
A new approach to information structuring is presented.

Basic to the structure is the notion of an Entity-an object, con-
cept, or event-and associations among Names for Entities.

Discussed on the basis of these concepts is an Entity Set Model
for information structuring.

Data stru ctur es and acc es sing in data-base
II Information organization

The ultimate purpose of a data-base system is not to read
punched cards or magnetic spots on disks. These functions are
only incidental aspects of the information representation being
used. The real purpose is to store and present valuable struc-
tured information in a timely and efficient manner.

Although practical steps have been taken toward achieving data
structure independence, the processing of structured information
has been constrained by a given technological representation.
The appearance of high-performance, random-access technology,
however, provides the capability for overriding the constraints of
existing representations and for dealing with structured informa-
tion more naturally.

To capitalize on the random-access capability, we must first
understand the properties of information and information pro-
cessing in their own terms, and not in terms derived from exist-
ing representations. Given a more meaningful and stable termi-
nology, we should be better able to discuss and understand the
use of particular concepts of existing systems and provide simpli-
fied compatible coverage for them in our future systems.

Organization of information

It is not easy to discuss the properties of information, and only a
few papers in the computer literature (including a pioneering one
by Mealy', and later ones by Engles,' M e l t ~ e r , ~ and Davies4)

NO. 1 1973 DATA-BASE SYSTEMS 11 45

have even attempted to address this problem. Most papers dis-
cuss the properties of particular representations for information.

In discussing information structuring we would prefer to pro-
pose and define our terms with mathematical accuracy. We find,
however, that the state of the art of information structuring con-
tains a complex of ill-defined observations that are far from be-
ing reduced to the precision we desire. Thus we see two choices.
(1) Discuss those few aspects that may be conveniently de-
scribed in terms of an existing precise mathematical framework,
and relate that framework to our conceputal model. Otherwise
(2), seek to construct a complete, faithful description of the in-
trinsic characteristics of structured information based on con-
cepts that are more appropriate, but less precisely defined, and
then indicate investigative directions for seeking better definitions.

Since a global discussion of information is essential to an overall
understanding of work in the information systems area, we have
chosen the second course. Thus, much of what we present in
this section is not presently provable, but hopefully it makes
useful common sense now and will yield to better definition in
the long term.

structured The information content of a particular data-base system is of
information sufficient value that users are willing to work hard to structure it

and to get at least an implicit, general agreement on the meaning
of the structure. This structuring has many of the formal aspects
of taxonomy, logic, and set theory, which helps in making dis-
cussion more specific. There are, however, aspects of informa-
tion structuring such as identifiers that are not included in exist-
ing formal structures.

As we have mentioned, information consists of facts about
things. These facts and things exist independently of any repre-
sentation, but it is essentially impossible to deal with them con-
ceptually except in terms of some representation. As soon as we
draw a picture of something or give it a name, we are dealing
with the thing in terms of a representation. In a data-base sys-
tem, we deal with information almost completely in terms of
name representations of information.

entities The top level of Figure 1 shows things of the real world, which
we term Entities. It may seem strange to think of the concept
color Red as an Entity, but the concept color Red may be as
important to the owner of a file as the object Wheel. He might

46 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

~

Figure 1 Relationships among Entities, Names, and Name Representations

NAME
REPRESENTATIONS JOHN JONES CCCVIII-XX-MDCXIX

JOHN JONES 308 20 1619 WHEEL RED

wish to name the color and store some structured information
about it. An Entity is, therefore, defined as anything that has
reality and distinctness of being in fact or in thought, e.g., ob-
jects, associations, concepts, and events.

When discussing Entities, we seldom use the objects them-
selves. Rather we use names and named associations between
names to stand for Entities. In this paper, we use the term
Name in its most general sense to mean a symbol or combina-
tion of symbols by which a person, place, thing, body, class, or
any object of thought is known. Example Names are 6, Red, and
Jones.

We further define Name Representations because there is often
a choice of equivalent coding schemes available for expressing
Names. In our thoughts, we use Names in some unknown form
to stand for Entities, but in writing these Names or storing them
in the computer, we must use Name Representations. It is usu-
ally unnecessary to distinguish between Names and Name Rep-
resentations. Rather, we use the term Name for both. For
completeness, however, a Name Representation is the Name as
expressed in a selected coding scheme. In Figure 1, the man has
two Names, and each Name has two printed Name Representa-
tions.

