The implementation of financial models on small systems is dis-
cussed.

Presented are methods for card systems and direct access
(FORTRAN and non-FORTRAN) systems. Financial plans are
produced, similar to those generated by larger-system methods.

Financial modeling on small systems
by R. J. Gordon

The implementation of financial modeling concepts using the
top-down approach is not restricted to those larger systems that
typically have resident in main storage large quantities of data
along with both the process and print programs.' These pro-
grams usually contain straight-line coding and require a Direct
Access Storage Device (DASD) for intermediate storage. Be-
cause smaller systems such as an IBM System/3 do not have the
main storage and intermediate storage of larger systems, the top-
down approach requires modification to resolve these limita-
tions.

The approach presented in this paper has its basis in the philoso-
phies of small and large system concepts. The basic difference
between the two types of systems is that in a small system the
data passes through the program rather than the program pass-
ing through the data. The Planning Systems Generator 11 (PSG
II) program, for example, develops a large common area of data
in main storage. The program processes the data a piece at a
time.” Data not being used continues to reside in main storage.
The small system approach is to have the data reside on external
media such as cards. The data is then processed and output is
generated. The result is that the program remains the same size
and resides in main storage, but the main storage requirement
for data is now essentially nonexistent.

To make the financial model fully dynamic, no data should be
stored in the calculation section. That is, all data should be
passed into the program from an external data base residing in
cards or on DASD. Variables such as federal tax rate, for exam-
ple, should not be included as fixed numbers in the logic pro-
gram, but should instead be contained in the data base. The logic

No. 2 - 1973 MODELING ON SMALL SYSTEMS




program would insert this variable into its code and then pro-
ceed with calculations. The reason for this is that if the tax rate
changes, it is easier to alter a data record than to modify a pro-
gram. Furthermore, this approach provides a vehicle for simula-
tions. For example, once the data base is developed, different
tax rates may be simulated by changing the respective data rec-
ords.

This paper discusses the implementation of the top-down ap-
proach on two categories of small systems where the basic prob-
lem is that data must be sequenced such that all data necessary
for calculations will be present or can be obtained when neces-
sary. The first is the system where a DASD is not available for
storage. Data is punched as integer values in cards and a control
field is selected for identification of data. A logic program inter-
prets the control fields, routes the data to save-areas and calcu-
lation routines, and punches output that will be used as input to
a print program. The print program generates subtotals and to-
tals for a report.

The second category consists of FORTRAN and non-FORTRAN
systems in which a DASD is available for data storage. The tech-
nique is based on the following. A control field for identifi¢ation
of data is selected. A program reads this data and then stores it
on a DASD where it can be accessed as needed. A logic program
can then retrieve input data from the DASD, calculate, and re-
store the output data. The final step is to develop a print program
that takes the output data and generates and formats subtotals
and totals for a report. More detailed information regarding im-
plementation of this technique on FORTRAN and DASD systems
can be found in the literature describing MINI-PLAN, an IBM
Field Developed Program.>*

Card-only systems

In developing a financial model that is to operate on a card sys-
tem such as a System/3, certain characteristics of card systems
are assumed:

* Limited amount of main storage.
* Difficulty of accessing data randomly.
¢ Noncalculation-oriented compilers.

Because of these factors, a new technique must be developed
such that the programming of the method is open-ended for
growth and/or change of the model to be easily implemented.
One approach is to develop calculation routines in the logic
module and to have data codified such that it is directed to a
specific routine, calculated upon, and outputted.

GORDON IBM SYST J




Table 1 Report format

Line
number Description Datu

SALES XXXX XXXX
COST OF SALES XXXX XXXX

MATERIAL XXX XXX

LABOR XXX XXX

OVERHEAD XXX XXX
GROSS PROFIT XXXX XXXX
SELLING COST XXX XXX
G AND A XXX XXX
NET PROFIT XXX XXX
TAXES XXX XXX
AFTER TAX PROFIT XXX XXX

—_O N 0NN AW~

——

Data is prepared on cards which are also the intermediate stor-
age device. Because of this, two programs are usually necessary
to develop a financial model for a small card system—a logic
module and a print program. Two programs are required be-
cause print programs use large portions of main storage to con-
tain Input/Output (I/O) buffers and the available remaining
storage tends to be exhausted by the print logic. Hence, not
enough main storage remains for calculations.

