
The implementation of jinancial models on small systems is dis-
cussed.

Presented are methods for card systems and direct access
(FORTRAN and non-FORTRAN) systems. Financial plans are
produced, similar to those generated by larger-system methods.

The implementation of financial modeling 'concepts using the
top-down approach is not restricted to those larger systems that
typically have resident in main storage large quantities of data
along with both the process and print programs.' These pro-
grams usually contain straight-line coding and require a Direct
Access Storage Device (DASD) for intermediate storage. Be-
cause smaller systems such as an IBM System/3 do not have the
main storage and intermediate storage of larger systems, the top-
down approach requires modification to resolve these limita-
tions.

The approach presented in this paper has its basis in the philoso-
phies of small and large system concepts.The basic difference
between the two types of systems is that in a small system the
data passes through the program rather than the program pass-
ing through the data. The Planning Systems Generator I1 (PSG
11) program, for example, develops a large common area of data
in main storage. The program processes the data a piece at a
time.' Data not being used continues to reside in main storage.
The small system approach is to have the data reside on external
media such as cards. The data is then processed and output is
generated. The result is that the program remains the same size
and resides in main storage, but the main storage requirement
for data is now essentially nonexistent.

To make the financial model fully dynamic, no data should be
stored in the calculation section. That is, all data should be
passed into the program from an external data base residing in
cards or on DASD. Variables such as federal tax rate, for exam-
ple, should not be included as fixed numbers in the logic pro-
gram, but should instead be contained in the data base. The logic

NO. 2 1973 MODELING ON SMALL SYSTEMS 161

1 Table 1 Reoort format

number Description Datu

1
2
3
4
5
6
7
8
9

10
11

SALES
COST OF SALES

MATERIAL
LABOR
OVERHEAD

GROSS PROFIT
SELLING COST
G AND A
NET PROFIT
TAXES
AFTER TAX PROFIT

xxxx
xxxx
xxx
xxx
xxx

xxxx
xxx
xxx
xxx
xxx
xxx

xxxx
xxxx

xxx
xxx
xxx

xxxx
xxx
xxx
xxx
xxx
xxx

xxxx
xxxx
xxx
xxx
xxx

xxxx
xxx
xxx
xxx
xxx
xxx

Data is prepared on cards which are also the intermediate stor-
age device. Because of this, two programs are usually necessary
to develop a financial model for a small card system-a logic
module and a print program. Two programs are required be-
cause print programs use large portions of main storage to con-
tain Input/Output (I/O) buffers and the available remaining
storage tends to be exhausted by the print logic. Hence, not
enough main storage remains for calculations.

In the development of financial models, usually the output re- print
~ o r t is designed first. As an examde. assume the reDort format program

can make certain observations assuming all data for the report is
available:

COST OF SALES = MATERIAL + LABOR + OVERHEAD

GROSS PROFIT SALES - COST OF SALES

NET PROFIT = GROSS PROFIT - SELLlNG COST
"GENERAL A N D ADMINISTRATIVE

TAXES = a percent Of NET PROFIT

AFTER TAX PROFIT = NET PROFIT - TAXES

Therefore, Only SALES, MATERIAL, LABOR, OVERHEAD, SELL-
ING, GENERAL AND ADMINISTRATIVE (G AND A), and a tax
percentage are the inputs to a print program to output this re-
port. COST OF SALES, GROSS PROFIT, NET PROFIT, TAXES, and
AFrER TAX PROFIT can be calculated in the print program since
they are subtotals and also the totals of the previously men-
tioned data. The labels for the report are produced as follows:

Lines 1,3,4,5,7.8 are obtained from the input cards.

