Current bank modeling systems are generally based on sets of
equations that place limitations on the flexibility of the applica-
tions and the predictive ability of the model.

The experimental system discussed in this paper uses a three-
fold approach to the simulation of actual banking activities. A
generalized bank modeling system is presented from which a
subset is selected for use. The user interacts with the modeling
system via an interactive simulation language. The composition
of the desired model is determined interactively via a terminal
and an interactive model generator.

Research results indicate that representative models can be
generated by using these techniques.

Interactive simulation for banking
by J. F. Brown and D. W. Low

During the past decade, the financial industries —and banks in
particular —have been major users of management science and
operations research techniques. Bank managers continually face
some form of the following imperative: Invest the bank’s re-
sources, always assuming some degree of risk, so as to maximize
shareholder wealth while complying with federal and state regu-
lations for protecting depositors. This assignment is a technically
difficult one because of the large number of variables and the
structure of the constraints involved.

Many useful results have been achieved through management
science and operations research. Still bank researchers face the
problem of new project directions for their institutions to pur-
sue. Banking models have generally tended to guide the produc-
tion of returns on investments that have perhaps been less than
anticipated. Some banking researchers have rejected proposals
for more complex model developments because of the belief that
marginal gains expected of a more comprehensive proposed
model would not justify the cost of producing it. Similarly, pro-
posals have been excluded from the budget on grounds that they
are not representative of the real world or that the technique is
applicable only to problems of limited dimension.

We have been studying this problem at the IBM Los Angeles
Scientific Center with the hope of improving bank modeling.
Our approach has been to devise a general-purpose bank model-
ing system that uses a programming-by-questionnaire technique

BROWN AND LOW IBM SYST }




by which we have simulated banks in a research environment.
The programs themselves, which are experimental and research
oriented are, therefore, not discussed and are not available for
distribution.

The bank modeling system discussed in this paper simulates
such major elements as reserves, investments, loans, borrowing,
deposits, and capital accounts. The system with which we have
been experimenting is designed so that the user, whether he is a
managerial or technical support person, participates in the bank
model building in an interactive question-and-answer mode. In
this way, he constructs a digital simulation of the bank’s opera-
tion.

Our method extends the most useful features of such bank mod-
eling systems as that discussed in Reference 1, by incorporating
simulation to produce a more realistic modeling technique. The
overall intention is ease of use by bank personnel through such
capabilities as the following:

« No user programming.

& User-system communication via banking terminology.
» Ease of learning.

~» Ease of producing and modifying banking models.

Financial modeling of banks in perspective

We now briefly describe the overall structure of typical bank
modeling systems of the current generation, and the structure of
the system we have been studying. The chief assumption implic-
it in current systems that potentially affects their validity is that
the model consists of a set of equations in which the user essen-
tially provides data for the constants. In many bank modeling
systems, these data are key financial and planning data. The user
enters such categories of asset (or liability) management to be
studied, as, for example, the balance sheet categories of Trea-
sury Bills, secured loans, and Federal Reserve Board borrowing.
Dollar amounts currently allocated to these accounts are ob-
tained from a current balance sheet. Prime rate, Treasury Bill
discounts, available maturities, and other applicable factors in
the banking environment are entered. The user also provides the
length of a typical planning period and the number of periods in
the planning horizon.

A typical system then asks the user for the operating decisions
to be made during the next period. One such decision might be
the proportion of assets to be placed in Treasury Bills and in
commercial loans. The system then calculates net gains and/or
losses in each category for the next period and then projects a
new balance sheet. Of course, other reports may also be project-

NO. 2 + 1973 BANKING SIMULATION

current
systems




experimental
systems

ed and computed on the basis of a given set of transition equa-
tions. At this stage, the user may change the set of decisions to
be projected or he may proceed to the next period.

The approach just outlined implies certain assumptions about
the external environment and the internal bank structure. One
such assumption is that the banking environment is predictable:
the discount rate is constant; no loans default; and no unplanned
demand deposit activity occurs during the planning period. New
types of bank structures appear not to be readily simulated by
current systems. Also, there seems to be no easy provision for
the introduction of such new services as Ready-Reserve, Bal-
ance Plus, and Master Charge. Costs associated with the vari-
ous banking activities and services are given by a set of equa-
tions for which the user supplies values of coefficients. Both the
internal and external environments remain constant during a
planning period, and changes are introduced at the beginning of
a period.

