Techniques for developing analytic models of computer systems
and subsystems relate to establishment of the level of system
detail, to selection of significant parameters, to definition of
analytic expressions, and to validation of model results.

This paper emphasizes the use of discrete-event models in the
development of analytic models, particularly with respect to
identification of key parameters and to correlation of results.
Described are two analytic models of computer systems, the
analytic techniques employed, their relationship to correspond-
ing discrete-event models and their advantages as performance
evaluation tools.

Techniques for developing analytic models
by A. L. Anthony and H. K. Watson

Simulation models are recognized as valuable tools for the per-
formance evaluation of complex computer systems. Such mod-
els are made to represent systems at various levels of detail
depending upon their application and required accuracy. The
two most often-used techniques are discrete (stochastic) model-
ing, where events flow in discrete intervals of time through rep-
resentations of system logic, and analytic modeling, where gross
system performance is described in terms of mathematical equa-
tions.

Those who create simulation models for system evaluation tend
to include levels of detail approaching that of the system being
modeled. Perhaps this tendency is due to a fear that some signif-
icant detail may be omitted. Or, perhaps the languages that are
available for discrete system simulation make it so easy to in-
clude these details that one begins to overlook the penalties that
he must pay (execution time, preparation time, assembly time,
etc.).

Let us state at the outset that there are applications where very
detailed simulation models are needed, such as for early system
design and development. For example, such models may be
used for assistance in selecting one of several alternative algo-
rithms or in analyzing logic paths where timing is critical. How-
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ever, models used for evaluation of total system criteria such as
throughput, response time, and component utilizations do not
require this detail.

Our experience has shown that analytic modeling techniques
provide an excellent capability for evaluation of gross system
criteria. Furthermore, analytic models use less computer time,
provide faster turnaround, and are easier to set up and modify
than their discrete system model counterparts.

Development of analytic models of computer systems requires
identification of significant parameters and of relationships be-
tween these parameters. If discrete models are available from
the design phase of system development, this information can be
obtained for the construction of a representative analytic model.
Knowledge of the relationships of parameters helps to establish
the technique for describing analytic models, be it purely al-
gebraic, empirical, or queuing theory.

This paper presents some techniques that have been used in
developing analytic models using information learned from dis-
crete models. Brief definitions are given of each type of model
and advantages are shown of analytic techniques in computer
system performance evaluation. Two analytic models of the IBM
System/370 Model 165 are used to illustrate these techniques.
Finally, we present a general discussion of the application of
these techniques to other simulation studies.

Simulation

Discrete-event simulation implies that a change in the state of
the system takes place only when an event occurs at some dis-
tinct instant in time.' In a discrete-event model of a computer
system, for example, an event such as the completion of the
processing time for a particular function, the initiation of a read
or write access to an 1/0 device, or the placement of a message
in a queue would cause a change in system state.

A discrete-event model monitors the interactions of events and
records statistics about the occurrence of significant events.
Execution of such a model must be continued long enough to
achieve sufficient sampling of events over a period of time dur-
ing which the system is relatively stable. In most cases, the
model must be run through a period of initialization to stabilize
the system before measurements can begin. It is usually neces-
sary to periodically inspect the state of the system during the ini-
tialization period to determine when the system has reached a
stable condition. The time required to achieve this stable status
contributes significantly to the total time of a simulation run.
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Considerable effort has been expended in the development of
higher-level simulation languages to support the design and im-
plementation of discrete-event models, and these languages have
proved valuable. The General Purpose Systems Simulator
(GPSS),” Computer Systems Simulator (ss),’ and the SIMSCRIPT
11 Programming Language' are examples of this type of simula-
tion language.

Analytic simulation implies that all changes may occur at all
times for all states of the system. In an analytic model, then, all
system activity is occurring at all times as opposed to the dis-
crete-event model where any process proceeds sequentially
through its activity.*

The continuous process is represented by sets of equations that
are solved for the average state of the system. A computer sys-
tem, for example, may be represented in an analytic model by
equations which express system characteristics such as service
times, queues, and probabilities of events. For an analytic mod-
el, a set of system parameters is defined using specified average
values and distributions; since solvable analytic equations repre-
sent only approximations of real computer systems, satisfactory
representations by analytic models may be more difficult to
achieve and more difficult to understand than those of equivalent
discrete-event models.