Table 2 Card input data

SALES 01 xxxxx xxxxx
MATERIAL 02 xxxx xxxx
LABOR 02 xxxx xxxx
OVERHEAD 02 xxxx xxxx

C; AND A 03 xxxx xxxx
TAXES 04 xxxx xxxx
SELLING cosr 03 xxxx xxxx

Table 3 Card input data

SALES 01 xxxx xxxx xxxx
MATERIAL PROD X 02 xxxx xxxx xxxx
MATERIAL PROD Y 02 xxxx xxxx xxxx
MATERIAL PROD Z 02 xxxx xxxx xxxx
LABOR PROD X 02 xxxx xxxx xxxx
LABOR PROD Y 02 xxxx xxxx xxxx
LABOR PROD Z 02 xxxx xxxx xxxx
OVERHEAD PROD X 02 xxxx xxxx xxxx
OVERHEAD PROD Y 02 xxxx xxxx xxxx
OVERHEAD PROD Z 02 xxxx xxxx xxxx
SELLING COST 03 xxxx xxxx xxxx
ADVERTISING 03 xxxx xxxx xxxx
Ci A N D A 03 xxxx xxxx xxxx
OTHER INCOME 03 xxxx xxxx xxxx
TAXES 04 xxxx xxxx xxxx

What remains is the development of a coding scheme to allow
the program to determine when to take control-level breaks. A
simple sequential number determines this. For example, assume
the following card layout:

Columns 1 - 18: description
Columns 19-20: print control field

e Columns 2 1 - 24: logic module control information
Columns 25 -96: data, where six card-columns represent one

data entry

The cards appear as depicted in Table 2. As the control field
changes, a new area of the report is specified and the new area is
represented by the sum of data elements with like control fields.
Array processing is used in the program to facilitate calcula- i
tions. Each index of the array represents a period of the plan-
ning horizon. The print program flow is illustrated in Appendix

I

i

IBM S Y S l J

Table 5 Input data cards with control information

Description Control information

SALES
MATERIAL
LABOR
OVERHEAD

SELLING
G AND A
TAXES

0101
0222
0212
0223
0322
032 1
042 1

logic The input data cards for the print program are developed and
module punched by the logic program. The logic program contains many

specific and different calculation routines which are used as di-
rected by input data. To determine what routines are to be cod-
ed, the relationship of data on the output report is defined. Using
the report shown so far, assume:

SALES are given and last value propagated (called extending).
MATERIAL is a percent of sales.
LABOR is a percent of sales.
OVERHEAD is a percent of labor.
SELLING is a percent of sales.
G AND A is given and last value propagated.
TAXES are given as a percent and last value propagated.

Although seven sets of data need calculations, there are only
three different calculation routines:

Extending
Percent of sales
Percent of other data item

The three routines are coded, developing a scheme to direct data
to the appropriate routines. For example, the data-coding
scheme can be:

Column 2 1 :O - Store calculated data into sales hold area
1 - Store calculated data into temporary hold area
2 -Do not save calculated data

2 - Percent of sales
3 -Percent of other data items

Column 22: 1 -Fixed input

The input data cards now appear as depicted in Table 5 where
columns 19-20 are the print codes to be replicated in the output
cards and columns 21 -22 are the fields just discussed. The data
is entered as integer values. Entries are made where the data

166 GORDON IBM SYST J

does not change from a previous period. Usually in the logic
program, SALES is required to be the first card since most calcu-
lations use sales data. The flow of the logic module is illustrated
in Appendix B.

As the model portion grows, just as the report portion grows,
only new input data cards need be punched since each input
results in an output card which becomes an input card to the
print program. Thus, the logic module is static. However, if a
new routine is needed, it can be added and data diverted to it via
a new coding number.

One of the requirements of a financial model is to document the
input assumptions made. In this system, card-column 24 can be
used for this function. It could contain an I if the data is input or
an 0 if output. Thus, as data from the logic program is punched,
an 0 can be punched into card column 24. The print program
reads both the input and output cards, doing a simple formatted
print if card column 24 contains an I and using the logic pre-
viously mentioned if the code is 0.

The use of Report Program Generator I1 (RPG 11) indicators in
both the logic and print programs simplifies this apparently diffi-
cult task of data detection and dire~t ion.~ The print program
should have all the input data read first, then the output data.
Thus, stacker selection of input and output data can be accom-
plished for future runs with data changes. The overall card sys-
tem flow is now complete and is depicted in Figure 1.

FORTRAN and DASD systems

Most smaller systems that have DASD support also have a FOR-
TRAN compiler available. Because FORTRAN is a calculated-
based language, it is one of the better-suited languages for finan-
cial model building.