Unique names are needed for identifying Entities whose unique- entity
ness is important to us. For example, it is unnecessary to names
uniquely identify each wheel in a bin of wheels because, in the
properties that are important to us, they are all the same. Differ-
ences among people (and in some cases among parts), however,
are very often important because those differences define signifi-
cant unique traits. When such differences are important to the
user of a data-base system, then each person Entity in a particu-

lar context (employee within department) must have at least one
unique name so that he may be identified unambiguously.

The human process of associating unique names with unique
Entities in conversation normally appears somewhat different
from the process used by people in interaction with machines. In
a dialogue, we need only a few unique names, which we con-
struct - without lifting a finger-from the names for the set of
properties and associations that an entity has had over its life-
time (say, the John Jones who married Jane’s friend, Karen).
Our interactions with computers in terms of names, however,
require a pressing of keys at some stage. The cost is high in both.
time to enter and space to store the large number of property or
association names that might be needed to find a unique name
by dialogue. This situation motivates us to specify rules for con-
structing a unique name for an entity out of a finite set of terms.

As shown in Figure 1, individual Entities may have more than
one unique name. One reason for this is that an Entity may be im-
portant in a number of contexts - family, country, company - and
in a particular context it should be as easy as possible to uniquely
name the Entity and to remember its name. A small context
(family) requires only a selection from a small set of distinctive
given names. A large context (country) requires selection from a
large set of Social Security numbers. The larger the context, the
less distinctive and more difficult the names are to remember. We
tend to use the simplest context possible when referring to
Entities.

name In thinking about the real world, we seem first to group Entities
organization with similar properties into sets. In this paper, these sets are

called Entity Sets, and are given Entity Set Names. An Entity
Set Nume is a unique name for an Entity Set. People, part types,
and colors could be Entity Set Names. Also in information sys-
tems, to provide a context for assigning unique names to in-
dividual Entities, we seem to define subsets of Entity Sets based
on properties held in common (for example, “is a member of the
Jones Family”). In this paper, the unique names for Entities are
called Entity Names. The sets of unique names are called Entity
Name Sets, and Entity Name Sets are given Entity Nume Set
Names. An Entity may have an Entity Name in more than one
Entity Name Set. For example, a person usually has names in the
sets Social Security number and employee number. Entity Name
Set Names are made unique across a particular data-base system
by creating a hierarchic structure of qualified names such as com-
pany name, division name, department name and so forth. Each of
such qualified names is unique within the context of the higher
level name. If departments in different divisions have the same
name, there is no ambiguity because those departments have
been qualified by their division names. We realize that these and

48 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

Table 1 Entity Set model terminology

Concept in the N a m e for Description
real world the concept of the concept

Element Entity Entity Name Entity Description
Set Entity Set (Entity) Name Set (Entity) Description Set
Name of set Entity Set (Entity) Name Set (Entity) Description Set

Name Name Name

other terms used in this paper may become shortened in prac-
tice. To ease the learning procedure for the reader, we use a sys-
tematic composition for the terminology in this paper. In certain
cases, we can shorten the terminology by dropping the prefix
Entity. This is shown in Table 1 .

Within each Entity Name Set, we give each included Entity a
unique Entity Name and construct Entity Names in two ways.
To guarantee uniqueness in a particular context, we may for that
context create a special set of names such as the three-letter air
terminal Entity Name Set or the nine-digit Social Security num-
ber.

Alternatively, we may use a combination of one or more names
of other Entities associated with the Entity to be named. This is
possible only where we believe that the combination is unique
within the Entity Name Set context. For example, it is highly
probable that the combination, FIRST NAME/JOHN, LAST NAME/
JONES, BIRTHDATElJUNE 7, 1938, and BIRTHPLACElOGDEN,
IJTAH, is an adequate Entity Name for a person in the United
States. Another combination is the Entity Name Set DATE,
which constructs unique names for its Entities from a combina-
tion of names from the Entity Name Sets MONTH, DAY, and
YEAR. It is often thought that such combinations are created
simply for programming convenience. We can see, however, that
each name within the DATE set is a name for a completely new
and different entity. That it is not simply a name for a straight-
forward combination of the entities within the sets MONTH,
DAY, YEAR can be seen by noting that while February and 3 1
are valid names for Entities in the sets MONTH and DAY, there is
no Entity Name Set DATE corresponding to the name MONTH =
FEBRUARY, DAY = 3 1.

