The representation of verbal information as single numbers us-
ing APL functions can optimize main storage, peripheral stor-
age, and data transmission.

Presented in tutorial form are the concepts of the encoding and
decoding process. Applications including text processing and
instructional systems are also discussed.

Encoding verbal information as unique numbers

by W. D. Hagamen, D. J. Linden, H. S. Long, and J. C. Weber
Were it not for some sort of encoding of the input and decoding
of the output, neither people nor computers would be able to

communicate in a meaningful manner.

As we attempt to write this paper, there are certain ideas and

experiences we wish to share with you. Just how these are
stored is not at all clear. Howeyver, it is apparent that they are not
stored as sentences or paragraphs, and even groping for appro-
priate words involves a certain amount of seeking or trial and
error behavior.

Thus the process in which we are now mutually engaged in-
volves encoding and decoding of information. We, the authors,
are taking information stored in one (unknown) form and repre-
senting it in another, the English language. As the reader, you
take this output and translate it into a form in which you can
efficiently process and store it. Which of these processes in this
case should be called encoding, and which should be called de-
coding, is neither clear nor important. However, it is important
to realize that the sender and receiver must have certain things
in common. Not only must we use the same alphabet, vocabu-
lary, and general rules of syntax, but we must to a large extent
have had common experiences. To the extent that we draw upon
data (whether this be words or experiences) that the reader does
not share with us, then we are not understood.
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As the reader is well aware, information is commonly stored
within most computers as strings of Os and 1s. Such binary
strings become numbers because of their allocation into storage
units of predetermined size (computer words). Thus when we
speak of character strings within a computer, we really are talk-
ing about a series of numbers already encoded from their periph-
eral representation. It is assumed that everyone is familiar with
the existence of this level of encoding, and we shall talk about
characters as though they actually existed as such in the com-
puter.

The encoding or representation of words as single numbers is
the essence of a relatively new programming concept. In certain
situations groups of words (now numbers) are further encoded
so that phrases, sentences, and whole paragraphs are represent-
ed as single numbers.

This concept yields three tangible benefits:

o It packs the data and thus conserves storage space

» Response time and CPU time are reduced

¢ Natural language processing, at least on a conceptual level, is
greatly facilitated

One cannot do anything he could not do before, given enough
space, processing time, and programming patience. However, by
simplifying the task, one finds that he does do things he did not
think he could do before.

Each of these benefits derives chiefly from the fact that the re-
sult of encoding is the representation of strings of varying
lengths as single elements or units, Each of these units (single
numbers) occupies the same amount of space and can be ad-
dressed as a single entity. Such unitizing is perhaps the most
important concept to be presented.

The levels of encoding we want to consider involve the creation
of multiple hierarchies of lists. The starting point is the alphabet
of characters. A number is assigned to each character according
to its position in the alphabet we are using. Thus we might indi-
cate the space by a 0, the letter A by a 1, B by a 2, and so on.
The input string is then scanned and a series of numbers or a
map of the string is produced, each element of which indicates
the position of the character in the alphabet. Using the spaces
(0s) as word delimiters, we then encode the successive groups of
non-zero elements as single numbers. These numbers represent
words.

If we want to encode groups of words as single numbers, we
first create a new, higher-level list or alphabet in which each
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word (now a number) is represented only once. After encoding
the input string to the word level, we then find the position of
each word in this numeric wordlist or second-order alphabet.
Groups of elements of the resulting map are then represented as
single numbers. Thus, for each level of encoding there must be
an underlying numeric list or alphabet. However, just as there is
no need to represent the letter A more than once in the alphabet,
there is no need to store a given word, or grouping of words,
more than once in any of the supporting lists.

The same reasoning applies to each of the higher levels of en-
coding. Certain combinations of letters form patterns people
recognize as words. Various combinations of words form pat-
terns we call sentences. Sentences may be combined into para-
graphs, and so forth.

As a result of encoding, each of these exists as a single unit or
number which is a word pattern conveying concepts or ideas
and, except at the highest level, is stored only once. Because
there is no need to store a concept more than one way as long as
we have rules whereby it can be restored in its variety, redun-
dancy in storage is avoided. Thus, the efficiency of storage
achieved is largely dependent on the amount of redundancy in
the text. The more frequently an underlying unit is used, the
greater the saving. »

Encoding and decoding both require a certain amount of time. If
all one wanted to do were to input data at one point and output
it at another without modification or comparison, CPU time
would be increased.

However, generally one wants to process and modify the data.
Most manipulations are simplified and require fewer iterations
when the strings (words, phrases, or paragraphs) are represented
as single numbers. The greater and more complex the manipula-
tions required, the greater the saving in processing time.

Consider such a problem as searching for the second “THE” and
changing it to “THAT"” in the following sentence: ’

THE MAN IS A PROGRAMMER OF THE COMPUTER

One way to approach this would be to write a program that
would scan the text, character by character, utilizing a counter.
Using the spaces as word delimiters, you would initialize your
counter. You would examine the first character to see if it were
a“1”. If yes, you would determine if the next character were an
“H”, then an “E”, then a space. If at any point in the search the
answer were no, you would continue to loop until you encoun-
tered a space, reinitialize the counter and begin again. After
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finding the first “THE”, you would go on to find the second. If the
text were long, such iterations would consume a lot of time.

