
The  representation of verbal  information  as  single  numbers us- 
ing A P L  functions  can  optimize main storage,  peripheral  stor- 
age, and data transmission. 

Presented in tutorial form  are the  concepts of the encoding  and 
decoding  process.  Applications including  text processing  and 
instructional  systems  are  also  discussed. 

Encoding  verbal  information  as  unique  numbers 
by W. D. Hagamen, D. J. Linden, H. S. Long, and J. C. Weber 

Were it  not for some sort of encoding of the input and decoding 
of the output, neither  people nor computers would  be  able to 
communicate  in a meaningful  manner. 

As we attempt to write this paper, there are certain ideas and 
experiences we  wish  to share with  you. Just how these are 
stored is  not at all clear. However, it is apparent that they are not 
stored as sentences or paragraphs,  and  even  groping for appro- 
priate words  involves a certain  amount of seeking or trial  and 
error behavior. 

Thus the process in which  we are now  mutually  engaged  in- 
volves  encoding  and  decoding of information.  We, the authors, 
are taking  information stored in one  (unknown)  form  and repre- 
senting it in another, the English  language. As the reader, you 
take this output and translate it into a form in  which  you  can 
efficiently process and store it.  Which of these processes in this 
case should  be  called  encoding,  and  which  should be called de- 
coding,  is  neither c k  nor important. However, it  is  important 
to realize that the sender and receiver must  have certain things 
in common. Not only  must  we use the same alphabet, vocabu- 
lary, and  general  rules of syntax, but  we  must to a large extent 
have had  common experiences. To the extent that we draw  upon 
data (whether this be words or experiences) that the reader does 
not share with us, then we are not understood. 
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As the reader is well  aware,  information  is  commonly stored 
within  most computers as strings of Os and 1s. Such binary 
strings  become  numbers because of their  allocation  into storage 
units of predetermined  size (computer words). Thus when  we 
speak of character strings  within a computer, we really are talk- 
ing about a series of numbers  already  encoded  from  their  periph- 
eral representation. It is  assumed that everyone is  familiar  with 
the existence of this  level of encoding,  and we shall  talk about 
characters as though  they  actually  existed as such in the com- 
puter. 

The encoding or representation of words as single  numbers  is 
the essence of a relatively  new  programming concept. In certain 
situations groups of words  (now  numbers) are further encoded 
so that phrases, sentences, and  whole  paragraphs are represent- 
ed as single  numbers. 

This concept yields three tangible  benefits: 

It packs the data and  thus conserves storage space 
Response time  and CPU time are reduced 
Natural language  processing, at least on a conceptual level, is 
greatly  facilitated 

One cannot do  anything  he  could  not do before,  given  enough 
space, processing  time,  and  programming  patience. However, by 
simplifying the task, one finds that he does do things  he  did  not 
think he could do before. 

Each of these benefits derives chiefly  from the fact that the re- 
sult of encoding is the representation of strings of varying 
lengths as single  elements or units. Each of these units  (single 
numbers)  occupies the same  amount of space and can be  ad- 
dressed as a single entity. Such unitizing is perhaps the most 
important concept to be presented. 

The levels of encoding  we  want to consider  involve the creation conservation 
of multiple  hierarchies of lists. The starting point  is the alphabet of space 
of characters. A number  is  assigned to each character according 
to its position in the alphabet  we are using. Thus we  might  indi- 
cate the space by a 0, the letter A by a 1, B by a 2, and so on. 
The input  string  is  then  scanned  and a series of numbers or a 
map of the string is produced, each element of which  indicates 
the position of the character in the alphabet.  Using the spaces 
(Os) as word  delimiters, we then encode the successive groups of 
non-zero elements as single  numbers. These numbers represent 
words. 

If we want to encode groups of words as single  numbers, we 
first create a new,  higher-level list or alphabet in  which each 

NO. 4 * 1972 ENCODING VERBAL INFORMATION 279 



word  (now a number)  is represented only  once. After encoding 
the input string  to the word  level,  we  then  find the position of 
each word  in  this numeric  wordlist or second-order alphabet. 
Groups of elements of the resulting  map are then represented as 
single  numbers. Thus, for each level of encoding there must  be 
an  underlying  numeric  list or alphabet. However, just as there is 
no  need to represent the letter A more  than once in the alphabet, 
there is  no  need  to store a given  word, or grouping of words, 
more  than once in  any of the supporting lists. 

The same  reasoning  applies  to each of the higher  levels of en- 
coding. Certain combinations of letters form patterns people 
recognize as words.  Various  combinations of words  form  pat- 
terns we call sentences. Sentences may be combined into para- 
graphs,  and so forth. 

As a result of encoding, each of these exists as a single  unit or 
number  which  is a word pattern conveying concepts or ideas 
and, except at  the highest  level,  is  stored  only  once.  Because 
there is  no  need  to store  a concept  more  than  one way as long as 
we  have  rules  whereby  it can be restored in its variety, redun- 
dancy in storage is  avoided. Thus, the efficiency of storage 
achieved is largely dependent on the amount of redundancy in 
the text. The more frequently an underlying  unit  is used, the 
greater the saving. 

processing Encoding and decoding  both require a certain amount of time.  If 
time all one wanted to do were to input data at one point  and output 

it at another without  modification  or  comparison, CPU time 
would be increased. 

However, generally one wants to process and  modify the data. 
Most manipulations are simplified  and  require fewer iterations 
when the strings (words, phrases, or paragraphs) are represented 
as single  numbers. The greater and  more  complex the manipula- 
tions required, the greater the saving in processing  time. 

Consider such a problem as searching for the second “THE” and 
changing  it  to “THAT” in the following sentence: 

THE MAN IS A PROGRAMMER OF THE COMPUTER 

One way to approach this  would  be to write a program that 
would  scan the text, character by character, utilizing a counter. 
Using the spaces as word delimiters, you  would  initialize  your 
counter. You  would  examine the first character to see if it  were 
a “T”. If yes, you  would  determine if the next character were an 
“H”, then  an “E”, then a space.  If at any  point  in the search the 
answer were  no,  you  would continue to loop  until  you  encoun- 
tered a space, reinitialize the counter and  begin  again. After 
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finding the first “THE”, you would go on to find the  second. If the 
text  were long, such  iterations would consume a lot of time. 

Once you had finished you would have  the positions in the string 
representing the word you wanted to replace. However,  since 
the word you want to substitute contains more characters than 
the  one you are replacing, there is not enough space in the 
string. 

It is precisely because of such  storage considerations that you 
would probably store  your words in blocks, each equal in length 
to  your longest word. Thus we might represent  the string as fol- 
lows, where we have used “#” to indicate a blank: 

# # # # # # # T H E  
#######MAN 
########IS 
###+#####A 

########OF 
# # # # # # # T H E  

’ 

1 

P R O G R A M M E R  

1 

~ 

# # C O M P U T E R  

This would considerably reduce  the number of iterations neces- 
sary to find the  word,  since you would essentially compare  each 

i of what  we  have  represented as rows of a matrix with the word 
1 you were trying to find. However, if the  text contained one  very i long word, there would be a tremendous wastage of storage 
1 space. 

By contrast, if each word were  represented  as a single, four-byte 
number, your program would simply have  to find the  second 
occurrence of that  number, and replace it with the new number 
representing “THAT.” You would then  have  the  best of both sit- 
uations -minimum iterations  or CPU time, and minimum storage 
allocation. 

We shall speak of three  types of encoding: 

Representing each word as a single number, using the spaces 
as word delimiters 
Simple superencoding where groups of words, such as para- 
graphs, are represented as single numbers 
Selective superencoding where the  text is selectively 
scanned for specific word groupings which are  then  encoded 
as single numbers. 

A simple application of representing words as single numbers 
has  already been given. It facilitates locating the  words in a 

ease of 
manipulation 
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string, matching the input with those words in storage, and word 
substitution.  We  have  a text-editing program, for example, 
where if one knows a word has  been misspelled one or more 
times, a single command will correct  every  instance of the mis- 
spelling. 

Simple superencoding finds application in our computer-mediat- 
ed tutorials. Here  one deals with lists,  the elements of which 
may be as large as paragraphs and include: 

The questions  the  author  wants to  ask  the  student 
The various combinations of key words the  author defines 
which he hopes will extract  the essential meaning from the 
student’s answer 
Comments  the  author may want to make in response to a 
given student’s answer 
A branch which then leads  the  student to  the next  question 
that should be  presented 

Each of these varied units exists as a single number. Therefore  it 
becomes a relatively simple matter to  store  these  interrelated 
elements so that  the program can easily find the  appropriate 
question to  ask,  the list of anticipated  answers  associated with 
each  question,  the corresponding comment the  author may have 
defined, and the subsequent  branch. 

In selective superencoding, the  text,  already encoded to  the sin- 
gle-word level, is scanned  for  the  presence or location of certain 
key words  or logical delimiters. This is somewhat analogous to 
the  use of the  spaces  as word delimiters at  the simpler level. 
Then,  each of the delimiters as well as the groups of words be- 
tween  the delimiters are encoded into single numbers. Such 
pursing of the input comes  closer to representing concepts as 
single numbers  than  does simple superencoding. 