Similarly, an Entity may be a unique association between two
other Entities, in which case, a unique name for the association
may be constructed out of a combination of the names for the
two associated Entities. In the association named SUPERIOR
PART with COMPONENT PART, one unique name is a combina-
tiOn Of SUPERIOR PART NUMBER117 with COMPONENT PART
 NUMBER/^^. Here again, there is no Entity corresponding to the

NO. 1 1973 DATA-BASE SYSTEMS 11

combination SUPERIOR PART NUMBERl17, COMPONENT PART
 NUMBER^^^. Therefore, this Entity Name is invalid. Note that
no order is necessary among the component names. We need
only indicate from which Entity Name Set the component
names are drawn.

These concepts are intended to provide a good characterization
for all the names of real-world entities that might be stored in a
data-base system. With reasonably high confidence, we believe
that Entity Names and Entity Name Set Names rather than
fields, records, and files are more useful and basic building
blocks of structured information.

Descriptions of entities

In some cases, the Name Set Name/Entity Name pair (such as
the set of auto body color names used by many departments of
motor vehicles) is all the description required of an Entity by the
data-base system. In other cases, the system may require a more
detailed description of the Entity. People seem to create a more
complete structural description by associating a name of the
Entity being described with a name of another entity used in a
descriptive role. For example, the Entity named PART
NAMElGEAR may be described by the Entity named COLOR
NAMElBLUE in the descriptive role, COLOR OF PART. In this
paper, such an association is given a Role Name.

Commonly called a fact, this association is descriptive of both
Entities. Thus, “James is the father of John,” but also “John is
the son of James.” This observation is somewhat at variance
with Mealy’s paper and other sources that postulate a rigid dis-
tinction between attributes and identifiers in records where an
Attribute/Attribute Value combination (COLOR NAMELOLOR) is
primarily a description of the Identifier (PART NAME~GEAR).
There is some utility to this notion of rigid distinction, and we
will use it later in constructing an Entity Description. Note,
however, that there is some measure of reciprocal description.

Decisions as to the form and relative stature in the model of
descriptive structures based on the association of Entities are
presently a matter for critical judgment. There are at least three
possible choices for the selection of the most basic form of de-
scription.

two-place The first and simplest form involves a two-place association
association between entities. Each place consists of a unique Entity Name.

That name could be composed of a combination of Entity
Names. For example, Quantity of Subordinate Part for a given
Superior Part may be in one place of an association. The other

50 SENKO, ALTMAN, ASTRAWAN, A N D FEHDER IBM SYST J

Figure 2 An Entity description c PART NAMEIPART NAMEIGEAR PART NUMBERIPART NUMBER17

WEIGHTIPART WEIGHT/17 COLORIPARTCOLORIBLUE

place may be an Entity Name composed by combining Entity
Names for the Superior Part and the Subordinate Part. Such a
form resembles an n-place association, and has some underlying
structure that can be used by the system (for example, in listing
the component parts and quantities of a particular superior part).
The dominant essence, however, is that of a two-place associa-
tion. This type of form can probably be used to express any in-
formation that might be stored in a data-base system.

It is simply a matter of judgment whether this is the most desir-
able form. Its main disadvantage with respect to the next two
forms is that it requires a unique name for each type of associa-
tion, and each added name makes the system more complex and
prone to user error. Queries are more difficult to construct be-
cause they have to specify a name for each referenced associa-
tion.

A second possible choice, the Entity Set Model, uses Mealy’s
distinction with regard to asymmetry in the association of Entity
Names. In this case, an Entity is described in terms of its asso-
ciations with other Entities. Here we define the terms Entity
Description, Entity Description Set, Role Name, and Identifier
for the Entity Set Model.

An Entity Description is composed of a set of name triplets that
form a description of an identified Entity. Each triplet consists
of a Name Set Name, a Role Name, and an Entity Name drawn
from the named Name Set as shown in Figure 2.

The Entity being described is uniquely identified by one or more
of its Entity Names, which appear as specified subsets of the
triplets in the Entity Description. These subsets are called Zden-
tijiers. PART NAME~PART NAMElGEAR is one Identifier in the
example in Figure 2, and PART NUMBER~PART NUMBER/7 is a
second independent Identifier.