This summarizes many bank modeling systems currently used,
from the point of view of the user. We now summarize the sys-
tem we have been studying. The primary difference between the
two approaches stems from a methodology by which most cur-
rent systems use transition equations to move from one balance
sheet to the next, whereas, we have been investigating the dis-
crete simulation of modeled banking activities. Banking opera-
tions are described in our system in terms of discrete events of
deposits, withdrawals, granting of loans, investing in Treasury
Bills, and outside borrowing. The user particularizes these activ-
ities for his bank, and the system keeps track of the resulting
cash flow. A simulated balance sheet is computed by examining
each of the various asset and liability accounts. These discrete
banking events are simulated asynchronously in our system, just
as they may in a real bank. Thus, in the system we have been
studying a bank is modeled as a set of banking activities and
renders unnecessary the need for the assumptions required by
equations.

Our banking studies can include planned and/or unplanned ele-
ments. For example, the user may wish to see how his policies
handle the unexpected loss of a large depositor. Also, a standard
bank structure has been embodied (as in current systems),
which may be enlarged, simplified, or replaced. This means, for
example, that we can easily adapt our system for modeling for-
eign banks where different laws and customs normally cause a
reprogramming effort. We can compute, from predefined formu-
las (as in current systems) or from user-defined formulas, costs
associated with such banking activities as the granting of a large
commercial loan or accepting a new depositor. We can also ac-
commodate banking activities and changes in the environment

BROWN AND LOW IBM SYST J




that can occur periodically, or at randomly spaced intervals, or
as the result of another activity or change. For example, an un-
expected drop in the prime interest rate may require a manage-
ment review that results in a change of the interest rates on sav-
ings accounts. This, in turn, may change the average rate at
which customers deposit and withdraw money in these ac-
counts.

There are three principal elements in the approach we have
studied. First, we have designed our system around a general-
ized bank model, only a subset of which may be required to
model any given situation. (For other models, see References 1,
2, and 3.) Also included in our studies is a simple, interactive
simulation language with which a user, if he wishes, can expand
and enrich the model generated by the system. The third princi-
pal element of our system is an interactive model generator that
analyzes user responses obtained during question-and-answer
sessions. From this analysis and from the general model, the
system selects specific relevant components for a subset model.
It should be noted that the basic concepts of programming by
questionnaire are not new. See References 4 and 5. Our use of
these techniques in an interactive environment is believed to be
new. In the following sections, we describe each of these system
components.

Generalized bank model

In our modeling studies, a bank is viewed as being represented
by its balance sheet or statement of condition, and by basic ele-

ments or entities in the banking model, which are the accounts.
In our general use of the term, accounts are defined as holding
points for collections of a bank’s assets and liabilities. These
collections may be described as portfolios of individual instru-
ments, or as single sets of attributes of aggregated combinations
of items. Each account can have its position reviewed, and, as a
results, the system user can take direct actions such as buying or
selling asset items for or from its portfolio or it may request that
other accounts review their positions and make desired adjust-
ments. Accounts can have target positions or budget goals that
are the basis for management review actions as previously men-
tioned. These goals may be set simultaneously across several
accounts in order that the objectives of the bank as a whole may
be achieved. Finally, each account is considered to be a profit
center of the bank, so that income, expense, gains, and losses
may be collected separately for each account.

The general account concept is classified into the following cate-
gories or types: Cash, Investments, Loans, Deposits, Borrow-

ings, Capital Accounts, and Other Accounts. Whereas, in some

No. 2 - 1973 BANKING SIMULATION

general
accounts




applications there may be a one-for-one correspondence be-
tween a real bank’s general ledger and the accounts of a model,
this need not be the case. That is to say, the classifications just
given represent the types of actions and events that occur at an
account or reflect the nature of the items held in an account
portfolio, rather than representing a particular accounting con-
vention. For example, it is up to the modeler and the nature of
his problem into which asset category he places such a specific
account portfolio as Securities Purchased Under Agreements to
Resell. If one were developing a large-scale planning model, this
portfolio would probably be considered as Investments. How-
ever, in a detailed model of a bank’s activity in the money mar-
kets, where the individual placement of funds with correspon-
dent banks is important, that portfolio might be modeled as
Loans. Similarly, certain types of Certificates of Deposit might
be categorized as Borrowings rather than deposits in many ap-
plications. Reports can be defined so that ambiguities are re-
moved from the model and its output displays. The following
brief descriptions characterize the general account types.

