
Forecasting,  the  evaluation of e fects  of various strategies, is 
discussed.  Emphasized are the  quantitative  techniques  used  in 
forecasting and the  formulation of equations to represent func- 
tional  relationships. 

Also presented  are  two  example  forecasting  applications - de- 
mand  analysis of a  consumer  product  and  a  jinancial  forecast- 
ing model. 

Forecasting is currently becoming more important  and complex 
in the planning activities of business  and  government.  Com- 
puter-assisted  forecasting helps to make these  forecasts  more 
accurate. 

One  type of forecasting required in planning activities  is, in 
many cases, the  evaluation of effects of various  planned  projects 
or strategies  such as investments or marketing promotion.  An- 
other  type of forecasting, which simply sketches  the  future with- 
out assuming particular  changes in strategies, is the setting of a 
standard against which the  performance of a specific strategy is 
evaluated. 

Generally  speaking,  the  forecast of the first type,  an  evaluation 
of strategy, is performed by forecasting models that  express 
functional (also called causal)  relations among relevant  factors. 
This  type of model, if adequately  formulated,  can  indicate  the 
turning points of future  trends in response to possible  changes in 
management action.  Detection of the turning points is one of the 
most  important  concerns of forecasting in the planning process. 
Therefore,  the need for relational forecasting models has in- 
creased  substantially in industry at various organizational levels. 

This paper  emphasizes  the  use of relational models for  forecast- 
ing. Presented are a general review of forecasting  techniques, 
the  formulation of equations  to  represent  the relationships 
among factors,  the  estimation of parameters in a model, the  eval- 
uation of a model, and  forecasting using the established model. 
An  example  forecasting program based on  these  techniques,  the 
IBM Forecasting  And Modeling System (FAMS) program product, 
is explained and  some  example  forecasting  applications  are dis- 
cussed.' 
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For the  reader who desires  an  overview of forecasting  tech- 
niques and  applications, it is suggested that he read the following 
section  and  then  proceed to  the section entitled “A forecasting 
system.” The remainder of this  paper is a more rigorous  and 
technical  presentation of the  mathematical  equations  used in 
forecasting. 

Forecasting  techniques  and considerations 

Techniques of forecasting  vary  depending  on  the  context of the 
forecast.  A  number of forecasting  techniques  have  been  de- 
veloped and  can be classified into  two major categories:  qualita- 
tive techniques  and  quantitative  techniques.  Qualitativ?  tech- 
niques are mainly based on human judgment,  and  future  esti- 
mates may be obtained  through  qualitative data such as experts’ 
opinions  or information about special events. The DELPHI 
methods  and panel consensus  are typical examples. They  are 
mainly used when data  are  scarce  as when a  product is first in- 
troduced  into a market.  Quantitative  techniques  apply  various 
statistical  techniques  to  historical time-series data  for predicting 
future  events.  These  techniques  can be divided into  three 
groups: 

Time-series  analysis. 
Single-equation regression model. 
Simultaneous-equation regression model. 

Time-series  analysis  attempts  to  discover underlying trend and 
particular  patterns from historical data. Based on the  analysis, 
forecasting is performed extending  the  trend of the  past  into  the 
future. In this type of forecasting a continuation of historical 
patterns is assumed,  and  the influence of outside  factors is not 
taken  into  account. 

Statistical  forecasting is widely based  on regression, a statistical 
procedure  to  determine  the relationships of,  for  example,  sales 
volume to  various  external  indicators  that are thought  to  have 
significant influence on it. The following is an example  where a,, 
. . . ,a4 are  the  parameters  to be estimated: 

Sales volume = a ,  + a, (Price) + u3 (Disposable  personal in- 
come) + a,(Amount of advertising) 

In a relationship in which sales volume is influenced from  price, 
amount of advertising,  and so forth,  one  can  observe  that  sales 
volume is likely, in turn,  to influence price  and  amount of adver- 
tising. For example, 

Price = b ,  + 6, (Sales  volume) + b, (Costs) 
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Table 1 Criteria for choosing forecasting techniques' 

Criteria 

Consideration on 
external conditions 

Turning-point 
detection 

Consistent prediction 
or related events 

Dynamics of the 
flow system 

Accuracy 
Short  term 

(0 - 3 months) 
Medium term 

(3 months- 2 years) 
Long term (2  years  and 

UP ) 

Techniques 

Simultaneous- 
equation 

Time-series Single-equtrtion regression 
unolysis regression model model 

No Yes  Yes 

Yes  Yes  Yes 
(limited to 
seasonal or (limited) 

cyclic change) 

No No Yes 

No Yes  Yes 
(limited) 

Fair  to Excellent Good to Very Good  Good to Very 

Poor to Good  Good to Very  Good  Very  Good to 

Very Poor Poor Good 

Good 

Excellent 

can  be  formulated simultaneously with the  previous  relationship 
to form a two-way causation in sales volume and  price. The 
presence of a two-way causation  makes  a  simultaneous-equation 
model necessary (rather than the only approach  to  a single-equa- 
tion model). Simultaneous-equation models have  the ability to 
describe more complex and mutually influencing relationships 
by introducing as many equations as  are necessary  to  represent 
the  relationship. 

