Presented in three parts is a descriptive analysis of data-base
information systems.

Part I reviews the evolution of data-base systems to reveal the
direction of their growth and applications. Emphasized are the
two primary functions of data-base systems: storage and mainte-
nance of structured information; and presentation of structured
outpuyt information.

Part 11 discusses the structuring of information, and introduces
a new fundamental approach to this structuring. The approach
provides a stable information oriented terminology for relating
the conceptual frameworks of existing systems and future sys-
tems.

Part 111 presents a framework, the Data Independent Accessing
Model (DIAM), for describing information and its stored repre-
sentations. The generality of this framework allows the model to
describe most stored representations of existing systems in de-
tail. Over the long term, it can provide a conceptual basis for
systematic migration to systems with new improved capabilities.

Data structures and accessing in data-base systems
| Evolution of information systems

by M. E. Senko, E. B. Altman, M. M. Astrahan, and P. L. Fehder

The attention of the computer user community is increasingly
focusing on data bases and computerized information systems
because of two converging trends. Computerized information
systems are coming to play an essential role in business opera-
tions, and the hardware and software technology for supporting
information systems is in a period of rapid technical progress. In
spite of this attention, there is still little common agreement as to
what information systems are, the functions they perform, and —
from a technical point of view —how they should be designed,
implemented, installed, and used. These conditions arise natural-
ly from the newness of the field and the ad hoc nature of existing
¢omputerized implementations. A compounding factor is the
wide variety of perspectives of those who discuss information
systems —for example, the executive, the management consul-
tant, the systems analyst, the mathematician, and the systems
programmer. In this paper, we emphasize aspects of information
systems that are of importance to systems analysts, systems de-
signers, and implementors.

To create a basis for improved common understanding, we try
to step outside the confusion of specialized, overlapping termi-

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J




nology for specific systems, and to create fundamental descrip-
tions of data structures and data accessing in data-base systems.
Similar goals have been expressed for operating systems and
procedural languages by Dijkstra.'

The first section of the paper is devoted to a general discussion
of the technical evolution of information systems. The second
section discusses information and its structure at the user inter-
face to data-base systems. The third section presents a general
model, the Data Independent Accessing Model (DIAM), which
uses a few primitive concepts for describing data structures and
data accessing properties of existing and proposed data-base
systems down to the encoding on hardware devices. This model,
even in abstract form, can be useful in comparing specific sys-
tems and gaining a clearer understanding of their characteristics.
It is intended that DIAM provide the basis for a simpler, more
powerful data-base system to which existing systems can evolve
in a compatible fashion.

Functions of information systems

Information is defined as an organized collection of facts de-
rived from sources such as reading, observation, and study.
There are no widely accepted definitions for the terms data-base
systems or information systems. Since this paper emphasizes the
point of view of the systems analyst, a definition is used that
covers only the primary functions of existing computer systems
that have been given the name information systems. We con-
sider the general category of information systems to include sys-
tems that perform the following two primary functions:

Storage and maintenance of representations of structured
information

Presentation of structured output information from the
stored representations on request

In this paper, computerized information systems are synony-
mous with data-base systems and either system is considered to
be a subset of the general category of information systems. Typi-
cal information system applications are the storage and the pre-
sentation of information about such entities as people, airline
seats, money, houses, and machine parts. A rapid and efficient
storage and presentation mechanism for large amounts of in-
formation may be complex but the basic transactions are simple
as shown in Table 1.

The complex processing of the substance of the information is
excluded from the definition. That is, the processing of informa-

tion by a linear programming system for decision making may be

No.1 - 1973 DATA-BASE SYSTEMS |




Table 1 Storage and presentation of information

Parts file

Maintenance Presentation
Color Weight transactions requests

Blue 17 M1 Add description of | P1 Information on GEAR
BOLT which is
GREEN, weighs
11b.

M2 Change SAW P2 Information on all
COLOR to RED parts
SILVER

M3 Change the
COLOR RED
to ORANGE

supported by the information system, but this complex proces-
sing is not a part of the information system.

Advanced computerized information systems support their pri-
mary functions by secondary functions such as security, recov-
ery, input checking, and scheduling of system resources. These
functions must be considered and provided for in an operational
system, but they can be separated from the central questions of
representing and accessing organized information. We consider
these secondary functions in our discussion, but not in great
depth. References 2 and 3 provide access to literature on com-

plex processing and secondary functions.