In the development of financial models, usually the output re-
port is designed first. As an example, assume the report format
illustrated in Table 1. Upon examining the report format, one
can make certain observations assuming all data for the report is
available:

COST OF SALES = MATERIAL + LABOR + OVERHEAD
GROSS PROFIT = SALES — COST OF SALES

NET PROFIT = GROSS PROFIT — SELLING COST
—GENERAL AND ADMINISTRATIVE

TAXES = a percent of NET PROFIT
AFTER TAX PROFIT = NET PROFIT — TAXES

Therefore, only SALES, MATERIAL, LABOR, OVERHEAD, SELL-
ING, GENERAL AND ADMINISTRATIVE (G AND A), and a tax
percentage are the inputs to a print program to output this re-
port. COST OF SALES, GROSS PROFIT, NET PROFIT, TAXES, and
AFTER TAX PROFIT can be calculated in the print program since
they are subtotals and also the totals of the previously men-
tioned data. The labels for the report are produced as follows:

¢ Lines 1,3,4,5,7.8 are obtained from the input cards.
e Lines 2,6,9,10,11 are labels stored in the program.

1973 MODELING ON SMALL SYSTEMS

print
program




Table 2 Card input data

Control
Description information

SALES 01
MATERIAL 02
LABOR 02
OVERHEAD 02

SELLING COST 03

G AND A 03

TAXES 04

Table 3 Card input data

Control
Description information
SALES 0l
MATERIAL PROD X 02
MATERIAL PROD Y 02
MATERIAL PROD Z 02
LABOR PROD X 02
LABOR PROD Y 02
LABOR PROD Z 02
OVERHEAD PROD X 02
OVERHEAD PROD Y 02
OVERHEAD PROD Z 02
SELLING COST 03
ADVERTISING 03
G AND A 03
OTHER INCOME 03
TAXES 04

What remains is the development of a coding scheme to allow
the program to determine when to take control-level breaks. A
simple sequential number determines this. For example, assume
the following card layout:

Columns 1 -18: description

Columns 19-20: print control field

Columns 21-24: logic module control information

Columns 25 -96: data, where six card-columns represent one
data entry

The cards appear as depicted in Table 2. As the control field
changes, a new area of the report is specified and the new area is
represented by the sum of data elements with like control fields.
Array processing is used in the program to facilitate calcula-
tions. Fach index of the array represents a period of the plan-
ning horizon. The print program flow is illustrated in Appendix
A.

GORDON IBM SYST J




Table 4 Output resulting from Table 3 input data

Description

SALES
MATERIAL PROD X
MATERIAL PROD Y
MATERIAL PROD Z
LABOR PROD X
LABOR PROD Y
LABOR PROD Z
OVERHEAD PROD X
OVERHEAD PROD Y
OVERHEAD PROD Z
COST OF SALES
GROSS PROFIT
SELLING COST
ADVERTISING
G AND A
OTHER INCOME
NET PROFIT
TAXES
PROFIT AFTER TAX

An attribute of this technique is that as the model grows, the
program need not change. For example, if material costs were
broken down to material cost of product X, Y and Z, then the
data cards are prepared in the following way:

MATERIAL PROD X 02 XXX XXX
MATERIAL PROD Y 02 XXX XXX
MATERIAL PROD Z 02 XXX XXX

These cards replace the single, aggregate material cost card giv-
ing the report more detail with no change in the program.

Another example modification is to add OTHER INCOME as an
entry in the report. The data card is then coded as follows:

OTHER INCOME 03 —XXX —XXX

The minus sign makes the data increase profit since all items are
subtracted from sales for running subtotals. This card is placed
into the 03 group.

LABOR and OVERHEAD cost can be expanded also, as could
SELLING COST and G AND A. The card input in Table 3 results
in the report shown in Table 4. This change in report requires no
change in the print program. The addition of more data cards is
the only change.

