Presented is the Data Independent Accessing Model (DIAM)— a
complete model for the representing, storing, and retrieving of
structured information.

DIAM is a hierarchy of models formed by the Entity Set Model
and three lower modeling levels—the String Model, the Encod-
ing Model, and the Physical Device Level Model.

Data structures and accessing in data-base systems
Il Data representations and the data independent accessing
model

The previous two sections of this paper have reviewed the tech-
nical progress of information systems and the structuring of in-
formation. We now discuss computer-oriented representations
for structured information and the Data Independent Accessing
Model (DIAM) multilevel general description of structured infor-
mation and representations.

The main problem in the field of data-base systems continues to
be in the programming area. Software is difficult to design and
implement. Despite some difficulties in understanding them, sys-
tems engineers are installing and maintaining data-base systems
in a growing number of installations. Applications programmers
are similarly making the extra effort to achieve understanding
so that they can write and maintain application programs.

Much of this comprehension difficulty can be overcome by hav-
ing a simple, fundamental way of describing data-base systems,
Current terminology is representation oriented and incompatible
from system to system, being either too gross (generation data
groups, ISAM) or too microscopic (bit functions in a record de-
scriptor). As a result, we tend to pyramid gross functions and
then implement these functions in terms of microscopic instruc-
tions. This leads us to overlook common, intermediate-sized
functions that can be implemented and described once for the

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST)

system, rather than being coded several times in the inter-
nals of several gross functions and described in slightly differing
detail each time. For example, decoders for the contents of
fields tend to proliferate. Thus there are different decoders for
field contents if they are file names, record names, field names,
field values, record lengths, identifiers, and so forth, and they are
implemented one or more times in each gross function.

Each time a reasonably sized basic function is encoded redun-
dantly in a special form into a gross function, the size of the sys-
tem in terms of number of instructions increases. We are at-
tempting to overcome as many as possible of the difficulties
of understanding, implementing, and debugging systems, dif-
ficulties that many believe are growing at an exponential rate
with respect to the size of the systems. Instead of adding func-
tion on function to obtain generality, we are attempting to
provide descriptions of systems that emphasize common func-
tions to provide generality, upward compatibility, and ease of
understanding.

In this environment, previous work on the descriptions of data-
base systems has taken two general directions. One approach
has been to improve descriptions at a gross-feature level, which
has lead to some excellent comparative descriptions of systems.
Publications of the CODASYL Systems Committee' typify results
of this approach. Such descriptions, however, tell us only about
the external appearance of the systems. They do not give suffi-
cient detail in the right form for one to see how the systems
work.

Other workers have constructed more detailed system-indepen-
dent descriptions, which are presented in a scattering of signifi-
cant early papers such as Mealy,” D’ Imperio,’ and Information
Algebras.” More recently, with the recognition of the importance
of data-base systems, a growing body of useful publications has
appeared exemplified by Hsiao and Harrary,” Earley,’
SHARE/GUIDE,” Data Base Task Group (DBTG),® McGee,” En-
gles,”” Codd," Childs,” Smith,'"® Taylor," and Severance.”
These papers, however, provide insight only into specialized
aspects of data-base systems. For this reason, it is difficult to
evaluate these systems descriptions with respect to meaningful-
ness of their description of the real world, independence of their
programs from changes in physical representation, power of re-
presentation, or possible implementation.

Basic concepts of the Data Independent Accessing Model

The Data Independent Accessing Model (DIAM) also does not
cover all aspects of system description, but it does appear to

No. 1 - 1973 DATA-BASE SYSTEMS 11

design
approach

65

describe and provide defined, detailed interfaces to a broad
range of components of data-base systems.

In creating this model, we have looked at diverse, seemingly
unrelated concepts that have been used to describe existing sys-
tems —indexes, sequential files, direct files, records, fields, bytes,
blocks, tracks, cylinders; packs, and so on—in search of com-
mon properties. We have then used these common properties to
define new general type descriptions for the functions. Variations
of the parameter values within the type descriptions allow us to
describe detailed characteristics of older terminologies in a sim-
pler, more consistent manner.

By defining these new type descriptions, we have arrived at an
overall model that has the following characteristics: (1) multiple
self-sufficient levels of abstraction for describing and solving
problems concerned with information systems, and (2) one place
where each basic function is performed. For example, a name
decoder supplants a file name decoder, a record name decoder,
and so forth. Also incorporated is an appropriate relative stature
of the various model concepts from the most basic concepts to
higher structures that are to be described in terms of the basic
concepts. For example, in Part 11, we determined that hierarchic
logical record structures should be described by the user in
terms of the more basic system interface —the Entity Set Model.

Such a general description has potential for application in de-
scribing and comparing the complex, monolithic functions of
existing systems to discover their fundamental differences and
commonalities.

It also can serve as a basis for implementing new data-base ac-
cessing systems that are easier to explain, understand, and use.
By use of its primitive building blocks, such a system could pro-
vide any desired data representation structure. This could ease
the problem of long-term evolution from existing systems. The
general description is also a basis for the simplified calculation
of relative file organization performance, and for a generalized
data representation translator.

The DIAM structure consists of four successive levels of abstrac-
tion—an Entity Set Model (previously discussed), a String (or
Access Path) Model, an Encoding Model, and a Physical De-
vice Model. Each lower level combines with the higher —more
abstract —levels to provide a self-sufficient, more simplified envi-
ronment for solving some appropriate information system design
problems. The model levels are illustrated in Figure 1.

The earlier work of Davies,' Engles,10 and Meltzer,"” with re-
gard to Entity Sets provides the basic concepts in our informa-

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYSTJ

Figure 1 Data independent accessing model

CONGEPT NAMES REPRESENTATION INDEPENDENT

ENTITY SET MODEL ACCESSING LANGUAGE

b /] TRANSLATOR

REPRESENTATION

REPRESENTATION DEPENDENT
STRING MODEL ACCESSING LANGUAGE

ENCODING MODEL

PHYSICAL DEVICE LEVEL MODEL

tion structuring (Entity Set Model) level. We have only modified
these concepts slightly, and used a more precise terminology. At
the lower levels that deal with the descriptions of storage repre-
sentation, the following basic concepts are defined: three kinds
of Strings for describing access paths, a Basic Encoding Unit
for describing bit-level encoding of the strings, and a Physical
Subdivision Specification for describing device properties.

These basic concepts significantly simplify earlier terminology,
but they must be refined to offer a complete detailed description
of data structures and data accessing. From this point on, we
expect DIAM to be improved just as other models in science are
improved. That is, we plan to describe more features of exisitng
and proposed systems by varying the values of parameters that
we define. If the model does not exactly describe some signifi-
cant aspect of a system, then the definitions of the parameters
will be modified to improve the description. We believe that
most significant features of data structrures and data accessing
can be described without major descriptive changes to the pres-
ent model.

As previously indicated, observations are an important aspect of
the scientific approach to data-base system models. Observa-
tions to define and test a general model for representations of
information in data-base systems are relatively easy to obtain.
The necessary observations are descriptions of the data struc-
tures and accessing languages of existing or proposed systems.
To obtain test observations, we have studied descriptions with a
wide range of characteristics. These descriptions include the
Data Base Task Group Report (DBTG),” the Generalized Infor-
mation System (G19)," the Integrated Data Store aps),"” the
Information Management System (1MS),” the Index Sequential

No. 1 - 1973 DATA-BASE SYSTEMS [11

modification
method

67

DIAM
hierarchic
structure

Access Method 1sam),”’ the Sequential Access Method (SAM),”
and the Time Shared Data Management System (TDMS)”’ De-
tailed discussion of these systems is beyond the scope of this
paper. Certain aspects of these systems are, however, given lim-
ited use as examples of the descriptive capabilities of DIAM. The
references just given provide adequate introduction to the sys-
tems.