Cash accounts hold the primary reserve balances of a bank and
are distinguished primarily by the way in which they are man-
aged. That is, a cash account does not buy or sell other types of
assets but may, as a result of a review of its position, request
some other asset account to do so.

Investments are the basic portfolio-type accounts that buy, sell,
and hold quantities of individual investment issues in a simulat-
ed marketplace. The system allows the accumulation of informa-
tion on the purchase price and date of each item in the portfolio.
Individual transaction control information such as maturity, risk,
capital gains (or losses), and profit are also included. Price de-
viation from expectation are accumulated so that possible arbi-
trage and speculation can be modeled.

Loans are designated as assets because of the nature of their
marketplace. That is, each loan account interacts with a loan
application queue that holds the current demand for loans. Items
in a loan queue have an option life (or maturity) after which, if
not acquired by the appropriate account, they expire. If loans
held by the bank are sold, they may not be repurchased.

Deposit accounts are the mosaic pieces of the Deposits picture
of a bank. Deposits are not directly controlled by the bank, but
their balance levels and/or portfolio attributes may be accessed
by other accounts to aid in decision processes.

Borrowings accounts are essentially general-purpose controlled
(or controllable) liabilities accounts. For example, they may be
used to model money borrowed from the Federal Reserve Bank

BROWN AND LOW IBM SYST I




and federal funds, or money borrowed because the bank’s
projections have gone wrong. They interface with a Borrowings
market and hold a portfolio of future cash outflow requirements
of the bank.

Capital Accounts are used primarily as capital stock references
at the start of a simulation and as records and accumulation
points of income, expense, gains, losses, and various reserve
changes in the other accounts. Capital Accounts are defined and
used primarily for formatting and displaying simulation output.

Other Accounts provide bookkeeping completeness to meet
special needs, and our interactive simulation language is capable
of defining such accounts. Our modeling program experiments
make a provision for fixed assets in this category that involve
depreciation and have user-defined expenses.

Through the specification of accounts, instruments, and markets,
a series of environmental event structures are implicitly defined.
Typical events are the arrival of deposits, withdrawal of funds,
generation or issue and maturation of investment instruments,
and changes in interest rates and prices in the various markets.
These and other events are automatically modeled so as to
maintain the basic balance sheet structure. Thus when deposits
arrive at the bank, the balance (or portfolio) of the appropriate
Deposits account is increased. At the same time (depending on
model specification) the appropriate set of cash accounts is also
increased in balance or in funds of deferred availability. Similar-
ly, when an investment matures, the asset accounts are searched
to determine which, if any, hold the instrument in their portfo-
lios. The instrument is removed, destroyed, and the appropriate
cash accounts are debited. We now briefly discuss the major
types of environmental events that can be included in a model.

Deposit events characterize the ways in which monies are de-
posited and withdrawn from a bank. The banking system user
may identify several different deposit structures in which each
structure has special deposit time series, withdrawal time series,
deposit (withdrawal) amount characterization, and deposit
make-up in terms of, say, coin and currency, on-us checks, and
out-of-town checks. Time policy options include periodic depos-
its and withdrawals —generated by a probability function—
and/or user-defined deposits and withdrawals. Internally, a de-
posit event is handled by crediting the appropriate deposit ac-
count and by debiting one or more asset accounts. In a simple
structure, a single account called CASH might be debited. In a
more complex extension of perhaps the same model, a portion of
the deposit amount might flow into COIN AND CURRENCY, an-
other into an ON-US RECONCILIATION account and still a third
portion into CASH ITEMS IN COLLECTION. At later times in a

NO. 2 - 1973 BANKING SIMULATION

environmental
events




management
policy
simulation

simulation defined by the user, the ON-US RECONCILIATION
might be credited against other withdrawals, and the CASH
ITEMS IN COLLECTION might turn up in correspondent and Fed-
eral Reserve accounts.