There is no universal  criteria  to  determine which forecasting 
technique is best.  Some suggested criteria of choosing better 
forecasting  techniques, summarized in Table 1, are now dis- 
cussed. 

Forecasting should consider  and  accommodate  external  condi- 
tions - that is, reflect existing environments, possible anticipated 
environmental  changes,  and potential policy changes. A capabil- 
ity to  detect forecast turning-points due  to  changes in strategy is 
also a requirement. A forecasting  technique should provide  con- 
sistent  numbers  for  related  events  such as multiple forecasts of 



least-square 
estimation 

of parameters 

should be able to express  the dynamic nature of the model vari- 
ables since they may have time-dependent and interacting influ- 
ences among themselves. The accuracy of a  forecast is depen- 
dent  on the adequacy of model formulation and  treatment, but it 
can be associated with particular techniques involved. Although 
it is difficult for  the  author  to indicate the  accuracy of each 
technique in general, some other  effort  has been expended in 
this area and  has been reported.' 

Single-equation regression model 

The single-equation regression model, which expresses  a linear 
relationship between a  dependent variable Y and k-1 indepen- 
dent variables X,,  X,,  . . . , X,, has  a general form of: 

Y ,  = b, + b,X,, + b,X,, + * * * + b,Xk, + U, 
for t = 1 ,  2, . . . . . , n; denoting n observations. The  dependent 
variable Y,  can  denote,  for  example,  the  sales  amount of a prod- 
uct,  and  the  independent variable X ,  can indicate advertising 
expenditure, and X ,  can represent  the price of the  product. The 
ut is called disturbance (or  error) that is added in the model 
because of the foltowing reasons: 

Human behavior consists of many relevant factors. 
Human  response has unpredictable elements of randomness. 
Observation  contains  error. 

In matrix notation, the model can be rewritten as: 

y = X b + u  

where y = 
X =  

b =  
U =  

and { }  denotes column vector. The constant  (intercept) term b,  
requires  the insertion of a column of units in the X matrix. 

Assumptions  for  the  least-square  estimation of unknown param- 
eters  are: 

1 .  E ( u )  = 0 



Tlie, variance of disturbances  is a constant (s'), and  the  co- 
vai-iance  is zero,  for all t .  

3 .  E ( x u ' )  = o  
x = {X,,Xi, . * * X,} 
Each of the independent variables (X,,,  i = 2, 3, * * , k ;  
t = 1 ,  2 ,  . - * , n) is independent from the  disturbance 11, and 
each of the independent variables is a set of fixed numbers. 

No exact  linear relation exists between any of the indepen- 
dent variables, and the  number of observations  exceeds  the 
number of coefficients to  be  estimated. 

4. X has rank k < n 

Let b denote  the estimated values of b. The relationship then 
becomes 

y = X b + e  

where e represents residual. One should distinguish between dis- 
turbance u and residual e .  The disturbance u shows  the  error in 
y which is related to X through the unknown value of b ;  the re- 
sidual e shows  the  error in y when it is related to X through an 
actually estimated value of parameter 6 .  

The coefficient b can  be estimated in such a way that  the  squared 
sum of residuals: 

e r e  = ( y  - ~ 6 ) ' ( y  - X 6 )  

has the least value. To obtain the value 6 which minimizes e'e,  
e r e  is differentiated and  equated  to zero: 

" - " 2 X ' y  + 2 X ' X h  = 0 
a6 

If X ' X  is nonsingular, 

6 = ( X ' X ) " X ' y  

and this is the  estimate of unknown coefficient b. 

The computation of ( X ' X ) "  is possible only if the matrix X ' X  is 
nonsingular. If two or more independent variables are perfectly 
correlated,  the matrix becomes singular, and  the computation of 
its inversion (the computation of b estimates)  is impossible; and 
if the variables are highly correlated,  the  computed b values will 
not  be reliable. These phenomena are called multicollinearity. 
Efficient ways of avoiding multicollinearity cannot  always  be 
found,  but some recommendations would be to purge inappro- 
priate variables by checking simple correlations or to  weaken 
the relationship by transforming variables. An example is that of 
taking the difference from  the previous period. 