Each Role Name is unique across the Entity Description and
indicates the role that its associated Entity plays in describing
the identified Entity. To allow reduction in the number of dif-
ferent names used, each Name Set Name may optionally be
used as a Role Name in one of the one or more triplets in which

NO. 1 . 1973 DATA-BASE SYSTEMS 11

4

it appears as a Name Set Name, as shown in the preceding
Entity Description triplet. As is usual with sets, no order is im-
plied among the name triplets. (“Attribute name,” in earlier ter-
minology, is the implicit result of this type of reduction, and only
imperfectly performs the two functions required: Name Set
Name and Role Name.

The requirement for unique Role Names derives from a desire
for simplicity and homogeneity of structure for the Entity De-
scription, which leads to the property that each Entity Descrip-
tion can be represented as a simple vector. We neither need nor
wish to complicate the Entity Description form with parameters
for specifying multivalued attributes or hierarchic records.

The Description Set (Entity Description Set) is a uniquely
named set of Entity Descriptions for Entities drawn from a sin-
gle Entity Set. Since the identified Entities in an Entity Set have
similar properties, each Entity Description in a Description Set
has the same set of Role Names. No order is implied among the
Entity Descriptions of a Description Set.

At this point, it is useful to digress for a moment and discuss
terminology. To avoid inconsistencies of attribute-oriented ter-
minology, we have decided to move to an Entity Name and
Entity Name Set terminology. It may be difficult to think of Col-
ors - Red, Blue, Green -as Entities, but the Entity named Col-
orlRed can be described by its spectral distribution, even though
it is normally used to describe other Entities. We also feel that it
is important to distinguish among Entities that exist in the real
world, their associated Entity Names, and their associated Enti-
ty Descriptions. This distinction is not very clear in earlier doc-
umentation, and has sometimes led to such ambiguities as the
use of Entity Set as the name for a set of Entity Descriptions
rather than a set of Entities. The Entity Set Model, which is
summarized in Table 1, is the entry mechanism between the
world of tangible information external to the data-base system
and the Data Independent Accessing Model (DIAM).

In existing systems proposals, the Entity Description concept
appears quite frequently, although it is very often embedded in a
complex aggregate of inseparable logical and physical consider-
ations. Close parallels exist between the Entity Description and
the following concepts:

Logical level of the DBTG Report5
Segment of the Information Management System6
Segment of the Generalized Information System7
Level of a COBOL Record’
Logical Record of the Integrated Data Storeg
Relation in several systems

i2 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

The main difference is that the Entity Set Model for organizing
Names has made a clean, separate logical construct of the Entity
Description.

A third possible choice of the most basic form of description is
to use a hierarchic data structure such as that described by
Mealy. With this choice there is much less need for Description
Set Names to provide a context for accessing language search
specifications. Queries simply name hierarchic record types.
The Time Shared Data Management System (TDMS) is an exam-
ple of this form of data description. For a particular view of the
data, the hierarchic record is essential to the end user or applica-
tion programmer and, therefore, must be provided, but it does
have difficulties relative to the Entity Set Model as a sys-
tem interface. The basic units (hierarchic records) are neither
simple nor homogeneous in structure and, therefore, require a
relatively complex description. Users often find that incompati-
ble hierarchies best fit their need for information processing, and
there is no objective means for selecting the hierarchy that is to
be the system view. As an evolutionary step, we would like to
provide a more basic interface that allows multiple logical
hierarchies to be defined on it.

Based on the preceding discussion of possible data descriptive
structures for the Data Independent Accessing Model (DIAM),
the Entity Set Model best fills our requirements. Thus owners of
information to be stored in the system describe their information
in terms of the Entity Set Model Name Organization. DIAM then
catalogs the information in these terms.

An interface of lesser stature must be provided to realize the
convenience of logical hierarchic structures for specific users and
to achieve a convenient migration path for users’ programs ad-
dressed to existing data bases. In DIAM, this basic system inter-
face would be provided by facilities that particular transactions
would invoke for naming, defining, and accessing logical hier-
archic structures. To use this optional interface, for example,
hierarchic records might be composed of one Entity Descrip-
tion from the Description Set named Project and all the match-
ing Entity Descriptions from the set Employee. The matching
Employee descriptions contain a triplet having Name Set
Name = Project Number, Role Name = Project Worked In
and an Entity Name = Name of Project in the matching Project
Entity.