The Data Independent Accessing Model (DIAM) structure is
based on the hierarchic set of models previously mentioned.
This structure is illustrated in Figure 1. DIAM does not attempt
to provide a complete model of real-world information. Rather,
at the interface between real-world information and our overall
descriptive model, the Entity Set Model is specified as a struc-
tured model of the real-world information. The Entity Set Model
together with an accompanying Representation Independent Ac-
cessing Language (RIAL) for describing the accessing of the Enti-
ty Set Descriptions are tailored to be a self-sufficient level where
the end user can discuss, specify, and solve the problems of in-
formation structuring independently of extraneous details of
implementation. Using a set-like notation at this level, we wish
only to discuss the information to be stored, its interrelations,
and the questions to be asked by the end user.

At the next lower level of the hierarchy in Figure 1 we specify a
String Model for describing and tracing through all interesting
representations of the Entity Sets in terms of access paths. (By
interesting, we mean all representations that have reasonably
general applicability for which there is no obviously more effi-
cient representation.) The String Model and its associated Rep-
resentation Dependent Accessing Language (RDAL) use graph-
like notions, and its parameters are specifications for the compo-
sition, interconnection, and ordering of subsets. The String
Model is used to discuss, specify, and solve problems of efficien-
cy of representation, search, and maintenance to the first order.
Typical problems deal with the possible use of indexes, hierarchic
structured physical records, and serial vs. direct search.

The Encoding Level of the hierarchy is concerned with the bit-
pattern encoding of the string paths. Specified at this level is an
atomic unit called the Basic Encoding Unit (BEU). There is one
BEU for each element of the access path structure. It is our goal
to describe all interesting encodings of data from generalized list
structures to fixed-record-length sequential files by varying the
parameters for the BEUs. At the Encoding Level, we can discuss
questions of efficiency of storage and search to the second order.

At the final—most detailed hierarchical level —the encoded
structures are allocated to physical devices. This is the Physical

Device Level where the most detailed efficiencies are to be

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

gained from appropriately understanding and using device char-
acteristics. The main considerations deal with space and over-
flow-handling rules for physical subdivisions of the devices.
Here, again, the goal is to describe all possible interesting varia-
tions at this level.

Relationship between the Entity Set Model and the String
Model

There has been considerable discussion of data independence
in the literature, i.e., the separation of logical (information
structure) aspects of data-base systems and physical (representa-
tional) aspects. The goal of data independence —that programs
address stored information by a name structure does not change
over time—is a continuing objective. The Information Manage-
ment System (IMS) has taken a first step in this direction with its
separation of logical structure names from names for its physical
structure. DIAM is a further generalization of this property.

Earlier discussions in this paper are intended to make it clear
that name structures for representations of information in a data-
base system are relatively unstable. That is to say, each time a
new Role Name is added to an Entity Description a new repre-
sentation (i.e., new record type) must be created and the new
representation must have a new name so as to distinguish it from
older representations for encoding and decoding purposes.
(Relational theory has a naming convention similar to that for
representations, wherein an n-tuple has a different name from an
(n + 1)-tuple. For example, each projection has a different
name. Thus relational naming structures are similarly unstable.)
We can, of course, override this instability by providing a map-
ping scheme from one representation to another. Such a map-
ping scheme, however, requires either a pairwise mapping
among all related representations in the system, or a mapping
chain from one related representation to another. Both of these
alternatives seem unnecessarily complex.

For economy and stability, the DIAM information interface pro-
vides the end user with one relatively stable name structure
(or a progression of a small number of stable name structures) to
which all representation name mappings are referred. This name
structure is based on names by which the user refers to entities
in the real world. When a new role name is added to the descrip-
tion of an entity in the real world, the name of the description
need not change because it is not used directly in the encoding or
decoding of particular representations. In other words relation-
ships between Description Set Names and their Role Names

No. 1 + 1973 DATA-BASE SYSTEMS 111

need not be changed. Old programs that exploit these relation-
ships thus remain valid. Mappings need only be pairwise between
the standard name structure of the Entity Set Model and each
representation.

Thus, as in the IBM Information Management System (IMS), we
have two different sets of names—one set for logical structures
and a second set for physical representations for these logical
structures. The set of Entity Set Model Names stands for con-
cepts in the real world, and programs written in terms of these
names are independent of data structure representation. The
other is a set of String Model Names for representations, and
programs written in terms of these names are data structure
representation dependent. The system catalog provides for
mapping from one name set to the other. Thus data-independent
programs written in terms of Entity Set Model Names can be
mapped into appropriate programs in terms of the String Model
Names, which, in turn, can access existing representations.

The String Model

The String Model level is the first step toward efficient represen-
tation in computers — considering both space and time —of the
Entity Set Model.

It results from the realization that a simple, self-sufficient, gen-
eral model of file organization can be based on descriptions of
unidirectional paths that provide direct access between repre-
sentations of information elements drawn from the Entity Set
Model. These descriptions are specifed in terms of three kinds
of Strings that correspond to the three kinds of associations of
the Entity Set Model. The strings describe access paths in terms
of connected, ordered subsets of the information elements.

This paper is primarily concerned with the general form of the
parameters for Strings rather than the values that the parameters
might take for a specific set of data.

The String Model level has been found to be useful in describing
the file organizations of existing and proposed systems at a level
of abstraction that eliminates the confusion generated by the
many possible encodings and physical device implementations
of identical basic structures. This capability allows us to see
many common elements in what appear to be completely unique
functions. Another capability is that of determining the relative
efficiency of various possible access-path structures with a very
simple yet general performance model.

The String Model level has some parallels in the V-graphs of
Earley.” though it differs in two principal ways. We make the

SENKQO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

Figure 2 String types

A-STRING TWO ENCODED A-STRING REPRESENTATIONS

PART/PART SUPPLIED/GEAR I

NUM/SHIP NUM/431 GEAR 0431

PHYSICAL SEQUENTIAL FILE

AN ENCODED L-STRING REPRESENTATION

PHYSICAL
HIERARCHICAL
RECORD

type-instance distinction, which in information systems provides
a much greater power and conciseness in the description of the
data structures and data structure searches. Also Earley’s se-
mantics refer to descriptions of data structures at our String
Level, whereas our semantics deal with the meaning of concepts
in the real world.

In general, only three things are required to specify a kind of
string:

e Subset of the elements on the string
* Order of the elements on the string
e Strings to which a given string connects

Corresponding essentially to the three associations mentioned in
connection with the Entity Set Model, are the following three
kinds of strings. :

Atomic Strings (A-Strings) connect specified subsets of Name
Set Name/Role Name/Entity Names triplets from a single entity
in a specified order. The subsets and order are specified by an
ordered Exit List of the Role Names. This is shown in Figures 2

No. 1 - 1973 DATA-BASE SYSTEMS 111

specifications
for strings

Figure 3 String model example

CORP/SUPP/—
.

PART/PART/—

jsn® W

PART/PART SUPP/—

ROJ suPPI’ SHIPMENT DESCRIPTION SET

PRO”P ID=CORP/SUPP, PROJ/PROJ SUPP,
PART/PART SUPP ID=PAl

ID=NUM/SHIP NUM

co
LOR/paRy cows PART DESCRIPTION SET
- RT

-
e not
!

wr,

B,

Ary
wy,

SHIPMENT ENTITY
DESCRIPTION

C orp/suPP/ONES

N WT/spp Wi/3g
ROJ/PRO, sURR, 1,

PART/PART SUPP/GEAR

16
QNUN\/ i~ wow/ 27

SHIPMENT ENTITY
DESCRIPTION

PART/PART SUPP/SAW
WT/SHIP WT/4

CORP/SUPP/BROWN

SHIPMENT ENTITY
DESCRIPTION

PART ENTITY
DESCRIPTION

PPOJ/PR 0,
Sy,
WT/SHIP wT/27

NUM/SHIP NUM/1693

PA
RT/PART SUPP/WHEEL PART ENTITY

DESCRIPTION

CORP/SUPP/SMITH

(F’ART/PART/WHEEL

Corg,
& ke Cor/p,
(3]

wr,
/PART WT/G

SHIPMENT ENTITY
DESCRIPTION

PART ENTITY
DESCRIPTION

NUM/SHIP NUM/431

CORP/SUPP/ jop, Es (
WT/SHIP Wry g

COLOR/PART COL/RED,
PROJ/PROJ SUPP/75 &)

PART/PART SUPR, Geap PART/PART/sap

WT/PART WT/3

and 3 where an A-String named ALPHA connects PART/PART
SUPPLIED to NUMBER/SHIPMENT NUMBER in that order.