After regression coefficients are estimated by the  least-squares 
estimation,  the  estimated  structure of the model is evaluated  to 
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determine how  well  it represents  reality.  There  are  three  types 
of information that determine  the  effectiveness of the estimated 
model: 

A priori information. 
Statistical  test  values. 
Comparison of actual  and  computed  values. 

A priori information. A priori information is the theoretical or 
practical knowledge one  possesses  before  attempting statistical 
operations.  Economic  theory or business  practice  provides  the 
main source of knowledge. Examples of a priori information are 
a combination of variables, and sign and magnitude of the pa- 
rameters.  In a combination of variables a set of independent 
variables  must give a plausible explanation of the  dependent 
variable in each  estimated  equation. Thus  each variable  and a 
whole set of independent  variables  must  be logically related  to a 
dependent  (or  explained) variable. The plus or minus sign and 
magnitude of the  parameters are  not usually known beforehand 
for all parameters.  Some  parameters,  however,  such as tax  rates, 
interest  rates  or marginal profit ratios, are roughly known with- 
out applying estimation  procedures  and are checked with the 
results of computation. 

Statistical  test  vulue. From  the  result of estimation  computation, 
various  measurements can be obtained to  determine  whether  the 
estimation is meaningful. Presented in the sections  that follow 
are  four  measurements which are most  frequently  used to  test 
the validity of the  equation  results.  They are: 

Coefficient of determination. 
The t-values for significance test of coefficients. 
Standard  error of equation. 
Durbin - Watson  d  statistic. 

The coeficient of determination, R’, is defined by: 

using small letters  to  denote  deviations from arithmetic  means 
( y ,  = Y ,  - 7). The second term in the right-hand side is the ratio 
of the variation of residuals or “unexplained”  to the total varia- 
tion of the Y about  their sample mean;  that is, the second term 
denotes  the  proportion of the variation  that is not explained by 
the  least  squares. Thus  the value R 2  indicates  the  proportion of 
the  variation in Y “explained” by the  least-squares  regression 
equation. For instance R 2  = 0.78 means  that 78 percent of the 
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variations of the  dependent  variable Y about  its mean can be ex- 
plained by the  independent  variables X i  ( i  = 2,3;  . .&). R z  = 1.00 
is perfect  correlation. 

The degrees of freedom of et2 are n - k ,  and  those of x:=, yf2 
are n - 1. Generally speaking, the smaller the  degrees of freedom, 
the larger the coefficient of determination. This fact is incon- 
venient for  comparison of several  regressions with different de- 
grees of freedom. To facilitate  comparison,  the R2 value can  be 
adjusted  for the degrees of freedom.  This is usually denoted by Rz 
and defined by: 

& / ( n  - k )  

i: Y: / (n  - 1) 

R = 1 - - 2  

f = l  

= 1 - ( 1 - R 2 ) -  n -  1 
n - k  

k - 1  = R2 - (1 - R 2 )  - 
n - k  

To derive t-values for signijicance tests of coeficients for  the 
b i ,  assume  that  the  disturbance u has  a  normal  distribution.  Now 
the  assumptions  for u are: 

The mean is zero. 
The variance is a constant s2.  
The covariance  is zero. 
The distribution is normal. 

and  the  assumptions can be compactly written as: 

I( is N (0, S ~ Z , ) .  

Examining the  distribution of 6 ,  one  obtains: 

6 = ( X ' X ) " X ' y  

= ( X ' X ) " X '   [ X b  + u ]  

= b + ( X ' X ) " X ' u  

Hence,  any hi is equal  to bi plus a linear function of u which has 
a  multivariate normal distribution. Thus hi has a normal distri- 
bution. 

The mean of bi is: 

E ( & )  = E [ b  + ( X ' X ) " X ' u ]  

= E ( b )  + ( X ' X ) " X ' E ( u )  

= b  
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The variance-covariance  matrix of 6, is: 

E [ ( S  - b )  (6 - 61'1 = E [ {  ( X ' X ) " X ' u } {  ( X ' X ) " X ~ u ) ' ]  

= E [ ( X ' X )  -lX'uu'X ( X ' X )  "1 
= ( X ' X ) " X ' E ( u u ' ) X ( X ' X ) "  

= s2 ( X ' X )  - l  

The variance of i i  is the ith term of the principal diagonal of 
(X'X)" multiplied by s2 (the variance of u,). 