Once you had finished you would have the positions in the string
representing the word you wanted to replace. However, since
the word you want to substitute contains more characters than
the one you are replacing, there is not enough space in the
string.

It is precisely because of such storage considerations that you
would probably store your words in blocks, each equal in length
to your longest word. Thus we might represent the string as fol-
lows, where we have used “#” to indicate a blank:

#H#H#H####THE
#H#H#HH#H#H# MAN
HHEH#HAFHAFIS
HHRBHBHHFHA
PROGRAMMER
#AH#AH###H#OF
#HH#H#H####THE
##COMPUTER

This would considerably reduce the number of iterations neces-
sary to find the word, since you would essentially compare each
of what we have represented as rows of a matrix with the word
you were trying to find. However, if the text contained one very
long word, there would be a tremendous wastage of storage
space.

By contrast, if each word were represented as a single, four-byte
number, your program would simply have to find the second
occurrence of that number, and replace it with the new number
representing “THAT.” You would then have the best of both sit-
uations — minimum iterations or CPU time, and minimum storage
allocation.

We shall speak of three types of encoding:

Representing each word as a single number, using the spaces
as word delimiters

Simple superencoding where groups of words, such as para-
graphs, are represented as single numbers

Selective superencoding where the text is selectively
scanned for specific word groupings which are then encoded
as single numbers.

A simple application of representing words as single numbers
has already been given. It facilitates locating the words in a
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string, matching the input with those words in storage, and word
substitution. We have a text-editing program, for example,
where if one knows a word has been misspelled one or more
times, a single command will correct every instance of the mis-
spelling. '

Simple superencoding finds application in our computer-mediat-
ed tutorials. Here one deals with lists, the elements of which
may be as large as paragraphs and include:

The questions the author wants to ask the student

The various combinations of key words the author defines
which he hopes will extract the essential meaning from the
student’s answer

Comments the author may want to make in response to a
given student’s answer

A branch which then leads the student to the next question
that should be presented

Each of these varied units exists as a single number. Therefore it
becomes a relatively simple matter to store these interrelated
elements so that the program can easily find the appropriate
question to ask, the list of anticipated answers associated with
each question, the corresponding comment the author may have
defined, and the subsequent branch.

In selective superencoding, the text, already encoded to the sin-
gle-word level, is scanned for the presence or location of certain
key words or logical delimiters. This is somewhat analogous to
the use of the spaces as word delimiters at the simpler level.

Then, each of the delimiters as well as the groups of words be-
tween the delimiters are encoded into single numbers. Such
parsing of the input comes closer to representing concepts as
single numbers than does simple superencoding,

The techniques presented in this paper were developed to solve
specific problems encountered by the authors in trying to store
and process large amounts of verbal information in a 32K
APLN\360 workspace, and will be described in that context. The
fact that all our applications are essentially conversational and
require a response time consistent with human discourse, plus
the fact that in our interpretive implementation one is heavily
penalized for looping or iteration within an APL function, may
help explain our preoccupation with these terms. Conservation
of space is of equal importance, since the system we are using
has no file capacity, and all the functions and data must be
stored within the limited workspace. Aside from this, however,
the reader need have no knowledge of the APL system, and the
basic concepts should have applications in a variety of program-
ming situations.
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The text that follows is divided into two major parts —a formal
description of the encoding and decoding algorithms in non-APL
terms, and various applications of the techniques. The latter in-
cludes:

s A consideration of possible applications to the storage and
transmittal of verbal data

¢ A text formatting and editing program
A brief description of an authoring and teaching system the
authors have developed called A Tutorial System (ATS)
The application of these algorithms to an APL version of
ELIZA'
A proposed extension of ATS in which a logical analyzer will
be interposed between the program and the author or student

Each of these applications has been included to illustrate spe-
cific points. The discussion of possible use in the storage and
transmitting of data describes in greater detail the situations in
which encoding does, and does not, conserve space. The text
formatting and editing program illustrates a simple application of
encoding to the single-word level. The authors’ original need for
developing a method of superencoding was to implement a sys-
tem for authoring and supervising computer-mediated tutorials,
and is the most fully documented phase of their work. Both ELI-
ZA and the proposed extension of ATS illustrate the use of selec-
tive superencoding. It is hoped that in the variety, the individual
reader will find something that is related to his own experiences
and needs.” ‘

There are two other situations in which the authors have used
these encoding techniques. One is in the mechanical translation
of languages where encoding most clearly facilitates the transla-
tion process when a group of words in one language must be
substituted for a single word or another group of words in the
other language. A prime example is idiomatic translation.

The second is in the area of encoding graphic or pictorial infor-
mation. Just as people seldom analyze sentences letter by letter,
we seldom analyze pictures dot by dot. The animate organism
has the ability to extract and store patterns in some coded form
that permits easy recall and manipulation, with minimal storage
demands. One area where we have applied this technique is in a
chess-playing program. When people play chess, they look for
certain visual patterns or board positions. Qur program encodes
the total board pattern existing at any moment as a single num-
ber. This is used for comparison against the possible partial
board positions it is seeking in determining its next move.