Entity Strings (E-Strings) connect specified subsets of elements
that have the same type description in a specified order. The
subsets are specified by general Boolean conditional statements
on triples stored in instances of the specified-type description.
The order is specified in terms of sort orders of specified nested
Role Names within the type description. An E-String may be
used to connect subsets of A-Strings. In Figures 2 and 3 an E-
String named GEARS connects only those A-Strings named
ALPHA where PART/PART SUPPLIED = GEAR. It connects them
in alphabetical order based on NUMBER/SHIPMENT NUMBER
values.

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYSTJ

Link Strings (L-Strings) connect elements based on a match
between Entity Names for the same Entity that occurs in each
of the elements (which may be an A-String, an E-String, or an-
other L-String). For example, if we have a second Description
Set called PART that is identified by a Name Set Name/Role
Name, PART , then we can specify an L-String that connects an
A-String BETA defined on PART (whose identifier is GEAR) with
the E-String named GEARS because the E-String contains all the
Entities in Shipment where PART/PART SUPPLIED = GEAR.

Figure 3 is a schematic diagram of a specified string structure
for the Description Sets in Figure 2 of Part II. Table 1 of the
present part provides a catalog for Figure 3.

To create a generally useful description of access path struc-
tures, we could have defined one general kind of string with a
large set of possible parameters that would allow us to create a
path from any information element in the data base to any other
element. In specific situations we would leave undefined those
parameters that are not appropriate. Alternatively, we could
define one or more kinds of strings, each having only the param-
eters appropriate for defining all those paths that have any likeli-
hood of ever being used in an actual system.

We have chosen the second option because three kinds of
strings with appropriate —though somewhat different—parame-
ters arise naturally out of existing file organizations and the
three types of associations mentioned in the Entity Set Model in
Part I1. These three kinds of strings also provide a useful con-
ceptual interconnection to the Entity Set Level.

Another reason for not selecting one general kind of string is
that we want to make it relatively simple to specify paths that
normally make sense and to bias the model against the selection
of feasible but impractical paths. This biasing parallels the situa-
tion in machine organization where meaningful registers and
operations tend to be selected preferentially. The resulting ma-
chines can simulate, although with considerable overhead, the
simple less meaningful operations of a Turing machine. We im-
plement the more meaningful machine organizations, however,
because they are more convenient to use and in most cases more
efficient for the problems we wish to solve. Such a meaningful
biasing of string definitions is a key distinction between DIAM
and the models proposed in excellent papers by Smith,” Tay-
lor,14 and Severance.”

Of course, whenever one restricts the kinds of interconnection
that can be easily specified, he must be alert not to lose any use-
ful generality. The problem of generality has motivated studies
of string descriptions of existing file organization concepts. Re-

No. 1 - 1973 DATA-BASE SYSTEMS I11

generality
of the
string
model

Table 1 String catalog

Name Set String String
Name Type Identifiers Name Name Type String Parameters

PART Description (PART) BETA ASG [EXL = (PART, PART
Set Name COLOR, PART WEIGHT);
ON = GEAR SHIP]

GAMMA ASG [EXL = (PART COLOR,
PART);
ON = COLOR INDEX]

COLOR ESG [EXL = (GAMMA);
INDEX 00 = (PART COLOR)
ON = ENTRY]

GEAR LSG [EXL = (BETA, GEARS);
SHIP MC = (BETA/PART =
GEARS. ALPHA./PART
SUPPLIED)
ON = ENTRY]

PART/PART RN [ON = BETA;
ON=GAMMA]

PART/ } [ON = BETA;
PART COLOR RN COLOR ON =GAMMA]

PART/
PART WEIGHT RN - WEIGHT [ON =BETA]

SHIPMENT Description (SUPPLIER, - -
Set Name PROJECT
SUPPLIED,
PART
SUPPLIED)

(SHIPMENT
NUMBER)

ALPHA ASG [EXL = (i’ART SUPPLIED,
SHIPMENT NUMBER);
ON = GEARS]

GEARS ESG [EXL = (ALPHA);
SEL = (PART SUPPLIED =
GEAR);
00 = (SHIPMENT
NUMBER)
ON = (SEE PART-
GEAR SHIP)]

SHIPMENT/
PART .
SUPPLIED PART [ON = ALPHA]

SHIPMENT/
PROJECT
SUPPLIED PROJECT

SHIPMENT/
SHIPMENT
NUMBER NUMBER [ON = ALPHA]

SHIPMENT/
SHIPMENT
WEIGHT RN WEIGHT

SHIPMENT/
SUPPLIER RN - CORPORATION - —

Abbreviations: EXL = Exit List; OO = Order On; SEL = Selection Parameter; MC = Match On Criteria; RN = Role Name

74 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

ferring to Figures 2 and 3, recall that many data-base systems
provide direct paths between fixed- or variable-length fields in a
pointer-connected list, segment, or one-level record. The basis
for these paths in the String Model are the A-Strings exemplified
by the ALPHAS, BETAS, and GAMMASs. The String Model in this
case helps us see that there are certain basic properties of these
apparently unique things that are exactly the same. Based on
this insight, we can now write one piece of program that is gen-
erally useful in processing all these apparently unique things
rather than a separate program for each.

For transactions that request information on a particular Entity
from more than one Description Set, direct access paths have
been provided by data-base system physical structures caliled
physical hierarchic records. The basis for these structures in the
String Model is exemplified by the combination of strings: GEAR
SHIP, BETA, GEARS, ALPHA. Here, the L-String GEAR SHIP
connects the A-String BETA —the root (master) segment repre-
sentation — to the E-String GEARS. The E-String GEARS connects
a list of A-String ALPHAS, which are leaf (detail) segment repre-
sentations. Hierarchies with more levels and more types of seg-
ments at the same level are easily representable. At the String
Level, the hierarchic records of IMS, GIS, and IDS look essential-
ly alike.

The strings COLOR INDEX, GAMMA provide the lowest level of
what is often known as a secondary index. The essence of such
an index is the selection of a pair of Role Names —a secondary
key (COLOR/PART COLOR) and an identifier (PART/PART)— and

ordering the Role Name pairs on the basis of the secondary key
Entity Names. Higher levels of the index can be constructed by
selecting subsets of the secondary key-identifier pairs.

Within the structure of the string model, it is possible to describe
a wide variety of variations such as sequential files, direct hash-
addressed files, primary and secondary indexes, generation data
groups, key ranges, and their combinations in terms of ordered
interconnected subsets of Description Sets and Role Names.
We have not found any path structures whose precise descrip-
tion requires major modifications of existing parameterizations
of the three kinds of strings, and we have found that having the
three kinds of strings does simplify the study and solution of the
search path resolution problem to be discussed later in this pa-
per. Should there be a need for a path that is not covered by the
present string parameters, it would be a path that is based on a
relationship between information elements from different enti-
ties. Such paths could be provided by expanding the definition of
the L-String.

The selection of the best access-path structure from a set of

NOo. 1 + 1973 DATA-BASE SYSTEMS 111

relative
efficiency
of access
paths

accessing
language
interactions

candidates is one of the crucial factors in achieving performance
in data-base systems. Selection could be made by using existing
simulations and calculating exact times for retrieval considering
block access times, device queuing, etc. These simulations,
however, are tedious to set up and often run much slower than
the actual transaction program. In such a situation, the overhead
to select a path becomes larger than the cost of using a less effi-
cient path. Desired is a faster, simpler method of path selection,
which we believe the string model provides.