In summary 6 has a multivariate normal distribution specified by: 

6, is ~ ( b , ,  s2a,,) 

where ai< is the ith principal diagonal element of ( X ' X ) - ' .  The 
value e'e/s2 has an X 2  distribution with n - k degrees of freedom. 
Finally, e and 6 are determined  to be independently  distributed: 

e = y - ~ 6  

= ( X b  + u )  - X [  ( X ' X ) " X ' ( X b  + u ) ]  

= u - X ( X ' x ) - l x ' u  

= [ I ,  - X ( X ' X ) " X ' ] U  

Substituting  the  above values gives the  independence of e and 6. 
~ [ e ( i - b ) ]  = E [ { z ,  -x(x'x)"x~}uu~x(x~x)-~I 

= s 2 X ( X ' X ) - 1 - s s 2 X ( X ' X ) - 1  

= o  
The t-distribution can  be used for testing 6, since 6, is N(b , ,  
$'aii), and e,"/s2 has an independent X 2  distribution with 
n - k degrees of freedom. 

From  the definition of t- distribution, 

(6, - bi )  /s< 

is obtained, which follows the t-distribution with n - k degrees of 
freedom,  where aii is the ith principal diagonal element of 
( X ' X ) - l .  

A hypothesis that a certain  regression coefficient bi is zero  -that 
is, the  independent variable X i  has  no effect on  the  dependent 
variable Y-can be  tested by computing a specific value t o  as : 
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Assuming a significance level of e percent,  and  a value oft, from 
the t-distribution table with n - k degrees of freedom is ob- 
tained, the test of the  hypothesis is: 

If ( t o (  2 t,, the hypothesis is rejected. 
If ( t o  1 < t,, the  hypothesis  is  accepted. 

! It is an often-accepted practice to consider as meaningful only 
, those variables with a t-value of at least  plus or minus 2.0.3 

The dispersion of the values computed by the regression equa- 
tion in fitting the historical data may be  measured by the vari- 
ance of the  disturbance u of the  equation.  However,  since u is 
not directly observable,  the residual e is used.  From  the sum of 
squared residuals and the division by its  degrees of freedom,  the 
estimated value of the variance of equation S2 is obtained as: 

S2 = ( e ’e ) / (n  - k )  

The positive square  root of S2 is the standard error of equation. 
The smaller the  standard  error of equation is, the  better the re- 
gression results. It can be  expected,  for  example,  two  thirds of 
the observations may fall within a range of plus or minus one 
standard  error from the  estimate of the  equation. 

Durbin-Watson  d  Statistic. One of the  assumptions  on  the dis- 
turbance u in the application of the  least-squares estimation is 
that  the u has zero  variance;  that is, the u is non-autocorrelated. 
If this assumption is not satisfied, the  variance of the regression 
coefficient becomes large so that  the  use of the regression model 
for prediction is not justified. To test  whether  the  assumption is 
satisfied, the Durbin-Watson  d  statistic is calculated from resid- 
uals e ,  as follows: 

n 

2 ( e ,  - e,,)2 
d = 

k 2  

i e: 
t=1 

The Durbin-Watson d  statistic table gives upper (d,) and lower 
(d , )  limits of the significance levels of d. The test of the hypo- 
thesis that u has no autocorrelation is as follows: 

If d 5 d,, or 4 - dL 5 d, the hypothesis is rejected. 
If d ,  5 d I 4 - d,, the  hypothesis  is  accepted. 
If dL < d < d,, or 4 - d,  < d < 4 - d,, the  test is inconclu- 
sive. 

NO. 2 1973 FORECASTlNG TECHNlQUES 195 



Figure 1 Distribution of d 
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A diagrammatic representation of the  test is shown in Figure 1. 
As the figure illustrates, a d-value of about 2 is  often  considered 
as meaningful to conclude  that u has  no  autocorrelation. 

Comparison of actual and computer  values. In  each estimated 
equation y = X &  + e,  observed  values  for  independent  variables 
( X , ,  X , ,  . . ., X , )  are substituted to obtain the estimate of the de- 
pendent  variable, j ,  for  each period: 

j =  X! 

The discrepancy,  or residual e ,  between the observed  value y 
and  the  estimated  value j is  computed  and examined for  each 
period. This method,  sometimes  referred to  as  the partial 
method, is applicable to  only  one  equation-namely,  a single- 
equation model or  to  each individual equation in a simultaneous- 
equation model. 

forecasting The period for which data  for  the  estimation is available is called 
the sample  period. The period subsequent to  the sample period 
and  for which the  future values are  to  be  forecasted is called the 
forecast  period. If the  values of independent  variables for the 
forecast period are available, the forecasted values of the depen- 
dent variable can  be calculated in the same way as  the partial 
method. The independent  values are provided by  means of 

External information. 
Policy or management  objectives. 
Other techniques  such as extrapolation  by  growth  rates. 