Neither the language translation nor the chess-playing programs
will be described beyond this, because of lack of space for ade-
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encoding

quate description, and because the authors hope for consider-
able further development of both.

The basic encoding and decoding processes

Encoding, within the context of this discussion, involves two
rather simple processes. Decoding involves the inverse of these
two operations.

Because one must understand these basic principles in order to
follow the remaining discussion, they will be explained at the
simplest level. The more computer-literate reader may simply
scan or even skip this section.

The first step in encoding is mapping the positions of each ele-
ment of one string in another. The map of the word FACE in the
alphabet A through Z is the numeric vector 6 1 3 S. The same
process can be applied between two numeric vectors. The posi-
tions of the numbers 6 1 3 5inthevector16 6 2 1 33 3 45 5
are given by the vector 2 4 6 8.

One way of representing the literal vector FACE as a single
number is 6135, which is the value of the vector 6 1 3 5 evalu-
ated in the base 10 number system. The algorithm for performing
the evaluation of a mapping vector follows. If we let B stand for
the new base, and B+N means B to the Nth power, the vector
6 1 3 5 becomes:

(6 x B+3) + (1 X B+2) + (3 x B+1) + (5 x B:0)

Given the alphabet:

ABCDEFGHI
123456789

we can obtain a unique base 10 value for the map of any word
composed from this alphabet:

EDGE —> 547 5— 5475
HIDE — 8 9 4 5 — 8945

However, the base 10 will not serve beyond 9 characters, as:
BAKE —» 2 1 11 52215

would be indistinguishable from:

BBAE -2 2 1 5— 2215

To obtain a unique value for any such mapping vector in a given
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number system, the elements of the vector must all be represent-
able as digits of that number system, In other words, the value
of the new base must be at least one greater than the size of the
alphabet or list to be mapped.

Because most of us are more accustomed to thinking in terms of
base 10 numbers, let us first evaluate the vector 6 1 3 5 in the
base 10 number system:

(6 X 10%3) + (1 X 10%2) + (3 X 10*1) + (5 X 10+0)
(6 X 1000)+ (1 X 100) + (3 X 10)+ (5 X 1)

6000 + 100 + 30+ 5

6135

The evaluation of the vector using base 129 is:

(6 X 129%3) + (1 X 129%2) + (3 X 129%1) + (5§ X 129+0)
(6 X 2146689) + (1 X 16641) + (3 X 129)+ (5 X 1)
12880134 + 16641 + 387 + 5

12897167

The evaluation of the vector using base 2000 is:

(6 X 2000%3) + (1 X 2000%2) + (3 X 2000*1) + (5 X 2000%0)
(6 X 8000000000) + (1 x 4000000) + (3 X 2000) + (5 X 1)
48000000000 + 4000000 + 6000 + 5

48004006005

Using APL one can store very large and very small numbers (as
many as 75 decimal positions) in exponential form. However,
the number of significant digits that can be stored is only 16.
This places a limitation on the number of digits that can be
represented as a single number in a new base system. With
base 10 this number is 16 digits. Thus, if we tried to convert
12345678912345678 (17 digits) to a single base 10
number, 12345678912345678 would be rounded off to
1234567891234568 or 1.234567891234568E16 . On reconver-
sion this would yield 1234567891234568 and fail to
serve its purpose.

The maximum number of base 129 digits that can be converted
to a single base 129 number is eight; with a higher base, 2000
for example, it reduces to five.

Decoding, the inverse of encoding, may be described as the pro-
cess of extracting successive remainders. Again we start by il-
lustrating with base 10:

6135+ 10 =613 and a remainder of
613 ~ 10 =61 and a remainder of
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61 +10=6 and a remainder of
the remainder of 6 =~ 10 is

Thus, we obtain the original vector: 6 1 3 5. If we use base 129:

12897167 = 129 = 99978  and a remainder of  $
99978 + 129 =775 and a remainder of 3
1
6

775 + 129 =6 and a remainder of
the remainder of 6 = 129 is
6135

With base 2000:

48004006005 + 2000 = 24002003 and a remainder of
24002003 -+ 2000 = 12001 and a remainder of
12001 = 2000 =6 and a remainder of
the remainder of 6 = 2000 is

6135

Thus, no matter in what base we evaluate the vector 6 1 3 5,
this algorithm returns the original vector.

The final step in the decoding process is a simple indexing or
subscripting operation. Take the 6th, 1st, 3rd, and 5th elements
of the alphabet to produce FACE.

Representing words as single numbers

Although the basic algorithms underlying the encoding and de-
coding are quite simple, when actually handling verbal input,
certain decisions must be made. Some of these involve deciding
what is a word; some are formatting considerations; and others
arise as a result of the limitations on the number of significant
digits that can be represented.

We call the APL function that does the basic eéncoding up to the
level of single words IN and the inverse decoding function, OUT.
The major steps involved in the functions IN and OUT are now
described in general, non-APL, terms.