In particular, the String Model Catalog provides a good struc-
ture for recording the statistics on the number of nodes for each
type of string. Given a query and usually a small set of possible
paths stored in the system, it is relatively simple to determine
the number of nodes that must be touched along a particular
access path to obtain the answer to the query. It is possible,
therefore, to decide on the best path by selecting the one that
requires the minimum number of nodes. If higher relative accu-
racy is required, these node counts can be crudely weighted as a
function of the kind of string, the nature of the encoding
(contiguity vs. pointers), and the device that the string is stored
on. Since possible paths normally differ greatly in performance,
these additional considerations should provide correct relative
selection in most cases.

A similar process can be useful in selecting among possible file
organizations to support a transaction load. Here, the relative
sizes of two file organizations are factors that affect storage
costs and to some extent the number of block accesses. All
things considered, an appropriate model that is accurate to a fac-
tor of two is probably adequate. In essence, the String Model
provides a basis for choosing among access path organizations,
thereby allowing us to extract this problem out of the complex
total problem of hardware and software selection and to solve it
independently.

At this point, it is appropriate to consider further the interac-
tions between the Entity Set Model and the String Model. The
most obvious connection is that the String Catalog. is simply the
Entity Set Catalog with some of its entries augmented by addi-
tional string parameters. There are now two different sets of
names —one set for concepts (Entity Set Model Names) and the
other set for representations (String Names). The relationships
between these two sets of names are described in the String
Catalog.

As indicated in Figure 1, each model has its own accessing lan-
guage. The purest form of Representation Independent Access-
ing Language (RIAL) allows requests for subsets of the informa-
tion stored in the system to be made completely in terms of set

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

Figure 4 Spectrum of several data accessing languages

LISP DBTG IMS GIS MIS/360 TOMS

I A 1

—

REPRESENTATION REPRESENTATION
DEPENDENT ACCESSING INDEPENDENT ACCESSING
LANGUAGE LANGUAGE

(PURELY DEPENDENT) (PURELY INDEPENDENT)

operations on Entity Set Model names without specifying search
procedures and paths to be followed for accessing the desired
subsets. For example, the language used for Representation
Independent Accessing by DIAM contains statements such as the
following:

Form set S1 containing (SHIPMENT NUMBER, PART SUPPLIED)
Jfrom SHIPMENT such that S1/PART SUPPLIED equals GEAR.

This statement contains no procedures that mandate or describe
how the search should be conducted.

The purest form of Representation Dependent Accessing Lan-
guage (RDAL) would provide for a complete specification of the
paths in the representation to be foliowed to obtain the required
information. For example, a detailed RDAL might involve the
following functions:

GET GEAR SHIP

GET BETA

GET GEARS

GET NEXT ALPHA

WRITE S1 (SHIPMENT NUMBER, PART SUPPLIED)
IF LAST ALPHA, STOP

ELSE GOTO A

Assumed here as in most systems the decoding of an A-String
ALPHA is so straightforward that it can be specified in a nonpro-
cedural fashion. Most existing accessing languages are hybrids
of the two pure forms. In Figure 4, we place various languages
on a spectrum from representation dependent to representation
independent accessing.

L1sp™ is the only language that gives microscopic path access to
each element of information (although, for our purposes, it does
not make the crucial type-instance distinction for describing
access paths). With regard to systems that make the type-in-
stance distinction, the Data Base Task Group Language (DBTG)
accesses records as if they were sets of attributes. All other
search operations, however, involve path-following instructions.
The Information Management System (1M$)™ and the General-

« 1973 DATA-BASE SYSTEMS [11

search
path
resolution

ized Information System' have slightly more power to search
hierarchic structures with set-oriented instructions. Since all
the above systems involve some path following, the RDAL is a
reasonable base for providing compatible language support for
them. The System/360 Management Information System
M1s/360)” and the Time Shared Data Management System
(TDMS)™ are completely set oriented but they both lack the capa-
bility for accessing multiple sets (the multifile query).

The problem of a general translation between a pure RIAL and a
pure RDAL is precisely equivalent to the problem of obtaining
the most general form of data independence along with high ac-
cessing efficiency. Systems generally achieve high levels of data
independence by restricting the kinds of file organizations they
support, thereby reducing their data-accessing performance.
Alternatively, they achieve high efficiency by sacrificing data
independence. DIAM is a structure for achieving both efficiency
(generality of file organization) and data independence.

In DIAM, the translation problem is called search path genera-
tion, and it has the following three phases.

Search-path enumeration involves finding all paths to the de-
sired Role Names. The catalog illustrated in Table 1 provides
this capability directly, as may be seen by going to a particular
Role Name and following back along the strings that the Role
Name is ON out to the entry point that would be stored in the
catalog. As shown in Figure 3 and Table 1, with the RIAL query,
there is one search path starting at SHIPMENT/SHIPMENT NUM-
BER that is formed by SHIPMENT/SHIPMENT NUMBER preceded
by SHIPMENT/PART SUPPLIED preceded by ALPHA preceded
by GEARS preceded by BETA preceded by GEAR SHIP (ENTRY).
A second path follows the same set of strings to GEAR SHIP
starting at SHIPMENT/PART SUPPLIED.

Search-path resolution involves the observation that the answer
to the SHIPMENT/SHIPMENT NUMBER query can be completely
obtained from the GEAR SHIP paths. Existing systems with re-
stricted or single methods of representations have fixed algo-
rithms for resolving set-oriented queries into search procedures.
Little has yet appeared in the literature on resolving general
set-oriented queries into graph-oriented search procedures for
general representations.

Search-path scoring relates to efficiency calculations previously
discussed. Essentially, search-path scoring involves determining
which path in a set of candidates (say either GEAR SHIP or a
sequential file defined over the complete SHIPMENT Entity De-
scription Set) is the most efficient for answering a particular
query. In the query presented, GEAR SHIP is most efficient.

SENKO, ALTMAN, ASTRAHAN, AND FEHDER 1BM SYST

We have developed some preliminary algorithms for the transla-
tion problem that are to be reported elsewhere in the literature.

As we can see, the RIAL is directed toward Entity Set Model
names where there is only one name (neglecting synonyms) for
each component of the conceptual structure no matter how
many representations there are at the string structure level for
that component. The RDAL provides a means for searching the
existing representations in terms of string names.

The number of separate partial or complete representations for a
particular entity set can be determined by counting the A-
Strings defined on it. Although, as is shown later in this paper,
an A-String can belong to several collections, there is a one-to-
one relationship between A-String instances and their final en-
coding into bits in the data stream. This fact determines the
number of copies (representations) of an Entity Name that must
be changed when the user directs an Entity Name to be changed
at the Entity Set Level. The procedure for locating and deter-
mining the number of copies is to look for the appropriate Role
Name within the catalog and trace out all the paths to the A-
Strings that may contain it. The subset selection criteria then
determine whether the specific A-String actually exists on higher
level E- and L-Strings. In the case of security, the catalog lists
all physical copies of a fact under one Role Name. This means
that the user can apply his security requirements to the fact rath-
er than to all physical copies. The catalog, therefore, provides an
excellent format for storing information required for data-base
integrity and security with respect to updating, insertion, and
query.

The Encoding Level Model

The encoding hierarchic level of DIAM describes the bit-level
encoding of strings in a very general way. Considering the desir-
able uniform characteristics of bit or byte streams, it appears to
be worthwhile to extract these uniform characteristics for anoth-
er self-sufficient level and leave the complicated consideration of
parameters for describing and handling physical devices to a
separate levél. This has been a useful separation because it has
led vs to the specification of a single form of Basic Encoding
Unit (BEU). This one form is a sufficient primitive element for
building most useful encodings of collections of information in
information systems. The requirement of only one form to én-
code file organizations allows the specification of a small table-
driven BEU encoder/decoder for handling all levels of file organi-
zation (files, records, etc.) in a uniform manner. Since the basis
for the encoding level is an addressable bit or byte stream, this
level is well-suited for implementation as the software interface

- 1973 DATA-BASE SYSTEMS 111

security
and
integrity

basic
concepts
of
encoding

to a virtual address machine. It also provides an excellent basis
for a data translator.

In reviewing existing structures, one finds space set aside for
actual field values and for the following three types of control
information:

" e« Names for files, records, fields, etc. placed so that a program

may determine the nature of the component to be decoded.
* Length indicators for files, records, fields, etc.
o Physical pointers to the next component to be decoded.

