
Presented is the  Data  Independent  Accessing  Model ( D I A M )  - a 
complete  model  for  the  representing,  storing,  and  retrieving of 
structured  information. 

D U M  is  a  hierarchy of models  formed  by the Entity  Set   Model 
and  three  lower  modeling  levels-the  String  Model,  the  Encod- 
ing  Model,  and  the  Physical  Device  Level  Model. 

Data  structures  and  accessing in data-base systems 
111 Data  representations and the data  independent  accessing 
model 

The previous two  sections of this paper  have reviewed the  tech- 
nical progress of information systems  and  the  structuring of in- 
formation. We now discuss  computer-oriented  representations 
for  structured information and  the Data Independent  Accessing 
Model (DIAM) multilevel general  description of structured infor- 
mation and  representations. 

The main problem in the field  of data-base  systems  continues to 
be in the programming area.  Software is difficult to design and 
implement. Despite  some difficulties in understanding  them,  sys- 
tems engineers are installing and maintaining data-base  systems 
in a growing number of installations. Applications  programmers 
are similarly making the  extra effort to achieve  understanding 
so that  they  can  write and maintain application programs. 

Much of this  comprehension difficulty can be overcome by hav- 
ing a simple, fundamental way of describing data-base  systems. 
Current terminology is representation  oriented and incompatible 
from  system  to  system, being either  too  gross (generation data 
groups, ISAM) or  too microscopic (bit functions in a record  de- 
scriptor). As a  result, we tend  to pyramid gross functions  and 
then implement these  functions in terms of microscopic  instruc- 
tions. This  leads us to overlook common, intermediate-sized 
functions  that can be implemented and  described  once for  the 
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system,  rather  than being coded  several times in the inter- 
nals of several  gross  functions  and  described in slightly differing 
detail  each time. For example,  decoders  for  the  contents of 
fields tend  to proliferate. Thus  there  are different decoders  for 
field contents if they are file names,  record  names, field names, 
field values,  record lengths, identifiers, and so forth,  and  they are 
implemented one or more times in each  gross  function. 

Each  time a reasonably sized basic  function is encoded redun- 
dantly in a special form into  a  gross  function,  the size of the  sys- 
tem in terms of number of instructions  increases. We are at- 
tempting to  overcome  as many as possible of the difficulties 
of understanding, implementing, and debugging systems, dif- 
ficulties that many believe are growing at an exponential rate 
with respect to the  size of the  systems.  Instead of adding func- 
tion on  function  to  obtain  generality,  we are attempting  to 
provide  descriptions of systems  that  emphasize common func- 
tions to  provide  generality, upward compatibility, and  ease of 
understanding. 

In this environment,  previous work on the  descriptions of data- 
base  systems has taken  two general directions.  One  approach 
has been  to  improve  descriptions  at a gross-feature level, which 
has lead to some excellent  comparative  descriptions of systems. 
Publications of the CODASYL Systems  Committee' typify results 
of this  approach. Such descriptions,  however, tell us only about 
the  external  appearance of the  systems.  They  do  not give suffi- 
cient detail in the right form for  one  to  see how the  systems 
work. 

Other  workers  have  constructed more detailed  system-indepen- 
dent  descriptions, which are  presented in a  scattering of  signifi- 
cant  early  papers such as Mealy,2 D ' I m p e r i ~ , ~  and  Information 
Algebras.4  More  recently, with the recognition of the  importance 
of data-base  systems,  a growing body of useful publications has 
appeared exemplified by Hsiao  and  Harrary,s Earley,' 
SHARE/GUIDE,7 Data Base Task  Group ( D B T I ~ ) , ~  McGee,'  En- 
gles," Codd," Childs,12 Smith,13 Taylor,14 and  Severance." 
These papers,  however, provide insight only into specialized 
aspects of data-base  systems. For this  reason, it  is  difficult to 
evaluate  these  systems  descriptions with respect  to meaningful- 
ness of their  description of the real world,  independence of their 
programs from changes in physical representation,  power of re- 
presentation,  or possible implementation. 

Basic concepts of the  Data  Independent Accessing Model 

The  Data Independent  Accessing Model (DIAM) also  does  not 
cover all aspects of system  description,  but it does  appear  to 
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describe  and  provide defined, detailed  interfaces  to a broad 
range of components of data-base  systems. 

In creating  this model, we  have looked at diverse, seemingly 
unrelated'concepts  that  have  been used to describe  existing sys- 
tems - indexes,  sequential files, direct files, records, fields, bytes, 
blocks,  tracks,  cylinders,  packs,  and so on-in  search of com- 
mon properties. We have  then used these  common  properties to 
define new general  type  descriptions  for  the  functions.  Variations 
of the parameter  values within the  type  descriptions allow us to 
describe detailed characteristics of older terminologies in a sim- 
pler,  more  consistent  manner. 

By defining these new type  descriptions,  we  have  arrived at an 
overall  model  that  has  the following characteristics: (1) multiple 
self-sufficient levels of abstraction  for describing and solving 
problems concerned with information systems,  and (2) one place 
where  each  basic  function is performed. For example, a name 
decoder  supplants  a file name  decoder,  a  record  name  decoder, 
and so forth.  Also  incorporated is an  appropriate  relative  stature 
of the  various model concepts from the most basic concepts  to 
higher structures  that  are  to  be  described in terms of the  basic 
concepts.  For example, in Part 11, we determined  that  hierarchic 
logical record  structures should be described by the  user in 
terms of the  more  basic  system  interface -the Entity Set Model. 

Such a general  description  has  potential  for  application in de- 
scribing and comparing the complex, monolithic functions of 
existing systems  to discover  their  fundamental differences and 
commonalities. 

It also  can  serve  as  a basis for implementing new data-base  ac- 
cessing systems  that  are  easier to explain,  understand,  and  use. 
By use of its primitive building blocks,  such  a  system could pro- 
vide any  desired data representation  structure.  This could ease 
the problem of long-term evolution  from existing systems. The 
general  description is also a basis  for the simplified calculation 
of relative file organization  performance,  and  for  a generalized 
data representation  translator. 

The DIAM structure  consists of four  successive  levels of abstrac- 
tion-an  Entity  Set Model (previously discussed),  a  String  (or 
Access  Path)  Model,  an  Encoding  Model,  and  a  Physical  De- 
vice Model.  Each lower level combines with the  higher-more 
abstract  -levels  to  provide a self-sufficient, more simplified envi- 
ronment  for solving some  appropriate information system design 
problems. The model levels are illustrated in Figure 1.  

The earlier work of Davies,l' Engles," and Mel t~e r , ' ~  with re- 
gard to Entity  Sets  provides  the  basic  concepts in our informa- 
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Figure 1 Data independent accessing model 
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tion structuring  (Entity  Set Model) level. We have only  modified 
these  concepts slightly, and  used  a more precise terminology. At 
the  lower levels that deal with the  descriptions of storage  repre- 
sentation,  the following basic concepts  are defined: three kinds 
of Strings for describing access  paths,  a Basic  Encoding  Unit 
for describing bit-level encoding of the  strings,  and a Physical 
Subdivision  Specijication for describing device  properties. 