NO. 2 + 1973 MODELING ON SMALL SYSTEMS




logic
module

Table 5 Input data cards with control information

Description Control information

SALES 0101
MATERIAL 0222
LABOR 0212
OVERHEAD 0223

SELLING 0322

G AND A 0321

TAXES 0421

The input data cards for the print program are developed and
punched by the logic program. The logic program contains many
specific and different calculation routines which are used as di-
rected by input data. To determine what routines are to be cod-
ed, the relationship of data on the output report is defined. Using
the report shown so far, assume:

SALES are given and last value propagated (called extending).
MATERIAL is a percent of sales.

LABOR is a percent of sales.

OVERHEAD is a percent of labor.

SELLING is a percent of sales,

G AND A is given and last value propagated.

TAXES are given as a percent and last value propagated.

Although seven sets of data need calculations, there are only
three different calculation routines:

¢ Extending
e Percent of sales
e Percent of other data item

The three routines are coded, developing a scheme to direct data
to the appropriate routines. For example, the data-coding
scheme can be:

Column 21:0— Store calculated data into sales hold area
1 — Store calculated data into temporary hold area
2 —Do not save calculated data
Column 22:1 —Fixed input
2 —Percent of sales
3 —Percent of other data items

The input data cards now appear as depicted in Table 5 where
columns 19-20 are the print codes to be replicated in the output
cards and columns 21-22 are the fields just discussed. The data
is entered as integer values. Entries are made where the data

GORDON IBM SYST J




does not change from a previous period. Usually in the logic
program, SALES is required to be the first card since most calcu-
lations use sales data. The flow of the logic module is illustrated
in Appendix B.

As the model portion grows, just as the report portion grows,
only new input data cards need be punched since each input
results in an output card which becomes an input card to the
print program. Thus, the logic module is static. However, if a
new routine is needed, it can be added and data diverted to it via
a new coding number.

One of the requirements of a financial model is to document the
input assumptions made. In this system, card-column 24 can be
used for this function, It could contain an 1 if the data is input or
an O if output. Thus, as data from the logic program is punched,
an O can be punched into card column 24. The print program
reads both the input and output cards, doing a simple formatted
print if card column 24 contains an I and using the logic pre-
viously mentioned if the code is O.

The use of Report Program Generator II (RPG 1D indicators in
both the logic and print programs simplifies this apparently diffi-
cult task of data detection and direction.” The print program
should have all the input data read first, then the output data.
Thus, stacker selection of input and output data can be accom-
plished for future runs with data changes. The overall card sys-
tem flow is now complete and is depicted in Figure 1.

FORTRAN and DASD systems

Most smaller systems that have DASD support also have a FOR-
TRAN compiler available. Because FORTRAN is a calculated-
based language, it is one of the better-suited languages for finan-
cial model building.

The approach to this system is based on three programs with the
end result being a system very similar to PSG 1i. The programs
themselves, however, are dissimilar to PSG 11. The data is pre-
pared on cards with the number of entries being equal to the
planning horizon desired. Also there is a control field that
uniquely identifies the data (this field could be coded sequential-
ly from 1 to 500). The first program reads these data cards and
writes the data onto a DASD with the address of the record being
the control field. The program should be written so that only one
or two cards are necessary for input. Therefore, the file becomes
a permanent file such that static data need only be loaded once.
New data simply overlays old data in the file.

NO. 2 + 1973 MODELING ON SMALL SYSTEMS

Figure 1 Card system overall design

KEYPUNCH
INPUT DATA

INPUT DATA

LOGIC
PROGRAM

I INPUT DATA EUTPUT DATA

:

INPUT DATA

PRINT REPORT
PROGRAM

/

| INPUT DATA EUTPUT DATA

file-
creation
program




print
program

file-
creation
program

logic
module

The second program is the logic module(s) that performs the
calculations necessary to generate a financial report or plan.
This program reads data from the file created in the first pro-
gram necessary for specific calculations. The calculated data is
then rewritten into the file in a format ready for printing. The
program continues on to the next calculation routine (straight-
line code) where new data is retrieved and manipulated. If the
entire logic module is too large to fit in main storage, it can be
broken into many smaller programs since the data is permanent-
ly on DASD and accessible at any time by any program.