Since each of the control information components looks like a
field value, it seems possible to create a model that simply con-
siders each control field as a pseudo-attribute and then defines its
characteristics (length, etc.) in the same way as is done for ac-
tual field values. An encoding-decoding program could then use
the control information pseudo-attributes to supply the decoding
information that it requires. Excellent models of this kind are
presented in the papers of Smith," Taylor,'* and Severance.”
Such models, while quite general, give the user little systematic
guidance on what pseudo-attributes should be defined and where
they should be placed in the catalog. These models also require
a decoding program that must be prepared to decode almost a
random stream of intermixed control and field-value informa-
tion. Preferable is a more systematic structure that gives general
power with a few well-defined parameters. To accomplish this,
we look again for regularities and similarities.

One generalization is that a length indicator is very much like a
pointer that points to the end of a collection rather than to the
beginning. Also, two fields related by contiguity are simply re-
lated by a special type of pointer whose origin is immediately
after the present field and whose displacement is always equal to
zero. A final and extremely useful observation derived from the
String Model is that all file organizations are composed of
named interconnected collections: A string has a name; it is a
member of one or more higher level collections; it provides an
entry to a collection of information defined by its parameters;
and it requires a means for determining the end of its collection.
These features appear at all levels of existing structures. Files,
records, and fields are simply names for particular kinds of
collections of smaller units that are connected into one or more
larger collections.

These observations lead directly to the specification of the Basic
Encoding Unit (BEU), one for each String instance (or Role
Name instance on an A-String), and a corresponding BEU-type
specification, one for each string type (or type occurrence of a
Role Name on an A-String) in the catalog. Each BEU has the

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

same general format and set of parameters no matter what kind
of String or Role Name it represents. The recognition that attri-
bute values, records, and fields are all special cases of collec-
tions leads to a simplification and systematization of the parame-
ters required to describe these values. It also provides a basis
for a simple table-driven BEU decoding program that decodes all
levels of a given file organization in a uniform manner. That is,
file, record, and field names are all decoded by the identical
small set of instructions.

When the notion that contiguity of BEUs (fields, records) is ob-
tained by a special case of pointer and that pointer value is
the same for all instances of a BEU type, then the possibility of
factoring the value information of the pointer into the catalog
becomes apparent. The realization that the factoring tactic can
be applied to all components of the BEU leads to a general capa-
bility for describing data structure encodings.

There are the following three basic concepts at the encoding
level:

Named Address Spaces (AS), which provide reference addresses
for the placement of encoded units and for pointers to encoded
units.

Basic Encoding Units (BEU), which provide a single basic format
for encoding all Strings and Name Set Name/Role Name/Entity
Name triplets. For each named type (for example, the A-String
Type ALPHA, the E-String type GEARS or the Role Name type
PART SUPPLIED) there is a specified BEU-type format specifica-
tion associated with its name (ALPHA, GEARS, etc.) in the cata-
log. For each instance of the named type (for example,
PART/PART SUPPLIED/GEAR in the SHIPMENT Entity Description
where NUMBER/SHIPMENT NUMBER/431 is the Identifier), there
is a BEU in the data stream.

Factoring is a method analogous to algebraic factoring, by
which information common to all BEUs of a BEU type can be
placed in the type description in the catalog rather than in the
BEUS in the data stream. In some cases, the method can be ap-
plied to all components of a BEU-type with the result that there
will be no bits required in the data stream for the BEU represen-
tation.

In this paper, we use the simplest form of Named Address
Space, the Linear Address Space(s) (LAS), which are uniquely
named, one dimensional, potentially infinite bit (byte) streams.
Each bit (byte) has a unique integer address. Data and pointers
are encoded in terms of these address spaces and the address
spaces themselves are allocated to physical devices by pro-

No. 1 - 1973 DATA-BASE SYSTEMS 111

address
spaces

basic
encoding
unit

factoring

cedures described in the later discussion of Physical Device
Space Models. Each LAS can be considered to be a named Vir-
tual Address Space.

There is a Basic Encoding Unit (BEU) for each instance of a
string, and for each instance of a Role Name on an A-String.
Four types of components appear in all BEUS in the following
format:

LABEL APTR 1 APTR 2 C APTR N J VPTR | TERM

A LABEL component contains an encoded Name for the collec-
tion of information that the String or Role Name defines. The
encoded Name may simply be the String (or Role) Name or
some encoded synonym.

There is one ASSOCIATION POINTER (APTR) component for each
distinct collection of which this BEU is a member. The APTR
contains the information necessary to determine the Address
Space location of the next BEU of the distinct collection. (For
example, in Figure 3, BETA and GEARS are members of the
collection GEAR SHIP. The access path from BETA to GEARS
connects these two members of the collection and is represented
by an APTR in the BETA BEU format.)

The VALUE POINTER (VPTR) contains the information necessary
to determine the starting Address Space location of the collection
defined by the parameters for a String corresponding to this
BEU. In the case of a Role Name, the collection consists of the
Entity Name. In the case of an A-, E-, or L-String, the collec-
tion consists of a set of BEUs. (For example, in the GEAR SHIP-
BEU format, the VPTR provides the access path to its collection
(BETA, GEARS) by pointing to the location of BETA, the first
member.) The collection is then connected together by the use
of an APTR component in the member BEUSs that associates each
BEU with its successor.

The TERM component contains the information necessary to
determine the termination of the collection defined by the string
corresponding to this BEU.

Factoring consists of placing in the BEU-type description the
value of any component that has the same value in all instances
of BEUS of a given type, thereby removing that BEU component
from the data stream. This tactic systematically achieves any
encoding combination from generalized list structures
(unfactored BEUS) to serial fixed-length record files (completely
factored BEUS). In the DIAM catalog, there are parameters for
each BEU component that specify how its value is to be deter-

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

mined and how its value is to be used in the encoding and de-
coding processes. If the value of a BEU component is to be
found in the data stream, then the parameters specify how the
length of the byte string containing the value is determined. This
is sufficient because, during decoding, the beginning of the string
is known. If the value is factored into the catalog, then the cata-
log entry contains the component’s value.

Figure 5A shows the stream of unfactored BEUSs for the collec-
tion COLOR INDEX. The BEUs are so placed as to simplify the
pointer representation, but it should be clear that any element
connected by pointers may appear at any position on the data
stream. Any element may even appear on a different Named
Address Space if desired. The BEU components are presented in
the order LABEL, APTR, VPTR, TERM.

Figure 5B is specified so that all Entity Names for the COLOR
Role Name have the common length of four bytes and PART has a
common length of six bytes. The terminator components can,
therefore, be removed from the Address Space and placed in the
Type description in the Catalog.

Figures 5C through SF illustrate the factoring of other compo-
nents into the catalog until there is a fixed-length record sequen-
tial file representation of the collection, COLOR INDEX, in the
address space. The actual choice of elements to be factored
depends on the possible commonalities between instances of a
type and the insert load on the collection. It may, for instance,
be useful to leave certain pointers in the representation to make
certain types of inserts relatively easy even though the elements
of the collection could be made contiguous.

Figures 6A-D present 1DS, IMS, and GIS representations for the
hierarchical collection GEAR SHIP. Figure 6A shows the GEARS
collection terminated by a back pointer. In Figure 6B the cata-
log is essentially the same as 6A but with the redundant length
field removed. In Figure 6C it may appear that pointers in the
IMS Hierarchical Sequential organization have been omitted.
However, the pointers for connecting pieces of records together
are not really a property of the segments; they are a property of
the physical record structure of IMs and would not appear at the
encoding level. In Figure 6D the collection GEARS is terminated
by count of its ALPHA instances. TERM = (COUNT = 2) in this
case.

In this section we have presented another self-sufficient level,
the Encoding Level and indicated the power that can be ob-
tained from the simple BEU format. A more detailed presentation
of the Encoding Level is given in References 26-28. We dis-
cuss next the Physical Device Level.