These basic  concepts significantly simplify earlier terminology, 
but  they must be refined to offer a  complete detailed description 
of data  structures  and  data  accessing.  From this point on, we 
expect DIAM to be improved just  as  other models in science  are 
improved. That is, we  plan to describe more features of exisitng 
and  proposed  systems by varying the values of parameters that 
we define. If the model does  not  exactly  describe some signifi- 
cant  aspect of a  system, then the definitions of the  parameters 
will be modified to improve  the  description. We believe that 
most significant features of data  structrures  and  data  accessing 
can be described without major descriptive  changes  to  the  pres- 
ent model. 

As previously indicated,  observations are an  important  aspect of 
the scientific approach  to  data-base  system models. Observa- 
tions to define and  test  a general model for  representations of 
information in data-base  systems  are relatively easy  to  obtain. 
The necessary  observations are descriptions of the  data  struc- 
tures  and  accessing languages of existing or proposed  systems. 
To obtain  test  observations, we have studied descriptions with a 
wide range of characteristics. These descriptions include the 
Data Base Task  Group Report (DBTG),' the  Generalized  Infor- 
mation System (CIS),'' the  Integrated Data  Store (IDS)," the 
Information Management System (IMS)," the  Index  Sequential 
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Access  Method (ISAM),'* the Sequential Access  Method (SAM)," 
and  the  Time  Shared Data Management System (TDMS)'~ De- 
tailed discussion of these  systems is beyond the  scope of this 
paper.  Certain  aspects of these  systems  are,  however, given lim- 
ited use as examples of the  descriptive capabilities of DIAM. The 
references  just given provide  adequate  introduction  to  the  sys- 
tems. 

The  Data Independent  Accessing Model (DIAM) structure is 
based on the  hierarchic  set of models previously mentioned. 
This  structure is illustrated in Figure 1. DIAM does  not  attempt 
to  provide a complete model of real-world information. Rather, 
at the  interface  between real-world information and  our overall 
descriptive model, the  Entity  Set Model is specified as a  struc- 
tured model of the real-world information. The Entity  Set Model 
together with an accompanying Representation  Independent  Ac- 
cessing Language (RIAL) for describing the  accessing of the  Enti- 
ty Set  Descriptions  are tailored to be a self-sufficient level where 
the  end  user can discuss,  specify,  and  solve  the problems of in- 
formation structuring  independently of extraneous  details of 
implementation. Using a set-like notation at this level, we wish 
only to  discuss  the information to be stored, its interrelations, 
and  the  questions  to be asked by the  end  user. 

At  the  next lower level of the  hierarchy in Figure 1 we specify a 
String  Model for describing and tracing through all interesting 
representations of the  Entity  Sets in terms of access  paths. (By 
interesting, we mean all representations  that  have  reasonably 
general applicability for which there is no obviously more effi- 
cient  representation.) The String Model and its associated Rep- 
resentation  Dependent  Accessing  Language (RDAL) use graph- 
like notions,  and its parameters are specifications for  the  compo- 
sition, interconnection, and ordering of subsets. The String 
Model is used to  discuss,  specify,  and  solve problems of efficien- 
cy of representation,  search,  and  maintenance  to  the first order. 
Typical problems deal with the possible use of indexes,  hierarchic 
structured physical records,  and serial vs.  direct  search. 

The Encoding  Level of the  hierarchy is concerned with the bit- 
pattern encoding of the string paths. Specified at this level is an 
atomic  unit called the Basic  Encoding  Unit (BEu). There is one 
BEU for  each  element of the  access  path  structure. It is our goal 
to describe all interesting encodings of data from generalized list 
structures  to fixed-record-length sequential files  by varying the 
parameters  for  the BEUS. At the Encoding Level, we can discuss 
questions of efficiency of storage  and  search  to  the  second  order. 

At the final - most detailed hierarchical level -the encoded 
structures  are  allocated  to physical devices. This is the Physical 
Device  Level where  the most detailed efficiencies are  to be 
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gained from appropriately  understanding  and using device  char- 
acteristics. The main considerations deal with space  and  over- 
flow-handling rules  for physical subdivisions of the  devices. 
Here, again, the goal is to  describe all possible interesting varia- 
tions at this level. 

Relationship between  the Entity Set Model  and  the String 
Model 

There has been considerable  discussion of data  independence 
in the  literature, i.e., the  separation of logical (information 
structure)  aspects of data-base  systems  and physical (representa- 
tional) aspects.  The goal of data  independence-  that programs 
address  stored information by a  name structure does  not  change 
over time - is a continuing objective. The Information Manage- 
ment System (IMS) has  taken  a first step in this  direction with its 
separation of logical structure  names from names  for  its physical 
structure. DIAM is a further generalization of this  property. 

Earlier  discussions in this  paper  are intended to make it clear 
that name structures  for  representations of information in a data- 
base system  are relatively unstable. That is to say,  each  time  a 
new Role Name is added to  an  Entity  Description  a new repre- 
sentation (i.e., new record  type) must be created and the new 
representation must have  a new name so as  to distinguish it from 
older  representations  for encoding and decoding purposes. 
(Relational theory has  a naming convention similar to  that  for 
representations, wherein an n-tuple has a different name from an 
(n + 1)-tuple. For example, each projection has a different 
name. Thus relational naming structures  are similarly unstable.) 
We can, of course,  override  this instability by providing a map- 
ping scheme from one  representation  to  another. Such a map- 
ping scheme,  however,  requires  either  a pairwise mapping 
among all related representations in the  system, or a mapping 
chain from one related representation  to  another. Both of these 
alternatives seem unnecessarily complex. 

I For economy  and  stability,  the DIAM information interface pro- 
vides the end user with one relatively stable name structure 
(or  a progression of a small number of stable name structures)  to 
which all representation name mappings are referred.  This name 
structure is based on names by which the  user  refers  to  entities 
in the real world. When a new role name is added  to  the  descrip- 
tion of an entity in the real world,  the name of the  description 
need not  change  because it is not used directly in the encoding or 
decoding of particular  representations.  In  other  words relation- 
ships between Description Set  Names and their Role Names 
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need not  be  changed. Old programs that exploit these relation- 
ships thus remain valid. Mappings need only be pairwise between 
the  standard  name  structure of the  Entity  Set Model and  each 
representation. 

Thus,  as in the IBM Information  Management  System (IMS), we 
have  two different sets of names - one  set  for logical structures 
and a second  set  for physical representations  for  these logical 
structures. The set of Entity  Set Model Names  stands  for con- 
cepts in the  real world, and programs written in terms of these 
names are independent of data  structure  representation. The 
other is a set of String Model Names  for  representations,  and 
programs  written in terms of these  names are  data  structure 
representation  dependent. The system catalog provides  for 
mapping from one  name  set to  the other. Thus data-independent 
programs written in terms of Entity  Set  Model  Names  can  be 
mapped into  appropriate  programs in terms of the  String Model 
Names,  which, in turn, can access existing representations. 

I 

The String Model 

The String Model level is the first step  toward efficient represen- 
tation in computers  -considering both space and time - of the 
Entity  Set Model. 

