus the future financial figures of a company or of an industry
can be analyzed and forecasted on a scientific basis. In addition,
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Figure 4 A financial forecasting model
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the cause of changes in profit ratio provides a method of control
to increase profit. These two characteristics, scientific forecast-
ing and method of control, make forecasting a more reliable as-
sumption for better decisions in present business planning.

Concluding remarks

Computer-assisted forecasting techniques have been presented.
Time-series extrapolation techniques are based upon the histori-
cal pattern of the item to be forecasted. Of particular importance
are causal (functional) models which take influencing factors
into consideration. Regardless whether the causal model com-
prises a single relation or multiple relations, one must be aware
of the various tests and evaluating methods in the stages of
model building in order to obtain better forecast models. Build-
ing and analyzing a forecasting model normally requires data
manipulation and calculation. Unless these tasks are performed
in a systematic manner, a heavy burden is placed on the model-
builder. Productivity in forecasting activities is increased by us-
ing a systematic computer programming system oriented for
forecasting. Introduced as an example forecasting program was
FAMS.

Further important steps forward are flexible linkage of tech-
niques, linkage of models, and linkage of planning applications.
By realizing these, forecasting will lay a foundation of manage-
ment science applications and provide a framework for timely
and sound decision making.

Appendix

The functional capability and features of each of the five pro-
gram modules of FAMS are as follows:

FILE module

¢ Functions
Creation
Deletion
Insertion
Value modification
Header modification
Merge
Sort
Retrieval
List
Features
Time-series data

Cross-section data
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PRAN module

* Functions
Plotting data series
Transformation
Simple correlation
Exponential smoothing
Polynomial regression
Seasonal decomposition

Features

Combination of functions

Data (historical) file update (option)
Card input for data (option)
Symbolic data reference

ESTI module

* Functions and features presented in this paper
Ordinary least squares
Stepwise least squares
Two-stage least squares
Combination of estimation techniques
Statistical measurements (regression coefficient, standard
error of coefficient, t-value, coefficient of determination,
standard error of equation, F-value, Durbin-Watson d
statistic)

Other features

Inclusion of identity (or equation by definition)
Maintenance of structural form model file

Card input for data (option)

Symbolic data reference

CAST module

* Functions and features presented in this paper
Partial method
Reduced-form derivation
Total method
Final method
Specification of endogenous variable, which allows:
1. Designation of endogenous variable among the right-
hand-side explaining variables.
2. Interchange of endogenous and exogenous variables
Initial value tests
“Identification” information of the model

Other features

Card input for data (option)

Symbolic data reference

Designation of alternative equation (to form a “complete”
model)
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POST module

+ Functions
Forecast accuracy analysis
Growth rate and growth amount
Multiplier analysis (impact in response to exogenous change,
or ‘“‘sensitivity”” analysis)
Residual summary
Forecast summary
Forecast tabulation
Forecast comparison
Forecast transformation
Forecast transformation and comparison
Case comparison (for different exogenous assumptions or
“what-if”’ simulation)

Features

Comparison with plotting up to 3 series of data
Transformation of any combination of endogenous and pre-
determined variables

Symbolic data reference
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