To start with, we define three short pieces of text which we will
call TEXT1, TEXTZ, and TEXT3. These samples of text are devoid
of meaning, but illustrate the special points we want to discuss.
We will then use these samples in dissecting the various stages
of the encoding process.

TEXT1
ONE TWO THREE FOUR FIVE
TEXT2
ABCDEFGHIKLMNOPQRSTUVWXYZ'0123456783ABCDEFGHIJKLMNCOPQRSTUYWXYZ
TEXT3
ONE, TWO,THREE , FOUR FIVE
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The functions IN and OUT are dyadic in that each requires both
aright and a left argument. The right argument of IN is a charac-
ter string; its output is a numeric vector. The right argument of
OUT is a numeric string representing the same level of encoding
as the output of IN; its output is a character string.

In the case of both IN and OUT, the left argument is a binary
switch (that is, either 0 or 1), whose purpose is to modify the
manner in which the function operates upon its right argument. 0
OUT means that the entire right argument is decoded at once
and appears as the literal output which can then be stored as a
variable. ]| OUT means that the right argument is decoded only a
line at a time—that is, the number of words that will evenly fit
on a line whose width is set by the user. The latter greatly im-
proves the apparent response time of the function, since while
one line is being printed, the next is being decoded.

The left argument of IN determines whether a distinction will be
made between upper versus lower case, or underlined versus
non-underlined characters. This feature is used in the applica-
tion, A Tutorial System, in which the encoding and decoding
functions play a vital role. Where it is desired to encode a piece
of text for fidelity of subsequent reproduction, we use 1 IN; but
where our purpose is to compare a word stored in the computer
with input from the keyboard, we use 0 IN, which converts all
upper case characters to their lower case equivalents. Thus, the
words “Cat,” “CAT,” and ‘“‘cat” are encoded equivalently for
purposes of matching,.

The first step in encoding words into single numbers is the mép-

ping operation of finding the positions of all elements of the in-
coming character string in the alphabet. All spaces are repre-
sented in this map, MAPI, by zeros.

TEXT1
ONE TWO THREE FOUR FIVE
1 IN TEXT1
1 2 3 4 5
MAP1
15 14 S 0 20 23 0 20 8
0 6 15 21 18 0 6 9 22 5

In the above example, disregard the explicit output of IN and
focus only on the intermediate variable MAP] where the charac-
ter O is the 15th letter of the alphabet, N is the 14th, E is the
5th, and so forth.

Using zeros as word delimiters, the next logical step in encoding
is the evaluation in the new base number system of each of the
segments of MAP] which represent single words. We use a vari-
ety of alphabets, depending on the typeball and application.
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However, we never exceed 128 characters and thus we use base
129. If this conversion is done on MAP] we obtain:

251426 335802 5555931320 13132476 13032746

where 251426 represents the conversion of 15 14 5; 335802
the conversion of 20 23 15, and so forth. This string of five
numbers could be decoded, by the method previously described,
to reproduce TEXT].

Since a maximum of only eight characters can be represented as
a single number using base 129, we need a means of permitting
longer words. Thus, we are forced to consider that the numbers
resulting from this initial evaluation may potentially represent
word fragments as well as complete words.

Although TEXTI contains no words longer than eight characters,
the function IN has to make provisions for this situation. This
involves a further encoding. Base 2000 is used since we can
evaluate up to five elements of MAP? as a single number without
exceeding the limitation of 16 significant digits.

The result of the initial base 129 evaluation is stored in a tempo-
rary, local variable or Temporary Word List (TEMPWL) called
TEMPWLQ. There is also a permanent, global variable or Word
List (wL) called WLO which, originally an empty vector, will
eventually contain all the numbers that have been used in
TEMPWLO.

TEMPWLO is a one-to-one representation containing one element
or number for every word in the text. Therefore, if the text con-
tains a word more than once, TEMPWLQ will contain the corre-
sponding numeric element an equal number of times. WLO0, on
the other hand, contains each number only once, and these ap-
pear in the order in which they were entered.

Although WLO is a numeric vector, it is comparable to our al-
phabet since the elements comprising WLO will be used to obtain
a map, MAP2, for the next level of encoding. Just as there was
no need to have the letter A appear more than once in the alpha-
bet, there is no need to have the number 251426 occur more than
once in WLQ.

In the following sequence we show WLO in its initial state fol-
lowed by TEMPWLO. After the formation of TEMPWL0, WLO is
displayed followed by MAP2. Originally WL0 is an empty vec-
tor. Hence, nothing is displayed. TEMPWLQ is then compared to
WLO and any elements of TEMPWLO not contained in WL0 are
catenated to it. MAP2 results from finding the position of each
element of TEMPWLO in the updated version of WL0.
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WLO (empty)
TEMPWLO

251426 335802 5555931320 13132476 13032746
WLO

251426 335802 5555931320 13132476 13032746
MAP?2

12345

TEMPWLO0 and the updated version of WLO are identical in this
instance because WLO was empty and because TEMPWLO con-
tains no number more than once. In this situation TEMPWL0
was effectively substituted for WLC. That is, TEMPWLO was cat-
enated into the empty vector WLO. Both of these represent the
character positions, MAP], evaluated to base 129 in units deter-
mined by the occurrence of the delimiting zeros. MAP2 has an
orderly appearance because the first element of TEMPWLO cor-
responds to the first element of WLO, the second element of
TEMPWLO corresponds to the second element of WL0, and so
forth.