The third program is a print program. Specification cards, simi-
lar to those used in RPG 11, are developed containing:

Descriptions (such as data headings, titles, and notes) in se-
lected card columns.

Record number to access in the permanent file.

A code to determine how to print the data (for example,
number of decimal places, and spacing).

The program reads these print-specification cards, examining the
record number to read in the DASD file. The file is read and the
data and description are moved to an output area. A specific
output routine is then executed based upon the print code. This
technique conserves main storage since only a minimum amount
of data is required at any one time. Also, the data file and report
printing are separate from the logic section. In addition, the card
layout and data codification can be identical to those in PSG 1I.

Non-FORTRAN and DASD systems

Although FORTRAN is a logical language to use in financial mod-
el building, not all installations have the compiler or personnel
expertise. In these situations, Report Program Generator 11
(RPG 1) can be used to develop the model (as could COBOL or
an assembler).

As in the previous system, three programs are suggested. The
first creates a data base on a DASD. Cards are coded sequential-
ly, for example, 1 through 500. A second control field is also
required and was discussed in the card-only system section. The
program then creates an indexed file with the key being the se-
quential number. The program writes the data such that if only
change data is introduced, the program will still be operational.

The second program, the logic module, now has a sequential
DASD input file. Calculations are performed via the technique
presented in the card-only section. Output data is directed to a
sequential file other than the data input file.

GORDON IBM SYST J




The print program is identical to the print program discussed in
the card-only system section with the exception that the input is
the sequential output file created by the logic module.

Concluding remarks

Users of smaller systems, such as an IBM System/3, can design
and implement financial models using a method similar to the
top-down approach used on larger systems. There are three ap-
proaches depending on the system configuration: card systems;
FORTRAN and DASD systems, and non-FORTRAN and DASD
systems. The financial modeling systems resulting from these
methods utilize approaches (such as top-down) similar to those
used on larger systems. Hence, future upward growth to larger
systems is facilitated since these approaches may be employed.

CITED REFERENCES

1. P. L. Kingston, “Concepts of financial models,” in this issue.

2. Planning Systems Generator 11 General Information Manual, Form No.
GH20-1035, IBM Corporation, Data Processing Division, White Plains,
New York.

. MINI-PLAN, a Financial Modeling Program for System|3 Model 10 Disk,
Form No. SB21-0590, IBM Corporation, Data Processing Division, White
Plains, New York.

. MINI-PLAN, Program No. 5798-AKB, IBM Corporation, Data Processing
Division, White Plains, New York.

. IBM System(3 Disk System RPG Il Reference Manual, Form No. SC21-
7504, IBM Corporation, Data Processing Division, White Plains, New York.

MODELING ON SMALL SYSTEMS

print
program

169




Appendix A: Print program flow discussed in the section
entitled “Card-only systems”

) SR PRINT
DESCRIPTION
AND DATA

SUBTRACT
DATA FROM
SALES AREA

CONTROL
FIELD=LAST ] SUM DATA
CONTROL INTO SUB-TOTAL
FIELD

STORE DATA
IN SALES
AREA

ZERQ THE ADD DATA
SUB-TOTAL TO SUB-TOTAL
AREA AREA

PRINT GROSS

PROFIT FROM SUBTRACT

SUB-TOTAL SUB-TOTAL

AREA FROM SALES
AREA

ERROR
MESSAGE

—

PRINT GROSS
PROFIT FROM
SALES AREA

PERCENT OF
SALES=TAX

l

PRINT TAX SALES-TAX PRINT AFTER-
AMOUNT =AFTER-TAX TAX PROFIT
PROFIT

— —

170 GORDON IBM SYST J




Appendix B: Logic module discussed in the section en-
titled “Card-only systems”

READ A
CARD

EXTEND
DATA

CARD CARD CARD
COLUMN 22 COLUMN 22 COLUMN 22
=3 =3 =

DIVIDE DATA DIVIDE DATA
BY 1 BY 1000
PERCENT OF PERCENT OF

SALES SALES

CARD CARD CARD
COLUN(I)N 21 COLUMN 21 COLUMN 22
= =1 =2

STORE DATA
IN SAVE

PUNCH DATA

MODELING ON SMALL SYSTEMS 171