The techniques  presented in this paper  were developed to solve 
specific problems encountered by the  authors in trying to  store 
and process large amounts of verbal information in a 32K 
APL\NO workspace, and will be described in that  context. The 
fact  that all our applications are essentially conversational and 
require  a  response time consistent with human discourse, plus 
the  fact  that in our  interpretive implementation one is heavily 
penalized for looping or iteration within an APL function, may 
help explain our preoccupation with these  terms.  Conservation 
of space is of equal importance,  since  the  system we are using 
has no file capacity, and all the functions and data  must be 
stored within the limited workspace.  Aside from this,  however, 
the reader need have  no knowledge of the APL system, and the 
basic  concepts should have applications in a variety of program- 
ming situations. 
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The text that follows  is  divided into two  major parts - a formal 
description of the encoding  and  decoding  algorithms in  non-APL 
terms, and  various  applications of the techniques. The latter in- 
cludes: 

A consideration of possible  applications to the storage and 

A text formatting  and  editing  program 
A brief description of  an authoring  and  teaching system the 
authors have  developed  called A Tutorial System (ATS) 
The application of these algorithms to an APL version of 
ELIZA' 
A proposed extension of ATS in  which a logical analyzer will 
be interposed between the program  and the author or student 

Each of these applications  has  been  included to illustrate spe- 
cific points. The discussion of possible  use in the storage and 
transmitting of data describes in greater detail the situations in 
which  encoding does, and does not, conserve space. The text 
formatting  and  editing  program illustrates a simple  application of 
encoding to the single-word  level. The authors' original  need for 
developing a method of superencoding  was to implement a sys- 
tem for authoring  and  supervising  computer-mediated tutorials, 
and is the most  fully  documented phase of their work.  Both ELI- 
ZA and the proposed extension of ATS illustrate the use of selec- 
tive  superencoding. It is  hoped that in the variety, the individual 
reader will find something that is related to his  own experiences 
and  needs.2 

There are two other situations in which the authors have  used 
these encoding techniques. One is  in the mechanical translation 
of languages where encoding  most  clearly  facilitates the transla- 
tion process when a group of words  in one language  must  be 
substituted for a single  word or another group of words in the 
other language. A prime  example  is  idiomatic translation. 

The second is in the area of encoding  graphic or pictorial  infor- 
mation. Just as  people  seldom analyze sentences letter by letter, 
we  seldom  analyze pictures dot by dot. The animate  organism 
has the ability to extract and store patterns in  some  coded  form 
that permits  easy  recall  and  manipulation,  with  minimal storage 
demands. One area where we have  applied  this technique is  in a 
chess-playing  program.  When  people  play chess, they  look for 
certain visual patterns or board  positions. Our program encodes 
the total board pattern existing  at  any  moment as a single  num- 
ber. This is used for comparison  against the possible  partial 
board  positions it is  seeking in determining its next move. 

Neither the language translation nor the chess-playing  programs 
will  be described  beyond this, because of lack of space for ade- 
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quate description, and because the authors hope for consider- 
able further development of both. 

The basic encoding  and  decoding processes 

Encoding,  within the context of this discussion, involves  two 
rather simple processes. Decoding  involves the inverse of these 
two operations. 

Because one must understand these basic  principles in order to 
follow the remaining discussion, they will  be  explained at the 
simplest  level. The more computer-literate reader may  simply 
scan or even skip  this section. 

The first step in encoding  is  mapping the positions of each ele- 
ment of one string in another. The map  of the word FACE in the 
alphabet A through Z is the numeric vector 6 1 3 5. The same 
process can  be  applied  between  two  numeric  vectors. The posi- 
tions of the numbers 6 1 3 5 in the vector 16 6 2 1 33 3 45 5 
are given  by the vector 2 4 6 8. 

One way  of  representing the literal vector FACE as a single 
number is 6135, which  is the value of the vector 6 1 3 5 evalu- 
ated in the base 10 number system. The algorithm for performing 
the evaluation of a mapping vector follows.  If  we let B stand for 
the new base, and B*N means B to the Nth power, the vector 
6 1 3 5 becomes: 

(6 X 8.3) + (1 X B.2) + (3 X 8.1) + (5 X B.0) 

Given the alphabet: 

A B C D E F G H I  
1 2 3 4 5 6 7 8 9  

we can  obtain a unique base 10 value for the map  of any  word 
composed  from this alphabet: 

EDGE - 5 4 7 5 - 5475 
HIDE -+ 8 9 4 5 - 8945 

However, the base 10 will not serve beyond 9 characters, as: 

B A K E - 2  1 11 5 4 2 2 1 5  

would be indistinguishable  from: 

B B A E - 2  2 1 5-2215 



number system, the elements of the vector must  all be represent- 
able as digits of that number system. In other words, the value 
of the new  base  must be at least one greater than the size of the 
alphabet or list to be mapped. 

Because  most of us are more  accustomed to thinking  in terms of 
base 10 numbers, let us first evaluate the vector 6 1 3 5 in the 
base 10 number system: 

(6 x 10*3) + (1 x 10*2) + (3 x 1011) + ( 5  X 1010) 
(6 X 1000) + (1 X 100) + (3 X 10) + (5 X 1) 
6000 + 100 + 30 + 5 
6135 

The evaluation of the vector using  base 129 is: 

(6 x 129*3) + (1 x 129*2) + (3 x 129*1) + (5  X 129*0) 
(6 x 2146689) + (1 x 16641) + (3 x 129) + (5 x 1) 
12880134 + 16641 + 387 + 5 
12897  167 

The evaluation of the vector using  base 2000 is: 

(6 x 2000*3) + (1 x 2000*2) + (3 x 2000*1) + (5  X 2000*0) 
(6 x 8000000000) + (1 x 4000000) + (3 x 2000) + (5  x 1) 
48000000000 + 4000000 + 6000 + 5 
48004006005 

Using APL one can store very  large  and  very  small  numbers (as 
many  as 75 decimal  positions) in exponential form. However, 
the number of significant  digits that can be stored is  only 16. 
This places a limitation  on the number of digits that can be 
represented as a single  number  in a new base system.  With 
base 10 this  number is 16 digits. Thus, if  we tried to convert 
1 2  3 4 5 6 7 8 9   1 2  3 4 5 6 7  8 (17 digits) to a single  base 10 
number, 12345678912345678 would be rounded off to 
1234567891234568 or 1.234567891234568E16 . On reconver- 
sion  this  would  yield 1 2  3 4 5  6 7 8  9 1 2  3 4 5  6 8 and  fail to 
serve its purpose. 

The maximum  number of base 129 digits that can  be converted 
to a single  base 129 number  is  eight;  with a higher base, 2000 
for example,  it reduces to five. 

Decoding, the inverse of encoding, may be described as the pro- 
cess of extracting successive remainders.  Again we start by il- 
lustrating with base 10: 

6135 -+ 10 = 613 and a remainder of 5 
613 + 10 =61 and a remainder of 3 
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The functions IN and OUT are dyadic in that  each  requires both words less  than 
a right and  a left argument. The right argument of IN is a  charac- nine  characters 
ter  string; its output is a numeric vector. The right argument of 
OUT is a numeric string representing the  same level of encoding 
as  the  output of IN; its  output is a  character string. 

In  the  case of both IN and OUT, the left argument is a binary 
switch (that is, either 0 or l), whose  purpose  is to modify the 
manner in which the function operates upon its right argument. 0 
OUT means that  the  entire right argument is decoded at once 

i and appears  as the literal output which can  then be stored as a 
variable. 1 OUT means that  the right argument is decoded only a 
line at a  time-that is, the number of words that will evenly fit 
on  a line whose width is set by the user. The latter greatly im- 
proves the  apparent  response time of the  function,  since while 
one line is being printed,  the  next is being decoded. 

I 
~ The left argument of IN determines  whether  a distinction will be 

made between upper  versus  lower  case, or underlined versus 
non-underlined characters.  This  feature is used in the applica- 

, tion, A  Tutorial  System, in which the encoding and decoding 
~ functions play a vital role. Where it is desired to encode  a  piece 

of text  for fidelity of subsequent  reproduction, we use 1 IN; but ’ where  our  purpose is to compare  a word stored in the  computer 
with input from the  keyboard, we use 0 IN, which converts all 
upper  case  characters to their lower case equivalents. Thus, the 

~ words “Cat,”  “CAT,” and “cat”  are encoded equivalently for 
1 purposes of matching. 

1 The first step in encoding words into single numbers  is  the map- 
1 ping operation of  finding the positions of all elements of the in- ’ coming character string in the alphabet. All spaces are repre- 

~ 

sented in this map, MAP 1, by zeros. 

TEXTl 

1 IN TEXTl 
ONE TWO THREE FOUR FIVE 

1 1 2 3 4 5  

~ 

MAPl 
15  14  5 0 20 23 15 0 20 8 18  5  5 
0 6  1 5 2 1   1 8 0 6 9 2 2 5  

In  the  above example, disregard the explicit output of IN and 
focus only on  the  intermediate variable MAPl where  the  charac- 
ter 0 is the  15th  letter of the  alphabet, N is the  14th, E is the 
5th, and so forth. 