The next step in the encoding process is the evaluation of ele-
ments of MAP? in a new base. If we use base 2000 we can eval-
uate as many as five elements of MAP? as a single number with-
out exceeding the 16 significant digits. The purpose of the addi-
tional encoding is to combine word fragments into actual words.
Since each word fragment or element of WLO may be eight char-
acters in length and we may further encode as many as five of
these together, the maximum length of a word we can represent
without hyphenation is 40 characters.

The result of this evaluation of the elements of MAP2 to base
2000 is the explicit output of IN which has already been shown.
In this instance, MAP2 and the output of IN are identical (1 2 3 4
5). To understand why, the reader should recall the explanation
of the conversion process. There is no combining of elements
since no word in TEXT] exceeded eight characters. The repre-
sentation of a single element or digit in one base numbering sys-
tem is unchanged when evaluated to a higher base because it is
multiplied by the new base to the O power which is always 1.

If we use the output of IN as the right argument or input of OUT,
we obtain the original text:

0 OUT 1 IN TEXT1
ONE TWO THREE FOUR FIVE

Next we shall go through each of these steps with TEXT2, the
first 63 characters of the alphabet we are using at the moment.

TEXT2
ABCDEFGHIKLMNOPQRSTUVWXYZ'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
1IN TEXT2
96056032018010
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1 2 6 8
15 18 17 19 21 23
27 28 29 31 33 35
39 40 41 43 45 47
51 52 53 55 57 59
63
WLO
251426 335802 5555831320 13132476 13032746
TEMPWLO
"603792137497124 ~5396684763830884 ~1.018857739016464E16
~1.49824700164984E16 1.977536264283216E16
WLO
251426 335802 5555931320 13132476 13032746
"603792137497124 ~5396684763830884 71.018957739016464E16
~1.49824700164984E16 1.977536264283216E16
MAP?2
678910
0OUT | IN TEXT2
ABCDEFGHIJKLMNOPQRSTUVWXYZ'0123456789ABC

Notice that when we encode and then decode TEXT2, only the
first 40 of these characters are reproduced. This is because the
longest word we permit without hyphenation is 40 characters. If
we were to define TEXT4 as the same string hyphenated between
the 40th and 41st characters, the reproduction would be faithful
as shown below.

TEXT4
ABCDEFGHIJKLMNOPQRSTUVWXYZ'0123456789ABC — DEFGHIJKLMNOPQRSTUVWXYZ

0QUT | IN TEXT4
ABCDEFGHIJKLMNOPQRSTUVWXYZ'0123456789ABC — DEFGHIJKLMNOPQRSTUVWXYZ

The primary reason for using TEXT?2 is to illustrate how words
with more than eight characters are handled. We need some
means of determining which elements of WLO represent word

fragments and which represent words. That is, when do we en-
code elements of MAP2 together, and when do we let them
stand alone? This question resolves itself into deciding when do
we follow a word fragment by a space, and when do we follow it
by another word fragment.

This question is a formatting problem. The fidelity between in-
put and output should be as good as possible. Thus, we would
not like CHARACTERS t0 become CHARACTE RS nor ONE TWO
THREE to become ONETWOTHREE. The sign bit is used to ac-
complish this formatting. Numbers representing word fragments
that do not complete a word are given a negative sign; those that
do end a word or represent the entire word are given a positive
sign.

MAPI, displayed above, has the ordered appearance it does
because it results from comparing one string with itself. It con-
tains no zeros since there are no spaces. Therefore, IN tries to
treat it as a single word, but truncates it after the 40th character
for the reasons previously explained.
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Again, TEMPWLO contains no elements already in WLO and con-
tains no numbers more than once. Therefore, it is simply cate-
nated to the existing WLO to form the new WL0. MAP2 contains
the positions of all elements of TEMPWLQ in the updated WLO.
The first four elements of TEMPWLO are negative. The posi-
tions, MAP2Z, of each sequence of elements of TEMPWL0 ending
in a positive number are evaluated together to form a single
number in base 2000. This is the explicit output of IN
(96056032018010). Any sequence of four consecutive negative
elements must be followed by a positive number, because the
truncation to 40 characters occurs before this stage.

In this example, MAP? bears no resemblance to the output of IN
since the five elements of MAP2 have been combined to form
the single element of output of IN.

Punctuation and special characters present an additional format-
ting problem. Words are not always followed by a space, since
they may be followed by a punctuation mark or special charac-
ter. TEXT3 illustrates the various possibilities. The same steps
by way of illustration are again presented.