Validation of the model must be an inherent part of the develop-
ment process. Validation implies the comparison of simulation
results to measurements of the real system, to another model

known to be accurate, or to some adequate criteria to ensure
that the model is producing accurate data. If these comparisons
indicate that the analytic model results are not sufficiently accur-
ate, corrections are applied to the model and the procedure is
repeated. This validation process generally involves several iter-
ations of model changes and system measurements before a sat-
isfactory confidence level is achieved.

No initialization period is required of analytic model runs be-
cause the equations are solved directly for the average state of
the system. However, if there are several unknown parameters
in the model, the solution of sets of equations may require many
iterations to determine a common set of values that satisfies the
input conditions, that is, to determine the point where the solu-
tions for all unknown values intersect. When these solutions
have been found, the model is said to have converged. It is pos-
sible for a model to fail to converge, but experience has shown
that given a well-designed analytic model, failure to converge is
invariably due either to an incompatible set of input parameters
or to a system that is hopelessly overdriven, with component
utilizations exceeding one hundred percent.
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General purpose higher-level programming languages such as
APL’ and FORTRAN® provide excellent vehicles for expressing
analytic models.

Reasons for developing analytic modeis

Analytic models are preferable because their implementation is
usually more efficient than that of discrete-event models. Execu-
tion time is less because no initialization period is required, pro-
cedures are less complex, and their languages execute more
efficiently. An application language such as APL also provides
the user with interactive communication with the simulation
model. This capability expedites modifications and reduces set-
up and turnaround time. These efficiencies result in analytic
models that are less costly than their equivalent discrete-event
counterparts.

Analytic models are particularly adaptable to the evaluation of
computer systems when emphasis is placed upon gross perfor-
mance characteristics such as component utilizations, job
throughput, service times, terminal response times, and subsys-
tem queuing. The discrete-event model is applied when greater
detail is required to analyze the internal relationships within
components of the total system. Measurements and results from
the detailed model can be used to expedite the development and
to provide information needed for verification of the analytic
model. Types of system evaluation best performed by analytic
models are configuration analysis to evaluate new components,
utilization studies to establish system balance, and load studies
to determine job throughput and system response times.

Another reason for developing an analytic model is to provide a
supplement to the discrete-event model that expedites the gather-
ing of performance data during an extensive series of simulation
runs. We recently used an analytic model for this purpose. In the
procedure that was followed, first the analytic model was cali-
brated using the results from a few selected runs of the discrete-
event model. Then the analytic model was used to obtain per-
formance data both within the range of calibration and beyond
this range by extrapolation. Another application of the analytic
model provided a guideline to significantly reduce the number of
simulation runs by the discrete-event model. The value of the
analytic model becomes apparent in comparing its processing
time of less than a minute with a time of 30 minutes to three hours
for the discrete-event model.

Development of an analytic model

Two analytic models were developed for the IBM System/370
Model 165: the Processing Rate Analytic Model (PRAM) and the
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Figure 1 Schematic of a buffered storage system
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Overrun Analytic Model (ORAM). The PRAM model is used to
determine the instruction execution rate attained by the proces-
sor for any specified instruction stream and 1/0 data rate. The
ORAM model is used to determine the probability of overrun for
each channel of any specified configuration. Both models were
developed as a result of the experience gained from the discrete-
event simulation of the IBM System/370 Model 165. This simu-

lator was programmed in the GPSS V language.”

The discrete-event simulator represents the major components
of a computer system: the central processing unit, storage, stor-
age control unit, I/0 channels, and devices (see Figure 1). Dis-
crete events are the execution of an instruction stream derived
statistically from a real program in the processor, references to
main storage for instructions and operands, and data transfer
between 1/0 channels and main storage. Control functions are
simulated in the storage control unit, resolving the priorities of
requests to storage.

