
Techniques  for developing  analytic  models of computer  systems 
and  subsystems  relate  to  establishment of the  level of system 
detail, to selection of signijicant parameters,  to  dejnition of 
analytic  expressions,  and  to validation of model  results. 

This  paper  emphasizes  the  use of discrete-event  models  in  the 
development of analytic  models, particularly  with  respect to 
identijication of key  parameters and to correlation of results. 
Described  are two analytic  models of computer  systems,  the 
analytic  techniques  employed, their  relationship to correspond- 
ing  discrete-event  models  and  their  advantages as performance 
evaluation  tools. 
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Simulation models are recognized as valuable tools for the per- 
formance evaluation of complex computer  systems.  Such mod- 
els  are made to represent  systems at various levels of detail 
depending upon their application and required accuracy. The 
two  most often-used techniques are discrete  (stochastic) model- 
ing, where events flow  in discrete intervals of time through rep- 
resentations of system logic, and analytic modeling, where gross 
system performance is described in terms of mathematical equa- 
tions. 

Those who create simulation models for system evaluation tend 
to include levels of detail approaching that of the  system being 
modeled. Perhaps this tendency is due  to  a  fear  that  some signif- 
icant  detail may be  omitted. Or, perhaps  the languages that  are 
available for  discrete system simulation make it so easy to in- 
clude  these details that  one begins to overlook the penalties that 
he must pay (execution time, preparation  time, assembly time, 
etc.). 

Let us state  at  the outset  that  there  are applications where  very 
detailed simulation models are needed,  such as for early system 
design and development. For example, such models may be 
used  for  assistance in selecting one of several  alternative algo- J 



ever, models used  for  evaluation of total  system  criteria  such  as 
throughput,  response  time,  and  component utilizations do not 
require  this detail. 

Our experience  has  shown that analytic modeling techniques 
provide an excellent capability for evaluation of gross  system 
criteria.  Furthermore,  analytic models use  less  computer  time, 
provide  faster  turnaround,  and are easier to  set up  and modify 
than  their  discrete  system model counterparts. 

Development of analytic models of computer  systems  requires 
identification of significant parameters  and of relationships be- 
tween  these  parameters. If discrete models are available from 
the design phase of system  development,  this information can  be 
obtained  for  the  construction of a representative  analytic model. 
Knowledge of the relationships of parameters helps to  establish 
the technique  for describing analytic models, be it purely al- 
gebraic, empirical, or queuing theory. 

This  paper  presents  some  techniques  that  have  been  used in 
developing analytic models using information learned from dis- 
crete models. Brief definitions are given of each  type of model 
and advantages are shown of analytic  techniques in computer 
system  performance evaluation. Two analytic models of the IBM 
System/370  Model 165 are used to illustrate  these  techniques. 
Finally, we present a general  discussion of the  application of 
these  techniques to  other simulation studies. 

Simulation 

Discrete-event simulation implies that a change in the  state of 
the system  takes place only when  an  event  occurs  at  some dis- 
tinct  instant in time.' In a discrete-event model of a  computer 
system,  for  example,  an  event  such  as  the  completion of the 
processing time for a particular  function,  the initiation of a read 
or write  access to  an I/O device, or the  placement of a  message 
in a  queue would cause  a  change in system  state. 

A discrete-event model monitors  the  interactions of events  and 
records  statistics  about  the  occurrence of significant events. 
Execution of such a model must  be  continued long enough to 
achieve sufficient sampling of events  over a period of time dur- 
ing which the  system is relatively stable. In most  cases,  the 
model must  be  run  through  a  period of initialization to stabilize 
the  system  before  measurements  can begin. It is usually neces- 
sary to periodically inspect  the  state of the  system  during  the ini- 
tialization period to determine  when  the  system  has  reached  a 
stable  condition. The time  required to achieve  this  stable  status 
contributes significantly to  the  total  time of a simulation run. 
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Considerable effort has been expended in the development of 
higher-level simulation languages to support  the design and im- 
plementation of discrete-event models, and these languages have 
proved valuable. The  General Purpose  Systems Simulator 
(GPSS) ,~  Computer  Systems Simulator (cSS),3 and the SIMSCRIIT 
11 Programming Language' are examples of this type of simula- 
tion language. 