I 

It results from the realization that  a simple, self-sufficient, gen- 
eral model of  file organization can be based on descriptions of 
unidirectional paths  that  provide  direct  access between repre- 
sentations of information elements  drawn from the  Entity  Set 
Model. These descriptions are specifed in terms of three kinds 
of Strings that  correspond to the  three kinds of associations of 
the  Entity  Set Model. The strings describe  access  paths in terms 
of connected,  ordered  subsets of the information elements. 

This paper is primarily concerned with the general form of the 
parameters  for Strings rather  than  the values that  the  parameters 
might take  for  a specific set of data. 

The String Model level has been found to  be useful in describing 
the file organizations of existing and proposed  systems at a level 
of abstraction  that eliminates the confusion generated by the 
many possible encodings and physical device  implementations 
of identical basic  structures. This capability allows us to see 
many common elements in what  appear  to be completely unique 
functions.  Another capability is that of determining the relative 
efficiency of various possible access-path  structures with a very 
simple yet general performance model. 

The String Model level has some parallels in the V-graphs of 
Earley,fi though it differs in two principal ways. We make the 
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Figure 2 String types 

A-STRING TWO ENCODED A-STRING REPRESENTATIONS 

PARTIPARTSUPPLlEDlGEAR 

ALPHA 

E.STRING PHYSICAL SEQUENTIAL FILE 

'8 ALPHA 

ALPHA 

L-STRING AN ENCODED L-STRING REPRESENTATION 

RECORD . 

type-instance  distinction, which in information systems  provides 
a much greater  power  and  conciseness in the  description of the 
data  structures  and  data  structure  searches.  Also  Earley's  se- 
mantics refer to descriptions of data  structures  at  our String 
Level,  whereas our semantics deal with the meaning of concepts 
in the  real world. 

In  general, only three things are required  to specify a kind of specifications 
string: for  strings 

Subset of the  elements  on  the  string 
Order of the  elements  on  the string 
Strings to which a given string  connects 

Corresponding essentially to  the  three  associations mentioned in 
connection with the Entity  Set  Model, are  the following three 
kinds of strings. 

Atomic  Strings  (A-Strings) connect specified subsets of Name 
Set  Name/Role  Name/Entity  Names  triplets  from a single entity 
in a specified order. The subsets  and  order  are specified by an 
ordered  Exit  List of the  Role  Names.  This is shown in Figures 2 



Figure 3 String model example 

SHIPMENT DESCRIPTION SET 
ID=CORPISUPP.  PROJIPROJ SUPP, 

PARTIPART  SUPPI-  ID=NUM/SHIP  NUM 
PARTIPART  SUPP 

n PARTIPARTI- 

and 3 where  an A-String named ALPHA connects PART~PART 
SUPPLIED to NUMBER/SHIPMENT NUMBER in that  order. 

Entity  Strings  (E-Strings) connect specified subsets of elements 
that  have  the  same  type  description in a specified order. The 
subsets  are specified by general Boolean conditional statements 
on triples stored in instances of the specified-type description. 
The  order is specified in terms of sort  orders of specified nested 
Role Names within the  type  description. An E-String may be 
used to  connect  subsets of A-Strings.  In  Figures 2 and 3 an E- 
String named GEARS connects only those  A-Strings named 
ALPHA where PART~PART SUPPLIED = GEAR. It connects them 
in alphabetical  order  based  on NUMBER/SHTPMENT NUMBER 
values. 
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Link Strings  (L-Strings) connect  elements based on a match 
between Entity Names  for  the  same  Entity  that  occurs in each 
of the  elements (which may be  an A-String, an E-String, or an- 
other L-String). For example, if we have a second  Description 
Set called PART that i s  identified by a Name Set  Name/Role 
Name, PART , then we can specify an L-String that  connects  an 
A-String BETA defined on PART (whose identifier is GEAR) with 
the  E-String named GEARS because  the E-String contains all the 
Entities in Shipment where PARTlPART SUPPLIED = GEAR. 

Figure 3 is a  schematic diagram of a specified string structure 
for  the  Description  Sets in Figure 2 of Part 11. Table 1 of the 
present  part  provides a catalog for  Figure 3 .  

To create  a generally useful description of access  path  struc- 
tures, we could have defined one general kind of string with a 
large set of possible parameters  that would allow us to  create a 
path from  any information element in the  data  base  to any  other 
element.  In specific situations we would leave undefined those 
parameters  that are  not  appropriate.  Alternatively, we could 
define one or more kinds of strings,  each having only the param- 
eters  appropriate  for defining all those  paths  that  have any likeli- 
hood of ever being used in an actual  system. 

We have  chosen  the  second  option  because  three kinds of 
strings with appropriate  -though  somewhat different - parame- 
ters  arise naturally out of existing file organizations  and the 
three  types of associations mentioned in the  Entity  Set Model in 
Part 11. These  three kinds of strings  also  provide  a useful con- 
ceptual  interconnection to the  Entity  Set  Level. 

Another  reason  for  not selecting one  general kind of string is 
that we want  to make it relatively simple to specify paths that 
normally make sense  and  to  bias  the model against  the selection 
of feasible  but  impractical  paths.  This biasing parallels the  situa- 
tion in machine organization where meaningful registers and 
operations  tend to be selected preferentially. The resulting ma- 
chines  can simulate, although with considerable  overhead,  the 
simple less meaningful operations of a  Turing machine. We im- 
plement the more meaningful machine organizations,  however, 
because  they  are more convenient to use and in most cases more 
efficient for  the  problems we  wish to solve. Such  a meaningful 
biasing of string definitions is a key distinction  between DIAM 
and the models proposed in excellent  papers by Smith,13 Tay- 

and Severance.” 

Of course,  whenever  one  restricts  the kinds of interconnection 
that  can be easily specified, he must be alert  not  to  lose  any  use- 
ful generality. The problem of generality has motivated studies 
of string descriptions of existing file organization concepts. Re- 
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Table 1 String catalog 

Name  Set  String  String 
Name  Type  Identifiers  Name  Name  Type  String  Parameters 

- 

PART Description (PART) 
Set  Name 

- 

PARTIPART RN - PART 

PART/ 
PART  COLOR RN - COLOR 

PART/ 
PART  WEIGHT RN - WEIGHT 

SHIPMENT Description (SUPPLIER, - 
Set  Name PROJECT 

SUPPLIED, 
PART 
SUPPLIED) 

(SHIPMENT - 

NUMBER) 

BETA ASG [EXL = (PART,  PART 
COLOR,  PART  WEIGHT); 
ON = GEAR  SHIP] 

GAMMA ASG [EXL = (PART  COLOR. 