Loan demand may be simulated for as many types as the user
requires in his environment. Loan demands may be as simple as
the generation of a single amount to represent an entire month’s
consumer installment loans or as complex as one event that cor-
responds to a single application for a large commercial loan. For
each type of loan demand generation, the user may specify a
time policy, amount policy, maturity, pay-back schedule, and
risk model. The system places these applications in the loan
demand queue of the appropriate loan account. Loan applica-
tions from the queue are accepted or rejected by the bank in
accordance with policies determined by the bank management.

Investments are characterized in much the same way as loans.
Principal differences occur in the way the holding accounts are
managed and in the interpretation of the market structure. (Some
loans cannot be sold, for example.) Our structure, in the invest-
ment case, assumes that particular instruments may be bought
and sold from time of issue to their maturity. Loans, how-
ever, must be accepted or rejected shortly after their genera-
tion, and, once sold, are not repurchased. A key feature of the
investment characterization is its flexibility in investment pric-
ing. The user is given a menu of yield curves to select from, plus
the option of adding a stochastic pricing error to each. Both bid
and ask price structures may be modeled, and the user may de-
fine events that change the yield curve parameters so as to mod-
el an environment wherein the underlying economy is changing.
If the yield curve structure does not satisfy the user’s need, the
user language enables him to specify his own price structure.

Economic considerations may be added for deposit supply, loan
demand, and the various other investment markets. Such a capa-
Bility permits the sophisticated user to develop models wherein
many individual structures are related. In this way, one may
describe a relationship between, say, a deposit supply generator
and a loan demand model, or between all the interest rates and
the supply of money to the bank. These types of considerations
are possible through the specification of similar sources of de-
posit supply and loan demand interacting with conditional-event
time policies and common-amount, time, and review policies.

A key feature that we believe is important is a provision for the
simulation of management policy. We have accomplished this
through the incorporation of the foliowing four types of review
events: account review, audit, rebudget review, and control pa-
rameter review and update.

BROWN AND LOW IBM SYST J




Account review events are types of management events that
simulate the day-to-day decision-making process at an account-
ing center. Of concern in its specification are considerations of
how often the account should be reviewed. Also of concern is
the size of adjustment, if any, and whether it is to be made to its
balance or to its portfolios, and how the adjustment is to be im-
plemented. Slightly different event structures are provided for
each of the following general accounts: Cash, Investments,
Loans, and Borrowings. Account review structure may vary
among accounts of a similar class. For example, DUE FROM
FEDERAL RESERVE and VAULT CASH are both considered to be
cash type accounts, but they may have different account review
formats. There may be several account reviews for each ac-
count.

Account review events are specified by the user for Cash, In-
vestment, l.oans, and Borrowings accounts as required. Basical-
ly the account review checks an account portfolio against cer-
tain control parameters to determine what action, if any, is
required to keep the account in control. For example, a loan ac-
count might be reviewed to see if it has written a prescribed
quantity of loans since its last review. If not, obtaining as many
new loans of the type it deals in as required or available may
correct the situation. Similarly, a cash account balance may be
checked against a precalculated target budget (plus or minus a
reserve). If the cash account is out of control, a corrective re-
sponse may be to access a source or application account list to
place or generate required funds. In this light, the system allows
for two modes of account review, free and directed. In the free
mode, the account review computes the amount of balance ad-
justment required to bring the budget back under control or to
meet budget goals. In the directed mode, the review is called
with a quantity parameter, and this quantity is generated or used
insofar as it does not put the reviewed account out of control.
Thus a cash account review might call an investment account
review to generate a needed amount of cash. An investments
review results in the selling of investments to raise the required
cash until such sales violate some investment control constraint
or the investment portfolio is empty. The value of requested
funds remaining to be raised is entered into the calling account
for appropriate action. -

Audits augment account reviews. Whereas, account reviews deal
primarily with individual accounts, it is recognized that there is a
great deal of account, market, and instrument interdependence
associated with proper bank management. To meet these needs
an audit is specified by the user to check simultaneously several
management constraints over several accounts. For example,
liquidity, capital-adequacy, and minimum-marketable-portfolio
criteria may be simultaneously and periodically checked for a

NO. 2 - 1973 BANKING SIMULATION




given group of accounts. The result of such an audit might con-
firm that the bank is in control, or that a new budget is required.
The sale of risky investments may be indicated or the simulation
may stop, display the audit results, and await instructions from
the user.