analytic Analytic simulation implies that all changes may occur  at all 
modeling times for all states of the  system. In an  analytic model, then, all 

system activity is occurring at all times as opposed to  the dis- 
crete-event model where any process  proceeds sequentially 
through its a~t iv i ty .~  

The continuous  process is represented by sets of equations  that 
are solved for  the  average  state of the system. A  computer sys- 
tem,  for  example, may be represented in an analytic model by 
equations which express  system  characteristics  such as service 
times, queues, and probabilities of events. For an analytic mod- 
el,  a set of system  parameters is defined using specified average 
values and distributions;  since solvable analytic  equations repre- 
sent only approximations of real computer  systems,  satisfactory 
representations by analytic models may be more difficult to 
achieve and more difficult to understand  than  those of equivalent 
discrete-event models. 

Validation of the model must be an  inherent  part of the develop- 
ment process. Validation implies the comparison of simulation 
results to measurements of the real system, to  another model 
known to be  accurate,  or to some adequate  criteria to ensure 
that  the model is producing accurate  data. If these comparisons 
indicate that the analytic model results are  not sufficiently accur- 
ate,  corrections are applied to  the model and the  procedure is 
repeated.  This validation process generally involves several iter- 
ations of model changes and  system  measurements before a  sat- 
isfactory confidence level is achieved. 

No initialization period is required of analytic model runs be- 
cause  the  equations  are solved directly for  the  average  state of 
the system.  However, if there  are  several unknown parameters 
in the model, the solution of sets of equations may require many 
iterations  to  determine  a common set of values that satisfies the 
input  conditions, that  is,  to determine  the point where  the solu- 
tions for all unknown values intersect. When these solutions 
have been found,  the model is said to have converged. It is pos- 
sible for  a model to fail to converge,  but  experience  has shown 
that given a well-designed analytic model, failure to converge is 
invariably due  either to an incompatible set of input parameters 
or to  a  system  that is hopelessly overdriven, with component 
utilizations exceeding one hundred percent. 
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General  purpose higher-level programming languages such as 
APL' and FORTRAN' provide  excellent vehicles for  expressing 
analytic models. 

Reasons for developing analytic models 

Analytic models are preferable  because  their implementation is 
usually more efficient than  that of discrete-event models. Execu- 
tion time is less because  no initialization period is required, pro- 
cedures are less  complex,  and  their languages execute more 
efficiently. An application language such as APL also  provides 
the  user with interactive communication with the simulation 
model. This capability expedites modifications, and  reduces  set- 
up and  turnaround time. These efficiencies result in analytic 
models that  are less  costly  than  their  equivalent  discrete-event 
counterparts. 

Analytic models are particularly adaptable  to  the  evaluation of 
computer  systems  when  emphasis is placed upon gross perfor- 
mance  characteristics  such as component utilizations, job 
throughput,  service  times,  terminal  response  times,  and  subsys- 
tem queuing. The discrete-event model is applied when greater 
detail is required to analyze the internal relationships within 
components of the total  system.  Measurements  and  results  from 
the detailed model can  be used to expedite  the  development  and 
to  provide information needed for verification of the analytic 
model. Types of system  evaluation  best performed by analytic 
models are configuration analysis to evaluate new components, 
utilization studies to establish system  balance,  and  load  studies 
to determine job throughput  and  system  response times. 

Another  reason  for developing an  analytic model is to provide a 
supplement  to the discrete-event model that  expedites  the  gather- 
ing  of performance  data during an  extensive  series of simulation 
runs. We  recently used an  analytic model for  this purpose. In  the 
procedure  that was followed, first the  analytic model was cali- 
brated using the  results from a few  selected  runs of the  discrete- 
event model. Then  the  analytic model was used to  obtain per- 
formance  data  both within the range of calibration  and beyond 
this range by extrapolation.  Another application of the analytic 
model provided a guideline to significantly reduce  the  number of 
simulation runs by the discrete-event model. The value of the 
analytic model becomes  apparent in comparing its processing 
time of less  than  a minute with a time of 30 minutes to  three  hours 
for  the  discrete-event model. 