We wish to call attention to the terms structured information and
representation. Structured information is a framework of names
for explicitly classified entities in the real world. Included is es-
sentially all of the information stored in payroll systems, airline
reservation systems, parts inventory systems, and personnel sys-
tems. Not included are unstructured textual documents. Repre-
sentations are concrete materializations of structured informa-
tion. There have been many useful representations for structured
information — indentations in clay tablets, pencil marks in ledger
books, magnetic spots on disks, etc. Computers deal directly with
the representations and only indirectly, if at all, with the informa-
tion represented by them. Thus the fact that a farmer owns seven
horses is independent of the names that are used to stand for it
and its possible representations in a ledger book or on a magnetic
tape.

Even though information has an independent existence and
properties, it has been common practice to force fit the informa-
tion into a traditional representation or one that is convenient to
a particular technology. Those aspects that do not fit must be

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYSTJ




Table 2 Evolution of mechanized information systems

System technology Hardware technology

Punched cards Magnetic tapes

Disk files

Wires Machine language
Symbolic
assemblers
Input/Output sub-
routines
Procedural
languages
Report generators
Formatted file
programs

Program

Processing Sequential Sequential Random-sequential

Random-sequential
Indexes
Chains

File organization Sequential Sequential

Time lag of repre- > 1 second
sentation of real
world

(minimum)

> 1 day > 1 day

taken care of by some extra-system human intervention, such
as the restructuring of old programs that process unchanging in-
formation after the representation of the information has changed.
In this paper we work toward a definition of information organiza-
tion that fits the information.

Evolution of integrated data-base information systems

In perspective, computerized information systems are only the
most recent of a series of efforts to record valuable structured
information dating back to certain paintings on cave walls, in-
dentations in clay tablets, pencil marks in ledgers, and holes in
punched cards. The evolution of data-base information systems
discussed in this paper is summarized in Table 2.

The earliest mechanized information systems that we consider
are based on the punched card and the wired program technol-
ogy of sorters, collators, reproducers, interpreters, and tabula-
tors. Such devices provide faster and more accurate mainte-
nance and presentation of large amounts of information than
hand-maintained ledgers. They also provide almost any kind of
report available from computer systems. Wired-program tech-
nology, however, is highly constrained in representing and pro-
cessing information, and often requires many more processing
steps than a computer to produce the same report. One of the
qualitative constraints is that the only method of efficiently pro-

No. 1 - 1973 DATA-BASE SYSTEMS |

punched card—
wired program
technology




magnetic
tape and

stored
programs

stored
program
methods

cessing files of records (boxes of cards) is one card after another
in physical order. A quantitative constraint is the small amount
of information that can be represented in a single card. The
speed of processing cards is slow (a few hundred cards per min-
ute), and all the wired-program processing required per card
may not always be done in a single pass of the cards.

The next major advancement in information systems is the
stored program machine using magnetic tapes for storing infor-
mation representations. The primary advantages here are greater
speed (one thousand to ten thousand representations read per
minute), larger size of the representation (thousands of charac-
ters), and increased complexity of processing (the equivalent of
thousands of program wires) that may be applied to each record
in one pass of the tape. Although this is a dramatic change in
technology, the change is more in processing speed and repre-
sentation size than in the nature of the processing. The process-
ing of information representations on tape continues to be in the
sequential batch mode that is characteristic of punched card
technology. The terminology of punched card systems—files,
records, and fields —has been largely carried over to the tape
systems.

With tape-processing equipment, presentations of information
became somewhat more sophisticated. Instead of full printouts
of the file, printouts are made of specified subsets of the file that
meet particular preprogrammed conditions based on record con-
tent —exception reports. Such reports could be achieved with
wired program technology, but they are more easily produced by

computers.

In parallel with developments in tape processing technology
were advancements in stored program methods for processing
information representations. In retrospect, we now recognize
the following four stages:

1. Program representations in terms of binary bits or decimal
digits punched into cards for direct reading into the computer
2. Symbols for storage reference and machine operations to be
translated by assemblers
. Parameterized assembler language subroutines for processing
files
. Compilers for the translation of procedures described in En-
glish-like (COBOL) or mathematical (FORTRAN-ALGOL-PL/I)
terms into machine code.