Instruction execution by the processor is represented by a spec-
ified instruction mix, stated in terms of a distribution of classes
of instructions and a distribution of instruction execution times
for each class. Simulation of an instruction includes a random
class selection, a processing time designation and assignment of
the number of references to storage. The system contains a two-
level, hierarchical storage consisting of small, fast, buffer storage
and a large, slower-speed, main storage. If a storage request
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cannot be satisfied in the buffer storage, a block of data contain-
ing the required address is fetched from main storage and placed
in the buffer storage (replacing a block of buffer storage that had
not been recently used). '

The storage control unit is represented by its three subunits: 1/0
channel control, buffer storage control, and main storage con-
trol. Simulation of this unit controls the contending processor
and channel requests for main storage, resolves the access to
buffer storage, and initiates storage cycles according to stated
priorities of requests.

The discrete-event model is used for:

Evaluation of processor performance

1/0 loading studies (configuration analysis)

Channel data rate capability (overruns)

Design analysis of selector channels and storage control unit
Evaluation of priority schemes

Optimization of device latency

Determining utilizations of processors and devices

Queuing analysis

Central processor performance is expressed in terms of its in-
struction execution rate (MIPS, or millions of instructions pro-
cessed per second). The discrete-event model of the IBM Sys-
tem/370 Model 165 showed that attained MIPS is primarily de-
pendent upon the following:

Probability of buffer hits

1/0 data rates and types of channels

Instruction mix and its execution sequence

Interference between the processor and 1/0

Interference in the processor itself

Processor and storage cycle times

Task-switching rates (a task switch invalidates information in
the buffer storage)

Sets of curves drawn from results of simulating the system with
this model showed that changes in system parameters tended to
cause exponential changes in MIPS. Evaluation of these results
led to the development of an expression for the instruction exe-
cution rate of a processor with respect to storage references. The
initial expression for MIPS was

MIPS = Ae™ (1)

where x had the form

x=BP" + CP’, + DP°, + EP" P/, + FP* P", )
+ GP,P*, + HP' P",P",
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with

P, = probability of a buffer hit

P, = probability a store operand is in buffer

P, = probability of other references to the buffer

The constants in Expressions 1 and 2 were derived and evaluat-
ed for both the IBM System/370 Model 165 and the 1BM Sys-
tem/360 Model 85. A least-squares curve-fitting process was
used with values of MIPS obtained from the hardware simulators.
The resulting expression provided instruction execution rates
that were within five percent of values provided by the hardware
simulators. However, this approach was abandoned because it
became too difficult to evaluate the constants, it was almost
impossible to find meaningful relationships between sets of con-
stants for different types of systems, and we never really under-
stood why the constants took on the specific values they as-
sumed.

This investigation did establish the fact that MIPS can be ex-
pressed as an analytic function. The evaluation of this expres-
sion resulted in an expansion of the concept through the de-
velopment of a model based on key hardware and software pa-
rameters, and this proved to be a working model.

We will now discuss the development of the equations for PRAM
based upon the knowledge gained from the discrete-event mod-
el. The analytic techniques of PRAM are a combination of clas-
sical queuing theory and empirical relationships of system pa-
rameters pertaining to requests for main storage.

A close look at the results from the discrete-event model then
led to the definition of a set of key parameters that affect MIPS.
This parameter set included the following:

Instruction mix definition

1/0 data rate

Main storage cycle time

Number of storage requests per instruction
Main storage interleave factor

Buffer storage probabilities

These parameters were combined logically into a set of algebraic
equations related to the basic equation:

1
t + Ulacc + wq)

MIPS = (3)

where

t = average instruction execution time with no main storage
requests

U = fraction of references that delay the processor
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Figure 2 Main storage queuing model
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acc = average access time to main storage
e . . 7
wq = average waiting time in queue for storage

_ p 1-Np" '+ (N—1)p"
(1 — o) (1 — p) (1—p"

where

p = AMp = main storage utilization

® = service rate of main storage

A = average request rate to main storage

Ajo = average 1/0 request rate

N = maximum number of requests allowed in the queue

wq

The entire set of equations represents the queuing model shown
in Figure 2.