TEXT3
ONE, TWO,THREE , FOUR FIVE

1INTEXT3
1 11 2 12 3 13 4 14

MAP]
15 14 S 20 23 15 64 20
5 0 64 15 21 18 0 64 6

WLO
251426 335802 5555931320 13132476 13032746
"603792137497124 ~5396684763830884 ~1.018957739016464E16
~1.49824700164984E16 1.977536264283216E16

TEMPWLO
251426 8256 335802 ~8256 5555931320 64 13132476 64
13032746

WLO
251426 335802 5555931320 13132476 13032746
"603792137497124 ~5396684763830884 ~1.018957739016464E16
~1.49824700164984E16 1.977536264283216E16 8256 8256 64
64

MAP2
1 11 2 12 3 13 4 14

0OUT 1IN TEXT3
ONE, TWO,THREE , FOUR FIVE

TEMPWLO contains some elements that are already in WLO and
some that are not. Only the new elements become catenated
onto WLO to form the new WL0O. MAP?2 represents the position
of each element of TEMPWLO in the updated WLO. Again, MAP2
and the explicit output of IN are identical because none of the
words in TEXT3 exceed eight characters. The new feature is the
formatting related to the punctuation.

The comma is the 64th element in the alphabet we are using.
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129 times 64 is 8256. The number representing the comma ap-
pears in four different forms because it appears in four different
formatting contexts in TEXT3. If the comma is preceded by a
space, the number representing it is its position in the alphabet;
if it is preceded by another character, this number is multiplied
by 129, the base value. If the comma is followed by a space, the
number representing it is positive; otherwise it is negative. Thus
the first comma becomes 8256; the second, ~8256; the third, 64;
and the fourth, 64. The same logic applies to any of the charac-
ters of our alphabet occupying a position greater than 63.

Multiplication by base 129 does not distort the significance of
these numbers. 8256 divided by 129 is 64 with a remainder of 0.
The 129 remainder of 64 is 64. Thus, all this does is introduce
extra zeros into the numeric string. All zeros are eliminated be-
fore indexing.

Encoding groups of words as single numbers

The alphabets we use vary, depending on the typeball and appli-
cation. They all include the upper case letters A~Z, the digits
0-9, either lower case a-~z or underlined A -Z, plus punctuation,
and special characters. In our applications, the alphabet never
exceeds 128 characters, and is encoded to base 129. Thus it has
an arbitrary, but predetermined, order and length.

WLO represents word fragments. It consists of numbers resulting
from the evaluation of elements of MAP! (as many as eight at a
time) as single base 129 integers. The same number never ap-
pears more than once in WLO. In this sense WLO0 is comparable
to an alphabet, the elements of which represent groups of char-
acters, rather than single characters. It differs from an alphabet,
however, in that its elements are neither arbitrary nor predeter-
mined. Both the order and the length are determined by the evo-
lution or history of the input.

Although WLO is not predetermined, once any part of it has
evolved, this order must be permanently stored. TEMPWLO, on
the other hand, is a transient phenomenon. It is formed by the
same rules as WL0O except that redundancies are permitted.
MAP?2 represents the positions of elements of TEMPWLO in
WLO. If the output of IN is stored, both TEMPWL0 and MAP2
can be recreated during the process of decoding. The output of
IN consists of elements of MAP2 evaluated as single base 2000
numbers (as many as five at a time).

The output of IN is comparable to TEMPWLI in that redundan-
cies are retained. The next logical step is to create a permanent
WLI from TEMPWLI, the output of IN, just as we created WLO
from TEMPWLO. Again, if we use base 2000, we can encode up
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to five elements at a time. This process of superencoding may be
repeated as often as desired to form WL1, WL2, WL3, and so forth.

Recall that for each Word List, WL, there is a Temporary Word
List, TEMPWL, and that the wLs must be permanently stored.
Each one is comparable to an alphabet as WLO. By mapping
clements of the permanent WL0, we produce a TEMPWLI. Simi-
larly, by mapping elements of the permanent WL3, we must cre-
ate a TEMPWL4, the output of the function that creates WL3,
These superencoding functions are called W12, W13, and W14.

MAPI! represents the positions of each character of the literal
input string in the alphabet. MAPZ contains the positions of each
element of TEMPWL0 in WL0O. We shall go on to define a MAP3
which represents the positions of each element of TEMPWLI in
WL1, a MAP4 for TEMPWL2 and WL2, and a MAPS for
TEMPWL3 and WL3. There is a need to store permanently only
the result of the final level of encoding, plus the various underly-
ing WLs and the alphabet; each of the TEMPWLs and MAPs can be
reconstructed during the decoding process.

The explicit output of W14 is a vector of numbers each one of
which could be decoded to form as many as 125 words each
containing as many as 40 characters.

The simplest form of superencoding is encoding the maximum  simple
number of elements in successive steps according to the se-  superencoding
quence of words in the input string regardless of context. Thus,

if the input string were a paragraph of less than 126 words, it

could be encoded to form a single number.

As our example text, TEXTS, let us use one of the paragraphs
from this discussion. We shall use the alphabet shown in Figure
1, although any alphabet could be used.