No. 1 - 1973 DATA-BASE SYSTEMS [11

Figure 5 Factoring of the Basic Encoding Unit (BEU)

A ALL BEU INFORMATION ON THE DATA STREAM

ADDRESS
SPACE
L

8 FIXED-LENGTH ENTITY NAMES: ENTITY NAME TERMINATION IN CATALOG

[t ot nd e
CATALOG [} | 1 igl
1 [E S S

ADDRESS y]"—
SPACE 1 1
bbb SAW

L.

C ENTITY NAME ALWAYS AFTER ITS ROLE NAME BEU; ROLE NAME VPTR IN CATALOG

CATALOG T TaTal T TTatel
CATA 4 I tA
L____l_LA_J__l L.__A_J__LG_J

ADDRESS [_ ~ [—_—‘
SPACE f
A r [I 1 COLOR I BLUE l PART % b b GEAR COLOR ll[b RED ‘ PART bbb SAW

D PART ROLE NAME ALWAYS AFTER TS ROLE NAME BEU; ROLE NAME APTR IN CATALOG

CATALOG | (A
Ll

ADDRESS
SPACE
un llm COLOIil BLUE l PART [b b GEAR COLOR | b RED l PART [b b b SAW COLOR | b RED |

FTTTET
tAl4)
o]

E ORDER OF STRING NAMES KNOWN FROM EXIT LIST; COLOR ROLE NAMES AFTER GAMMA BEU; FIXED RECORD LENGTH
r———7T7T—r 1 r~——"r7T/~7] F~F——T—7—7T™

CATALOG IGAMMAL 1 Al101 | COLOR IATAl 4] IpPART!ATA TG
[Eult WA S S B ER o S N N B Sy B i

ADDRESS]
SPACE J 1
] BLUE I bbGEAR] jbRED bbbSAW—l bRED—I b WHEEL

J-

F FIXED RECORD LENGTH SEQUENTIAL FILE; NO CONTROL {INFORMATION IN DATA STREAM

r—rr T 1 rTTT T T T T T T T T T
G / A S GAMMA 1A |) ORIAIAl4]l 1PARTIANALIGI
CATALO LC_‘/ZA{? i (GAMMA A JALI0] [COLOR A AL4] [PART AALSS

ADDRESS

SPACE BLUE bbGEARJ b RED [bbbSAW | bRED bWHEELl

84 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

Figure 6 BEU encoding descriptions of four physical hierarchic records

A INTEGRATED DATA STORE (A DBTG REPORT IMPLEMENTATION)

-= - T = -1

r'*‘:% =T ‘—%1‘1 =T r=——T7r3 r— T3 TTA°T T~
CATALOG | GS al (lGEARS' lAIBPl 1 BETA A113) IPARTIA|A|6| | COLORIALAL 4] IPTWTIAIAI?I IAlPHAl |AI10| IPARTIAIAIGl%NUMlAIAM
[L1 PRI [y E Y N b b Ll Ll L [RV I PRy T T D g |

ADDRESS Y

Il [
SPACE GS]11 13 L b b GEAR JjLUE L b17] ALPHA lrlTUL b b GEAR l 0431 [ALPHA l |1ibbGEAR 1 2716 L

B INFORMATION MANAGEMENT SYSTEM (HIERARCHICAL DIRECT)

PC PT

ADDRESS L
SPACE LB [ﬂ bb GEAR | BLUE l b171 bb GEAR | 0431 A bbGEAR | 2716 l

C INFORMATION MANAGEMENT SYSTEM (HIERARCHICAL SEQUENTIAL)

=711 rTTT T T rT W T T T T
CATALOG | GS {AVAI 1 | BETA [AIAI13| |GEARS%A| [ALPHAIAIAIIOI
L L JE B Oy Lt [R

ADDRES!

s
SPACE [36J BLbbGEAR BLUE Lbld A [b b GEAR [0431 l A LbbGEAR Pns L

D GENERALIZED INFORMATION SYSTEM

[ttt -TTr-n o r— W"“! 1 FET T
CATALOG [@GS AI l (BETA TtAlA 113! IGEARS Al b ALPHA 1ALALIO]
[L - L WG [U I PSR |

—— - — L4 —_

ADORE:

ShaCE® [[34 Jovoear [Boe [b17 [o2 | boear | 0431 | bbaear | 2716 |

Physical device level model

The Entity Set, String Structure, and Encoding specifications
provide a basis for describing many features of data-base organi-
zations, particularly data bases in high-speed storage and in vir-
tual address system. These specifications do not, however, allow
us either to take into consideration the periodic structures and
inhomogeneous access times characteristic of large-capacity
DASD or to tailor storage organizations to avoid the often seri-
ous penalties incurred in random accessing. Thus it is desirable
to have a mechanism that automatically inserts new records near
related old records so as to minimize long physical access times.

In investigating existing systems like 1SAM, IMS, and IDS, we find
that a rather complex set of parameters is required to describe
the physical device level. In this paper, we present only the out-
line of the required parameterization. A substantial iterative
refinement is required to describe the wide range of functions
found at the device level in existing systems. Broadly speaking,
the physical device level has been found to require the following
four major provisions.

No. I -+ 1973 DATA-BASE SYSTEMS 111

physical
subdivision
type
specification

physical
device
formatting

address space
allocation

86

1. Physical Subdivision Type Specification is provided to define
properties of named physical subdivision types such as named
types of blocks, pages, or tracks.

. Physical Device Formatting provides for formatting specific
instances of physical devices in terms of the Physical Subdivi-
sion Type Specifications in 1.

. Address Space Allocation provides a means for correlating
named Address Spaces mentioned in the Encoding Level
Model with the formatted device addresses. A named Ad-
dress Space may be multidimensional and may span portions
of one or more devices formatted by the specification in 2.

. Placement Specifications define a record and describe where
the system is to attempt to place it initially. Placement Speci-
fications interface the Physical Device Level Model with the
Encoding Level Catalog.

In existing data-base systems, the specifications of physical de-
vice formatting and the properties of the various physical sub-
divisions are deeply embedded in the system or access-method
program. To provide a model with more general flexibility these
aspects must be externalized in the form of separable, parame-
terizable components.

The first step in the parameterization process is to note that
here, as with the earlier levels, it is useful to make the type-in-
stance distinction. Hints of type description are found in the
Indexed Sequential Access Method (1ISAM) which has four types
of physical subdivisions —prime, overflow, track index, and
higher level index. Each physical subdivision type can be speci-

fied in the following fashion:

Composition in terms of its component physical subdivisions
Contiguous Data Group (physical record) insertion process
Available space handling process

Overflow handling of Contiguous Data Groups

These specifications are illustrated in the 1ISAM example that fol-
lows.

Physical Device Formatting is simply the assigning of Physical
Type Specifications to actual device instances. The correlation
is made by indicating an origin in actual device space for a list of
particular type specifications, From the example in Figure 8,
the specification ORIG = PACK (17), CYLINDER (7), FORMAT =9
(CYLC) defines cylinders 7—15 of pack 17 as 1SAM-type cylin-
ders with one index track, 17 prime tracks and two overflow
tracks.

Given a formatting of devices, named address spaces must be
allocated to them. A major characteristic of allocation is that it

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

may be discontinuous with respect to the physical device ad-
dress space. In the case of 0S/360 extents for a data set, for
example, the first extent might cover device cylinders 1-7 and
the second, device cylinders 12-14, There is no reason why
address allocation cannot be generalized to be discontinuous to
the byte level, but it seems that the definitions of start and end
points of extents in terms of blocks, tracks, etc. provide a
reasonable level of detail. An example allocation might be
ASPACEA = (PACK = 7 (CYLINDER = 1, 7 (TRACK =5, 9 (BLOCK
= 3, 6)))) which allocates address space ASPACEA to pack 7 where
the allocation runs through blocks 3 to 6 of tracks 5 to 9
of cylinders 1 to 7. If we defined a linear address space, then the
addresses exist in terms of bytes (bits), where byte 0 is the first
byte of pack 7, cylinder 1, track 5, block 3. Higher dimension
addresses may also be defined if desired, such as bytes within
tracks where the first address on cylinder 3 becomes Track = 10,
Byte = 0. In the 1SAM example, the Address Space is simi-
lar to the Device Address Space and is, therefore, multidimen-
sional.