Each of these stages emphasizes sequential processing, and the
programs necessarily include procedural descriptions for the

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J




accessing of information representations. That is to say, each
record is requested in physical sequence from the file being pro-
cessed and a processing procedure is applied to each record be-
fore the next record is requested.

Another parallel, but relatively independent development is the
report generator, which is distinguished by the fact that its in-
structions apply to sets of information representations (files)
rather than to single representations (records). Report genera-
tors do not normally require procedural descriptions for data
accessing. A set of sequential or indexed sequential files is as-
sumed, and the compiler of the report generator simply reads
descriptions of the files to determine how records are to be ob-
tained and decoded. Nor does the user need to give a procedural
description of his output report construction. The desired repre-
sentations are simply described in a nonprocedural fashion, and
the report generator —by reading the descriptions—determines
the required procedures for producing the representations.

This movement from specifying detailed procedures for accom-
plishing particular tasks to a less procedural or nonprocedural
specification —a reduction of housekeeping —is a historical trend
in the computing field. As soon as we discover a way of auto-
matically translating a less procedural specification into a rea-
sonably efficient complete specification of the required pro-
cedures, we use the less procedural specification in advanced
languages. An earlier example is the handling of registers by
compilers, and a more recent one is the nonprocedural query
language.

The shift from processor orientation to data-base orientation of
information processing began with a shift of attention away from
files as part of the program. Under the older regime, a program
may process many files, but a file is not normally processed by
more than one or two programs. In this situation, file (data) de-
scriptions are naturally embedded in the program. As files have
become more integrated (in part to reduce update cycle times
and to increase consistency), each file has become the target of
more than one program.

Thus it has become more natural and clearly less redundant to
associate data description with the file. The COPY instruction of
COBOL reflects this trend. The trend is emphasized in the for-
matted file systems (designed originally for military applications)
wherein the data description is a property of the data file. Query
programs that access a file first access the data description as-
sociated with the file and adjust themselves to access the existing
physical representation of the data. Another aspect of formatted
file systems is that they are designed to handle nonpreplanned,
one-time transactions. In earlier systems, transactions were pre-

No. 1 - 1973 DATA-BASE SYSTEMS I




file
organization

planned and generally periodic, so the overhead to program the
housekeeping could be allocated over many runs and, therefore,
was not a very crucial factor. Overhead is a crucial factor in one-
time transactions, both in time required to write a program and
time to produce an error-free program.

Formatted file systems go beyond report generators in the report
area, and allow informal reports that do not require column-by-
column specification of the report form. The programs only re-
quire a list of the fields to be printed and then determine the
procedures to satisfactorily present the information.

As we have mentioned, all of the nonprocedural programs of
this period assume the serial or sequential file organization and
this makes for a relatively easy translation of query programs
into search procedures. Procedural assistance is, however, re-
quired for queries to multiple files. For many problems, complex
hierarchic physical-record structures that contain all information
about each item being processed are essential to provide effi-
cient sequential processing. Security is under the physical con-
trol of the tape owner, who essentially combines the transac-
tions to be run and the tape files in one physical package. The
tapes are physically removed from the system when these trans-
actions are completed.

The appearance of direct access storage device (DASD) technol-
ogy in the form of large disk and drum storage capable of storing
hundreds of millions of characters of representations produced a
qualitative change in the processing methodology and power of
information systems. In a disk system, any record location can
be accessed in less than a second. In a tape system, although
successive records may be only ten milliseconds apart, the aver-
age distance to a random record is half a file scan (minutes or
hours) depending on the tape file size. DASD results in a speed-
up of random access relative to sequential access by two to four
orders of magnitude. Although direct accessing continues to be
slower than sequential accessing to adjacent records by one to
two orders of magnitude, the ability to go directly to any random
record in the file very often more than compensates for the dif-
ference in speed by reducing the number of accesses to be made.
Because of the large random access time between randomly se-
lected records, users typically do not random process sequential
tape files.

In sequential processing, the system has to scan the entire file to
access records required for a particular transaction. Since the
scan time increases little or not at all when more than one trans-
action is processed during a pass of the tape, the user is moti-
vated to spend hours or days collecting a reasonable batch of
transactions, and then process them all during one file scan. The

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J




delay in collecting the batches and scanning the tape file makes it
physically impossible for sequential processing to keep an up-to-
the-second picture of a large number of business activities. The
cascading of updates from file to file, often followed by the
transmission of updates by mail, can result in corporate-level
information or resources being weeks or months out of date.