Simultaneous-equation  regression  model 

In  the following simultaneous-equation model: 

y, ,  = e11 + b12Y2, + c12X1, + U l l  

Y2l = e21 + b22Y1, + cZzY2(,-1) + U2t  

Y,, and Yzt are  to be forecasted,  and they are called endogenous 
variables, Y,(,-,, in the  second  equation is a lagged  endogenous 
variable. The values of X,, are always given from outside the 
model;  hence, XIt is called an exogenous  variable. The exoge- 
nous  variables  and the lagged endogenous  variables are called 
predetermined  variables. 

The general form of a  linear model containing g simultaneous 
relations  (endogenous  variables)  and k predetermined  variables 
can  be  written in matrix form as: 

B y ,  + c x ,  = ut 

where: 
B = Coefficient of endogenous variables 

I :  

C = Coefficients of predetermined  variables 

1 
and y,, X,, and ut are column vectors  at time t of endogenous 
variables, predetermined variables, and  disturbance,  respectively: 

Y t  = x ,  = ut = 

The model in the  form of By,  + Cx,  = ut is called a structural 
form  model. 
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If the matrix B is nonsingular, we can define the reduced  form 
model as: 

y ,  = -B”Cx, + B”u, 

The reduced form model expresses  the endogenous variables y t  
in terms of predetermined variables xt‘ The  forecast is  to  obtain 
the values of y ,  given the values of X , .  Thus the reduced form 
model is convenient  for computing the  forecast of endogenous 
values. 

estimation From  the reduced form model, it is evident  that each element of 
the endogenous variable vector yt is related with every  element 
of the  disturbance  vector ut. This means if, for example, in the 
first equation ( y l t  equation) endogenous variables other  than ylt 
(such  as yZt ,   ySt ,  and so forth)  appear in the  equation,  those en- 
dogenous variables y2,,   y3t,  and so forth  have a dependency  on 
U,t .  

This  fact  that  some of the  independent  variables  have  dependen- 
cy  on  the  disturbance violates the  assumption of 

E ( x u ’ )  = 0 

in the  least-squares estimation when we apply the  least-squares 
estimation to  an  equation  that  contains  the endogenous variables 
as independent variables in the  equation. 

The two-stage least  squares (TSLS) technique is a widely accept- 
ed method of estimation  procedure in a simultaneous equation 
model containing the  estimation problem previously described. 
The TSLS technique is applied to  each individual equation in a 
simultaneous model. Thus we can  consider  the ith equation of 
the model and  let it be expressed  as: 

y = Y,b + X,c  + u 

where: 

y is the column vector of n observations on the  endogenous 
variable to  be  forecasted by this equation. 
Y ,  is the n X g matrix of the  observations  on  the  other  cur- 
rent endogenous variables included in the  equation  (ex- 
plaining endogenous variables ). 
b is the column vector of g coefficients associated with Y, .  
X ,  is the n X k matrix of the  observations  on  the  predeter- 

c is the column vector of k coefficients associated with X,.  
u is the column vector of n disturbances. 

mined variables appearing in the  equation. 

The TSLS technique purges the explaining endogenous variables 
Y ,  of the  stochastic  components  associated with the  disturbance 
u in two  stages.  In  the first stage,  the  least-squares  estimation is 
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applied to the parameters of explaining endogenous variables 
(b  ) regressing  on the predetermined variables appearing in the 
model (denoted by X ) ,  and the computed Fl matrix is obtained. 

P, = X 6  

= X ( X ' X ) " X ~ Y ,  

This regression  is  justified since X has  no correlation with u. In 
the second stage, y is regressed on Pl and X, ,  and the result of 
the TSLS estimate is: F] = [','Y1 P,'X,]"[P,'Y ] 

c X , ' Y ,   X , ' X  X , ' y  

The evaluation and forecasting methods for a simultaneous- 
equation model are basically the same as those for a single- 
equation model except for the following  two methods that take 
simultaneity  into consideration: 

Total method. 
Final method. 

The total  method applies to all equations in a simultaneous- 
equation model. In the reduced form equation: 

y ,  = -B"Cx, + B"u, 

observed values of predetermined variables x, are substituted for 
all periods to estimate values y,, and the differences (residuals) 
between actual values and estimated values are computed. This 
method has the advantage of checking  the simultaneous nature 
of the model, whereas it  is  impossible to  do so with the partial 
method. However, if the model  has  lagged endogenous variables 
to express the  dynamic nature of the system, the total method 
fails to check how  well the model can be  used as a simulation 
tool because it uses observed values of lagged endogenous vari- 
ables instead of values calculated by the model. 