Development of an analytic model 

Two analytic models were  developed  for  the IBM System/370 
Model 165: the Processing Rate Analytic  Model (PRAM) and  the 
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Figure 1 Schematic of a  buffered storage system 
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Overrun Analytic Model (ORAM). The PRAM model is used to 
determine  the  instruction  execution  rate  attained by the proces- 
sor  for  any specified instruction  stream  and I/O data  rate. The 
ORAM model is used to  determine  the probability of overrun for 
each channel of any specified configuration. Both models were 
developed as a result of the experience gained from the discrete- 
event simulation of the IBM System/370  Model 165. This simu- 
lator was programmed in the GPSS V language.' 

description The discrete-event simulator represents  the major components 
of discrete- of a  computer system: the  central processing unit, storage,  stor- 

event age control  unit, I/O channels,  and  devices  (see  Figure 1). Dis- 
simulator crete  events  are  the  execution of an  instruction  stream derived 

statistically from a real program in the  processor,  references to 
main storage  for  instructions and operands, and data  transfer 
between I/O channels and main storage. Control functions are 
simulated in the  storage  control unit, resolving the priorities of 
requests to storage. 

Instruction  execution by the  processor is represented by a spec- 
ified instruction mix, stated in terms of a distribution of classes 
of instructions  and  a distribution of instruction  execution times 
for  each  class. Simulation of an instruction includes a random 
class selection, a processing time designation and assignment of 
the  number of references to storage. The system  contains  a two- 
level, hierarchical storage consisting of small, fast, buffer storage 
and a  large,  slower-speed, main storage. If a  storage  request 
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and 
N = 1 + 3 C  

The  factor A was used to modify the effects of the I/O data  rate 
and of U in Equation 3 above. N of Equation 4 was allowed to 
take  on nonintegral values with modification by the  factor C. 
With these modifications, good agreement was obtained not only 
for  the Models 165 and 85 ,  but  also  for  several  other  systems 
from which measurement  data was available. 

The relationships between  equations of the PRAM model imply 
an  iterative  procedure  for  the calculations of MIPS, starting with 
an  assumed  value  for  the  average  request  rate (A) to main stor- 
age. Iterations  continue through the  equations until the value of 
A converges within a specified limit. 

In most cases,  the value of A converges in a few iterations.  An 
innovation is used by PRAM when the  convergence of A causes 
the queuing equation for wq to become unstable. Minor adjust- 
ments are made to  the  value of N in an  attempt to achieve stabil- 
ity of the queuing equations  and to compute  a value of MIPS that 
otherwise could not be  determined.  This  adjustment is limited to 
ensure  that  results remain within desired  accuracy. 

development The ORAM model simulates I/O channel configurations serving 
of ORAM storage  requests of devices with constant  data rates. Each de- 

vice  must be served in the  time period required for the transfer 
of a specified number of bytes of data. The device is then  ready 
to initiate another  storage  request. If a  storage  request  is  not  sat- 
isfied within the specified time period,  data is lost, and an  “over- 
run” is said to occur. 

The net result of an  overrun is lost time only,  since  the  channel 
and device  then must be resynchronized (or reselected) before 
data transmission can  continue. It also may be necessary to go 
back to  the  start of a block of information and retransmit  part or 
all of the  data  that had previously been  transferred.  Since  sys- 
tem  control programs provide the capability of recovering from 
an  overrun, an occasional  such  occurrence is not serious. How- 
ever,  frequent  overruns  can result in significant loss of time, so 
systems  are configured to minimize the  overrun probability. 

The probability of an  overrun  depends upon the  data  rates of all 
channels in the  system,  the priority order of the  channels,  and 
other  system  parameters  such as storage  cycle  and  channel tim- 
ings. 

The discrete-event model determines  the  exposure of any con- 
figuration to  overrun.  However, determining the  absolute  proba- 
bility of overrun  for any channel is expensive  because of the 
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discrete-event model. The analytic model in every  case  correctly 
distinguished between configurations that could and could not 
overrun  (zero  overrun probability). Accurate  overrun probabili- 
ties were obtained for  those configurations where the  chance of 
overrun was small. However,  the model results  were  consistent- 
ly lower than those provided by the discrete-event model for 
configurations with high data  rates. 