Using zeros as word delimiters, the  next logical step in encoding 
is the evaluation in the new base number system of each of the 
segments of MAPl which represent single words. We use  a vari- 
ety of alphabets, depending on the typeball and application. 
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However, we never  exceed 128 characters  and  thus we use  base 
129. If this conversion is done  on MAP1 we obtain: 

251426 335802 5555931320 13132476 13032746 

where 251426 represents  the conversion of 15 14 5 ;  335802 
the  conversion of 20 23 15, and so forth.  This string of five 
numbers could be decoded, by the method previously described, 
to reproduce TEXT1. 

word Since a maximum of only eight characters  can be represented as 
fragments a single number using base 129, we need  a means of permitting 

longer words. Thus, we are forced to consider  that  the numbers 
resulting from  this initial evaluation may potentially represent 
word fragments as well as complete words. 

Although TEXT1 contains no words longer than eight characters, 
the function IN has to make provisions for this situation. This 
involves a  further encoding. Base 2000 is used since we can 
evaluate up to five elements of  MAP2 as a single number without 
exceeding the limitation of 16 significant digits. 

The result of the initial base 129 evaluation is stored in a tempo- 
rary, local variable or Temporary Word List (TEMPWL) called 
TEMPWLO. There is also  a  permanent, global variable or Word 
List (WL) called WLO which, originally an empty vector, will 
eventually contain all the numbers that have  been used in 
TEMPWLO. 

TEMPWLO is a one-to-one representation containing one  element 
or number for  every word in the  text. Therefore,. if the  text  con- 
tains  a word more than once, TEMPWLO  will contain the corre- 
sponding numeric element an equal number of times. WLO, on 
the  other  hand,  contains  each number only once,  and  these ap- 
pear in the  order in which they were  entered. 

Although WLO is a numeric vector, it is comparable to  our al- 
phabet  since  the elements comprising WLO will be used to obtain 
a map, MAP2, for the next level of encoding. Just  as there was 
no need to have  the  letter  A  appear  more  than  once in the alpha- 
bet,  there is no need to have  the number 251426 occur  more  than 
once in WLO. 

In  the following sequence  we show WLO in its initial state fol- 
lowed by TEMPWLO. After  the formation of  TEMPWLO, WLO is 
displayed followed by  MAP2. Originally WLO is an  empty vec- 
tor. Hence, nothing is displayed. TEMPWLO is then compared to 
WLO and any elements of  TEMPWLO not contained in WLO are 
catenated to it. MAP2 results from finding the position of each 
element of  TEMPWLO  in the updated version of WLO. 
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MAP 1 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  
15 16  17  18  19  20  21  22  23  24  25  26 
27  28  29  30  31  32  33  34  35  36  37  38 
39  40  41  42  43  44  45  46  47  48  49  50 
51  52  53  54  55  56  57  58  59  60  61  62 
63 

251426  335802  5555931320  13132476  13032746 

-603792137497124  -5396684763830884  -1.018957739016464E16 
-1.49824700164984E16  1.977536264283216E16 

251426  335802  5555931320  13132476  13032746 
-603792137497124  -5396684763830884  -1.018957739016464E16 
-1.49824700164984E16  1.977536264283216E16 

678910 

ABCDEFGHIIKLMNOPQRSTUVWXYZ'0123456789_AB_C 

Notice  that when we  encode and then  decode TEXT2, only the 
first 40 of these  characters are reproduced.  This is because  the 
longest word we permit without hyphenation is 40  characters. If 
we  were to define TEXT4 as  the  same string hyphenated between 
the 40th and 41st  characters,  the  reproduction would be faithful 
as shown below. 

WLO 

TEMPWLO 

WLO 

MAP2 

0 OUT 1 IN TEXT2 

TEXT4 

0 CUT 1 ZN TEXT4 
ABCDEFGHllKLMNOPQRSTUVWXYZ'0123456789~~~~DEFGHllKLMNOPQRSTUVWXYZ 

ABCDEFGHllKLMNCPQRSTUVWXYZ'Ol23456789~~A3- DEFGHIIKLMNCPQRSTUVWXYZ 

The primary reason  for using TEXT2 is to illustrate how words 
with more than eight characters  are handled. We need some 
means of determining which elements of WLO represent word 
fragments  and which represent words. That is, when do we en- 
code  elements of MAP2 together,  and when do we  let  them 
stand  alone?  This question resolves itself into deciding when do 
we follow a word fragment by a  space, and when do we follow it 
by another word fragment. 

This question is a formatting problem. The fidelity between in- 
put  and  output should be as good as possible. Thus, we would 
not like CHARACTERS to become CHARACTE RS nor ONE TWO 
THREE to become ONETWOTHREE. The sign bit is used to ac- 
complish this formatting. Numbers  representing word fragments 
that  do  not  complete  a word are given a negative sign; those  that 
do end a word or represent  the  entire word are given a positive 
sign. 

MAPl, displayed above,  has  the  ordered  appearance it does 
because it results from comparing one string with itself. It con- 
tains  no  zeros  since  there  are no spaces.  Therefore, IN tries to 
treat it as a single word, but  truncates it after  the  40th  character 
for  the  reasons previously explained. 

290 HAGAMEN ET AL IBM SYST J 



Again, TEMPWLO contains no  elements  already in WLO and con- 
tains  no  numbers  more than once. Therefore, it is simply cate- 
nated to the existing WLO to form the new WLO. MAP2 contains 
the positions of all  elements of TEMPWLO in the updated W L O .  
The first four elements of TEMPWLO are negative. The posi- 
tions, MAPZ, of each sequence of elements of TEMPWLO ending 
in a positive number are evaluated together to form a single 
number in base 2000. This is the explicit output of IN 
(96056032018010). Any sequence of four consecutive negative 
elements  must  be  followed by a positive  number, because the 
truncation to 40 characters occurs before  this  stage. 

In this example, MAP2 bears no resemblance to the output of IN 
since the five  elements of MAP2 have  been  combined to form 
the single  element of output of IN. 

Punctuation and special characters present an  additional  format- punctuation 
ting  problem.  Words are not  always  followed by a space, since 
they  may be followed  by a punctuation  mark or special charac- 
ter. TEXT3 illustrates the various  possibilities. The same steps 
by  way  of illustration are again presented. 

TEXT3 

1 IN TEXT3 

MAP 1 

ONE, TW0,THREE , FOUR ,FIVE 

1  11  2  12  3 13 4  14  5 

15 14  5 64 0 20 23 15 64 20  8  18 5 
5 0 6 4 0 6 1 5 2 1   1 8 0 6 4 6 9 2 2 5  

251426 335802 5555931320 13132476 13032746 
-603792137497124 -5396684763830884 -1.018957739016464E16 
-1.49824700164984E16 1.977536264283216E16 

251426 8256 335802 -8256 5555931320 64 13132476 -64 
13032746 

251426 335802 5555931320 13132476 13032746 
-603792137497124 -5396684763830884 -1.018957739016464El6 
-1.49824700164984E16 1.977536264283216E16 8256 -8256 64 
-64 

1 11  2  12  3 13 4  14  5 

ONE, TW0,THREE , FOUR  ,FIVE 

WLO 

TEMPWLO 

WLO 

MAP2 

0 OUT 1 IN TEXT3 

TEMPWLO contains some  elements that are already in WLO and 
some that are not.  Only the new  elements  become catenated 
onto WLO to form the new WLO. MAP2 represents the position 
of each element of TEMPWLO in the updated WLO. Again, MAP2 
and the explicit output of IN are identical because none of the 
words in TEXT3 exceed  eight characters. The new feature is the 
formatting related to the punctuation. 

The comma  is the 64th element in the alphabet we are using. 
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129 times 64 is 8256. The number representing the comma ap- 
pears in four different forms because it appears in four different 
formatting contexts in TEXT3. If the comma  is  preceded by a 
space, the number  representing it is its position in the alphabet; 
if it  is  preceded  by another character, this  number  is  multiplied 
by 129, the base value.  If the comma  is  followed  by a space, the 
number representing it is positive; otherwise it is negative. Thus 
the first  comma  becomes 8256; the second, -8256; the third, 64; 
and the fourth, -64. The same logic  applies to any of the charac- 
ters of our alphabet occupying a position greater than 63. 

Multiplication by base 129 does not distort the significance of 
these numbers. 8256 divided  by 129 is 64 with a remainder of 0. 
The 129 remainder of 64 is 64. Thus, all this does is introduce 
extra zeros into the numeric  string.  All  zeros are eliminated  be- 
fore indexing. 

Encoding  groups of words as single numbers 

The alphabets we use vary, depending  on the typeball  and  appli- 
cation. They all  include the upper case letters A-Z, the digits 
0 -9, either lower case a - z or underlined A -Z, plus punctuation, 
and  special characters. In our applications, the alphabet never 
exceeds 128 characters, and  is  encoded to base 129. Thus it  has 
an arbitrary, but predetermined, order and  length. 