Up to this point, the Physical Device Model has been indepen-
dent of the Encoding model. The Physical Device Model catalog
(which may be merged with the other catalogs of the system)
includes the following items:

o Physical Type Specification names
o Physical device names with their format specifications
s Address space names with their allocation specifications

This catalog specifies an independent mechanism for storing and
retrieving records with relatively comprehensive space and over-
flow handling.

Required by the Physical Device Level Model is a more gener-
alized definition of a record and its placement. In existing sys-
tems, the unit of placement is usually called a record with an ad
hoc definition that varies from system to system—hierarchic
records, master records, detail records, and so on. In general
descriptive terms, a record is a reasonable-sized set of Entity
Model Names and control information values related in a fixed
fashion by physical contiguity. To avoid confusion, DIAM uses
the term Contiguous Data Group (CDG) instead of record. A
CDG is a set of BEUs that are related by contiguity and placed as
a unit. Under this definition, the records of 1ISAM, GIS, and DBTG
are CDGs as are the segments of IMS. A placement rule, directly
associated with the highest level BEU catalog description of each
CDG, states that the CDG is placed in the first appropriate avail-
able space in the address space after the prescribed address.
(The term ‘‘appropriate” is related to E-String ordering, CDG
insertion, and space handling rules.)

No. 1 - 1973 DATA-BASE SYSTEMS 111

placement
specification

Figure 7 Physical type specification for ISAM cylinder overflow

BLK! COMP =10 BYTES l |
OVERFLOW = NONE

SPACE = CONTIGUITY o9

COMP = 1600 BYTES

INSERT OVERFLOW =
NEXT BLKP

SPACE = CONTIGUITY

COMP=410 BYTES I I
INSERT OVERFLOW = NONE Py

TRKi COMP=36 [|(BLKI)

OVERFLOW = NONE
SPACE = CONTIGUITY

i
|

COMP=4 [(BLKP)

INSERT OVERFLOW =

ADR (TRKOQ) = ADR (TRKP)
MOD 17
SPACE = CONTIGUITY

conr =15 800 HiEiREEERE RN

INSERT OVERFLOW =
NEXT TRKO

SPACE = CHAIN

CYLC COMP= 1 TRKI

17 | TRKP

2 | TRKO

example The Indexed Sequential Access Method (ISAM) makes use of a
physical wide variety of Physical Device Level Model (PDLM) parameter
device variations. The creation and maintenance of the indexes, in par-
level ticular, requires a relatively complex set of interactions. For
model simplicity, therefore, the following example, taken from Figures
7 and 8, is restricted to a PDLM description of the data cylinder

areas.

Figure 8 Physical device formatting Composition
DEVICE ADDRESS
ORIGIN= 718 Blocks are composed of bytes
T REhREss=7 Index Block BLKI = 10 BYTES

Prime Block BLKP= 1600 BYTES

Overflow Block BLKO= 410BYTES
Tracks are composed of blocks

Index Track TRKI= 36 BLKI

Prime Track TRKP = 4 BLKP

Overflow Track 15 BLKO
Cylinders are composed of tracks

For cylinder overflow

Cylinder CYLIC = 1 TRKI+ 17 TRKP + 2 TRKO

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYSTJ

For separate overflow
TRKIS = 40 BLKI
CYLS = 1 TRKIS + 19 TRKP
cYLso = 20 TRKO

Here the control fields such as the key field for a block are not
specified, but such specifications are a natural extension of the
Composition structure.

Insertion

CDG identification and length. Fixed-length ISAM requires nei-
ther identification nor length for its CDGs because it is assumed
that all CDGs originate at a single source that provides its own
identification. The fixed position and size of one Entity Descrip-
tion Identifier is provided to the access method.

Record ordering . The system program is instructed to maintain
order based on the Entity Description Identifier.

Record placement. At load time, the CDGs are presented in or-
der and each cDG is loaded in order by the Entity Description
Identifier into the prime area (BLKPs) only. At run time, CDGS
are loaded into a block immediately before the CbG with the
next higher Entity Description Identifier. Contiguity is used to
maintain ordering in the prime area. Chains are used to maintain
ordering in the overflow area.

Available space

At run time, available space is maintained in the prime areas by
contiguity and in the overflow areas by chain. CDGs may be de-
leted by the use of a control character, but CDGs are never part
of the available space.

Overflow handling

At load time, overflow moves from BLKP to BLKP until the last
BLKP on a track is filled. At this point, the track (TRKI and
TRKP) overflow rule directs the overflow to the next TRKP. Over-
flow from the last TRKP on a CYL is sent to the BLKPS on a
TRKI on the next cylinder. At run time, overflow moves from
BLKP to BLKP, and from TRKI and TRKP, onto TRKO on the same
cyLc if there is a cylinder overflow, or to TRKO on CYLSO if
there is a separate overflow.

From this example, it is possible to say that ISAM is the result if
a particular selection of model parameters is made. The model,

No. 1 - 1973 DATA-BASE SYSTEMS 111

however, is capable of generating other interesting file organiza-
tions for the experimenter who wishes to consider other kinds of
transaction patterns. For example, one may wish to maintain
order within a block by chain. This allows direct insertion of
new CDGs into overflow without CDG movement in the block.

Implementation

Given a description of data structures and data accessing, it is
natural to attempt to determine what the model characteristics
would be if, in the long term, it becomes part of an evolutionary
information system. Our present prototype effort is directed to
proving out functions instead of performance, but the following
observations seem realistic.

In the time-consuming accessing and decoding of data records,
DIAM is expected to require less —and certainly no more —phys-
ical device accesses to obtain the requested data. To aid in up-
ward compatible migration, DIAM is expected to provide any
data structure presently provided by existing systems, and in
addition provide special structures more directly tailored to the
application. The resultant system should have fewer instructions
and modules for data accessing than more generalized systems.

In preparing to access data, a tailored system may be slower
than existing systems, depending on the DIAM implementation
options chosen, the generality of the data structures, and the
language used. In particular, precompiled RDAL addressed to
stable String Structures should be no slower than existing proce-
dural languages. The RIAL is probably slower if catalog accesses
are scattered and if the search-path selection problem must be
solved for every transaction. Even in this case, however, the
selection of the best search path may result in major economies.
Here, again, there exists the possibility of precompiling RIAL
transactions of a particular class if they occur quite often. The
transactions could then be recompiled whenever a structure to
which they refer changes.

The catalog for DIAM is probably larger than existing catalogs,
but it probably does not differ greatly in size and may be smaller
than catalogs required for the combined functions —essential to
next generation systems —that DIAM supplies.

Concluding remarks

Features that are properties of the String, Encoding, and Physi-
cal Device Model Levels have been discussed. An implementa-
tion of a very generalized data-accessing mechanism that could
provide, among other things, many of the desired functions speci-
fied by the Data Base Task Group Report might be based on

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

RDAL and these model levels without dealing with the questions
of data independence and search path selection. DIAM does,
however, provide an excellent basis for a generalized data inde-
pendent system because of the stable Entity Set Model name
structure and the wide variety of file organizations provided by
the String Name Structure. The present catalog provides a good
basis for the storage of the information needed to maintain data
integrity and security. It also provides a good basis for the col-
lection of statistics for performance enhancement.

In essence, a DIAM implementation is expected to be fast in
decoding the data stream. It is not so clear what its performance
would be with regard to preparation for accessing the data
stream, but there are a number of tactics available to improve
the DIAM performance over that of a straight interpreter.