SHIPMENT/ 
PART 
SUPPLIED RN - PART 

SHIPMENT/ 
PROJECT 
SUPPLIED  RN - PROJECT 

SHIPMENT/ 
SHIPMENT 
NUMBER RN - NUMBER 

SHIPMENT/ 
SHIPMENT 
WEIGHT RN - WEIGHT 

SHIPMENT/ 

COLOR 
INDEX 

GEAR 
SHIP 

- 

- 

- 

- 

- 

ALPHA 

GEARS 

- 

- 

- 

- 

SUPPLIER RN - CORPORATION - 

PART); 
ON = COLOR  INDEX] 

ESG [EXL = (GAMMA); 
00 = (PART  COLOR) 
ON = ENTRY] 

LSG [EXL = (BETA,  GEARS); 

GEARS.  ALPHAJPART 
MC = (BETAIPART = 

SUPPLIED) 
ON = ENTRY] 

- [ON BETA; 
ON = GAMMA] 

[ON = BETA; 
- ON = GAMMA] 

- [ON = BETA] 

ASG [EXL = (PART  SUPPLIED, 
SHIPMENT  NUMBER); 
ON = GEARS] 

ESG [EXL = (ALPHA); 
SEL = (PART  SUPPLIED = 
GEAR) ; 
00 = (SHIPMENT 
NUMBER) 
ON = (SEE PART- 
GEAR  SHIP)] 

- [ON = ALPHA] 

- [ON = ALPHA] 

Abbreviations: EXL = Exit List; 00 = Order On; SEL = Selection Parameter; MC = Match On Criteria; RN = Role Name 



ferring to Figures 2 and 3, recall that many data-base  systems 
provide direct  paths between fixed- or variable-length fields in a 
pointer-connected  list,  segment, or one-level record. The basis 
for  these  paths in the String Model are  the A-Strings exemplified 
by the ALPHAS, BETAS, and GAMMAS. The String Model in this 
case helps us see  that  there are certain basic properties of these 
apparently unique things that are exactly  the  same. Based on 
this insight, we can now write  one piece of program that is gen- 
erally useful in processing all these  apparently unique things 
rather  than a separate program for  each. 

For transactions  that  request information on  a  particular Entity 
from more than one  Description Set, direct  access  paths  have 
been provided by data-base  system physical structures called 
physical hierarchic  records. The basis for  these  structures in the 
String Model is exemplified by the combination of strings: GEAR 
SHIP, BETA, GEARS,  ALPHA. Here,  the L-String GEAR SHIP 
connects  the A-String BETA -the root  (master) segment repre- 
sentation-  to  the  E-String GEARS. The E-String GEARS connects 
a list of A-String ALPHAS, which are leaf (detail) segment repre- 
sentations.  Hierarchies with more levels and more types of seg- 
ments at  the same level are easily representable. At the String 
Level,  the hierarchic records of IMS, CIS, and IDS look essential- 
ly alike. 

The strings COLOR INDEX, GAMMA provide  the  lowest level of 
what is often known as a  secondary  index. The essence of such 
an index is the  selection of a pair of Role Names-a secondary 

ordering the Role Name pairs on the basis of the  secondary key 
Entity  Names.  Higher levels of the index can be constructed by 
selecting subsets of the  secondary key-identifier pairs. 

key (COLOR/PART COLOR) and an identifier (PARTIPARTI- and 

Within the  structure of the  string model, it  is possible to  describe 
a wide variety of variations  such as sequential files, direct  hash- 
addressed files, primary and  secondary  indexes,  generation  data 
groups,  key  ranges, and their  combinations in terms of ordered 
interconnected  subsets of Description Sets and Role Names. 
We have not found any path structures  whose  precise  descrip- 
tion requires major modifications of existing parameterizations 
of the  three kinds of strings,  and we have found that having the 
three kinds of strings does simplify the study  and solution of the 
search  path  resolution problem to be  discussed  later in this pa- 
per. Should  there  be a need for a path  that is not  covered by the 
present string parameters, it would be a  path  that is based on a 
relationship between information elements from different enti- 
ties. Such  paths could be provided by expanding the definition of 
the L-String. 

The selection of the  best  access-path  structure from a  set of 
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candidates is one of the  crucial  factors in achieving performance 
in data-base  systems. Selection could be made by using existing 
simulations and calculating exact times for  retrieval considering 
block access  times,  device queuing, etc.  These simulations, 
however,  are  tedious  to  set  up and often run much slower  than 
the  actual  transaction program. In such a situation, the overhead 
to  select  a  path  becomes larger than  the  cost of using a  less effi- 
cient  path.  Desired is a faster, simpler method of path  selection, 
which we believe the string model provides. 

In particular,  the String Model Catalog  provides  a good struc- 
ture  for recording the  statistics on the  number of nodes  for  each 
type of string.  Given a query  and usually a small set of possible 
paths  stored in the  system, it is relatively simple to determine 
the  number of nodes  that  must be touched along a particular 
access  path  to obtain  the  answer  to  the  query. It is possible, 
therefore,  to  decide on the  best  path by selecting the  one  that 
requires  the minimum number of nodes. If higher relative  accu- 
racy is required,  these  node  counts  can be crudely weighted as  a 
function of the kind of string,  the  nature of the encoding 
(contiguity vs. pointers),  and  the  device  that  the string is stored 
on. Since possible paths normally differ greatly in performance, 
these  additional  considerations should provide  correct relative 
selection in most  cases. 

A similar process  can be useful in selecting among possible file 
organizations to  support a  transaction  load. Here,  the relative 
sizes of two file organizations are  factors  that affect storage 
costs  and  to  some  extent  the  number of block accesses. All 
things considered,  an  appropriate model that is accurate  to  a fac- 
tor of two is probably  adequate. In essence,  the String Model 
provides  a  basis  for choosing among access path organizations, 
thereby allowing us to  extract this problem out of the complex 
total problem of hardware  and  software  selection  and to solve it 
independently. 

At this  point, it  is appropriate  to  consider  further  the  interac- 
tions between the  Entity  Set Model and the String Model. The 
most obvious connection is that  the String Catalog is simply the 
Entity  Set  Catalog with some of its  entries augmented by addi- 
tional string parameters. There  are now two different sets of 
names -one  set for  concepts  (Entity  Set Model Names)  and  the 
other  set  for  representations  (String  Names). The relationships 
between  these  two  sets of names  are  described in the String 
Catalog. 

As indicated in Figure 1 ,  each model has  its own accessing lan- 
guage. The purest form of Representation  Independent  Access- 
ing Language (RIAL) allows requests  for  subsets of the informa- 
tion stored in the  system to  be made completely in terms of set 
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Figure 4 Spectrum of several data accessing languages 
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operations on Entity  Set Model names  without specifying search 
procedures and paths to be followed for  accessing  the  desired 
subsets. For example,  the language used for  Representation 
Independent  Accessing by DIAM contains  statements  such as  the 
following: 

Form set s1 contuining (SHIPMENT  NUMBER, PART SUPPLIED) 
from SHIPMENT such that SllPART  SUPPLIED equals GEAR. 

This  statement  contains  no  procedures  that  mandate or describe 
how the  search should be conducted. 

The  purest form of Representation  Dependent  Accessing  Lan- 
guage (RDAL) would provide  for  a  complete specification of the 
paths in the  representation to be followed to  obtain  the required 
information. For example, a detailed RDAL might involve the 
following functions: 

GET  GEAR  SHIP 
GET BETA 
GET  GEARS 

A GET NEXT ALPHA 
WRITE S1 (SHIPMENT  NUMBER, PART SUPPLIED) 
IF LAST  ALPHA, STOP 
ELSE GO TO A 

Assumed here as in most systems  the decoding of an A-String 
ALPHA is so straightforward that it can be specified in a  nonpro- 
cedural  fashion.  Most existing accessing languages are hybrids 
of the  two pure forms.  In  Figure 4, we place various languages 
on a  spectrum from representation  dependent  to  representation 
independent  accessing. 