WLO represents word  fragments. It consists of numbers  resulting 
from the evaluation of elements of MAP1 (as many as eight at a 
time) as single base 129 integers. The same number never ap- 
pears more than once in WLO. In this sense WLO is comparable 
to an alphabet, the elements of which represent groups of char- 
acters, rather than  single characters. It differs  from  an alphabet, 
however, in that its elements are neither arbitrary nor predeter- 
mined.  Both the order and the length are determined  by the evo- 
lution or history of the input. 

Although WLO is not predetermined, once any part of it has 
evolved, this order must be permanently stored. TEMPWLO, on 
the other hand,  is a transient phenomenon. It is  formed by the 
same rules as WLO except that redundancies are permitted. 
MAP2 represents the positions of elements of TEMPWLO in 
WLO. If the output of IN is stored, both TEMPWLO and MAP2 
can  be recreated during the process of decoding. The output of 
IN consists of elements of MAP2 evaluated as single  base 2000 
numbers (as many as five at a time). 

The output of IN is comparable to TEMpWL1 in that redundan- 
cies are retained. The next logical step is to create a permanent 
WL1 from TEMPWL1, the output of  IN, just as we created WLO 
from TEMPWLO. Again, if  we use base 2000, we can encode  up 
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to five  elements at a time. This process of superencoding may  be 
repeated as often  as desired to form WL1, WL2, WL3, and so forth. 

Recall that for each Word List, WL, there is a Temporary Word 
List, TEMPWL, and that the WLS must  be permanently stored. 
Each one is comparable to an alphabet as WLO. By mapping 
elements of the permanent WLO, we produce a TEMPWLl. Simi- 
larly, by  mapping elements of the permanent WL3, we must cre- 
ate a TEMPWL4, the output of the function that creates WL3. 
These superencoding functions are called W  12, W13, and W14. 

MAP1 represents the positions of each character of the literal 
input string in the alphabet. MAP2 contains the positions of each 
element of TEMPWLO in WLO. We  shall go on to define a MAP3 
which represents the positions of each element of TEMPWLl in 
WL1, a MAP4 for TEMPWL2 and WL2, and a MAP5 for 
TEMPWL3 and WL3. There is a need to  store permanently  only 
the result of the final  level of encoding,  plus the various underly- 
ing WLS and the alphabet; each of the TEMPWLS and MAPS can be 
reconstructed during the decoding process. 

The explicit output of W14 is a vector of numbers each one of 
which  could  be decoded to form as many as 125 words each 
containing as many as 40 characters. 

The simplest  form of superencoding is encoding the maximum 
number of elements in successive steps according to  the se- 
quence of words  in the input string regardless of context. Thus, 
if the input string were a paragraph of less than 126 words, it 
could  be encoded to form a single  number. 

As our example text, TEXTS, let  us use one of the paragraphs 
from this discussion. We  shall use the alphabet shown  in Figure 
1 ,  although  any alphabet could be used. 

TEXT5 
ALTHOUGH  WLO  IS  NOT  PREDETERMINED,  ONCE ANY PART OF JT HAS 
EVOLVED, THJS ORDER  MUST BE PERMANENTLY  STORED.  TEMPWLO,  ON 
THE  OTHER  HAND,  IS A TRANSIENT  PHENOMENON. IT IS FORMED  BY 
THE SAME RULES A S  WLO  EXCEPT  THAT  REDUNDANCIES  ARE 
PERMITTED. MAP2  REPRESENTS  THE  POSJTJONS OF ELEMENTS OF 
TEMPWLO IN WLO. IF  THE  OUTPUT OF IN IS  STORED,  BOTH  TEMPWLO 
AND  MAP2  CAN BE RECREATED  DURJNG THE PROCESS OF DECODING. 
THE  OUTPUT OF IN CONSlSTS OF ELEMENTS OF WLO  EVALUATED A S  
SINGLE  BASE 2000 NUMBERS  (AS  MANY  AS FJVE A T  A TIME). 

Simple  superencoding of TEXT5 yields one number: 

W 1 4  1 IN TEXT5 
16016012008005 

We are already familiar  with the function of 1 IN. W  14 takes the 
output of IN and superencodes it to a level such that its output 
corresponds to TEMPWL4. 
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The output of 1 IN TEXT 5 is: 
24 25 17  26  54028 11 29 30 31 21 32 33 
34  11 35  36 37 38  78040  41  42 43 11 
44  15 45 46  11 17 18 94048 98044  42 32 
17 50 51 15 52 53 54 25 55 23 112057 
58 118060  42  61  124063  15  128065  21  66  21 
43 67 25  42 68 15 69 21 67 17  41  11 
70 43 71  61  72 38 146060  74 15 75  21 
76  42 15 69 21 67 77 21  66  21 25 
156060 54 79 80 81 82 83 54 84 54  5 85 
18 86 87 88 

The various vectors that result are now presented. There are  a 
lot of numbers,  but we will try to point out the simple patterns 
and logic of the lists. In most cases the  reader is advised to first 
read  what  is  said  immediately following a  long list, and  then look 
at the list itself only if he wishes to verify  the point that was 
made. 

MAP1 
1  12 20 8  15  21  7 8 0 23 12  28 0 
9 19 0 14  15 20 0 16  18  5  4  5  20 
5 1 8 1 3 9 1 4 5 4 6 4 0 1 5 1 4 3 5 0  
1  14 25 0 16  1 18 20 0 15  6 0 9 
20 0 8 1  19 0 5  22  15  12 22 5  4 
64 0 20 8 9  19 0 15 18 4  5 18 0 
13 21  19  20 0 2  5 0 16  5 18 13 1 
14  5  14 20 12 25 0 19  20  15  18  5  4 
65 0 20 5 13 16 23 12  28 64 0 15 14 
0 2 0 8 5 0   1 5 2 0 8 5   1 8 0 8   1 1 4  
4 6 4 0 9 1 9 0 1 0 2 0 1 8 1 1 4 1 9 9  
5  14 20 0 16 8 5 14 15 13 5 14 15 
14 65 0 9  20 0 9  19 0 6  15  18 13 
5 4 0 2 2 5 0 2 0 8 5 0 1 9 1 1 3 5  
0 18 21 12 5 19 0 1 19 0 23 12  28 
0 5 2 4 3 5 1 6 2 0 0 2 0 8 1 2 0 0 1 8  
5 4 2 1   1 4 4 1   1 4 3 9 5 1 9 0 1  18 
5 0 16 5 18  13 9 20 20 5  4 65 0 
13 1  16 30 0 18  5  16  18  5  19  5  14 
20  19 0 20 8 5 0 16  15  19  9 20 9 
15  14  19 0 15 6 0 5  12  5 13 5 14 
20  19 0 15  6 0 20 5 13 16 23 12  28 
0 9 1 4 0 2 3 1 2 2 8 6 5 0 9 6 0 2 0 8  
5 0 15 21 20  16  21  20 0 15 6 0 9 
14 0 9  19 0 19 20 15 18  5  4  64 0 
2 15 20  8 0 20  5 13 16 23 12  28 0 
1 1 4 4 0 1 3 1 1 6 3 0 0 3 1 1 4 0 2  
5 0 1 8 5 3 1 8 5 1 2 0 5 4 0 4 2 1  
1 8 9 1 4 7 0 2 0 8 5 0 1 6 1 8 1 5 3 5  
1 9 1 9 0 1 5 6 0 4 5 3 1 5 4 9 1 4 7  
65 0 20 8 5 0 15  21  20 16 21  20 0 
15 6 0 9  14 0 3 15 14  19  9  19  20 
19 0 15  6 0 5  12  5 13 5  14  20  19 
0 15  6 0 23 12  28 0 5 22 1  12 21 
1 2 0 5 4 0 1 1 9 0 1 9 9 1 4 7 1 2 5  
0 2  1  19  5 0 30 28 28  28 0 14  21 
13 2 5  18  19 0 71  1  19 0 13 1 14 
2 5 0 1 1 9 0 6 9 2 2 5 0 1 2 0 0 1  
0 20 9 13 5  72 65 
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TEXT5 contains 514 characters including the spaces.  Therefore, 
MAP1 contains 514 elements. 

WLO 
251426 335802 5555931320 13132476 13032746 
-603792137497124 -5396684763830884 -1.018957739016464E16 
-1.49824700164984E16 1.977536264283216E16 8256 -8256 
64 -64 333857 216476 1180 1 -9594963588678757 663 
1941 1852994888265327 43067057 

WLO, before  the  action of IN, already  contains 23 numbers, be- 
cause of what  has  been previously encoded. 