Having considered this more general view of structured informa-
tion, data structures, and data accessing in data-base systems,
let us consider several applications. The Entity Set Model cou-
pled with an RIAL description of transactions provides a consis-
tent implementation-independent basis for describing a user ap-
plication load. In this sense, RIAL has parallels in the Problem
Statement Language of the 1spos”’ project and the Time Auto-
mated Grid (TAG)™ project in 1BM. Given an implementation-
independent description of a user’s problem, regardless of the
implementation system used, the next step is to determine from
a gross efficiency standpoint the subset collections that are to be
constructed. The String model provides a self-sufficient level for
solving such a problem with a minimum of detail. Encoding and
Physical Devices parameters are relatively constrained in exist-
ing data-base systems, but DIAM can be of assistance in defining
the alternatives present in existing systems is a clear fashion.

With DIAM a better picture of common and differing primitive
functions of alternative data-base systems may be obtained. We
have seen earlier certain aspects of IDS, IMS, and GIS differ but
slightly at the Encoding Level, and that these systems do not
differ at all in their description of hierarchic record structures at
the String Level.

With regard to designing new data-base system functions, a new
function may be added in terms of high-level primitives instead
of assembly language coding. The model also removes from the
coding nearly all embedded knowledge of data structure, thereby
making possible a completely table-directed accessing system.

These capabilities for providing and accessing general data rep-
resentations using table-directed accessing plus the resemblance
of the RDAL to existing access languages such as that provided
for iIMs should significantly ease the task of compatible migration.

< 1973 DATA-BASE SYSTEMS 111

For example, mapping from existing file organizations into
DIAM'’s more general representation structure description should
be relatively straightforward. The translation of a logically ori-
ented ““Get Next” language like that of IMS into RDAL in the
case where the DIAM representation images the IMS physical
structure again should be relatively straightforward. In the case
where there is no direct imaging, translation seems slightly more
difficult, but the loops and tests characteristic of a “Get Next”
language should be transferable without requiring additional
information from the user.

DIAM provides a clearcut separation of concept names in the
real world at the Entity Set Level from representation names at
the String Level, by use of a catalog structure for relating the
two kinds of names. This results in a framework in which it is
possible to achieve full accessing program (RIAL) independence
of data structure representation modification.

Also provided is an initial basis for defining a system in which a
fact need only be stored in one place and so characterized that
the user can only perform meaningful operations on these facts.
This is an area for considerable future investigation.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions of their colleagues, Phyllis
B. Baxendale, Sakti P. Ghosh, Armand D. Inselberg, Warwick D. Musson, and
Mary C. Smyly.

CITED REFERENCES

1. CODASYL Systems Committee Technical report, Feature Analysis of
Generalized Data Base Management Systems, ACM, New York, New
York, (May 1971).

. G. H. Mealy, ““Another look at data,” AFIPS Conference Proceedings, Fall
Joint Computer Conference 31,525 -534 (1967).

. M. D’Imperio, “Data structures and their representation in storage,” An-
nual Review in Automatic Programming 5, 1-75, Pergamon Press, Inc.,
Elmsford, New York (1969).

. Language Structure Group of the CODASYL Development Committee,
“An Information Algebra, Phase | Report,” Communications of the ACM
5, No. 4, 190-205 (April 1962).

. D. Hsiao and F. Harrary, A formal system for information retrieval from
files,”” Communications of the ACM 13, No. 2, 67-73 (February 1970).

. J. Earley, “Towards an understanding of data structures,” Communications
of the ACM 14, No. 10,617 -628 (October 1971).

. Joint GUIDE-SHARE, Data Base Management System Requirements, W.
D. Stevens, Skelly Oil Co., Tulsa, Oklahoma 74102 (November 1970).

. CODASYL Data Base Task Group, Report to the CODASYL Program-
ming Language Committee, Report CR 11, 5(70)19,080; ACM, New York,
New York (October 1969).

. W. C. McGee, “Generalized file processing,” Annual Review in Automatic
Processing 5,77 —149, Pergamon Press, Inc., Elmsford, New York (1969).

. R. W. Engles, A Tutorial on Data Buse Organization, Report TR 00.2004,
International Business Machines Corporation, System Development Divi-
sion, Poughkeepsie, New York (1970).

11. E. F. Codd, *A relational model for large shared data banks,” Communica-

92 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST)

tions of the ACM 13, No. 6, 377 -387 (June 1970).

. D. C. Childs, “Feasibility of a set theoretic data structure,” Proceedings of
the IFIP Congress 1968 1, 420-430, North Holland Publishing Company,
Amsterdam, Netherlands (1968).

. D. P. Smith, An Approach to Data Description and Conversion, Moore
School Report No. 7220, Moore School of Electrical Engineering, Univer-
sity of Pennsylvania, Philadelphia, Pennsylvania (December 1971).

. R. W. Taylor, Generalized Data Base Management System Data Structures
and their Mapping to Physical Storage, Ph.D. dissertation, University of
Michigan, Ann Arbor, Michigan (1971).

. D. G. Severance, Some Generalized Modeling Structures for Use in the
Design of File Organizations, Ph.D. dissertation, University of Michigan,
Ann Arbor, Michigan (1972).

. C. T. Davies, 4 Logical Concept for the Control and Management of Data,
Report AR-0803-00, International Business Machines Corporation, System
Development Division, Poughkeepsie, New York (1967).

. H. S. Meltzer, Data Base Concepts and Architecture for Data Base Sys-
tems, IBM Report to SHARE Information Systems Research Project
(August 20, 1969).

. Generalized Information System G18/360, Application Description Manual
(Version 2), Form GH20-0892-0, International Business Machines Corpo-
ration, Data Processing Division, White Plains, New York 10604 (1970).

. GE-600 Line Integrated Data Store, Publication CPB-1565A, General
Electric Information Systems Department, Phoenix, Arizona (September
1969).

. Information Management System IMS[|360 Application Description Man-
ual (Version 2), Form GH20-0765-1, International Business Machines Cor-
poration, Data Processing Division, White Plains, New York 10604 (1971).

. Introduction to IBM System/360 Direct Access Storage Devices and Orga-
nization Methods, Chapter 7, “Indexed sequential organization,” Form
GC20-1649-4, International Business Machines Corporation, Data Process-
ing Division, White Plains, New York 10604 (1969).

. Introduction to IBM System|360 Direct Access Storage Devices and Orga-
nization Methods, Chapter 5, “‘Sequential organization,” Form GC20-1649-
4, International Business Machines Corporation, Data Processing Division,
White Plains, New York 10604 (1969).

. R. E. Bleier, “‘Treating hierarchical data structures in the SDC Time Shared
Data Management System TDMS,” Proceedings of the ACM 22nd Nation-
al Conference, 41 —49, MDI Publications, Wayne, Pennsylvania (1967).

. J. McCarthy et al., The LISP 1.5 Programmer’s Manual, The M.1.T. Press,
Cambridge, Massachusetts (1962).

. G. F. Duffy and F. P. Gartner, “An on-line information system for manage-
ment,” AFIPS Conference Proceedings, Spring Joint Computer Conference
1969 34, 339-350, AFIPS Press, Montvale, New Jersey 07645 (1969).

. M. M. Astrahan, E. B. Altman, P. L. Fehder, and M. E. Senko, “Concepts
of a data independent architectural model,” Proceedings of the ACM SIG-
FIDET Conference, Denver, Colorado (1972).

. E. B. Altman, M. M. Astrahan, P. L. Fehder, and M. E. Senko, ‘‘Specifica-
tions in a data independent architectural model,” Proceedings of the ACM
SIGFIDET Conference, Denver, Colorado (1972).

. M. E. Senko, E. B. Altman, M. M. Astrahan, P. L. Fehder, and C. P. Wang,
“A data independent architectural model 1: Four levels of description from
logical structures to physical search structures,” Report RJ 982, Interna-
tional Business Machines Corporation, Research Division, Monterey and
Cottle Roads, San Jose, California (February 1972).

. E.J. P. Tremblay, “A Problem Statement Language Definition and Its Syn-
tactic Analysis” 30B, 1969-70, Abstract 4098-B, Dissertation Abstructs
International, University Microfilms, Ann Arbor, Michigan 48106 (1969).

. J. F. Kelly, Computerized Management Information Systems, Chapter 8,
533, The Macmillan Company, New York, New York (1970).

1973 DATA-BASE SYSTEMS 111

93