 LISP'^ is the only language that gives microscopic  path  access  to 
each  element of information (although,  for  our  purposes, it does 
not make the crucial type-instance  distinction  for describing 
access  paths). With regard to  systems  that make the type-in- 
stance  distinction,  the Data Base Task  Group Language (DBTG) 
accesses  records  as if they were sets of attributes. All other 
search  operations,  however, involve path-following instructions. 
The Information Management System (IMS)'" and the  General- 
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ized Information System'' have slightly more power  to  search 
hierarchic  structures with set-oriented  instructions.  Since all 
the  above  systems involve some  path following, the RDAL is a 
reasonable  base  for providing compatible language support  for 
them. The  System/360 Management  Information  System 
(MIS/360)25 and  the  Time  Shared Data Management  System 
(TDMS?~ are completely set  oriented  but  they  both  lack the capa- 
bility for  accessing multiple sets  (the multifile query). 

search The problem of a general translation  between  a  pure RIAL and  a 
path pure RDAL is precisely equivalent  to  the problem of obtaining 

resolution the  most general form of data  independence along with high ac- 
cessing efficiency. Systems generally achieve high levels of data 
independence by restricting  the kinds of file organizations they 
support,  thereby reducing their  data-accessing  performance. 
Alternatively, they achieve high  efficiency  by sacrificing data 
independence. DIAM is a  structure  for achieving both efficiency 
(generality of file organization) and  data  independence. 

In DIAM, the  translation problem is called search  path  genera- 
tion,  and it has  the following three  phases. 

Search-path  enumeration involves finding  all paths  to  the  de- 
sired  Role  Names. The catalog illustrated in Table l provides 
this capability directly,  as may be  seen by going to a  particular 
Role Name and following back along the strings that  the  Role 
Name is ON out  to  the  entry point that would be stored in the 
catalog. As shown in Figure  3  and  Table 1, with the RIAL query, 
there is one  search  path  starting at SHIPMENTISHIPMENT NIJM- 
BER that is formed by SHIPMENTISHIPMENT  NUMBER preceded 
by SHIPMENTIPART SIJPPLIED preceded by ALPHA preceded 
by GEARS preceded by BETA preceded  by GEAR SHIP  (ENTRY). 
A second path follows the  same  set of strings  to GEAR  SHIP 
starting  at SHIPMENT~PART  SIJPPLIED. 

Search-puth  resolution involves the  observation  that  the  answer 
to  the SHlPMENTlSHlPMENT NUMBER query  can  be Completely 
obtained  from  the GEAR  SHIP paths.  Existing  systems with re- 
stricted or single methods of representations  have fixed algo- 
rithms for resolving set-oriented  queries  into  search  procedures. 
Little  has  yet  appeared in the  literature  on resolving general 
set-oriented  queries  into  graph-oriented  search  procedures  for 
general representations. 

Search-path  scoring relates to efficiency calculations previously 
discussed.  Essentially,  search-path scoring involves determining 
which path in a  set of candidates  (say  either GEAR SHIP or  a 
sequential file defined over  the  complete SHIPMENT Entity De- 
scription Set) is the most efficient for answering a  particular 
query.  In  the  query  presented, GEAR SHIP is most  efficient. 
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We have  developed  some preliminary algorithms for  the  transla- 
tion problem that are  to be reported  elsewhere in the  literature. 

As we can see,  the RIAL is directed  toward  Entity  Set  Model 
names where  there is only one name (neglecting synonyms) for 
each  component of the  conceptual  structure no  matter how 
many representations  there are  at  the string  structure level for 
that  component. The RDAL provides a  means  for  searching  the 
existing representations in terms of string names. 

The number of separate  partial or complete  representations  for a security 
particular  entity set can be determined by counting  the A- and 
Strings defined on  it.  Although,  as is shown  later in this  paper, integrity 
an A-String can belong to  several  collections,  there is a  one-to- 
one  relationship  between A-String instances  and  their final en- 
coding into bits in the  data  stream.  This  fact  determines  the 
number of copies  (representations) of an Entity Name  that  must 
be changed when the  user  directs  an  Entity  Name  to  be changed 
at  the  Entity  Set  Level.  The  procedure  for locating and  deter- 
mining the number of copies is to look for  the  appropriate  Role 
Name within the catalog and  trace  out all the  paths  to  the  A- 
Strings that may contain it. The subset  selection  criteria  then 
determine  whether the specific A-String actually  exists on higher 
level E-  and  L-Strings. In  the  case of security,  the catalog lists 
all physical  copies of a  fact  under  one  Role  Name.  This  means 
that  the  user can apply his security  requirements  to  the  fact  rath- 
er than to ali physical copies. The catalog,  therefore,  provides  an 
excellent  format  for storing information required  for  data-base 
integrity and  security with respect  to updating, insertion,  and 
query. 

The Encoding Level Model 

The encoding hierarchic level of DIAM describes  the bit-level 
encoding of strings in a very general way. Considering  the  desir- 
able uniform characteristics of bit or byte  streams, it appears  to 
be worthwhile to  extract  these uniform characteristics  for  anoth- 
er self-sufficient level and  leave  the  complicated  consideration of 
parameters  for describing and handling physical devices to a 
separate level. This  has been a useful separation  because it has 
led us to  the specification of a single form of Basic Encoding 
Unit (BEU). This  one  form is a sufficient primitive element  for 
building most useful encodings of collections of information in 
information systems. The requirement of only one form to en- 
code file organizations allows the specification of a small table- 
driven BEU encoder/decoder  for handling all levels of  file organi- 
zation (files, records,  etc.) in a uniform manner.  Since  the basis 
for  the encoding level is an addressable bit or byte  stream,  this 
level is well-suited for implementation as  the  software  interface 
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to a virtual  address machine. It also  provides  an  excellent basis 
for a data translator. 

basic In reviewing existing structures,  one finds space  set  aside  for 
concepts actual field values and  for  the following three  types of control 

encoding 
of information: 

Names  for files, records, fields, etc. placed so that a program 
may determine the  nature of the  component  to be decoded. 
Length  indicators  for files, records,  fields,  etc. 
Physical pointers  to  the  next  component  to be decoded. 

Since  each of the control information components  looks like a 
field value, it seems possible to  create a model that simply con- 
siders  each  control field as  a  pseudo-attribute  and  then defines its 
characteristics (length, etc.) in the  same way as is done  for  ac- 
tual field values.  An encoding-decoding program could then use 
the  control information pseudo-attributes to supply the decoding 
information that it requires.  Excellent models of this kind are 
presented in the  papers of  Smith,13 Taylor,I4 and Severance.15 
Such models, while quite  general, give the user little systematic 
guidance on what pseudo-attributes should be defined and  where 
they should be placed in the catalog. These models also  require 
a decoding program that must be  prepared to decode  almost  a 
random stream of intermixed control  and field-value informa- 
tion.  Preferable is a more systematic  structure  that gives general 
power with a few well-defined parameters. To accomplish this, 
we look again for regularities and similarities. 