Catalog for the Entity Set Model

Data-base systems describe and process information about sets
of Entities with similar properties. Some of this information is

NO. 1 1973 DATA-BASE SYSTEMS 11

the same for each Entity Description in a Description Set
(Name Set Names, Identifiers in terms of Role Names, and Role
Names themselves), whereas other aspects are generally dif-
ferent for each instance of an Entity Description (for example,
the Entity Names associated with the Role Names). To concep-
tualize instances of a particular Description Set (Entities of the
same type) and make thinking more efficient, information that is
common to all instances of a particular type is collected and
placed in a catalog. The complete information about a particular
instance is thus a combination of the information common to all
instances of its type and the information that is specific to it.
The process of looking for collections of instance information
common to all instances of a collection and placing it into a type
description is a powerful method of organizing, simplifying, and
condensing the information about a collection of instances. In
some situations, this process has been calledfactoring.

In information systems, this classification process has been used
instinctively to create things like data description tables. We
have used it explicitly throughout the DIAM to aid in orgilnizing
and simplifying the special-instance terminology in data-base
systems. The reclassification and simplification of existing termi-
nology is, we believe, one of the major contributions of DIAM.

entity There are two requirements for type description of an Entity
description Description in the Entity Set Model. A Description Set Name

entries that is unique across the system is required plus a list of Identi-
fiers in the Entity Description in terms of Role Names. Also
required is a list of Role Names with their associated Name Set
Names. The Role Names need only be unique under the De-
scription Set Name. A Description Set catalog is illustrated in
Table 2. Here the slash symbol separates a Description Set
Name from a Role Name. The combination of the two names is
required to provide unique names across the system. Role
Names required to form an identifier are separated by commas
and enclosed in parentheses.

name The preliminary requirements for entries for Name Sets are as
set follows:

entries
Name Set Name unique to the system (e.g., PART)
List of Role Names that the Name Set assumes in Descrip-
tion Sets of the system wherein system uniqueness is ob-
tained by using the form Description Set Name/Role Name
(e.g., PARTIPART. SHIPMENTIPART SUPPLIED)
List of the other Name Set Names that apply to the same set
of Entities (e.g., PART NUMBER)
List that correlates all Entity Names for a particular Entity
(e.g., Social Security number = 308-20-1619 and employee
number = 862 are names for the same Entity)

54 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

Figure 3 Entity Sets described by Table 2

WT /SHIP. WT./-
SHIPMENT
DESCRIPTION SET
ID=CORP./SUPP, PROJ lPROJ SUPP

ID=NO./SHIP NO. PART/PARTSUPP./
PARTIPARTSUPP

SHIPMENT ENTITY
DESCRIPTION DESCRIPTION

SHIPMENT ENTITY
DESCRIPTION

SHIPMENT ENTITY
DESCRIPTION

DESCRIPTION

Associations among Entity Descriptions in the same Descrip-
tion Set make it possible to obtain answers to questions about
the entities that have specific properties.

The third is a somewhat more elusive association, the associa-
tion among Entity Descriptions of the same or different types
because the Descriptions have within them Entity Names for
the same Entity. This association allows us to combine informa-
tion about a department with information about its employees,
and to ask questions about the department that involve its ex-
tended characteristics, i.e., characteristics of a department's
component Entities or about the characteristics of its associa-
tions with other departments. Thus, for example, the DEPART-

56 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

Figure 4 Comparison of pointer representation and Entity Set Model

A POINTER REPRESENTATION E. ENTITY SET MODEL

7 1

I I 16 A 170 1
I I 17 4 170

!\"> """"""" 1

PERSON SEGMENTS PERSON ENTITY DESCRIPTIONS

MENT Entity Description with the Identifier DEPTlDEPARTMENTl
K O ~ is meaningfully associated with the Entity Descriptions from
the EMPLOYEE Description Set containing DEPTlDEPARTMENT
OF EMPLOYEElK06.

One of the main elements of concern with regard to this general-
ity thesis arises from the impression that pointers are required to
fully represent information. It is true that pointers are used in
certain representations to connect segments to represent a logi-
cal relationship between the segments and to provide a fast ac-
cess path between the segments. It is unnecessary to include
pointers in the Entity Set Model because the relationships that
they represent can be made more naturally, generally, and ap-
propriately by the match of Entity Names for the same Entity in
two different Emity Descriptions -the third association, just
discussed.