TEXT5
ALTHOUGH WLO IS NOT PREDETERMINED, ONCE ANY PART OF IT HAS Figure 1 Alphabet used in simple
EVOLVED, THIS ORDER MUST BE PERMANENTLY STORED. TEMPWLO0, ON superencoding examples
THE OTHER HAND, IS A TRANSIENT PHENOMENON. IT IS FORMED BY ABCDEFGRIIKLNNOPQRSTUVNETL! 01204
THE SAME RULES AS WLO EXCEPT THAT REDUNDANCIES ARE ST8RABCOREGUIINLUNGRARITULLL
PERMITTED. MAP2 REPRESENTS THE POSITIONS OF ELEMENTS OF Ave1p0RLTO0~1 0NNV 2 4vAOE>NUaY
TEMPWLO IN WLO. IF THE OUTPUT OF IN IS STORED, BOTH TEMPWLO

AND MAP?2 CAN BE RECREATED DURING THE PROCESS OF DECODING.

THE OUTPUT OF IN CONSISTS OF ELEMENTS OF WLO EVALUATED AS

SINGLE BASE 2000 NUMBERS (AS MANY AS FIVE AT A TIME),

Simple superencoding of TEXTS yields one number:

W14 1IN TEXTS
16016012008005

We are already familiar with the function of 1 IN. W14 takes the
output of IN and superencodes it to a level such that its output
corresponds to TEMPWL4.
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The output of 1 IN TEXT 5 is:

26
36
46

24
34
44
17
58
43
70
76
156060
18

25
11
15
50
118060
67
43
42

17
35
45
51

25

71

15
54

86 87

42

15

42

61

69

79

88

54028

37
11
52

61

68
72
21

80

38
17
53

11

18

54

124063

15
38
67

8l

69

77

82

29
78040

15

30

4

1

94048
25

21

146060

21

83

55
128065
87

74

66

54

3

1

42
98044

23
21
17
15
21

84

21
43

32
11
32

33

42
112057
66
41
75
25
54

21
11
21

5 85

The various vectors that result are now presented. There are a
lot of numbers, but we will try to point out the simple patterns
and logic of the lists. In most cases the reader is advised to first
read what is said immediately following a long list, and then look
at the list itself only if he wishes to verify the point that was

made.’

MAP1
12 20
19

18

14

0

21
14
20
8
0
20
0
0
21
24
21
16
16
0
19
0
14
15
9
20
4
18
14
0
20
0
15
6
5

5
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2
5
5
9
0
9

20
0

0
1

25

0
12
13

9
18
20

5

1

0

20

5

0
3
0

5
1
0
1

9
2
25

16

5
0
5
0
23
20
1
5

9

7

0
4
18

2

8

8

16

64

20

2
15
0

8
0

14

19

1

19
12

1

5
20

0

18

0
0
5
18
16

15

20
28

2

1

1

18
18

3
5
5
15
2
4
5

13

15
64

IBM SYST J




TEXTS contains 514 characters including the spaces. Therefore,
MAPI] contains 514 elements.

WLO
251426 335802 5555931320 13132476 13032746
"603792137497124 ~5396684763830884 ~1.018957739016464E16
~1.49824700164984E16 1.977536264283216E16 8256 "8256
64 64 333857 216476 1180 1 ~9594963588678757 663
194] 1852994888265327 43067057

WLO, before the action of IN, already contains 23 numbers, be-
cause of what has been previously encoded.

TEMPWLO
650483295410396 384319 1180 234929 79594605499801819
3619551277 8256 32433701 18472 34366007 1941 1181
133276 23831455420117 8256 43068088 4192550844 28258889
263 79535164825477206 334393 684308939473 8385
92347723241461 8256 1949 333857 4196910786 17191963
8256 1180 1 "1.197233461665866E16 20 79548525553753818
1949 8385 1181 1180 218531010493 283 333857
40805414 5029892683 148 384319 185267932745 43067057
~1.072360155085922E'16 6590500 18968 79535164842752490 4
8385 27925692 ~1.072402937764029E'16 2599 333857
79581282218169717 19 1941 3027818022632413 1941
92347723241461 1175 384319 8385 1167 333857
541704358001 1941 1175 1180 684308939473 8256 4545581
92347723241461 18451 27925692 50066 263
"1.072356497767124E16 4 148746379081 333857 74379553902175
1941 2401021910014141 8385 333857 541704358001 1941
1175 1853031416310646 1941 3027818022632413 1941 384319
~3073757624260823 4 148 681260458946 4312475 64870258
65269619739100 71 148 27925429 148 13032746 149
43085231 79288 65

WLO
251426 335802 5555931320 13132476 13032746
"603792137497124 ~5396684763830884 ~1.018957739016464E16
~1.49824700164984E16 1.977536264283216E16 8256 78256 64
64 333857 216476 1180 1 ~9594963588678757 663 1941
1852994888265327 43067057 650483295410396 384319 234929
79594605499801819 3619551277 32433701 18472 34366007
1181 133276 23831455420117 43068088 4192550844 28258889
263 ~9535164825477206 334393 684308939473 8385
92347723241461 1949 4196910786 17191963
"1.187233461665866E16 20 ~9548525553753818 218531010493 283
40805414 5029892683 148 185267932745 ~1.072360155085922E16
6590500 18968 ~9535164842752490 4 27925692
~1.072402937764029E16 2599 79581282218169717 19
3027818022632413 1175 1167 541704358001 4545581 18451
50066 ~1.072356497767124E16 148746379081 74379553902175
2401021910014141 1853031416310646 ~3073757624260823
681260458946 4312475 64870258 65269619739100 71 27925429
149 43085231 "9288 65

TEMPWLO contains some elements already in WLO, and contains
some elements more than once. Thus the new WL0 is not a sim-
ple catenation of TEMPWLO to the old WLO. The fact that there
are 115 elements in TEMPWLO and only 88 in the updated ver-
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sion of WLO attests to this overlap. Actually 43 elements were
dropped because of repetition within TEMPWL0 and 7 were
dropped because they already existed in WL0O (43+7=50;
115—50=65; 65+23=88).