One generalization is that  a length indicator is very much like a 
pointer  that points to  the  end of a collection rather  than  to  the 
beginning. Also,  two fields related by contiguity are simply re- 
lated by a special type of pointer  whose origin is immediately 
after  the  present field and  whose  displacement is always  equal  to 
zero.  A final and  extremely useful observation  derived from the 
String Model is that all file organizations are composed of 
named interconnected collections: A  string  has  a  name; it is a 
member of one  or more higher level collections: it provides  an 
entry  to a collection of information defined by its parameters; 
and it requires  a  means  for determining the end of its collection. 
These  features  appear  at all levels of existing structures.  Files, 
records, and fields are simply names for  particular kinds of 
collections of smaller  units that  are connected  into  one or more 
larger collections. 

These observations lead directly to  the specification of the Basic 
Encoding Unit (BEu), one  for  each String instance  (or Role 
Name instance on an A-String), and a corresponding BEU-type 
specification, one  for  each string type  (or  type  occurrence of a 
Role Name  on  an A-String) in the catalog. Each BEU has the 

80 SENKO,  ALTMAN,  ASTRAHAN,  AND  FEHDER  IBM SYST J 



same general format  and  set of parameters no matter what kind 
of String or Role Name it represents. The recognition that  attri- 
bute  values,  records,  and fields are all special cases of collec- 
tions  leads to a simplification and  systematization of the  parame- 
ters  required to describe  these  values. It also provides a basis 
for  a simple table-driven BEU decoding program that  decodes all 
levels of a given file organization in a uniform manner. That is, 
file, record, and field names are all decoded by the identical 
small set of instructions. 

When the notion that contiguity of BEUS (fields, records) is ob- 
tained by a special case of pointer  and  that  pointer  value is 
the  same  for all instances of a BEU type,  then  the possibility of 
factoring  the value information of the pointer  into  the catalog 
becomes  apparent.  The realization that  the  factoring  tactic  can 
be applied to all components of the BEU leads to a general capa- 
bility for describing data  structure encodings. 

There  are  the following three basic concepts  at  the encoding 
level: 

Named  Address  Spaces (AS), which provide  reference  addresses 
for  the  placement of encoded  units  and  for  pointers  to  encoded 
units. 

Basic Encoding Units (BEu), which provide  a single basic  format 
for encoding all Strings  and Name  Set  NamelRole  Name/Entity 
Name  triplets. For each named type  (for  example,  the A-String 
Type ALPHA, the E-String type GEARS or  the  Role  Name  type 
PART SUPPLIED) there is a specified mu-type format specifica- 
tion associated with its name (ALPHA,  GEARS, etc.) in the  cata- 
log. For each instance of the named type  (for  example, 
PART~PART SUPPLIED~GEAR in the SHIPMENT Entity  Description 
where NUMBER/SHIPMENT  NUMBER/^^^ is the Identifier), there 
is a BEu in the data stream. 

Factoring is a method analogous to algebraic factoring, by 
which information common to all BEUS of a BEU type  can  be 
placed in the type description in the catalog rather  than in the 
BEUS in the  data  stream.  In some cases,  the  method can be ap- 
plied to all components of a BEu-type with the result that  there 
will  be no bits required in the  data  stream  for  the BEU represen- 
tation. 

In  this  paper,  we  use  the simplest form of Named  Address 
Space,  the  Linear  Address  Space(s) (LAS), which are uniquely 
named,  one dimensional, potentially infinite bit (byte)  streams. 
Each bit (byte)  has  a unique integer address.  Data  and  pointers 
are  encoded in terms of these  address  spaces  and  the  address 
spaces  themselves  are  allocated to physical devices by pro- 
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cedures  described in the  later discussion of Physical  Device 
Space  Models.  Each LAS can be considered  to  be a named Vir- 
tual  Address  Space. 

basic There is a Basic Encoding Unit (BEu) for  each  instance of a 
encoding string,  and  for  each  instance of a Role Name on an A-String. 
unit Four  types of components  appear in  all BEUS in the following 

format: 

LABEL TERM VPTR APTR N . . . APTR 2 APTR 1 

A LABEL component  contains an encoded Name  for  the collec- 
tion of information that  the  String or Role Name defines. The 
encoded Name may simply be the String (or Role) Name  or 
some  encoded  synonym. 

There  is  one ASSOCIAT~ON POINTER (APTR) component for each 
distinct collection of which this BEU is a member. The APTR 
contains  the information necessary to determine  the  Address 
Space location of the next BEU of the distinct  collection. (For 
example, in Figure 3 ,  BETA and GEARS are members of the 
collection GEAR  SHIP. The  access path from BETA to GEARS 
connects  these  two  members of the collection and is represented 
by an APTR in the BETA BEU format.) 

The VALUE POINTER (VPTR) contains the information necessary 
to  determine  the  starting  Address  Space location of the collection 
defined by the  parameters  for a String  corresponding to this 
BEU. In the  case of a  Role  Name,  the collection consists of the 
Entity  Name.  In  the  case of an A-, E-, or L-String,  the collec- 
tion consists of a  set of BEUs. (For example, in the GEAR SHIP- 
BEU format,  the VPTR provides  the  access  path  to its collection 
(BETA, GEARS) by pointing to  the location of BETA, the first 
member.) The collection is then  connected  together  by  the  use 
of an APTR component in the member BEUS that  associates  each 
BEu with its  successor. 

The TERM component  contains  the information necessary to 
determine  the termination of the  collection defined by the  string 
corresponding  to this BEU. 

factoring Factoring  consists of placing in the BEU-type description  the 
value of any  component  that  has  the  same value in all instances 
of BEus  of a given type,  thereby removing that BEU component 
from the  data  stream.  This  tactic systematically achieves  any 
encoding combination from generalized list structures 
(unfactored BEUS) to serial fixed-length record files (completely 
factored BEUS). In the DIAM catalog,  there are parameters  for 
each BEu component  that specify how its value is to be deter- 
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mined and how its value is to be used in the encoding and  de- 
coding processes. If the  value of a BEU component is to  be 
found in the  data  stream,  then  the  parameters specify how the 
length of the  byte string containing the value is determined. This 
is sufficient because, during decoding,  the beginning of the  string 
is known. If the value is factored  into  the  catalog,  then  the  cata- 
log entry  contains  the  component’s  value. 

Figure 5A shows  the  stream of unfactored BEus for  the collec- 
tion COLOR INDEX. The BEUS are so placed as  to simplify the 
pointer  representation,  but it should be clear  that any element 
connected by pointers may appear  at any position on the  data 
stream. Any element may even  appear on a different Named 
Address  Space if desired. The BEU components  are  presented in 
the  order LABEL, APTR,  VPTR,  TERM. 

Figure  5B is specified so that all Entity Names  for  the COLOR 
Role Name have the common length of four  bytes and PART has  a 
common length of six bytes. The terminator  components  can, 
therefore,  be removed from the  Address  Space  and placed in the 
Type description in the  Catalog. 

Figures 5C through 5F illustrate  the  factoring of other  compo- 
nents  into  the catalog until there is a fixed-length record  sequen- 
tial  file representation of the collection, COLOR INDEX, in the 
address  space. The actual  choice of elements to  be factored 
depends on the  possible commonalities between  instances of a 
type  and  the  insert load on the collection. It may,  for  instance, 
be useful to leave  certain  pointers in the  representation  to make 
certain  types of inserts relatively easy  even though the  elements 
of the collection could be made contiguous. 