Online processing through terminals located anywhere in the
world coupled to the computer by direct transmisssion lines
makes it feasible to locate in DASD and process the records
required by a transaction in a few seconds. An obstacle to be
overcome in direct-accessing systems is that we normally wish
to access and process records based on their content. Existing
peripheral devices, however, access records only by record ad-
dress. This means that in using DASD to avoid sequential scan
we must obtain the addresses of the records having the desired
content. The solution to this problem is to construct a file orga-
nization; i.e., to preprocess and prestructure the information so
as to reduce the amount of scanning for the kinds of transactions
that are anticipated. =

To achieve a desirable structure, we typically divide the infor-
mation elements into subsets that are intended to reduce the
scope of search for the anticipated transaction load. These sub-
sets are characterized on the basis of information content of
their elements (for example, all representations containing the
same department number) and the characterizations are stored
with directions for getting to the location of the characterized
subset. This characterization process can be cascaded in the
sense that the characterizations can also be collected into char-
acterized subsets (for example, all the department numbers in a
corporate division).

The search process is to scan the characterizations of the high-
est level subsets and to access and scan only those subsets that
are necessary to obtain the desired information. This process
significantly reduces the number of elements to be scanned.

There is also a desire to keep the elements to be scanned close
together to minimize search time. The structure that results from
this combination' of subset definition and placement of subset
representations close together is usually called file organization.
A well-designed file organization provides a way of immediately
processing transactions one by one, thereby, allowing us to keep
an up-to-the-second stored picture of the real-world situation.

Historically, the file-organization area started with special cases
of techniques implemented for specific applications and devices.
Each implementer developed his own way of defining, placing
and interconnecting subsets, and invented his own terminology

No. 1 - 1973 DATA-BASE SYSTEMS |




old
systems—
new
systems

for his unique combination of primitive processes. The result
stands today as a proliferation of inconsistent and incompatible,
special-case terminologies.

Later, some partial generalization has taken place in which spe-
cific implementations have been given new functions (and addi-
tional terminology) to process a wider range of applications. The
present situation is that we have a somewhat smaller set of rath-
er more general file organization implementations, each with its
own terminology for the specific combinations of the basic un-
derlying primitive processes that it provides. Typical of such
terminology are the following terms: non-repeating groups,
physical hierarchy, logical records, files, data sets, and indexed
sequential organization. When the same term is used in two dif-
ferent systems, it often has a slightly different meaning in each
system (as, for example, the term ‘“‘record”). Each time the sys-
tems analyst encounters a new system he must learn new mean-
ings for literally scores of complex and poorly related concepts
by studying the system in its overwhelming complexity at the bit
level. One of the objectives of the Data Independent Accessing
Model (DIAM) is to contribute a common set of concepts and ter-
minology toward which integrated data-base information sys-
tems can systematically evolve.

A segment of the management information systems literature
tends to ascribe almost mystical powers and functions to the
new real-time integrated data-base systems. The main difference
that we see in the new systems is that they can maintain and
present an up-to-the-second, consistent picture of an enterprise’s

resources. Earlier systems could only maintain multiple pictures
that were often inconsistent because they were varying amounts
of hours, days, weeks out of date with the actual situation. The
up-to-date picture allows the management of a corporation to
use its valuable resources much more effectively. Figure 1 illus-
trates a possible timing difference between a batch processing
and a real-time processing system.

From the point of view of the systems analyst, the major change
has been the gradual integration of individually maintained files
from scattered locations and applications into a single, centrally
maintained set of files. This integration is necessary to achieve
the up-to-the-second, consistent picture of the business. Carried
to a logical conclusion, file integration results in a situation
where there is only one place in the information structure to
store a fact, with multiple representations of the fact often used
to aid the search process. Thus there are no inconsistent or out-
of-date storage locations. A second factor is the appearance of a
qualitatively new software technology for preserving the integri-
ty of the information base. This technology replaces older tech-
niques using physically received multiple tape copies.