The total method enables the model-builder to improve  his  si- 
multaneous equation model, in which  lagged endogenous vari- 
ables are involved,  by  comparing the results with those of the 
following  final method. Since the total method regards the lagged 
endogenous variables as purely exogenous, it cuts off the effects 
of the time  lags of endogenous variables. This makes the calcu- 
lations so simple that the model-builder  could  tell the cause of 
any possible deficiency in his  model related with  time-lag feed- 
back  mechanism. 

Thefinal method also applies to all equations in a simultaneous- 
equation model  when the model represents time-dependent dy- 
namic nature by  including  lagged endogenous variables. In the 
reduced form equation, observed values of exogenous variables 
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are substituted  for al: periods.  However,  actual  values of  lagged 
endogenous  variables are used only before the initial time peri- 
od,  and  the values computed by the model are substituted  for 
subsequent  periods.  This  means  that the computed  endogenous 
values are fed back to  the model and  this method tests  the  dy- 
namics of the model due  to time lag. If  the  simultaneous-equa- 
tion  model does not contain lagged endogenous  variables, the 
final method gives identical results with the total  method. 

?dentificatiart From  a  structural form model having g relations in the form of 

B y ,  + ex, = ut 

the reduced form model was  obtained: 

y r  = "R"Cx, f B"u, 

If the original structural form model is multiplied by a g X g 
nonsingular matrix A ,  the resulting model is: 

( A B ) y , - t  ( A C ) X , = A U ,  

If the  reduced form is derived from the new model, the  result is: 

y t = - ( A B ) " ( A C ) ~ ~ ,  + (AR)"Au, 

= -B. . 'CX,  + B-'uf (for (AB)" = B - ~ A " )  

Hence, both the original and new models give an identical re- 
duced form which means  that  the models with different values 
for all the  parameters will generate  the same distribution of de- 
pendent  variables conditional upon the  values of predetermined 
variables  and  disturbances.  In  this  case, the estimated  results of 
the original model and  the new model are said to be observation- 
d l y  rylrivrrlrnt in that they may have  exactly  the  same implica- 
tions about  observable  phenomena.  This point is known as  the 
idcrlt$catict/~ p ~ ' o b / ~ r n  in the context of simultaneous-equation 
models. 'The problems is that many different sets of coefficients, 
(B,C ) and (AB,AC ), may  be obtainable  from  a  set of observa- 
tions (y,, X ! )  and it is impossible to conclude which coefficients 
represent  the  true model. 

The general rule for  determining  the identification status of any 
given structural  equation is derived as follows. The structural 
equations with estimated coefficients of B and C are: 

B y ,  + c x ,  = 0 

On the  other  hand,  least-squares  estimators of reduced form 
coefficients can be obtained as: 

y t  = P s ,  

By substituting  for y t  from  the reduced form into  the  structural 
form,  the following results: 
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The following are  denoted  for  the ith equation: 

g ,  = number of endogenous  variables included in the ith equa- 
tion 

g,, = g - g, where g is the number of endogenous variables in 
the  simultaneous-equation model 

k o  = number of predetermined  variables (including a constant 
term) included in the ith equation 

k = k - k where k is the number of predetermined  variables 
(including a  constant  term) in the simultaneous-equation 
model. 

We can  assume  that  the coefficients of the ith equation (bi and 
c;) are  arranged in such  a way that  the  nonzero  elements  appear 
first, being followed by the  zero  elements.  This  can be written 
as: 

bi = [bAo,,l 

ci= [ C A o o o l  

where: 

h,  = [b,,b,. . . b,,] 1 X g, vector 

o o o =  [ O O - . . . .  01 1 X g,, vector 
cA = [ci,cis . . . ciko] 1 X k 4  vector 

O o o  = [0 0 . .  01 I X k o o  vector 

The matrix P can  also be partitioned in a corresponding way: 

and the ith equation  can be regarded  as: 

[b, o.4,1[2:0 P a 0 4  ] "LCO 0001 
PhhO 0 

From  this,  the following are obtained: 

b,P,o = - c O  ( a )  

bAPhOO = 0 0 0  . * . . ( 6 )  

If  ( b )  can be solved for b,, then c o  can be solved from ( a ) .  The 
vector b,  contains g ,  - 1 unknown coefficients since  one of the 



Figure 2 FAMS program modules and tiles 

FAMS PROGRAM MODULES 

Fl MODULE PURPOSE I 
FILE CREATION 
FILE MAINTENANCE 

DATA  ANALYSIS 
TRANSFORMATION 
TIME.SERIES FORECASTING 

I DATA  FILES 

PRAN 
MODEL FILES 

CALCULATION OF  STATISTICAL 
ESTIMATION OF  PARAMETERS 

TEST VALUES 

CAST 

POST 

FORECASTING  BY  MODELS FORECAST 

U 

COMPARISON 

ANALYSIS 

A necessary  condition is that in order  to  obtain a solution for  the 
g ,  - 1 unknowns in b,, the number of equations in ( b )  must be 
at least g, - 1,  namely: 

I k O O  2 g , -  1 

In  other words, the number of predetermined  variables  excluded 
from  the  equation  must be  at least as great as the number of 
endogenous  variables included less  one. 