Figures 6A-D present IDS, IMS, and CIS representations  for the 
hierarchical collection GEAR  SHIP. Figure  6A  shows  the GEARS 
collection terminated by a back pointer.  In Figure 6B the  cata- 
log  is essentially the  same as  6A but with the  redundant length 
field removed. In Figure  6C it  may appear  that  pointers in the 
IMS Hierarchical Sequential organization have been omitted. 
However,  the pointers for  connecting pieces of records  together 
are  not really a  property of the  segments; they are a  property  of 
the physical record  structure of IMS and would not  appear  at  the 
encoding level. In Figure 6D the collection GEARS is terminated 
by count of its ALPHA instances. TERM = (COUNT = 2) in this 
case. 

In  this section we  have  presented  another self-sufficient level, 
the Encoding Level  and  indicated  the  power  that can be ob- 
tained from the simple BEU format.  A more detailed  presentation 
of the Encoding Level is given in References 26-28. We dis- 
cuss  next  the Physical Device  Level. 
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Figure 5 Factoring of the Basic Encoding Unit (BEU) 
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Figure 6 BEU encoding descriptions of four physical hierarchic records 
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Physical  device  level  model 

The Entity Set, String Structure,  and Encoding specifications 
provide a basis for describing many features of data-base organi- 
zations, particularly data  bases in high-speed storage  and in vir- 
tual address  system.  These specifications do not,  however, allow 
us  either  to  take  into  consideration  the periodic structures  and 
inhomogeneous access times characteristic of large-capacity 
DASD or  to tailor storage  organizations  to avoid the often seri- 
ous penalties incurred in random  accessing. Thus it is desirable 
to  have  a mechanism that automatically inserts new records  near 
related old records so as  to minimize long physical access  times. 

In investigating existing systems like ISAM, IMS, and IDS, we find 
that a  rather complex set of parameters is required to describe 
the physical device level. In  this  paper,  we  present only the  out- 
line of the  required  parameterization. A substantial  iterative 
refinement is required to  describe  the wide range of functions 
found at  the  device level in existing systems. Broadly speaking, 
the physical device level has been found to  require the following 
four  major provisions. 
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1 .  Physical  Subdivision  Type  SpeciJcation is provided to define 
properties of named physical subdivision types  such as named 
types of blocks, pages, or  tracks. 

2. Physicul  Device  Formatting provides for  formatting specific 
instances of physical devices in terms of the Physical Subdivi- 
sion Type Specifications in 1. 

3.  Address  Space  Allocation provides a means for  correlating 
named Address  Spaces mentioned in the Encoding Level 
Model with the  formatted  device  addresses.  A named Ad- 
dress  Space may be multidimensional and may span portions 
of one  or more devices  formatted by the specification in 2 .  

4. Placement  SpeciJicutions define a record and describe  where 
the  system is to  attempt  to place it initially. Placement Speci- 
fications interface the Physical  Device Level Model with the 
Encoding Level Catalog. 

In existing data-base  systems,  the specifications of physical de- 
vice formatting  and  the  properties of the  various physical sub- 
divisions are deeply embedded in the  system  or  access-method 
program. To provide a model with more general flexibility these 
aspects must be  externalized in the form of separable, parame- 
terizable  components. 

The first step in the  parameterization  process is to  note that 
here,  as with the  earlier levels, it  is useful to make the type-in- 
stance  distinction.  Hints of type  description  are  found in the 
Indexed Sequential Access Method (ISAM) which has  four  types 
of physical subdivisions -prime, overflow, track  index,  and 
higher level index.  Each physical subdivision type can be speci- 
fied in the following fashion: 

Composition in terms of its component physical subdivisions 
Contiguous  Data  Group (physical record) insertion process 
Available spuce handling process 
Ove&u! handling of Contiguous Data  Groups 

These specifications are  illustrated in the ISAM example  that fol- 
lows. 

Physical Device  Formatting is simply the assigning of Physical 
Type Specifications to actual  device  instances. The correlation 
is made by indicating an origin in actual device  space  for  a list of 
particular  type specifications. From  the  example in Figure 8,  
the Specification ORIG = PACK (17), CYLINDER (71, FORMAT = 9 
(CYLC) defines cylinders 7-  15 of pack 17 as ISAM-type cylin- 
ders with one index track, 17 prime tracks  and  two overflow 
tracks. 

Given  a formatting of devices, named address  spaces must be 
allocated  to  them.  A major characteristic of allocation is that it 
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may  be discontinuous with respect  to  the physical device  ad- 
dress  space. In the  case of OS/360 extents  for  a  data  set,  for 
example,  the first extent might cover  device  cylinders 1 -7 and 
the second,  device  cylinders  12- 14. There is no reason why 
address allocation cannot be generalized to be discontinuous to 
the  byte level, but it seems  that  the definitions of start  and  end 
points of extents in terms of blocks,  tracks, etc. provide a 
reasonable level of detail. An example  allocation might be 
ASPACEA = (PACK = 7 (CYLINDER = 1, 7 (TRACK = 5 ,  9 (BLOCK 
= 3,6)))) which allocates  address  space ASPACEA to pack 7 where 
the  allocation  runs through blocks 3 to 6 of tracks 5 to 9 
of cylinders 1 to 7. If we defined a linear address  space,  then  the 
addresses  exist in terms of bytes  (bits),  where  byte 0 is the first 
byte of pack 7, cylinder 1, track 5, block 3. Higher dimension 
addresses may also be defined if desired,  such as bytes within 
tracks  where  the first address  on  cylinder 3 becomes  Track = 10, 
Byte = 0. In  the ISAM example,  the  Address  Space is simi- 
lar  to  the  Device  Address  Space  and  is,  therefore, multidimen- 
sional. 

Up  to this  point,  the  Physical  Device Model has been indepen- 
dent of the Encoding model. The Physical Device Model catalog 
(which may  be merged with the  other  catalogs of the  system) 
includes the following items: 

Physical Type Specification names 
Physical  device  names with their  format  specifications 
Address  space  names with their allocation specifications 

This catalog specifies an  independent mechanism for  storing  and 
retrieving records with relatively comprehensive  space  and  over- 
flow handling. 