TEMPWLO 
650483295410396 384319 1180 234929 -9594605499801819 
3619551277 8256 32433701 18472 34366007 1941 1181 
133276 238314554201 17 8256 43068088 4192550844 28258889 
263 -9535164825477206 334393 684308939473 8385 
92347723241461 8256 1949 333857 4196910786 17191963 
8256 1180 1 -1.197233461665866E16 20 -9548525553753818 
1949 8385 1181  1180 218531010493 283 333857 
40805414 5029892683 148 384319 185267932745 43067057 
-1.072360155085922E16 6590500 18968 -9535164842752490 4 
8385 27925692 -1.072402937764029E16 2599 333857 
-9581282218169717 19 1941 3027818022632413 1941 
92347723241461 1175 384319 8385 1167 333857 
541704358001 1941 1175 1180 684308939473 8256 4545581 
92347723241461 18451 27925692 50066 263 
-1.072356497767124E16 4 148746379081 333857 74379553902175 
1941 2401021910014141 8385 333857 541704358001 1941 
1175 1853031416310646 1941 3027818022632413 1941 384319 
-3073757624260823 4 148 681260458946 4312475 64870258 
65269619739100 -71  148 27925429 148  13032746  149  1 
43085231 -9288 65 

251426 335802 5555931320 13132476 13032746 
-603792137497124 -5396684763830884 -1.018957739016464E16 
-1.49824700164984E16 1.977536264283216E16 8256 -8256 64 
-64 333857 216476 1180 1 -9594963588678757 663 1941 
1852994888265327 43067057 650483295410396 384319 234929 
-9594605499801819 3619551277 32433701 18472 34366007 
1181  133276 23831455420117 43068088 4192550844 28258889 
263 -9535164825477206 334393 684308939473 8385 
92347723241461 1949 4196910786 17191963 
-1.197233461665866E16 20 -9548525553753818 218531010493 283 
40805414 5029892683 148 185267932745 -1.072360155085922E16 
6590500 18968 -9535164842752490 4 27925692 
-1.072402937764029E16 2599 -9581282218169717 19 
3027818022632413 1175 1167 541704358001 4545581 18451 
50066 -1.072356497767124E16 148746379081 74379553902175 
2401021910014141 1853031416310646 -3073757624260823 
681260458946 4312475 64870258 65269619739100 -71 27925429 
149 43085231 -9288 65 

TEMPWLO contains  some  elements  already in WLO, and  contains 
some  elements  more  than  once. Thus  the new WLO is not a sim- 
ple catenation of  TEMPWLO to  the old WLO. The fact  that  there 
are 1 15 elements in TEMPWLO and only 88 in the  updated ver- 

WLO 
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WL  1 
24  25  17  26 54028 1  1 29 30 31 21 32 33 
34 35 36 37 38 78040 41 42 43 44  15 45 
46  18  94048 98044 50  51  52 53 54  55 23 
112057 58 118060  61 124063 128065  66  67  68  69 
70 71 72 146060 74 75 76  77 156060 79  80 
81 82 83 84 5 85  86  87 88 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 6  
14  15 16 17  18  19  20  21  6  22 23 24 
25 6  3  26  27  28  20  11  3  29  30 23 31 
32 33 2 34 35 36  37 38 20  39  40 23 
41  10  42  10  21 43 2  20  44 23 45 10 
43 3 19 6  46  21  47  39 48 17  49  50 23 
51  10 52  20 23 45  10 43 53 10  42  10 
2 54 33 55 56 57 58 59 33 60 33 61 
62  26 63 64 65 

MAP3 

W 12 builds up  the  permanent, global variable WL1. This begins 
as an  empty  vector  since  we  have  no  previous examples of en- 
coding beyond the IN level. 

TEMF'WL1 is identical to  the output of IN in that it serves as  the 
input to W14, W12. Those elements of TEMPWLl not  already in 
WL1, minus any redundancies in TEMPWLl itself, become  cate- 
nated to WL1, Since  there are only 65 elements in WL1, there 
must  have  been 105-65 or 40 repetitions in TEMPWLl. 
MAP3 represents  the positions of each  element of TEMPWL1 in 
the updated WL1. It also is the  output of W12. 

W13 performs an identical operation  at the next higher level. 
MAP3 may be  considered the input of W13. 

WL2 (empty) 
TEMPWL2 

16016012008005 96056032018010 176096052012014 240128068036019 
320168024044023 384200024006026 432224080022003 464240092062032 
528016136070036 592304080078040 368328040084010 336344008040044 
368360040086003 304048184042047 624384068098050 368408040104020 
368360040086053 160336040004054 5284402241 14058 944264240066061 
992208252128065 

WL2 
16016012008005 96056032018010 176096052012014 240128068036019 
320168024044023 384200024006026 432224080022003 464240092062032 
528016136070036 592304080078040 368328040084010 336344008040044 
368360040086003 304048184042047 624384068098050 368408040104020 
368360040086053 160336040004054 5284402241 14058 944264240066061 
992208252128065 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  
15 16  17  18  19  20  21 

MAP4 

Again,  the  corresponding Word List, WL2, starts  as  an  empty 
vector. TEMPWL2 results  from evaluating the  elements of 
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MAP3, five at a time, to base 2000. Since  there were 105 mem- 
bers of TEMPWL 1, there are 2 1 elements in TEMPWL2. 

We  are now dealing with small enough lists that you can see that 
the new WL2 and TEMPWL2 are identical. Remembering that 
WL2 was empty to  start with and, given the orderly enough ar- 
rangement of MAP3 to  see  that no consecutive groups of five 
elements are identical, this would necessarily be so. 

MAP4 results  from finding the positions of each member of 
TEMPWL2 in WL2. Since this constitutes mapping one list 
against itself, MAP4 consists of the sequence 1 2  3. . . .21. This 
is the  output of W13. 

WL3 (empty) 
TEMPWL3 

16016012008005 96056032018010 176096052028015 256136072038020 
21 

16016012008005 96056032018010 176096052028015 256136072038020 
21 

1 2 3 4 5  

WL3 

MAP5 

The superencoding function, W14, then takes MAP4 and,  encod- 
ing it five elements at a time to base 2000, forms TEMPWL3. 
TEMPWL3 has five elements, the last  one being identical to the 
last element of MAP4 (the 5 remainder of 21 is 1). 

TEMPWL3 and the  second WL3 are identical for  reasons  already 
explained. The orderly appearance of MAP5 is also understand- 
able. 

Thus the simple superencoding of the  paragraph, TEXT5, pro- 
duces a single number: 

W14 1 IN TEXT5 
16016012008005 

The output of W14 is a single number resulting from the evalua- 
tion of the five elements of MAP5 to  the  base 2000. 

The  output of W14 and  the first element of TEMPWL3 and 
TEMPWL2 are identical (16016012008005). This is because they 
each resulted from evaluating the  sequence 1 2  3  4  5 to the  base 
2000. 

selective Selective superencoding involves parsing the input into its vari- 
superencoding ous  component  parts.  This will be discussed later in the applica- 

tions discussion  since  the rules employed for  such parsing de- 
pend on  the  particular application. The input is  first encoded to 
the single-word level. Then, a new APL function scans this en- 
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coded string for  the  presence of certain word groupings that di- 
vide it into  its  component  parts.  Each  part is then selectively 
superencoded through one of the  W  functions, W12, W13, W14, 
just described. 

The process of decoding is the  exact  inverse of the  processes 
just described. The basic decoding function, other  than OUT is 
called U2. 

U2 operates  on  the principle of extracting  successive  remainders 
which was explained in detail earlier. It assumes the base 2000. 
If we use  the  output of W14 1 IN TEXT5 as the input to U2, we 
obtain the following: 

U2 16016012008005 
1 2 3 4 5  

If we then use this to index WL3, we obtain the first five elements 
or, in this case, all  of WL3. 

WL3[U2 16016012008005] 
16016012008005 96056032018010 176096052028015 256136072038020 
21 

If we then, in turn, U2 this, we take it down  another level and 
obtain MAP4. 

U2 WL3[U2 16016012008005] 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  
15 16 17  18  19  20  21 

This may be used to index WL2 and  returns TEMPWL2, which in 
this case is identical to WL2. 

WL2[U2 WL3[U2 16016012008005]] 
16016012008005 96056032018010 176096052012014 240128068036019 
320168024044023 384200024006026 432224080022003 464240092062032 
528016136070036 592304080078040 368328040084010 336344008040044 
368360040086003 304048184042047 624384068098050 368408040104020 
368360040086053 160336040004054 5284402241 14058 944264240066061 
992208252128065 

U2 TEMPWL2 yields MAPS. When MAP3 is used to index WL1, 
the result is TEMPWL1. This, identical to  the  output of IN, then 
becomes the input for  the function OUT. 

OUT itself calls U2 once as a subfunction to produce MAP2. 
When MAP2 is used to index WLO, the  result is TEMPWLO. We 
cannot perform U2 TEMPWLO because U2 assumes  the  base 
2000 and  we now need the  base 129. This is simply a coding 
decision on  our  part.  Execution is faster by  making this an inte- 
gral part of the  function OUT than by  giving the subfunction U2 
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a left  argument. However, the logic  is the same. Thus, decoding 
TEMPWLO to base  129 produces MAP1 which is then used to 
index our alphabet. The final  result is identical to TEXT5: 

1 OUT W L [ U Z  W L 2 [ U 2  W L 3 [ U 2  16016012008005]]] 
ALTHOUGH WLO IS   NOT  PREDETERMINED,   ONCE  ANY  PART OF IT H A S  
EVOLVED, THIS O R D E R  MUST BE  PERMANENTLY  STORED.  TEMPWLO,  ON 
THE  OTHER  HAND,  IS A TRANSIENT  PHENOMENON.  IT IS F O R M E D   B Y  
THE  SAME  RULES AS WLO EXCEPT  THAT  REDUNDANCIES  ARE 
PERMITTED.  MAP:!   REPRESENTS  THE  POSITIONS  OF  ELEMENTS  OF 

A N D   M A P 2   C A N  BE  RECREATED  DURING  THE  PROCESS OF DECODING. 
THE  OUTPUT  OF  IN  CONSISTS OF ELEMENTS  OF WLO EVALUATED AS 
SINGLE  BASE 2000 N U M B E R S   ( A S   M A N Y   A S   F I V E  AT A TIME). 