A necessary  and sufficient condition  for identification is that  the 
number of independent  equations in ( b )  is g, - 1, namely: 

rank ( P A o o )  = g ,  - 1 

In  summary,  the identification problem can  be  stated as reducing 
the  values of parameters of the structural form ( B  and C )  from a 
knowledge of the  reduced form parameters ( P ) .  The identifica- 
tion problem is associated with each  structural  equation in a 
model. 

A forecasting system 

An example  batch-mode  forecasting  system  for  System/360 
and/370 Disk  Operating  System (DOS) and  System/360  and  /370 
Operating  System (OS) is the IBM program product,  Forecasting 
And Modeling System (FAMS).' This program is a collection  of 
statistical  and data-handling routines based on  the  previously 
described  forecasting  techniques: 

Time-series  analysis. 
Single-equation linear model. 
Simultaneous-equation  linear model. 
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Table 2 Example  partition sizes required for PAMS 

Number of Number of Number of Partition  size 
equations variables observations DOS OS 

20 
50 

100 

30 
90 

160 

14 
30 
35 

52K 70K 
84K 102K 

184K 202K 

The equation (single or  simultaneous) is based  on regression or 
given by definition. The linear model (single or simultaneous) 
includes  nonlinear  combination of predetermined  variables,  and 
log-linear transformation. 

FAMS provides a  capability  for  creation  and  maintenance of data 
files, analysis  and  transformation of data, qualification of fore- 
casting models, forecast of future  values,  and  analysis of fore- 
casted  results. It also  provides  for updating of models, statistical 
tests,  and summaries and  comparisons  to  analyze  and  evaluate 
the models and  their  forecasted  results. 

There  are five program modules in FAMS: 

Data file (FILE). 
Pre-analysis (PRAN). 
Estimation (ESTI). 
Forecast (CAST). 
Post-analysis (POST). 

Their  functions are depicted in Figure 2. Also  shown,  are  the 
four different kinds of permanent  user files (model  and data 
files) from which the information on the  data and model is trans- 
ferred  to  relevant module functions. Specific functions  and fea- 
tures of the program modules are described in the  appendix. The 
size of the model depends  on  the available partition  size of main 
storage.  Table 2 shows some example  partition  sizes in K bytes. 

Example forecasting applications 

Two examples of the  application of functional  relations in fore- 
casting are now discussed. 

A forecasting model can perform demand analysis of a con- demand 
sumer  product. For example,  the model could  analyze  the  de- analysis of a 
mand of food products.  This model, whose flow  is shown in Fig- consumer 
ure 3,  represents  the  demand  and supply between  consumer  and product 
distributor,  and  between  distributor  and  producer. The following 
equations  comprise  the model: 
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Figure 3 Demand analysis model 

ECONOMIC ENVIRONMENT 

X 2  INVESTMENT 

(i-,, TIME-LAGGED 
SOClALlTECHNOLOGlCAL 

ENVIRONMENT 

X g  TIME Y2 PERSONAL INCOME 

CONSUMER 

Y, CONSUMPTION 

I 

(1 ) Y1= b11Yz + b12Y5 + + ~ 1 2 x 3  + ‘10 

( 2 )  Y ,  = b,,Y, + b,,Y5 + C Z 1 X ,  + czo 

( 3 )  Yz = ~31x2 + c?ZY~(-~) + ‘30 

(4) ‘3 = b41Y4 + ‘ 4 l Y 4 ( - 1 )  + ‘4zX3  + ‘40 

( 5 )  Y4= b51Y5 + ~ 5 1 x 3  + ~ 5 0  

where: 

Y ,  = food consumption  per  capita 

Y ,  = disposable  income  per  capita 

Y3 = production of agricultural products 

U, = production  prices  (received by farmers  for  food  products) 

Y5 = retail  prices of food products 

X ,  = net  investment  per  capita 

X ,  = time 
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Demand  function  from  consumer  to distributor ( 1 ) .  Determin- 
ing factors of this function are  the retail price  and  personal in- 
come. As for  the  income,  both  the values of current period and 
those of previous period are considered. The values of the  pre- 
vious period explain an inertia of consumption behavior. The 
changes in habits  and  taste of consumers are introduced by an 
exogenous variable of time X,. 