Figure 4 compares relationship pointers with an equivalent Enti-
ty Set representation. The pointer representation on the left is
unidirectional and implies that the pointers have to be changed
when the location of the segment identified by Man Number
(MN) = 7 is changed. The Entity Set Model does not require a
location concept and the relationship may be searched either
from the parent to the child or from the child to the parent. It is
clear that there is no explicit link that defines the relationship,
but the implicit association can still be made by set operations.
In this sense, no real-world information is lost by using the Enti-
ty Set Model. Another way of stating the same system property
is that accessing language statements need not specify order or
pointers to be followed. They need only specify Description Set
Name/Role Names (which are unique in the system) and Entity

NO. 1 . 1973 DATA-BASE SYSTEMS 11 57

that is useful in relating the Entity Set Model to the model that
is used for specifying access paths, which is discussed in Part
I11 of this paper.

The analogy for the Entity Set Model is to assume that, for each
Entity Description, its Name Set Name/Role Name/Entity
Name triplets are each written on a separate card and that the
cards corresponding to each particular Entity Description are
placed in one separate envelope. To create a physical analo-
gy for a particular Description Set, one must place all the Entity
Description envelopes for that set into a larger envelope.

Note that all the tangible information contained in the data-base
system can be extracted from this physical analogy by an ex-
haustive set of searches of the various envelopes, considering
the three specified associations. Such a search procedure is fea-
sible, but for most transactions it is inefficient. In fact, we have
specified a conceptual structure of names and named associa-
tions that is neutral to efficiency considerations in the sense that
no ordered subset access paths are yet defined on it to increase
search efficiency.

From the physical analogy, associations of names are relatively
stable. That is, to add a new property to the Entity Description,
simply write the appropriate Name Set Name/Role
Name/Entity Name cards for each of the Entities. Then place
the cards in the appropriate Entity envelopes. Associations
among existing names used by old programs remain unaffected.
Discussed in Part I11 are general specifications of representa-
tions to provide efficient support for the conceptual structure.

Adapting the model to the application

The Entity Set Model contains only the essential information
needed by the system accessor. With appropriate rules for the
composition of Entity Descriptions to be discussed next, it may
be possible to create a conceptual structure for a specific appli-
cation that has only one place to store a fact. Having defined the
form for the information structure, it is appropriate to seek a set
of rules for assigning facts to Description Sets.

Inherent in any data-base system are the following require-
ments:

Simplified maintenance of the integrity and consistency of
information

58 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

General guidance to location of a given fact in the system
Simplified ways of preserving the validity of long-term pro-
grams for querying and maintaining the data base in an envi-
ronment of changing representations (data independence)

These system requirements usually translate into two user re-
quirements at the system interface. The system has but one
place to store each fact, and also has a reasonably stable name
structure to be used by programs that access the data base. This
is necessary so that programs do not have to be rewritten when-
ever there are minor changes in structure.

It may not be possible to fully achieve these requirements in the
near-term future. It should be clear, however, that their eventual
achievement is closely intertwined with means for specifying the
fact content of and improving the stability of Description Sets
used at each installation. Needed instead of our present process
of distributing facts redundantly throughout the data base on the
basis of requirements of special applications is a set of logical
rules or guidelines to assist in specifying sensible Description
Sets and their associated Role Name content. Role Name Iden-
tifier Allocation (RNIA) is the term for rules that govern this pro-
cess. An indication of the strategic direction to be taken is given
by presenting a few useful rules concerned with RNIA.

Component-whole rules. If a Role Name/Entity Name descrip-
tion of an Entity is not assigned to the description of the Entity,
but instead, to the Entity Descriptions of components of the
Entity, then this assignment is equivalent to storing a fact in
many places. When the fact changes, all correlated values
(Entity Names) in the component Entity Descriptions must be
changed. Thus, if a project is always a component of a depart-
ment and located on the same site as the department, then LO-
CATION OF is a proper role name for the Entity Description of
the Department but not for the project Entity Description.

Further, a Role Name that is descriptive of a component should
not be assigned to an Entity that subsumes the component. If
projects can ever be located at different sites than their Depart-
ments, then LOCATION OF is a valid Role Name for the Project
Entity Description even if all projects are presently located at
the same site as their Department. Current location is thus an
accidental rather than fundamental property of projects.

Many-to-one association. If one set of Entities is associated
with another (or the same) set of Entities in a many-to-one rela-
tionship (such as Employees in a Department), then- to main-
tain a homogeneous structure - the department association (say)
must be recorded in the Description Set of the many employee
Entities.