TEMPWLO I N  WLO. rF THE OUTPUT OF I N  IS STORED, BOTH TEMPWLO 

Some applications 

The function IN can encode  words, each containing as many as 
40 characters, into  single  numbers. W12 can represent in one 
single  number  as  many as 5 words; W13, as  many as 25 words; 
and W14, as many as 125  words at a time. This is as far as  we 
have gone in our own  applications. However, this cut-off  point  is 
arbitrary. A W 17 will permit representation of as many as 15,- 
625 words as a single  number  which  is the size of some  books. 
A W20 will encode 1,953,125  words as one number. 

If one  could represent an entire book as a single  number, one 
should consider the implications  this  has in  relieving data trans- 
mission telephone line loads or in reducing the physical require- 
ments for the storage of data. . 

In the introduction we  suggested that human discourse involves 
encoding  and  decoding,  and that the sender and  recipient  must 
have certain data and experiences in  common.  We  also  made the 
points that our alphabets  were arbitrary and predetermined, but 
that the wordlists  reflected the evolution or historical sequence 
of the input.  Both the sender and receiver use the same alpha- 
bet. This is true of  any form of data transmission, but it takes us 
only to the word-fragment  level. The further encoding of groups 
of word  fragments  involves the creation of WLO. Both parties 
would also have to have  this “experience” in  common. If we 
were to go  to W14, they  would  need WLO, WL1, WLZ, and WL3. 

Thus, it would  seem apparent that representation of text as a 
single  16-digit  number  is  misleading, since it would have to be 
accompanied by each of its underlying  wordlists. However, 
there are data on  word frequency which  might ease this restric- 
tion  somewhat. 

Meier,  in  counting  eleven  million  words of German text which 
included a vocabulary of 258,000 different words, found that 
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200 of these words accounted for 54 percent of the total text. If 
it  were  assumed that the encoder and decoder shared this  basic 
vocabulary, as well as the alphabet, the burden  would be signifi- 
cantly  reduced. A basic vocabulary of 1000 words  would repre- 
sent 69 percent of the text. In other words,  approximately 70 
percent of WLO and WL1 would  already exist, and  only those 
words  not  included  would  have to be stored with the data. 

The amount of space that is saved  is a function of the redundan- 
cy of the text. It may  help to illustrate this  by  first  picking two 
extremes. If  we were to choose two pieces of text, each consist- 
ing  of 15,625 words  with each word  being  exactly 40 characters 
in  length, this would cost 640,624 bytes of storage without en- 
coding for each piece of text. If in the first instance each  word 
were  different, then encoding to a single  number  would cost 
78  1,248 bytes, or an  efficiency  of 82 percent. On the other hand, 
if each word  were  identical,  encoding to a single  number  would 
cost only 96 bytes, or an  efficiency of 667,317 percent. 

We have  performed  measurements  on a manuscript stored in our 
workspace consisting of 3,420 total words in the text and a vo- 
cabulary of 906 words. WLO was 958 and WL1 was 906. This 
ratio of 1 . 1  to 1.0 between the two  is  relatively constant in our 
applications. The average word  length,  including the space, was 
7.76 characters. 

When stored in literal form, this text occupied 26,540 bytes. 
When stored as the output of IN, with WLO also retained, it cost 
21,340 bytes. This then was 1.24 times as efficient a form of 
storage. However, when stored as the output of W12, with WLO 
and WL1 retained, it cost only 16,760 bytes-that is, 1.58 times 
as efficient. If we took it up  through W17 which resulted in a 
single  number  plus WLO, WL1, WL2, WL3, WL4, WL5, and WL6, 
it  required 18,152 bytes - reducing the efficiency to a factor of 
1.46. 

With our particular  method of encoding we  gain  efficiency 
through the W12 level,  then  begin to lose efficiency. This is  be- 
cause along  with IN one  has to store WLO which consists of 8- 
byte numbers, plus the output of IN which  is  only 4 bytes per 
number. However, the number is equal to the number of words 
of text. When  we  go one level  higher  we  have WLO, plus WL1 
consisting of four-byte  numbers,  plus the output of W12. The 
output of W12 consists of eight-byte  numbers,  but there are only 
one-fifth as many  elements as words of text. Also, the length of 
WL1 is  also  usually  much less than the number of words of text 
depending on the amount of redundancy. 

~ The amount of this  redundancy in our example is 3420 to 906 or 

, 3.77. In Meier’s  much  larger text, the ratio is 10,910,777 to 
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258,173, or 42.26. If  we use his ratio in our data-that  is, if we 
multiply our WLO and WL1  by .09, then our efficiency  through 
W12 is 4.01 instead of 1.58. 

The reason W L 1  and the output of IN consist of four-byte num- 
bers is because we have yet to encounter a word of more  than 
24 characters. If we did, then this would introduce an  eight-byte 
number  and  thus convert the whole vector into eight-byte ele- 
ments. 

It should be remembered that our goals for a terminal-based 
conversational system  involved  not  only conservation of space, 
but also ease of manipulation  and  rapid response time. The latter 
two factors are enhanced  when we encode a greater number of 
elements at a time.  When  working in a 32K workspace,  it  might 
be  to our advantage  to  move  up  to  six  words at a time. This 
would  limit the length of each wordlist to 645 (rather than 2352) 
which  we  seldom  exceed in our tutorials. 

However, if one were primarily concerned with conservation of 
space and  relatively  unconcerned  with response time, he  would 
do better with selective superencoding  where certain patterns of 
words not  necessarily adjacent to one another were  sought out, 
or with the reducing of the number of words  encoded at a time 
to two. The latter would  not  only  have the advantage of  keeping 
the elements to four-byte numbers, but a considerable  redundan- 
cy  might occur in the couplets that were produced. This redun- 
dancy  is the greatest single  space-conserving factor. 

text The authors have a text formatting  and  editing  program  written 
editing in APL. It incorporates the usual features of permitting the typist 

to enter the text casually,  and  then  allowing the specification of 
the width,  length per page,  centering,  various  forms  and  amounts 
of indentation, tabulation, and so forth. Right  margin  justifica- 
tion  is also a feature and  variable  spacing  is  selectively  random 
in that preference is  given to inserting the extra space following 
certain types of punctuation. 

There are two reasons for discussing  this  application  within the 
context of this paper. Despite the foregoing discussion, the text 
is stored in literal form and is encoded  only a line at a time for 
editing purposes. Secondly, the editing  facilities illustrate one of 
the basic advantages of simple  encoding. 

The basic  reason for storing  such text in literal form  is that we 
do not  feel  we  would save enough storage space to pay for the 
cost in response time  entailed by the encoding  and  decoding. As 
a result of the preceding  calculations, in the future we  may inves- 
tigate  this further. There are several other advantages in storing 
the text in numeric form, such as being  able to replace every  in- 
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stance of a misspelled word with a single command, or being 
able to find a piece of text  without knowing its  exact location. 
These  are discussed  further in the tutorial  application that fol- 
lows. 

The typist initiates editing by calling for  a  known  paragraph. He 
is then  asked which line he wants to edit. The editing options 
provided are: 

Cutting  after a word (erasing  either  the  entire line or  that 

Inserting  one or more  words  into the line 
Erasing a word or  words 
Replacing any  word or series of words with any  number of 

portion  that follows the given word) 

other  words 

The line to  be edited is the  only existing text  that is encoded. 
Any  insertions are subsequently  encoded. It makes  little differ- 
ence to  the program whether it is a single word  that is to  be 
erased or replaced, or a number of words,  since  they  exist as 
single numbers. Similarly, it does  not  matter  whether a single 
word is to  be replaced by another  word of the same or different 
length, or by a series of words,  since in any case it involves re- 
placement of one  number by another. Erasure involves the in- 
sertion of Os. If a  word in question  occurs  more  than  once, the 
typist is asked which occurrence of the word should be  erased, 
replaced, followed by an insertion,  and so forth.  After a line has 
been edited, all the encoded  wordlists are  destroyed. 

A  Tutorial  System (ATS) provided the initial impetus  for  de- 
veloping the concept of superencoding verbal data, and  perhaps 
best  illustrates  the interweaving of the  conservation of space 
with ease of manipulation. The details of the  system are docu- 
mented e l~ewhere .~ -~  We shall first briefly describe  some of the 
highlights of the  system  to give the  reader  some  idea of the mag- 
nitude of the problem,  and  then  show how encoding aids in solv- 
ing it. In evaluating this,  the  reader should remember  that both 
the  functions  described  and the  data that  comprise  the  content 
of each tutorial reside in a 32K APL\360 workspace  without file 
capacity,  and  that we must maintain a response time consistent 
with human discourse. ATS is designed for  experienced  teachers 
who want  to  create  sophisticated  computer-mediated  tutorials, 
but  who  neither know nor  have  the  desire  to  know  anything  about 
computer programming. ATS comprises  two main parts  -an 
author-interrogation program and a tutorial  supervisor with 
author  feedback. 