Supply function  from distributor to  consumer ( 2 ) .  Assuming the 
demand and supply are balanced,  the  supply  function can  be 
represented by using the  same variable Y ,  (consumption) as the 
dependent  variable. The supply is explained from the  retail  price 
and  the  production  amount. The time X ,  denotes  changes in fab- 
rication and marketing. 

Income  function ( 3 ) .  The income of the  previous period and 
investments  can explain the  current level of income.  This  equa- 
tion has  a  characteristic of statistical definition equation. 

Supply  function  from producer to distributor (4). The supply  to 
distributors is explained from two main factors: a quick re- 
sponse  to  the  current  production  prices  and one-period delayed 
response  to  the price. The time X ,  represents  a  trend of the in- 
crease of people engaged in production. 

Demand  function  from distributor to producer ( 5 ) .  The demand 
from distributor  to  producer is considered to  be measured by 
knowing how much of the retail price is received  by  producers. 

A  second  example is a financial forecasting model, depicted in 
Figure 4. The general framework of the model consists of a giv- 
en,  external, usually uncontrollable  environment  such as interest 
rates,  price  index,  Gross National  Product (GNP), and  a  seasonal 
dummy (a variable representing  a temporal effect of different 
seasons).  The model also  contains major items of financial state- 
ments  (balance  sheet  and profit loss sheet)  that  are  forecasted, 
taking into  account  the  relationships  between major items of 
financial statements as well as other  relevant  factors. This model 
has  many  uses,  some of which are: 

To investigate  a financial behavioral structure. 
To estimate  future  values of major financial items. 
To analyze profit versus owned capital  ratio. 
To investigate  the relation between profits and  expenses. 
To evaluate a potential  competitiveness. 
To compare financial structures  between  companies or in- 
dustries. 

Thus  the future financial figures of a company or of an industry 
can  be analyzed and  forecasted  on a scientific basis. In  addition, 
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Figure 4 A financial forecasting model 
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the  cause of changes in profit ratio provides a method of control 
to  increase profit. These two  characteristics, scientific forecast- 
ing and method of control,  make  forecasting a more reliable as- 
sumption for  better  decisions in present  business planning. 

Concluding remarks 

Computer-assisted  forecasting  techniques  have been presented. 
Time-series  extrapolation  techniques  are  based  upon  the histori- 
cal pattern of the item to be forecasted. Of particular  importance 
are  causal  (functional) models which take influencing factors 
into  consideration.  Regardless  whether  the  causal model com- 
prises a single relation or multiple relations, one must be aware 
of the various  tests  and evaluating methods in the  stages of 
model building in order  to obtain  better  forecast models. Build- 
ing and analyzing a  forecasting model normally requires  data 
manipulation and  calculation.  Unless  these  tasks are performed 
in a systematic  manner,  a  heavy  burden is placed on the model- 
builder. Productivity in forecasting  activities is increased by us- 
ing a systematic  computer programming system  oriented for 
forecasting.  Introduced as  an example  forecasting program was 
FAMS. 

Further important  steps  forward are flexible linkage of tech- 
niques, linkage of models, and linkage of planning applications. 
By realizing these,  forecasting will lay a foundation of manage- 
ment  science  applications  and provide a framework  for timely 
and  sound  decision making. 

Appendix 

The functional capability  and  features of each of the five pro- 
gram modules of FAMS are  as follows: 

FlLE module 

Functions 
Creation 
Deletion 
Insertion 
Value modification 
Header modification 
Merge 
sort 
Retrieval 
List 

Features 
Time-series  data 
Cross-section  data 
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PRAN module 

Functions 
Plotting data series 
Transformation 
Simple correlation 
Exponential smoothing 
Polynomial regression 
Seasonal decomposition 

Features 
Combination of functions 
Data (historical) file update  (option) 
Card input for  data  (option) 
Symbolic data  reference 

ES TI module 

Functions and features presented in this paper 
Ordinary  least  squares 
Stepwise  least  squares 
Two-stage  least  squares 
Combination of estimation techniques 
Statistical measurements (regression coefficient, standard 
error of coefficient, t-value, coefficient of determination, 
standard  error of equation,  F-value, Durbin-Watson d 
statistic) 

Other  features 
Inclusion of identity (or equation by definition) 
Maintenance of structural form model file 
Card  input  for  data  (option) 
Symbolic data  reference 

CAST module 

Functions and features  presented in this paper 
Partial method 
Reduced-form derivation 
Total method 
Final method 
Specification of endogenous variable, which allows: 
1. Designation of endogenous variable among the right- 
hand-side explaining variables. 
2. Interchange of endogenous and exogenous variables 
Initial value tests 
“Identification” information of the model 

Other  features 
Card input for data  (option) 
Symbolic data  reference 
Designation of alternative  equation (to form a  “complete” 
model 1 
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