The first attempts at validating this model (correlating with re-
sults from the discrete-event model) were made without any ex-
ponential factors. Validation results were reasonable but were
not as accurate as desired. Further experimentation showed that
fine tuning of the equations could be achieved with the inclusion
of certain empirical relationships. The following factors were
then introduced into the above equations:

A=pe'”

B =™

C=VAXB

Thus

U=A(S + P (}\1()‘{' r_s)>

where

s = average number of stores per instruction

r = average number of main storage requests per instruction

P = probability that a main storage fetch causes processor delay
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and
N=1+3C

The factor A was used to modify the effects of the 1/0 data rate
and of U in Equation 3 above. N of Equation 4 was allowed to
take on nonintegral values with modification by the factor C.
With these modifications, good agreement was obtained not only
for the Models 165 and 85, but also for several other systems
from which measurement data was available.

The relationships between equations of the PRAM model imply
an iterative procedure for the calculations of MIps, starting with
an assumed value for the average request rate () to main stor-
age. Iterations continue through the equations until the value of
A converges within a specified limit.

In most cases, the value of A converges in a few iterations. An
innovation is used by PRAM when the convergence of A causes
the queuing equation for wg to become unstable. Minor adjust-
ments are made to the value of N in an attempt to achieve stabil-
ity of the queuing equations and to compute a value of MIPS that
otherwise could not be determined. This adjustment is limited to
ensure that results remain within desired accuracy.

The ORAM model simulates 1/0 channel configurations serving
storage requests of devices with constant data rates. Each de-
vice must be served in the time period required for the transfer
of a specified number of bytes of data. The device is then ready
to initiate another storage request. If a storage request is not sat-
isfied within the specified time period, data is lost, and an “over-
run’’ is said to occur.

The net result of an overrun is lost time only, since the channel
and device then must be resynchronized (or reselected) before
data transmission can continue. It also may be necessary to go
back to the start of a block of information and retransmit part or
all of the data that had previously been transferred. Since sys-
tem control programs provide the capability of recovering from
an overrun, an occasional such occurrence-is not serious. How-
ever, frequent overruns can result in significant loss of time, so
systems are configured to minimize the overrun probability.

The probability of an overrun depends upon the data rates of all
channels in the system, the priority order of the channels, and
other system parameters such as storage cycle and channel tim-
ings.

The discrete-event model determines the exposure of any con-
figuration to overrun. However, determining the absolute proba-
bility of overrun for any channel is expensive because of the
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Figure 3 The ORAM analytic model
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computer time needed to obtain a significant sample of events
(as much as two hours of IBM System/360 Model 75 time).

ORAM is a very simple analytic model. The maximum (worst-
case) service time for each channel is calculated by summing the
service times for the channel itself and the memory interference
delays (storage cycle times) that can be caused by channels of
higher priority and one channel (or the processor) of lower pri-
ority. This worst-case time is then compared with the time be-
tween requests for a specific channel to determine whether or not
that channel could overrun. If a channel can overrun, the prob-
ability of the events that could result in overrun is calculated
from the binomial probability distribution. This then, is the prob-
ability of overrun for the channel. Figure 3 shows this model.

In developing the ORAM model, the logic paths of the discrete-
event model were traced, and algebraic equations were written
to calculate the channel service time. We determined from the
discrete-event model that this service time could be represented
in terms of three channel-time parameters plus the storage ac-
cess time. To this basic channel service time was added the ad-
ditional time due to interference from the other channels. One
lower priority channel (or the processor) and each higher priori-
ty channel might delay access to storage by one storage cycle
time.

The discrete-event model showed that overrun probability is a
function of the data rates of all channels sharing access to a
common main storage; that is, it is a result of concurrent re-
quests for storage from several channels. Therefore, we wrote
equations to calculate the probability of all combinations of re-
quests that would result in interference long enough to cause
overrun.

Several experiments were then made with the analytic model,
using configurations that had previously been simulated with the
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discrete-event model. The analytic model in every case correctly
distinguished between configurations that could and could not
overrun (zero overrun probability). Accurate overrun probabili-
ties were obtained for those configurations where the chance of
overrun was small. However, the model results were consistent-
ly lower than those provided by the discrete-event model for
configurations with high data rates.