The author-interrogation program converses with the  teacher in 
ordinary English, telling him what type of information it needs at 
any point and  formatting his tutorial  for him. It is  often  possible 
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for  an  author  to  create a  tutorial at  the terminal in less  time  than 
it would take  to  type it if it were  already  written  out in longhand. 
This is the  result of certain  special  features  such  as: 

a FIND command that  locates a block of text containing  one 
or more  words the  author may remember, obviating much of 
the need for producing time-consuming course listings 
a CHANGE command that changes every  occurrence of a 
word or block of text . a COPY command  together with various  text editing functions 
which permit him to copy  and  edit an already existing unit of 
text 

The tutorial  supervisor program runs  the  tutorial,  interfaces with 
the  student,  and  collects  certain  data  for  the author’s use in up- 
dating his tutorial  on the basis of student  interaction.  This  super- 
visor program contains  certain  functions which provide  each 
tutorial with an aura of intelligent behavior  without the author’s 
awareness of them. It not only recognizes  when a student is ask- 
ing a question,  rather  than answering one,  based on the  syntax of 
his response,  but  also  chooses  the  most logical route along 
which to lead the  student  to reason  through  the  answer to his 
own  question-  without  anticipation  or  intervention  on  the  part 
of the author.  If a student  asks  an ambiguous question,  either 
because he is too  verbose  or because he is  not specific enough, 
the program  recognizes  this  and  attempts to keep him in normal 
conversation until his question  can  be  understood.  Because  the 
program has  the ability to keep  track of the  subject  under dis- 
cussion  and, if necessary,  to assign a  hierarchy of meanings to 
the indefinite pronoun  according to  the  context of the student’s 
question, it permits the  students  to  use pronouns  whose meaning 
is indefinite unless  considered in the  context in which they are 
used. Thus when a student  asks  “What  does  that  mean?”  or 
“What  is its action?”,  the meaning of the pronoun is updated  not 
only on  the  basis of his location in the  program,  but  also  on  the 
basis of what  he himself has said. The supervisor  program  also 
handles  words which would negate  the meaning of an otherwise 
correct  answer. It does  not  accept  words  that  are  outside  the 
domain of the  discussion,  thereby shielding the  author from 
many of the normal pitfalls of key-word analysis. 

The supervisor program not  only  provides a record of the stu- 
dent’s route  through the tutorial,  but  provides the following four 
types of information verbatim  and in the  context in which they 
occurred: 

Any  words used by the  student  that  the program did not 

Any  questions  the  student  asked that  the program could not 
understand 

I answer 
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Every  answer a student  gave  that  was  not  anticipated  by  the 

Any  comments  the  student made during the  course of the 
author 

discussion 

i The  data comprising any ATS tutorial  exists as a  series of named 
numeric vectors,  most of which represent literal data  encoded to 
various levels. This  data is created  by the author-interrogation 
program,  and it is with this  data  that the  students  interact.  This 
data,  or information regarding his particular  subject, is all that 
the  author provides. The APL functions are common to every 
tutorial and are independent of the data. 

We now single out  four  types of data  to illustrate how these  are 
interrelated, and the role  that simple superencoding plays in 
their manipulation. 

Each  tutorial  must  contain  a  series of questions which the pro- 
gram is prepared to ask  the  student.  We  shall call this list the 
Vector of Author  Questions (VAQ). Each  element of VAQ con- 
sists of a single number which is the  output of W14- that  is,  the 
number  can  represent as many  as 125 words of text. 

Associated with each  element of VAQ there are  several  other 
numbers  which, in order  to  conserve  space, we  store in vector 
form by binary compression  but which are more easily con- 
ceived and  described as a series of matrices. We call these ma- 
trices  the  Matrix of Anticipated  Answers (MAA), the  Matrix of 
Author  Responses (MAR), and  the  Matrix of Branches (MBR). 

For each  question or element of VAQ the  author  provides,  he is 
asked to supply  up to 25 key words which he feels will define 
the essential meaning of each of the various  answers  he antici- 
pates a student may give. The key  words  representing  each of 
these  anticipated  answers are encoded  into  a single number  via 
W13. Within this  framework  he is given many additional options 
such as treating  certain  phrases  as single words  and specifying 
whether  the  order  or  sequence  between  words  and  phrases is 
important. He is then  asked  whether  there are any equivalent or 
synonymous  answers  he would anticipate.  Equivalent  answers 
are  those  that  the  author would respond to in an identical man- 
ner. As many as five such  equivalent  answers are encoded  one 
level further,  corresponding to  the  output of W14, and  these 
numbers  then  become the elements of MAA. 

For any given question,  the  author may provide as many antici- 
pated  answers as he  desires. The number of rows in MAA corre- 
sponds to  the number of questions or elements of VAQ and  the 
number of columns  corresponds  to  the  largest  number of antici- 
pated  answers he provides  for  any  question. It is precisely be- 
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cause  he may have 30 anticipated answers  for  one question and 
only 1 for another  that  we actually represent this in vector, rath- 
er than matrix form. Empty  boxes in the matrix cost  as much as 
full ones, but we shall continue with the description as though 
this  were  the way the storage actually occurs. The last column 
of MAA may be conceived as containing all zeros, representing 
the unanticipated answers  to  each question. No matter how 
many answers  an  author  provides,  a  student may come up with 
one  he did not anticipate and  thus fail to  obtain  a match. We call 
this the unanticipated answer. 

For each anticipated answer he provides as well as  for  the unan- 
ticipated answer,  the  author is given the option of providing a 
comment which will be shown to the  student before being given 
another  question.  These  are  stored  as single numbers,  the  output 
of W14, in MAR. The dimensions of MAR are identical to MAA, 
and the  absence of a  response is represented by a zero. 

After a student has been asked  a question and his answer has 
been analyzed,  he is then  presented with the  author’s  comment, 
if any,  and  an  appropriate  branch is chosen. Thus MBR consists 
of a matrix of numbers corresponding to  the location or index of 
the appropriate question in VAQ. MBR has the  same dimensions 
as MAA and MAR. 

Therefore,  a  question is selected on  the basis of a number which 
indicates  the position of the  question in the  vector VAQ. This 
element of VAQ is decoded  and  presented to  the  student as his 
question. The student’s  answer is then compared against the 
elements of the corresponding row of MAA. The particular 
match, or lack of a  match, specifies the  intersection of the row 
with a  certain column of MAR. This  number is then  decoded and 
presented to  the  student  as  the author’s comment (a zero  de- 
codes as an empty line), and the corresponding box in MBR de- 
termines what the  student will be asked next. 

This brief description illustrates the  basic contribution of encod- 
ing to  the  compactness of storage and retrievability of the  data. 
Each  question,  response,  and anticipated answer  (as many as 
five equivalent answers)  exist  as single numbers,  each of which 
requires the same amount of storage allocation and is easily in- 
dexed by its simple position in the  vector. If there  are 200 ques- 
tions,  the largest list we have  to  search contains 200 numbers. 

Consider  the alternatives. If one question contained 125 words 
(as many as 5125 characters),  either  an equal 5 125 bytes would 
have to be assigned to every  other  question or some means of 
subdividing the  text  into  questions,  other  than numeric indexing, 
would have to be devised. The reader should see  the implica- 
tions without the  presentation of a detailed numerical analysis. 
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There tends to be  more redundancy in words in a tutorial than  in 
a manuscript. Thus, in a typical tutorial we get more than ten 
times the reduction in storage requirements by  encoding to the 
W12 level, compared  with the storing of the data in literal form 
with  only a space separating the words. However, this repre- 
sents only a part of the total compression actually achieved. One 
must also consider the storage space that would  be  consumed  by 
the storing of units of text in  blocks, each element of which is 
equal to the size of the largest unit, were it not for the represen- 
tation of these units as single numbers. By direct comparison of 
identical tutorials written in ATS and certain other authoring  lan- 
guages,  we  have  found that  the actual reduction is often in  ex- 
cess of thirty-fold. 

Perhaps the best known attempt to simulate human discourse is 
Joseph Weizenbaum’s  original DOCTOR script, ELIZA. This was 
written in  MAD-Slip, a list-processing language, for the IBM 
7094.’ We  have written a literal translation of his  program  in 
A P L \ ~ ~ O .  Discussing it  here  allows  us to illustrate the use of 
selective superencoding. 

The ELIZA program has a list of key  words and each key  word  is 
given a relative rank  or preference. The program scans the input 
and selects the key  word  with the highest rank. If  no  key  word is 
found, it goes, as described by  Weizenbaum, to its “memory” 
and  may request more discussion regarding  something the “pa- 
tient” said earlier. If its “memory” is empty, it will respond with 
a relatively  noncommittal remark such as PLEASE CONTINUE. 

Certain routine functions such as the transformation of personal 
pronouns such as YOU = I or MY = YOUR are perfomied on the 
encoded input before  any  analysis. 