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYSTJ




Figure 1 Comparison of batch and real-time processing

BATCH PROCESSING
TRANSACTION 1

8/24, 9:08 \
TRANSACTION 2 8/27 INSTALLATION 1
8/24, 12:15 —> BATCHFOR FILE RUN \

TRANSACTION 3 / 8/29 INSTALLATION N
FILE RUN

8/25,10:14

9/2 DIVISION 1
BATCH FOR FILE RUN

9/18 CORPORATION
BATCH FOR FILE RUN

™~
Pt

9/14 DIVISION P
FILE RUN

REAL-TIME PROCESSING

DIVISION 1 DIVISION 5 DIVISION 1
INSTALLATION 1 .. INSTALLATION 7 .. INSTALLATION 1
TRANSACTION 1 . TRANSACTION 2 TRANSACTION 3

8/24 9:08 8/24 9:20 8/25 10:14

STATUS STATUS STATUS

8/24 9:08 8/24 9:20 k______, 8/25 10:14

The systems analyst is concerned with both the information or-
ganization and its representation. At present, he must discuss
both in terms of representation based terminology. For the fu-
ture, it is our objective to provide him with an information-based
terminology to stabilize at least part of his terminology environ-
ment.

In discussing implementations, it is useful to distinguish two  implementation
types of information system transactions that, until recently,

have been served by two relatively different kinds of direct-ac-

cess information systems.

1. Retrieval of a representation that describes a single entity is
performed on the basis of exact match to a single unique
identifier for that entity such as man number, flight number, or
part number. The representation provides the full answer to
the request as illustrated by Table 1 transactions M1, M2, and
P1. We shall call systems where this type of retrieval predoiﬁ—
inates operational systems. Most of the computing systems
in the world are involved in this type of retrieval. At the
present time, these systems are mainly operating in a se-
quential batch mode. In the following, an example of an ad-
vanced system that serves a thousand or more geographically
distributed terminals is presented.

1973 DATA-BASE SYSTEMS [




operational
systems

2. Retrieval of one or more representations for analytical pur-
poses based on an exact match to a Boolean qualification
specification such as WHERE Weight > 2 AND Color = Red as
shown by transactions M3 and P2 in Table 1. The set of repre-
sentations provides the full answer to the request. We shall
call systems where this type of retrieval predominates execu-
tive systems. Probably hundreds of computers are involved in
this type of retrieval.

Although operational systems are found in almost all environ-
ments, some of the largest systems may be used for controlling
seat inventories for the airlines and money transactions for
banks. Smaller systems are used for parts inventories of manu-
facturers and for utility business offices.

A typical retrieval is based on an information representation
identifier such as. “Give me all your information on Part Name =
GEAR.” Part Name is a unique identifier, and the stored
information representation might include Weight, Quantity on
Hand, Color, and Name, all stored in one physical location.
Having retrieved the information, the user may then wish to
modify some field by entering, for example, “Change Color to
Red.” The system then replaces the modified representation in
its original position. The file organization can be quite simple,
using, for example, a hash coding or an index on the identifier
(Part Name). In fast-response systems that handle slightly more
complex questions, indexes might also be maintained on one or
at most two other fields in the file, such as Color, for example.

Whereas the retrievals are simple, the numbers of retrievals and
the sizes of the fields may be very large. An example operational
system is the IBM Advanced Administrative System (AAS) which
is used to control computer orders, inventory, and accounting.
In the configuration described in Reference 4 there are approxi-
mately fifteen hundred CRT terminals located in branch offices,
plants, and headquarters across the United States. The central
complex at White Plains, New York includes four System/360
Model 65 computers for message processing and two Model 85s
for managing the data base stored on approximately forty 2314
disk units with eight drives each. The total storage capacity of
the system exceeds 2.5 billion characters allocated to over 20
million data representations and 27 million index representa-
tions. There are approximately twenty applications, including
order entry, delivery scheduling, and payroll, which require
about 450 types of transactions. Terminal interactons with these
programs generate up to fifty inputs per second, or one-and-one-
half million inputs per twelve-hour day.

Possible types of transactions are rather limited in operational
systems, and this situation allows the systems designer to pre-

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYSTJ




program and precompile transaction programs, thereby trading
flexibility for transaction processing speed. Terminal users in
these systems follow strict protocols in requesting retrievals.
The user is led through a series of preprogrammed multiple
choice displays by which he supplies information that is trans-
mitted back to the computer through the telephone network. An
appropriate program processes his information and, if necessary,
accesses the data base with one or more identifying keys to re-
trieve or store data-base information representations. These pro-
tocols can be implemented in both operational systems and ex-
ecutive systems. In both cases, the protocols tend to restrict the
damage that can be caused by the entry of incorrect transac-
tions.