NO. 1 . 1973 DATA-BASE SYSTEMS 1 I

role name
identifier
allocation
rules

59

to-many association (Superior Parts to Component Parts), we
must create a new Description Set where the many-to-many
association is the identified Entity. The new Entity can also
have properties of its own, such as quantity of a Component
Part per Superior Part.

One-to-one association. Here it is important to determine the
type of one-to-one relationship involved. One type involves two
different Entities (Manager-Department). In another case, one
Entity is a unique, permanent component of the second with no
similar components involved. In the third type, we are dealing
with two different Identifiers of the same Entity (employee
number-Social Security number).

As a guide in applying these rules, the history of a contemplated
association is generally helpful. In the first case, associations of
specific Entities change over time. (Department managers, for
instance, change with time.) Therefore, two different Descrip-
tion Sets (one for department and one for manager) are called
for. The criteria for Description Set allocation of associations of
these individuals with other individuals are, however, less quan-
titative. Essentially, the relative stability of each association is
important. Normally, an employee is more stably associated
with a department than with a manager, so minimum mainte-
nance is involved when the department number, rather than the
manager number, is placed in the employee Entity Description.

The second type of one-to-one association is probably an un-
usual occurrence. This association does bring up problems of
classification that require further study. One question is whether
a component is really unique in properties that are important to
the system. (Does a person have more than one head?) If a
component is unique, then the structure of the Role Name can
be more complex or a new Entity Description can be created
especially for a given Entity. If a component is not unique (the
arm of a person), we create a new Description Set for it and for
related similar Entities.

The third type of one-to-one association leads to a single Entity
Description Set with multiple Identifiers.

Subsets of Entities with additional properties. An even more
interesting association is involved when a person is also a man-
ager. Such a person has certain descriptive Role Names that are
associated with him only because of his Role as manager.
Should these kinds of descriptive Role Names be placed in a
new Entity Description for manager or should they simply be an
extension of an existing Entity Description for person? In DIAM,
either choice can be made with little effect on efficiency of stor-

60 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

and use. This question remains to be decided.

Thus we conclude our discussion of some aspects of the prob-
lem of improving the user interface through meaningful Role
Name Identifier allocation rules. Note that all the rules like those
for selecting IMS logical structures are based on logical relation-
ship considerations, and not one is based on access efficiency
considerations. Any Role Name Identifier Allocation based on
access efficiency considerations instead of logical relationships
often changes in response to changes in the transaction stream
and this kind of change violates the goal of data structure in-
dependence. The rules presented make the user interface signif-
icantly more stable, consistent, and understandable. Even con-
sidering this progress, RNIA is an area that merits further in-
vestigation.

Meaningful operations

Existing and proposed data-base systems provide the user with
unconstrained operations that allow him to operate on the stored
information representations (bit patterns) as though they were
devoid of meaning outside the system. There are a few excep-
tions, such as the tendency of compilers to distinguish between
integer and floating point representations. Nevertheless, these
unconstrained operations allow the user to create pseudo-facts
that have no basis in the real world. (For example, it is possible
today for a user to store a Quantity of Part in the location for
Age of Person.) The aim of improvement here should be to pro-
vide better characterizations of the meaning of the bit patterns,
and to define operations that are constrained by these character-
izations. For example, we should not be able to add quantities of
apples to quantities of oranges without specifying that the resul-
tant quantity should have a new name. This kind of problem at
the simplest level might be handled by forbiding the addition of
quantities of elements from two different Entity Name Sets.
More complex rules may actually be needed, but this indicates a
proposed direction.

A second problem deals with Entity Names for an item that are
derived by function from Entity Names for its Components,
such as “Number of Component Part Types” for a given “Supe-
rior Part.” Here it is clear that the user should only be able to
change the Number of Component Part Types indirectly by in-
serting or deleting a Component Part Type. He should not be
able to modify the number directly.

A more complex problem pertains to the special meanings of
values for Identifiers and for Role Names. We should, for exam-

NO. 1 * 1973 DATA-BASE SYSTEMS I1 61

Role Name:

Entity Name:

ple, not be allowed to combine the following two Entity De-
scriptions:

Identifier Identifier
c

Supplier Part Supplied Project Part Supplied Quantity
with

JONES GEAR 34 GEAR 17
to form the Entity Description:

Identifier

Supplier Part Supplied Project Quantity
JONES GEAR 34 17

where both Supplier-Part Supplied and Project-Part Supplied
are many-to-many associations and Identifiers for their entities.