The selected key  word leads the program to  a list containing one 
or more Decomposition Rules (DR). Thus, if the subject used the 
word MY, this would  be transformed into YOUR. If YOUR was 
the highest  ranking  key  word  in the input, it  would  go to the as- 
sociated DR. There happen to be  two of these associated with 
the key  word YOUR. In the DOCTOR script some  key  words  have 
as many as 13 associated DRS. The way  we print these out for 
the author is as  follows: 

YOUR 
155 156 157 158 
40 
(0 YOUR 0 (*MOTHER MOM DAD FATHER  SISTER  BROTHER WIFE CHILDREN) 0) 

YOUR 
159 160 161 
41 
(0 YOUR 0) 

NO. 4 * 1972 ENCODING VERBAL  INFORMATION 307 





If RR 155 were first, the program responds with: 

TELL ME MORE ABOUT YOUR FAMILY 

If RR 156 were  selected, it  would respond: 

WHO ELSE IN YOUR FAMILY  IS A  STUPID BULLY? 

Thus  the fifth element of the parsed input becomes  the  second 
element of the  output. 

With RR 158 the response is: 

WHAT  ELSE COMES TO MIND WHEN YOU  THINK OF YOUR 
BROTHER? 

Here the fourth element of the parsed input becomes substi- 
tuted as  the  second element of the output. 

It should be pointed out  that, failing to match on DR 40, any 
input containing MY (= YOUR) cannot fail to match on DR 41 
(the word YOUR, preceded and followed by none or any number 
or words). 

The  llterd parts of the RRS exist as single numbers-  the  output 
of W13, which can  decode  into as many as 25 words. Thus in 
RR 156, WHO ELSE IN YOUR FAMILY would be one number, and 
the ? would be  another. 

Each of the five elements resulting from the parsing of the  input 
are  then selectively or individually encoded using W13. There- 
fore  the  input, in this  case, is represented as five numbers. Using 
RR 156, the first element of the RR, the fifth element of the input, 
and the third element of the RR are then catenated and decoded 
to produce  the literal response. 

The important point to  be made here  about  selective  superen- 
coding is that it is analogous to  our encoding to  the word level. 
Between single words there are natural word delimiters -spaces 
and punctuation. In this application, there  are logical delimi- 
ters-specific words-that are  the basis for the parsing and sub- 
sequent  selective superencoding. 

In  one  sense, ATS is a very logical system. A completely de- 
bugged computer program that  converses with both the  author 
and.student in English, it has a  very formal set of rules it follows 
to cope with every contingency. However, it does  not apply 
even the simplest rules of logic to  the meaning of the  input. Its 
intelligence is only an illusion. Thus, if an  author  says  that  two 
plus two equals four in one  part of his tutorial, and two plus two 
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equals three in another  part,  the author-interrogation program 
will not recognize the contradiction. 

Furthermore,  the  student may ask  questions of his own and get 
into  a dialogue resembling a  debate,  but  there is no way for him 
to win or lose,  except  as  predetermined by the author. If he dis- 
agrees with the author’s conclusions, the  student  cannot apply 
his reasoning powers  to  prove  the  author wrong to  the satisfac- 
tion of the program. 

A third problem is that  a good teacher may produce  a  poor tu- 
torial because of inexperience or lack of patience with the medi- 
um. Therefore,  aside from some basic intelligence and informa- 
tion written  into  the program to recognize what the  student is 
doing, the  tutorial  is only as good as  the information the  author 
may provide. 

Recently  we  have begun to correct  these deficiencies in what 
will become a new version of ATS. It is important  for the reader 
to realize the distinction between writing a special-purpose pro- 
gram in which the  subject  matter is known beforehand, and writ- 
ing an author-interrogation program to produce tutorials on  an 
unlimited range of topics. The fact  that this fits into  the  latter 
category means that we cannot rigidly restrict  the rules of syn- 
tax. The program does not use  any form of matrix, but  the  tech- 
niques we  want to describe  are  perhaps  better  understood  by 
referring to  Figure 2. 

Figure 2 depicts  a matrix of 13 rows and 8 columns. It is really 
two  matrices - the  upper  one being 5 by 8 and  the lower being 8 
by 8. The headings for the columns are identical in the  two ma- 
trices. On the left there is literal text,  presented as such so you 
can  read  it, but actually stored as single numbers. 

The words specifying the five rows of the  top matrix are key 
words the  author supplies with each of his questions.  These  es- 
sentially define the meaning of the question. The words that 
specify the eight rows of the lower matrix and the columns of 
both matrices are  the key words  the  author defines to  extract  the 
meaning of a  student’s  response.  Since  these eight entries speci- 
fy the columns as well as  the  rows,  they  are  shown  both in their 
literal and encoded  form,  the  latter only being shown above  each 
column. 

This  representation in binary matrix form shows  the relationship 
between  the key words that are used to  extract  the meaning of a 
response and those  that define the meaning of a  question.  Thus, 
from the  upper matrix the reader  can  extract the fact that  for  the 
question: WHAT IS THE ACTION OF THE SUPERIOR RECTUS?, the 
author  expects  the  student’s  answer  to  contain the key words 
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If the  student  were  to  answer  the  same  question with: IT MOVES 
THE EYE MEDIALLY AND LATERALLY, the program says: MEDI- 

meaning of the 1’s in the lower matrix in Figure 2. 

If the  student  answers  the  question, HOW WOULD YOU TEST 
THE SUPERIOR  RECTUS? with the  response, LOOK SUPERIORLY, 
THEN LATERALLY, the program  responds with YOUR SEQUENCE 
Is WRONG. This information is  obtained from the (0) associated 
with the author’s AQ. No conflict arises  here  because, if you 
recall, we  do not  actually employ a matrix. The reason  for  this is 
that we already  have this information encoded in our  various 
vectors,  and a glance at  the matrix  shows the large percentage of 
zeros or meaningless data. 

If the  author  contradicts himself by asking the same  question in 
another  place in the tutorial  and specifying a different anticipat- 
ed answer,  the program does  not  accept  this  entry until he re- 
solves the discrepancy. For example, the action of the  superior 
rectus  muscle  varies  depending on the  starting position of the 
eye. Thus, in this example, the  author would have to go back 
and redefine the key words or subject for the original question to 
include something such as STRAIGHT  AHEAD OR MEDIALLY to 
define the starting  position,  before he could enter his second 
version. This, in our  opinion, is a significant monitor  on  the au- 
thor’s activity. It is unlikely that  an author would not know this, 
but it is likely that  he might overlook it. 

A second place where the  author might contradict himself is in 
lack of agreement  between his response  or comment  and the an- 
ticipated answer  he specified. Thus,  the author’s  responses are 
treated by the new  version of the  author-interrogation program 
the  same as a student  answer,  and  an author’s comment or re- 
sponse  to this  question  that said: YES, THE SUPERIOR  RECTUS 
MOVES THE EYE  MEDIALLY,  SUPERIORLY, A N D  ROTATES IT 
EXTERNALLY, is likewise rejected until the  author  resolves  the 
discrepancy. 

Thus we  have  made a start  towards  correcting  two of the defi- 
ciencies we cited at  the  outset-being  able  to  provide  the  stu- 
dent with more individualized instruction  than  the  author might 
have the patience to provide  and being able to  prevent  some of 
the self-contradictions  the  author might introduce. 

We  also  have  the  technical facility to give the  student  the ability 
to debate.  However, it is impossible for  the  student  to  debate on 

ALLY A N D  LATERALLY ARE  CONTRADICTORY. This is the 
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the basis of the author’s failure to  see  the full implications of 
something he has said because  the program automatically fills  in 
the missing pieces. Therefore,  an argument such  as: if A is true, 
and B is true,  therefore C must be true  does not arise  because 
the program already knows that C is true and would have said 
so. However,  the  situation could arise  where  the  student  either 
disagrees with the factual information the program has, or has 
additional information that  supersedes it. 

In such  a situation we can give the  student  the ability to  act 
temporarily as  an  author and alter  the information in the matrix. 
There  are two  restrictions. The changes he makes are deleted 
when he exits from the program. Also,  the  fact  that he is making 
a change is flagged and any response based on this change is 
qualified by: IF  YOUR  INFORMATION  IS CORRECT. The latter 
reservation is often  made in discussions when one is confronted 
with new information that  he  has not personally verified. How- 
ever, we have learned from tests of an experimental variation of 
ATS which permitted the  student to define new words that  most 
students  have little patience for this sort of exercise. 

Concluding remarks 

The technique of encoding verbal information as unique num- 
bers  arose from the  authors’ need for  the capability to  store  and 
process large quantities of data in a 32K APL workspace. The 
algorithms, programmed in APL\360, support several levels or 
hierarchies of encoding and decoding where  associated with 
each level is its  alphabet or wordlist. The first level results in the 
representation of words as single numbers. Higher levels pro- 
vide single numbers which can  represent  phrases,  sentences, or 
paragraphs. Because  the encoding process has no finite limit, the 
implication is that very large quantities of information, such as 
the  amount  contained in books or  data files, can be represented 
as single numbers. Perhaps  one of the  greatest implications for 
the  future is the  concept of data  compaction where main storage, 
peripheral storage,  and  data transmission are optimized. 
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