In an operational system, information maintenance and presen-
tation consist of retrieving or storing a very few representations
per transaction. The major challenges lie in developing fast ac-
cess paths tailored to the anticipated transaction pattern, pro-
tecting the integrity of the data, recovering from errors, and pro-
viding adequately balanced computing, transmisssion, and data
accessing capacity to handle the enormous loads.

Executive systems generally perform more complex analyses of
information for long-range planning and, therefore, need not be
as up-to-the-second as operational systems. In fact, information
representations stored in such systems may be extracted on a
daily or weekly basis from data bases maintained by operational
systems. A typical executive system retrieval is based on the
content of one or more information elements in the stored repre-
sentation, such as, “Give me the Average Age of all cars with
COLOR = Blue and MANUFACTURER = Dodge.” To obtain
the desired information, the executive system accesses each
representation where COLOR = Blue and MANUFACTURER =
Dodge. Even with the most efficient access structure, the sys-
tem may have to access hundreds or thousands of representa-
tions. Because each question is composed anew, preprogramming
generally cannot be used. Also each retrieval may involve large
numbers of representations. These two facts distinguish execu-
tive systems from operational systems.

Executive systems do not often reach the large sizes typical of
operational systems. An example executive system’ that we
have studied has the following characteristics:

78 files

150 x 10° characters

50 terminals
2000 transactions per day
1 System/360 Model 65

No. 1 + 1973 DATA-BASE SYSTEMS |

executive
systems

41




directions
for
investigation

3 1BM 2314 Disks with 8 drives each

Even though the rate of transactions is low, each transaction
tends to be more complex than that of this operational system.
In fact, the executive system must read approximately one mil-
lion representations per day. This gives an estimated transaction
complexity factor for the executive system of ten to one hundred
times greater than that of the operational system. Since trans-
actions in an executive system take many forms and normally
cannot be preprogrammed, the questioner uses a simplified query
language to specify his information requirements. Thus language
interpretation or compilation contribute further processing unit
overhead per question not required by operational systems.
Executive systems that have been proposed or built include the
Time Shared Data Management System (TDMS)® by the System
Development Corporation, the World Wide Military Command
and Control System (WwMCS) proposed by a number of manu-
facturers, GIS/3607 and M1S/360° by IBM. A batch-oriented system,
MARK 1V,8 by Informatics, Inc. has also been popular.

In practice, operational and executive systems are but extremes
of a continuous spectrum of possible computerized information
system implementations. Most installations have some charac-
teristics of each type of system and, therefore, fall somewhere
between the extremes. At the present time, however, one or the
other of the two types of system implementation are used in the
implementation of intermediate systems.

The primary area for research and development in the comput-
erized information systems is improving their ease of imple-
mentation and use. It is well-known that implementations of
large real-time information systems can require three to five cal-
endar years and hundreds of man-years of effort. Much of the
system development cost is not in the hardware, but rather in
the designing, creating, maintaining, and using software. If the
use of computerized information systems is to continue to grow
and spread, then the nonproductive personnel costs involved in
program deciphering, program maintenance, and housekeeping
activities must be reduced.

One way to attack the problem is to add more power to existing
systems. Essentially, this is a process of evolution by adding
more function and modifying existing conceptual structures.
Existing or proposed product programming systems are gener-
ally oriented to this type of progress. The Data Base Task
Group (DBTG) Report® from CODASYL is essentially an exten-
sion of COBOL to give it more power in handling data structures.
1BM’s Information Management System (Ms),'" Generalized
Information System (G1S),” and Customer Information Control
System (CICS)'' are evolutionary programs designed to reduce

SENKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYST J




implementation costs by providing generalized facilities that can
substitute directly for the most difficult fifty or more percent of
the application implementation code. The other software pro-
ducers previously mentioned have essentially the same goals.
These systems, although already essential to the economic im-
plementation of on-line information systems, address only one
aspect of the system programming problems, that is, displacing
the need to write major sections of the information system pro-
gram. We would, of course, like to provide a compatible path for
them to evolve to systems with new ease-of-use properties. This
involves a second method of attack.