Consequently, additional discrete-event simulation runs were 
made using configurations with higher data  rates  than  the real 
system was designed to handle. We found that higher-priority 
channels with high data  rates  were requesting access to storage 
more than  once before a low-priority channel was served.  After 
the equations were modified to consider this possibility, accurate 
worst-case  service times were obtained for  these configurations. 
Additional effort was then  spent in  modifying the  overrun proba- 
bility equations so the  results from the two models agreed within 
five percent for configurations that could overrun. 

summary of The recommended approach to good modeling, then,  is  to  estab- 
techniques lish a level of detail sufficiently gross to keep  the model simple 

yet specific enough to produce  accurate results. In most instan- 
ces,  average values of parameters  are  satisfactory.  Where distri- 
butions are  required, consideration should be given to develop- 
ment of a  discrete-event model of critical components of the sys- 
tem. If possible, the  discrete-event model should be validated by 
measurement of the real system or by detailed analysis of  flow 
diagrams and significant events. 

Experiments  with  a  discrete-event model are used to identify 
parameters' which are most critical to  the  system performance. 
Timing information, data flow, load conditions, and performance 
characteristics  are  also obtained from such  a model. Experience 
with the  discrete-event model then is applied to the development 
of an analytic model of the  system by first determining the infor- 
mation that is needed from the  discrete-event model and then 
attempting to establish mathematical relationships between this 
information and  that which is already known about the system. 

Computer  system  performance is expressed in terms of task 
throughput, terminal response times, and device utilizations with 
respect to given loads and system configurations. Associated 
performance criteria  are processing rates, queuing characteris- 
tics,  service times, and capacity. The relationships of these per- 
formance  parameters  can  be established in an analytic model to 
produce  results  that are satisfactory  for functional specifications, 
configuration analysis, and function tradeoffs. 

Analytic models include such  techniques as simple algebraic 



equations  can  be  used  to  express simple relationships  such as 
the summation of component  parts, the  inverse  relationships of 
request  rates to  service times,  and the distributions of events. 

tions  and  decisions as well as in the expression of those combi- 
nations of events that  are likely to occur.  Queuing  theory  pre- 
sents  the  most complex representation of the  three  techniques 
discussed in this  report.  Queuing  equations  relate  characteristics 
such as request  rates,  service  times,  number of servers, priori- 
ties of requests, preempting of service,  and  queue lengths. Com- 
puter  systems  exhibit all these  characteristics. 

The final phase of model development is its validation 
(verification that  results are reasonable).  Techniques used in the 
validation of an  analytic model are 

1.  Validation of parameters  and  results with measurement of the 

2. Cross  correlation of its  results with those of a discrete simu- 

3.  Some  combination of measurement  and  discrete modeling 

real  system 

lation model 

The most  accurate  method of validation of a model is obtained 
by measurement of the real  system.  This  technique  requires  the 
availability of either  the  system itself or  an early prototype. 
However,  the  fact  that a system  exists should not  discount  the 
utility of an analytic model of that  system.  Such a model is very 
useful in the study of new components, new configurations, and 
system loads. 

The validation process should be limited to  the range of parame- 
ter values applicable to  the normal operating  conditions of the 
system. First, acceptable  tolerances must be established. Then 
emphasis should be placed upon the critical parameters-those 
that  have  the  greatest effect on  performance of the  system. 
Reasonable  assumptions are satisfactory  for the less critical pa- 
rameters. 

Most validation processes  require  iterations of model runs  and 
measurements. In using this procedure, it  may be  necessary  to 
introduce empirical relationships  into  the  analytic model to 
achieve  proper  correlation with the discrete-event model. The 
procedure can employ a curve-fitting process.  Equivalent  plots 
of performance  criteria  can  be  observed  for  correlation. If the 
curves  agree within the allowable tolerances  over the normal 
range of operating  conditions, the analytic model may be con- 
sidered as validated. During  this  process, redefinition of some of 
the equations may be  necessary. It may also  be  necessary to 
reevaluate the basic  theoretical  assumptions, to introduce empir- 
ical relationships of parameters,  to fine tune  some of the  parame- 
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ter modifiers, or to reconsider which factors  are critical with 
respect to performance. Once validated, the analytic model can 
be employed with a high confidence factor in the evaluation of 
the real system. 

Summary 

The development of analytic models is facilitated by the availa- 
bility of related discrete-event models. Validation of analytic 
model results can  be achieved by correlation with results from 
the  discrete-event models. Together  these models provide 
complementary vehicles for  the evaluation of system perfor- 
mance at various levels of system detail. 
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