Rebudget event reviews are often called as the result of an audit
to establish new budgets or goals for specified accounting cen-
ters. Typically, these are changes in certain portions of invest-
ment or loan portfolios. A rebudget review should also have op-
tions for reestablishing goals. Included in the current set of
options is a rebudgeting technique based on a single-period, asset-
allocation linear program, which —if selected —produces a logi-
cally best set of goals for the accounts under consideration.

Control parameter updates and review are events used for spec-
ifying a management structure. In addition to account balances
and other attributes, the user is allowed to simulate management
decisions based on forecasted and/or historical data. By select-
ing options from the control parameter review menu, the user
specifies that he wants the test of an account review or audit to
be based on seasonally adjusted, exponentially smoothed fore-
casts of loan demand. The user may specify that his yield curve
estimate is a logrithmic function of days to maturity. Additional-
ly in defining the event, he specifies how often he wants fore-
casts updated or constraint parameters replaced.

Interactive simulation language

We have been experimenting with an interactive simulation lan-
guage that contains elements similar to other procedural lan-
guages plus elements oriented toward the particular problems of
interactive financial modeling. The basic unit of simulation is an
event, which is a subroutine scheduled to be executed at a par-
ticular simulation time. Events may be scheduled or canceled as
with existing discrete-event simulation languages. The passage
of simulated time is quantized between events, and a simulation
time is the time at which each event is activated. Events are
defined by the user and consist of both procedural statements
and statements that define local and parametric variables for the
évent. Global variables may be defined and variables may be
aggregated into data organizations called frees in a manner simi-
lar to PL/1 or COBOL structures. Our interactive simulation lan-
guage has few types of statements, but it addresses the following
general problem areas of interactive simulation: graphic output,
time series, and checkpoint and restart.

Graphic output becomes increasingly important as model com-
plexity increases and as potential output from models becomes

BROWN AND LOW IBM SYST J




voluminous. Our interactive simulation language includes a
PLOT statement, and that further assumes the availability of a
graphic display device.

Time series are often desirable in a simulation environment to
record the value of a variable at points in time and then to manip-
ulate or to inspect the series of recorded points. For some vari-
ables, it is also desirable to predict or forecast a series of values
of the variable into the future. Therefore, at a given simulation
time, any variable may consist of the following two parts: (1)
the current value of the variable, and (2) the series of data
points that represent past values of the variable that have been
recorded, and/or the series of points that represent forecasted
values of the variable.

The user, through assignment statements, may set values for any
current, past or future values of any variable. The PLOT state-
ment is used to produce graphs of time series. Arithmetic opera-
tions may be performed on single points or all points within a
time series.

Checkpoint and restart eases the game-playing capability of our
bank modeling system. Many model studies are useful, not so
much for obtaining absolute values in digital output form as for
gaining insight into the complex interactions between various
components of the model. Typical of this type of modeling is the
situation where the user performs a “what-if”’ interaction with a
model. If that simulation path does not prove fruitful, the user
tries other possibilities starting at that same point. Qur experi-
ence suggests a language that permits the user to checkpoint and
restart the model using SAVE and LOAD statements that are simi-
lar to corresponding functions in APL. Note that SAVE and LOAD
statements may be contained within events or may be executed
interactively. The SAVE statement saves the model as a file in an
internally formatted workspace.

We present now a small section of a bank model. The user first
represents the balance sheet structure as follows:

1 ASSETS

2 CASH

2 INVESTMENTS
3 LOANS
3 SECURITIES

2 EXPENSES
3 INTEREST SAVINGS
3 INTEREST BORROWINGS
3 OVERHEAD

NO. 2 ¢+ 1973 BANKING SIMULATION

example

181




2 LIABILITIES
2 DEPOSITS
3 CHECKING
3 SAVINGS
BORROWINGS
INCOME
3 INTEREST LOANS
3 INTEREST SECURITIES
2 RETAINED EARNINGS

He similarly represents liquidity requirements as follows:

1 CONTROLS
2 MINIMUM CASH ON HAND
2 LIQUIDITY
3 OVERLOANED AMT
3 LOANS TO DEPOSITS RATIO
3 LOANS TO DEPOSITS RATIO LIMIT

At the end of each banking day the user determines whether the
LOANS TO DEPOSITS RATIO is within preestablished bounds by
entering the following statements into the simulator.