The Data Independent Accessing Model, which is the main sub-
ject of this paper, is characteristic of this second method of at-
tack on the ease-of-use problem — that of simplifying the concept-
tual structure of information systems and making them more ra-
tional and powerful. Information systems at times do not make
good common sense, and they do not appear to the user to oper-
ate in a common sense way. For example, changes in the organiza-
tion and storage of information representations require major
changes in application programs even when logical relationships
of the information remain unchanged. (Fifty percent or more of
the programming effort in many installations is devoted to the
nonproductive work of adapting old programs.) The emerging
concept in this area is to have programs address and use the more
permanent logical relationships between information elements
and to find ways of structuring these information relationships
so that they remain even more permanent. A vital corollary of
this concept is to have a complete separation between the logical

relationship structure and the means for representing it. Thus
representations can be changed without affecting programs that
deal with the logical structure. This concept, often called “data
independence,” is more accurately termed ‘‘data structure inde-
pendence,” and is an important element in the task for making
information systems easier to implement and use.

There is also in this second area of attack the question of a fun-
damental step forward in our conceptual structure for informa-
tion systems. Existing systems have grown and become some-
what generalized through evolution from application programs.
Their terminologies have the appearance and limitations of bo-
tanical or biological taxonomy in that they describe external fea-
tures, when what is needed is a theoretical description of sys-
tem’s work in terms of primitive building blocks and the proper-
ties of block interaction. None of the existing terminologies are
a basic in the sense that one system’s concepts are able to de-
scribe, with useful accuracy the concepts and processes of any
significant group of other systems. Because we have in the past
lacked such a general standard of description and comparison,
we could not progress by incorporating desirable new properties

No. 1 - 1973 DATA-BASE SYSTEMS |




44

and the best aspects of many existing systems. In a very real
sense, a general description covering the existing systems is a re-
quirement to any new conceptual framework. Over the long term,

th

e conceptual framework must provide a basis for easy migra-

tion to new improved systems. It can only provide the basis if it
can encompass the capabilities of the existing systems. In the
second part of this paper, we address the question of information
organization to provide insight for defining primitive building
blocks for data structures and data accessing.

CITED REFERENCES

1

2

3.

. E. W. Dijkstra, “The humble programmer,” Communications of the ACM
15, No. 10, 859-866 (October 1972). .

. J. T. Tou, Editor, Advances in Information Systems Science 2, Plenum

Press, New York. New York (1969). See contribution by M. E. Senko.

M. E. Senko, “File organization and management information systems,”

Annual Review of Information Science and Technology 4, 111-143, C. A.

Cuadra, Editor, Encyclopaedia Britannica Company, Chicago, Illinois (1969).

. J. H. Wimbrow, “A large-scale interactive administrative system,” IBM
Systems Journal 10, No. 4, 260-282 (1971).

. G. F. Duffy and F. P. Gartner, “An on-line information system for manage-
ment,” AFIPS Conference Proceedings, Spring Joint Computer Conference
1969 34, 339-350, AFIPS Press, Montvale, New Jersey 07645 (1969).

. R. E. Bleier, “Treating hierarchical data structures in the SDC Time Shared
Data Management System TDMS,” Proceedings of the ACM 22nd Nation-
al Conference, 41-49, MDI Publications, Wayne, Pennsylvania (1967).

. Generalized Information System GIS[360, Application Description Manual
(Version 2), Form GH20-0892-0, International Business Machines Corpo-
ration, Data Processing Division, White Plains, New York 10604 (1970).

. J. A. Postley, “The Mark IV system,” Datamation 14, No. 1, 28-30
(January 1968).

. CODASYL Data Base Task Group, Report to the CODASYL Program-

ming Language Committee, Report CR 11, 5(70)19,180, ACM, New York,
New York (October 1969).

. Information Management System IMS[360, Application Description Man-

ual (Version 2), Form GH20-0765-1, International Business Machines
Corporation, Data Processing Division, White Plains, New York 10604
(1971).

. Customer Information Control System (CICS), General Information Man-

SE

ual, Form GH20-1028-2, International Business Machines Corporation,
Data Processing Division, White Plains, New York 10604 (May 1972).

NKO, ALTMAN, ASTRAHAN, AND FEHDER IBM SYSTJ