Required by the  Physical  Device  Level Model is a more gener- 
alized definition of a  record  and  its  placement.  In  existing sys- 
tems,  the unit of placement is usually called a  record with an  ad 
hoc definition that  varies from system to system-  hierarchic 
records,  master  records,  detail  records,  and so on. In general 
descriptive  terms, a record is a  reasonable-sized  set of Entity 
Model Names  and  control information values related in a fixed 
fashion by physical contiguity. To avoid confusion, DIAM uses 
the  term Contiguous Data  Group (CDG) instead of record. A 
CDG is a set of BEUS that  are  related by contiguity and placed as 
a unit. Under this definition, the records of ISAM, GIS, and DBTG 
are CDGS as  are  the  segments of IMS. A placement rule, directly 
associated with the highest level BEU catalog description of each 
CDG, states  that  the CDG is placed in the first appropriate avail- 
able  space in the  address  space  after  the  prescribed  address. 
(The  term  “appropriate” is related  to E-String ordering, CDG 
insertion,  and  space handling rules.) 
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Figure 7 Physical type specification  for ISAM cylinder overflow 

COMP=10  BYTES 
OVERFLOW=NONE ^ ^  

SPACE=CONTIGUITY 
" Y  

COMP=1600 BYTES 
INSERT  OVERFLOW= , 
NEXT  BLKP 1599 
SPACE=CONTIGUITY 

COMP=410 BYTES 
INSERT  OVERFLOW=NONE U 

4 0 9  

COMP=36 

OVERFLOW=NONE 
SPACE=CONTIGUITY 0 35 

COMP=4 

ADR (TRKO)=ADR  (TRKP) 0 
INSERTOVERFLOW= 

MOD 17 
SPACE=CONTIGUITY 

c I I  I I  I I  
3 

COMP=16 I(BLKO)I 
INSERTOVERFLOW= 1 II I '  II ' I  II I I  I I  I I  I I  ' I  ' 
NEXTTRKO 0 
SPACE = CHAIN 

15 

[cyLc_I COMP= 1 

17 

example The Indexed  Sequential  Access  Method (ISAM) makes  use of a 
physical wide variety of Physical Device  Level  Model (PDLM) parameter 

device variations. The creation  and  maintenance of the  indexes, in par- 
level ticular,  requires  a relatively complex set of interactions. For 

model simplicity, therefore,  the following example,  taken from Figures 
7  and 8, is restricted to a PDLM description of the  data  cylinder 
areas. 

Figure 8 Physical device  formatting Composition 

DEVICE 
ADDRESS=7 

I PACK=17 

DEVICE ADDRESS 

Blocks are composed of bytes 

1 
Index Block BLKI = 
Prime Block BLKP = 
Overflow Block BLKO = 

Tracks  are composed of blocks 
Index  Track TRKI = 
Prime Track TRKP = 
Overflow  Track 

Cylinders are composed of tracks 
For cylinder overflow 
Cylinder CYLIC = 

10 BYTES 
1600 BYTES 
4 10 BYTES 

36 BLKI 
4 BLKP 

15 BLKO 

1 TRKI i- 17 TRKP + 2 TRKO 
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CYLS = 1 TRKIS -k 19 TRKP 
CYLSO = 20 TRKO 

Here  the control fields such as  the key field for a block are  not 
specified, but  such specifications are a natural  extension of the 
Composition  structure. 

lnsertion 

CDG identiJication  and  length. Fixed-length ISAM requires nei- 
ther identification nor length for its CDGS because it is assumed 
that all CDGS originate at a single source  that  provides its own 
identification. The fixed position and size of one  Entity  Descrip- 
tion Identifier is provided to  the  access  method. 

Record  ordering . The system program is instructed to maintain 
order  based on the  Entity  Description  Identifier. 

Record  placement. At load time,  the CDGS are presented in or- 
der  and  each CDG is loaded in order by the Entity  Description 
Identifier into  the prime area (BLKPS) only. At run time, CDGS 
are loaded  into a block immediately before  the CDG with the 
next higher Entity Description Identifier. Contiguity is used  to 
maintain ordering in the prime area.  Chains  are used to maintain 
ordering in the overflow area. 

Available  space 

At run  time, available space is maintained in the prime areas by 
contiguity and in the overflow areas by chain. CDGS may be de- 
leted by the  use of a control  character,  but CDGS are  never  part 
of the available space. 

Overflow  handling 

At load time, overflow moves  from BLKP to BLKP until the  last 
BLKP on a track is filled. At this point, the track (TRKI and 
TRKP) overflow rule directs  the overflow to  the next TRKP. Over- 
flow from the  last TRKP on a CYL is sent  to  the BLKPS on a 
TRKI on the  next cylinder. At run time, overflow moves  from 
BLKP to BLKP, and from TRKI and TRKP, onto TRKO on  the same 
CYLC if there is a cylinder overflow, or  to TRKO on CYLSO if 
there is a  separate overflow. 

From  this  example, it  is possible to say that ISAM is the  result if 



however, is capable of generating  other  interesting file organiza- 
tions for  the  experimenter  who wishes to  consider  other kinds of 
transaction  patterns. For example,  one may wish to maintain 
order within a block by chain.  This allows direct insertion of 
new CDGS into overflow without CDG movement in the block. 

Implementation 

Given  a  description of data  structures  and  data  accessing, it  is 
natural to attempt  to  determine  what the model characteristics 
would be if, in the long term, it becomes  part of an  evolutionary 
information system. Our  present  prototype effort is directed to 
proving out  functions  instead of performance,  but the following 
observations  seem realistic. 

In the time-consuming accessing  and  decoding of data  records, 
DIAM is expected  to  require less - and  certainly  no  more- phys- 
ical device accesses to obtain  the  requested  data. To  aid in up- 
ward compatible migration, DlAM is expected  to  provide  any 
data  structure  presently  provided by existing systems,  and in 
addition provide special structures  more  directly tailored to  the 
application. The resultant  system should have  fewer  instructions 
and  modules  for data accessing  than  more  generalized  systems. 

In preparing to  access  data, a tailored system may be  slower 
than existing systems,  depending  on the DIAM implementation 
options  chosen,  the generality of the  data  structures,  and  the 
language used. In particular, precompiled RDAL addressed to 
stable String Structures should be no slower  than existing proce- 
dural languages. The RIAL is probably slower if catalog  accesses 
are scattered  and if the  search-path  selection problem must  be 
solved for  every  transaction.  Even in this  case,  however,  the 
selection of the  best  search  path may result in major economies. 
Here, again, there  exists  the possibility of precompiling RIAL 
transactions of a  particular  class if they occur quite  often.  The 
transactions could then be recompiled whenever a structure  to 
which they  refer  changes. 

The catalog for DIAM is probably larger than existing catalogs, 
but  it probably does  not differ greatly in size  and may be smaller 
than catalogs required  for the combined functions - essential  to 
next  generation  systems -that DIAM supplies. 

Concluding remarks 

Features  that  are  properties of the  String, Encoding, and Physi- 
cal Device Model Levels  have been discussed.  An implementa- 
tion of a very generalized data-accessing mechanism that could 
provide, among other things, many of the desired  functions speci- 
fied by the  Data Base  Task  Group  Report might be based  on 
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For example, mapping from existing file organizations  into 
DIAM’S more general representation  structure  description should 
be relatively straightforward. The translation of a logically ori- 
ented “Get  Next” language like that of IMS into RDAL in the 
case  where  the DIAM representation images the IMS physical 
structure again should be relatively straightforward.  In  the  case 
where  there is no direct imaging, translation  seems slightly more 
difficult, but  the loops and  tests  characteristic of a “Get  Next” 
language should be  transferable  without requiring additional 
information from  the  user. 

DIAM provides  a  clearcut  separation of concept  names in the 
real world at the  Entity  Set  Level from representation names at 
the  String  Level, by use of a catalog structure  for relating the 
two kinds of names.  This  results in a  framework in which it  is 
possible to  achieve full accessing program (RIAL) independence 
of data  structure  representation modification. 

Also provided is an initial basis for defining a  system in which a 
fact need only be stored in one place and so characterized  that 
the  user can only perform meaningful operations on these  facts. 
This is an area  for  considerable  future investigation. 
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