In this case - without reference to the real world to determine
whether such an Entity exists and what its characteristics are-
we have created a Name and Description (Quantity) for it. The
system no longer is a faithful representation of the real world.
This situation is emphasized when we look at the meaning of the
value of Quantity in the two Entity Descriptions. In the initial
Entity Description, Quantity stands for number of parts sup-
plied to the project by all suppliers. The Entity Description re-
sulting from the combination incorrectly implies that Quantity
stands for the total number of Parts Supplied to the Project by
the specific supplier, Jones. Anyone reading such a system out-
put comes naturally to that erroneous conclusion. In essence,
unconstrained mathematical operations do - but they should not
-have the capability of changing the meaning of Role Name/
Entity Name Pairs. In the example, the meaning of the value for
Quantity of Parts Supplied to the Project should not be changed
into Quantity of Part Supplied to the Project by supplier by the
simple unconstrained operation of concatenation of identifier
fields. The value for the second Quantity must be supplied from
outside the system.

It appears that with adequate RNIA rules in the Entity Set Mod-
el, it may be possible to prohibit combination operations that
construct or modify identifiers. In essence, there should be one
and only one Entity Description for each Entity, and that de-
scription should contain all directly related Role Name/Entity
Name pairs. Useful operations defined for the Entity Descrip-
tion would be the following: selection of a subset of Role
Name/Entity Name pairs, and the combination of Entities to
form hierarchic records where the relationship between Role
Names and Identifiers is preserved.

There are also certain operations used in fact retrieval systems
that can create new, meaningful associations from old, stored

62 SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J

associations, but these depend on functions supplied by the user
and are applicable only to specific stored functions. For exam-
ple, the two-place association “grandfather of’ can be calculated
from the stored two-place association “father of.” Such opera-
tions, however, seem to be relatively infrequent in practice.

Summary

In this section on information structure, we have defined an En-
tity Set Model and related its basic concepts to notions of clas-
sification, naming, and description of Entities. We have also
indicated how the Entity Set Model can provide a basis for a data-
base system with certain very desirable characteristics. In Part
111, we move from the discussion of information structures and
associations among names, to a discussion of models for repre-
senting the names in computer storage.

CITED REFERENCES
1. G . H. Mealy, “Another look at data,” AFlPS Conference Proceedings, Fall

Joint Computer Conference 31, 525-534 (1967).
2. R. W. Engles, A Tutorial on Data Base Organization, Report TR 00.2004,

International Business Machines Corporation, System Development Divi-
sion, Poughkeepsie, New York (1970).

3. H. S. Meltzer, Datu Base Concepts ond Architecture for Data Base Sys-
tems, IBM Report to SHARE Information Systems Research Project
(August 20, 1969).

4. C. T. Davies, A Logical Concept for the Control and Management of Dutu,
Report AR-0803-00, International Business Machines Corporation, System
Development Division, Poughkeepsie, New York (1967).

5. CODASYL Data Base Task Group, Report to the CODASYL Progrum-
ming Lunguage Committee, Report CR 1 1, 5(70) 19,080; ACM, New York,
New York (October 1969).

6. Information Management System IMSl360, Application Description
Munual (Version 2), Form GH20-0765-1, International Business Ma-
chines Corporation, Data Processing Division, White Plains, New York
10604 (1971).

7. Generalized Information System GISl360, Appliccrtion Description
Manual (Version 2) , Form GH20-0892-0, International Business Ma-
chines Corporation, Data Processing Division, White Plains, New York
10604 (1970).

8. Common Business Oriented Lunguage (COBOL) Genercrl Informution,
IBM Systems Reference Library, File No. GENL-24, Form F28-8053-
2, International Business Machines Corporation, Data Processing Divi-
sion, White Plains, New York (1960-61).

9. GE-600 Line Integruted Datu Store, Publication CPB-IS65A. General
Electric Information Systems Department, Phoenix, Arizona (September
1969).

10. E. F. Codd, “ A relational model for large shared data data banks,”
Communications of the ACM 13, No. 6, 377-387 (June 1970).

11. R. E. Bleier, “Treating hierarchical data structures in the SDC Time
Shared Data Management System TDMS,” Proceedings of the ACM