Consequently, additional discrete-event simulation runs were
made using configurations with higher data rates than the real
system was designed to handle. We found that higher-priority
channels with high data rates were requesting access to storage
more than once before a low-priority channel was served. After
the equations were modified to consider this possibility, accurate
worst-case service times were obtained for these configurations.
Additional effort was then spent in modifying the overrun proba-
bility equations so the results from the two models agreed within
five percent for configurations that could overrun.

The recommended approach to good modeling, then, is to estab-
lish a level of detail sufficiently gross to keep the model simple
yet specific enough to produce accurate results. In most instan-
ces, average values of parameters are satisfactory. Where distri-
butions are required, consideration should be given to develop-
ment of a discrete-event model of critical components of the sys-
tem. If possible, the discrete-event model should be validated by
measurement of the real system or by detailed analysis of flow
diagrams and significant events.

Experiments with a discrete-event model are used to identify
parameters which are most critical to the system performance.
Timing information, data flow, load conditions, and performance
characteristics are also obtained from such a model. Experience
with the discrete-event model then is applied to the development
of an analytic model of the system by first determining the infor-
mation that is needed from the discrete-event model and then
attempting to establish mathematical relationships between this
information and that which is already known about the system.

Computer system performance is expressed in terms of task
throughput, terminal response times, and device utilizations with
respect to given loads and system configurations. Associated
performance criteria are processing rates, queuing characteris-
tics, service times, and capacity. The relationships of these per-
formance parameters can be established in an analytic model to
produce results that are satisfactory for functional specifications,
configuration analysis, and function tradeoffs.

Analytic models include such techniques as simple algebraic
equations, probability theory, and queuing theory. Algebraic
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equations can be used to express simple relationships such as
the summation of component parts, the inverse relationships of
request rates to service times, and the distributions of events.
Probability theory can be used in the representation of distribu-
tions and decisions as well as in the expression of those combi-
nations of events that are likely to occur. Queuing theory pre-
sents the most complex representation of the three techniques
discussed in this report. Queuing equations relate characteristics
such as request rates, service times, number of servers, priori-
ties of requests, preempting of service, and queue lengths. Com-
puter systems exhibit all these characteristics.

The final phase of model development is its validation
(verification that results are reasonable). Techniques used in the
validation of an analytic model are

1. Validation of parameters and results with measurement of the
real system

2. Cross correlation of its results with those of a discrete simu-
lation model

3. Some combination of measurement and discrete modeling

The most accurate method of validation of a model is obtained
by measurement of the real system. This technique requires the
availability of either the system itself or an early prototype.
However, the fact that a system exists should not discount the
utility of an analytic model of that system. Such a model is very
useful in the study of new components, new configurations, and
system loads.

The validation process should be limited to the range of parame-
ter values applicable to the normal operating conditions of the
system. First, acceptable tolerances must be established. Then
emphasis should be placed upon the critical parameters —those
that have the greatest effect on performance of the system.
Reasonable assumptions are satisfactory for the less critical pa-
rameters.

Most validation processes require iterations of model runs and
measurements. In using this procedure, it may be necessary to
introduce empirical relationships into the analytic model to
achieve proper correlation with the discrete-event model. The
procedure can employ a curve-fitting process. Equivalent plots
of performance criteria can be observed for correlation. If the
curves agree within the allowable tolerances over the normal
range of operating conditions, the analytic model may be con-
sidered as validated. During this process, redefinition of some of
the equations may be necessary. It may also be necessary to
reevaluate the basic theoretical assumptions, to introduce empir-
ical relationships of parameters, to fine tune some of the parame-
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ter modifiers, or to reconsider which factors are critical with
respect to performance. Once validated, the analytic model can
be employed with a high confidence factor in the evaluation of
the real system.

Summary

The development of analytic models is facilitated by the availa-
bility of related discrete-event models. Validation of analytic
model results can be achieved by correlation with results from
the discrete-event models. Together these models provide
complementary vehicles for the evaluation of system perfor-
mance at various levels of system detail.
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