The approach to this system is based on three programs with the
end result being a system very similar to PSG 11. The programs
themselves, however, are dissimilar to PSG 11. The data is pre-
pared on cards with the number of entries being equal to the
planning horizon desired. Also there is a control field that
uniquely identifies the data (this field could be coded sequential-
ly from 1 to 500). The first program reads these data cards and
writes the data onto a DASD with the address of the record being
the control field. The program should be written so that only one
or two cards are necessary for input. Therefore, the file becomes
a permanent file such that static data need only be loaded once.
New data simply overlays old data in the file.

NO. 2 1973 MODELING ON SMALL SYSTEMS

INPUT DATA

INPUT DATA

PROGRAM

"

INPUT DATA

PRINT

INPUT DATA

file-
creation
program

167

I t OUTPUT DATA

logic The second program is the logic module(s) that performs the
module calculations necessary to generate a financial report or plan.

This program reads data from the file created in the first pro-
gram necessary for specific calculations. The calculated data is
then rewritten into the file in a format ready for printing. The
program continues on to the next calculation routine (straight-
line code) where new data is retrieved and manipulated. If the
entire logic module is too large to fit in main storage, it can be
broken into many smaller programs since the data is permanent-
ly on DASD and accessible at any time by any program.

print The third program is a print program. Specification cards, simi-
program lar to those used in RPG 11, are developed containing:

Descriptions (such as data headings, titles, and notes) in se-

Record number to access in the permanent file.
A code to determine how to print the data (for example,

lected card columns.

number of decimal places, and spacing).

The program reads these print-specification cards, examining the
record number to read in the DASD file. The file is read and the
data and description are moved to an output area. A specific
output routine is then executed based upon the print code. This
technique conserves main storage since only a minimum amount
of data is required at any one time. Also, the data file and report
printing are separate from the logic section. In addition, the card
layout and data codification can be identical to those in PSG 11.

Non-FORTRAN and DASD systems

Although FORTRAN is a logical language to use in financial mod-
el building, not all installations have the compiler or personnel
expertise. In these situations, Report Program Generator I1
(RPG 11) can be used to develop the model (as could COBOL or
an assembler).

file- As in the previous system, three programs are suggested. The
creation first creates a data base on a DASD. Cards are coded sequential-
program ly, for example, 1 through 500. A second control field is also

required and was discussed in the card-only system section. The
program then creates an indexed file with the key being the se-
quential number. The program writes the data such that if only
change data is introduced, the program will still be operational.

logic The second program, the logic module, now has a sequential
module DASD input file. Calculations are performed via the technique

presented in the card-only section. Output data is directed to a
sequential file other than the data input file.

168 GORDON IBM SYST J

The print program is identical to the print program discussed in print
the card-only system section with the exception that the input is program
the sequential output file created by the logic module.

Concluding remarks

Users of smaller systems, such as an IBM System/3, can design
and implement financial models using a method similar to the

, top-down approach used on larger systems. There are three ap-
proaches depending on the system configuration: card systems;

systems. The financial modeling systems resulting from these
methods utilize approaches (such as top-down) similar to those
used on larger systems. Hence, future upward growth to larger
systems is facilitated since these approaches may be employed.

FORTRAN and DASD Systems, and non-FORTRAN and DASD

CITED REFERENCES
I . P. L. Kingston, “Concepts of financial models,” in this issue.
2. Planning Systems Generator I 1 General Information Manual, Form No.

GH20-1035, IBM Corporation, Data Processing Division, White Plains,
New York.

3. MINI-PLAN, a Financial Modeling Program for System13 Model IO Disk,
Form No. SB21-0590, IBM Corporation, Data Processing Division, White
Plains, New York.

4. MINI-PLAN, Program No. 5798-AKB, IBM Corporation, Data Processing
Division, White Plains, New York.

5 . IBM System/3 Disk System RPG I1 Reference Manual, Form No. SC21-
7504, IBM Corporation, Data Processing Division, White Plains, New York.

NO. 2 * 1973 MODELING ON SMALL SYSTEMS 169

170 GORDON

MODELING ON SMALL SYSTEMS 171