LOANS__TO__DEPOSITS RATIO < LOANS
+ (CHECKING & SAVINGS)

IF LOANS _TO__DEPOSITS _RATIO < LOANS_ TO__DEPOSITS__
RATIO _LIMIT THEN GO TO DONE

OVERLOANED__AMT < LOANS — (LOANS__TO__DEPOSITS__
RATIO__LIMIT X (CHECKING & SAVINGS))

PRINT ‘LOANS__TO__ DEPOSITS__RATIO EXCEEDS UPPER LIMIT’

SCHEDULE MANAGER

DONE:

The event named MANAGER may contain many different options
including manual interaction at the terminal. The user can at-
tempt to correct a condition by scheduling an event such as
FORECLOSE. As the user gains experience from manual interven-
tion, he can determine—as a matter of policy —alternative ac-
tions to take. He then replaces the SCHEDULE MANAGER state-
ment with SCHEDULE LOANS TO DEPOSIT OUT OF BOUNDS,
where the new event contains simulation language statements re-
quired to implement automatically the desired policy. It is ex-
pected that a gradual evolution from manual interaction toward
automatic policy implementation continues as the user gains in-
sight into the probable consequences of policies.

Interactive applications generator

Our research indicates that an interactive simulation language
can facilitate the execution, testing, and modification of a bank

BROWN AND LOW IBM SYST J




model. We have also studied a technique that can aid the user
greatly in the original construction of his model. We refer to an
interactive applications generator with which we have been ex-
perimenting and which virtually eliminates the need for pro-
gramming on the part of the user.

When modeling studies are undertaken, one approach is to
code highly specialized programs that are designed to repre-
sent in depth a fairly narrow portion of a business. This often
results in a very limited degree of transferability to other busi-
ness areas that vary from the primary model in one or more sig-
nificant details. On the other hand, when general-purpose appli-
cation packages are constructed for use in modeling many dif-
ferent structures, oftentimes the result is a set of programs that
consume significant quantities of storage space and execution
time by repeatedly determining the model structure from input
parameters.

Our approach to modeling is a natural extension of the program-
ming by questionnaire method discussed in References 4, 5, and
6. Our interactive applications generator is a decision table pro-
cessor that guides the financial model user through a complex
logic network by asking structured questions in banking termi-
nology. At each state, the succeeding question depends on pre-
vious responses, and whole areas of questioning are eliminated
by each response. Such interaction makes possible the creation
of a model during one or more sessions at a terminal.

We have considered such a logical set of questions and have
defined requirements for the necessary source code and decision

tables. Such source code would represent both English language
question-and-answer phrases and the interactive simulation lan-
guage statements. Phrases or statements can be built from par-
tial strings (down to the character level) or they can involve
subroutines or whole programs. The decision tables, in combina-
tion with the responses of the user, determine the program out-
put of our interactive application generator processor.

The first decision of the bank model user concerns the balance
sheet accounts that are relevant to the goals of the model. If, for
example, the purpose of the study were simply to learn how to
properly characterize demand deposit activity, there would be
no need to include an account for municipal bonds.

Consider the user who wished to construct a simple Deposits
and Loans model. He enters the following statement: DEFINE
ACCOUNTS. The system responds with a display such as shown
in Figure 1. If the display device includes a light pen, the user
may touch DELETE ACCOUNT and then SECURITIES, EQUIP-
MENT, OTHER ASSETS, BORROWINGS, OTHER LIABILITIES, and

No. 2 - 1973 BANKING SIMULATION

example




characteristics
of interactive
modeling

Figure T Constructing a simple deposits and loan model

o ASSETS o LIABILITIES
* CASH & DUE FROM BANKS « DEPOSITS
* SECURITIES « BORROWINGS
* LOANS & DISCOUNTS e OTHER LIABILITIES
« EQUIPMENT « CAPITAL

* OTHER ASSETS

« SAVE
« ADD ACCOUNT
o DELETE ACCOUNT

o SUBDIVIDE ACCOUNT

CAPITAL. He may touch SUBDIVIDE ACCOUNT followed by
LOANS & DISCOUNTS, and DEPOSITS. Such actions would result
in the display shown in Figure 2.

The user may continue in this manner until he is satisfied with
the account structure. He may then proceed to describe the vari-
ous banking activities relevant to this structure.

Some general comments are in order regarding simulation prob-
lems and the use of interactive, interpretive models versus mod-
eling in a batch environment. It is true that a basic problem with
many models is one of computer resources. Models often take
excessive time to execute and frequently require a large amount
of main storage. Reasons for these conditions may vary, and
overcoming them often results in models that are not homoge-
neous in detail and level at which events are modeled. An example
of this type of structuring difficulty might be a model design to
study long-range asset management in a bank in which many
events characterize every individual deposit and withdrawal,
while at the same time attempting to simulate long-range invest-
ment policies. Although both types of events occur in a real
bank, a simulation model that spans both types of events could
require enormous amounts of computer time for the simulation
of the individual deposits and produce negligible results. This
type of problem is independent of the implementation language

BROWN AND LOW IBM SYST J




Figure 2 Modifying the deposits and loan model

« ASSETS s LIABILITIES
« CASH & DUE FROM BANKS « DEPOSITS
o LOANS & DISCOUNTS « DEMAND DEPOSITS
« DEMAND LOANS ) « TIME DEPOSITS
» TIME LOANS & DISCOUNTS
o INSTALLMENT LOANS
» REAL ESTATE LOANS

» OVERDRAFTS

« SAVE
» ADD ACCOUNT
% DELETE ACCOUNT

« SUBDIVIDE ACCOUNT

and can only be solved through consistent abstraction and aggre-
gation of real-world events into a homogeneous simulation mod-
el.

A more difficult problem in many models is the dynamic core
requirement that is inherent in many model executions. Charac-
teristically, models contain many queues and time series that
fluctuate in both size and content during execution. Compilation
of the source language statements does little to alleviate dy-
namic core requirements, since about all that can be done during
compilation is the generation of CALL statements to system sub-
routines that perform storage allocation at execution time by
interpreting the calling sequence.

For certain types of model studies, any extra time taken by in-
terpretive execution of statements (as compared to precompiled
instructions) may be offset by the user time saved by interacting
with the model during execution. Thus, by having information
displayed during model execution, many fruitless runs may be in-
teractively truncated at an early stage. It is also likely that the
storage used for interpretive model statements (excluding the
interpreting system) is less than the storage used for the equiva-
lent compiled model statements. In either case, however, stor-
age is much less of a problem with the currently available paging
systems.

NO. 2 - 1973 BANKING SIMULATION




186

Concluding remarks

We have described our experimental approach to bank model-
ing, one intention of which is to permit bank management to es-
timate how well the policies they devise will stand up under the
uncertainties that make the banking industry so dynamic. One
need only look at government actions that affect the country’s
monetary policy to see the importance of possible but unexpect-
ed contingencies. We have modeled banking situations in a re-
search environment. From a satisfactory demonstration in that
context, we believe that our approach is worthy of further con-
sideration by the banking industry.

CITED REFERENCES

1. K. Cohen and F. S. Hammer, “Linear programming and optimal bank asset
management decisions,” Journal of Finance 22, No. 2 (May 1967).

2. J. F. Brown and B. A. Kalymon, A Simulation-Programming Approach to
Bank Asset Management, Report No. G320-2645 (January 1971), may be
obtained from the IBM Los Angeles Scientific Center, P.O. Box 64781,
Los Angeles, California 90064. .

3. K. B. Gray, “Managing the balance sheet: a mathematical approach to deci-
sion making,” Journal of Bank Research 1, No. 1 (Spring 1970).

4. A. S. Ginsberg, H. M. Markowitz, and P. M. Oldfather, Programming by
Questionnaire, Report No. RM-4460, RAND Corporation, Santa Monica,
California (1965).

. D. W. Low, “Programming by questionaire: An effective way to use decision
tables,” Communications of the ACM 16, No. 5 (May 1973).

. M. M. Connors, C. Coray, C. J. Cuccaro, W. K. Green, D. W. Low, and
H. M. Markowitz, “The distribution system simulator,” Management Science
18, No. 8 (April 1972). '

BROWN AND LOW IBM SYST )