MAP2

24 25 17 26 27 28 11 29 30 31 21 32
33 34 11 35 36 37 38 39 40 41 42 43
11 44 15 45 46 11 17 18 47 48 49 44
42 32 17 50 5l 15 52 53 54 25 55 23
56 57 58 59 60 42 61 62 63 15 64 85
21 66 21 43 67 25 42 68 15 69 21 67
17 41 11 70 43 71 61 72 38 73 60 74
15 75 21 76 42 15 69 21 67 77 21 66
21 25 78 60 54 79 80 81 82 83 54 84
o4 S 85 18 86 87 88

MAP?Z has 115 elements, the same number as TEMPWLO, since
it represents the positions or map of each element of TEMPWLO
in the new WLOQ.

MAP?2 and the output of IN at first glance may look the same, but
are not. The output of IN has 105 elements, 10 less than MAP2.
If you examine the output of IN, you can quickly spot the num-
bers greater than 88. These represent those ten elements of
MAP? that have been combined in the evaluation to base 2000.

The number of negative elements in TEMPWILO is 12. None of
these are adjacent to each other. You might expect that these
are the ones that are combined with the next positive element
when evaluated to base 2000. Thus 115 minus 12 should equal
the number of elements in the output of IN. However, it does not
(115—12=103, not 105). This discrepancy of two is explained

by the fact that two of the negative numbers, ~71 and ~9288, rep-
resent the punctuation marks ( and ) respectively. Although
punctuation marks whose representation carries a minus sign are
formatted by OUT without an intervening space, they are con-
sidered to be separate words. This is the reason the hyphenation
in TEXT4 permitted the reproduction of the entire text.

We now consider the superencoding function W14 which calls
W12 and W13 as subfunctions:

WL] (empty)

TEMPWL1
24 25 17 54028 11 29 30 3 21 32 33
3¢ 11 35 37 38 78040 41 42 43 11 44
15 45 46 17 18 94048 98044 42 32 17
50 51 15 53 54 25 55 23 112057 58
118060 42 124063 15 128065 21 66 21 43
87 25 42 15 63 21 67 17 41 11 70
43 71 8l 38 146060 74 15 75 21 76
42 15 69 67 77 21 66 21 25 156060 54
73 80 8l 83 54 8 54 5 8 18 86
87 88
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WLI1
24 25 17 26 54028 11 29 30 31 21 32 33
34 35 36 37 38 78040 41 42 43 44 15 45
46 18 94048 98044 50 51 52 53 54 55 23
112057 58 118060 61 124063 128065 66 67 68 69
70 71 72 146060 74 75 76 77 156060 79 80
81 82 83 84 5 85 86 87 88

MAP3
i 2 3 7 8 9 10 11 12 13 6
14 15 16 17 18 19 20 21 8 22 23 24
25 6 3 26 27 28 20 11 3 29 30 23 31
32 33 2 34 35 36 37 38 20 39 40 23
41 10 42 10 21 43 2 20 44 23 45 10
43 3 18 6 46 21 47 39 48 17 49 50 23
51 10 52 20 23 45 10 43 53 10 42 10
2 54 33 55 56 57 58 59 33 80 33 61
62 26 63 64 65

W12 builds up the permanent, global variable WL1. This begins
as an empty vector since we have no previous examples of en-
coding beyond the IN level.

TEMPWLI is identical to the output of IN in that it serves as the
input to W14, W12. Those elements of TEMPWLI not already in
WLI, minus any redundancies in TEMPWL1 itself, become cate-
nated to WLI1. Since there are only 65 elements in WLI, there
must have been 105-65 or 40 repetitions in TEMPWLLI.

MAP3 represents the positions of each element of TEMPWL1 in
the updated WLI. It also is the output of W12.

W13 performs an identical operation at the next higher level.
MAPS may be considered the input of W13.

WL2 (empty)
TEMPWL2

16016012008005 96056032018010 176096052012014 240128068036019

320168024044023
528016136070036
368360040086003
368360040086053
992208252128065

WL2
16016012008005
320168024044023
528016136070036
368360040086003
368360040086053
992208252128065

MAP4

2 3

16 17

384200024006026
592304080078040
304048184042047
160336040004054

96056032018010
384200024006026
592304080078040
304048184042047
160336040004054

432224080022003
368328040084010
624384068098050
528440224114058

176096052012014
432224080022003
368328040084010
624384068098050
528440224114058

464240092062032
336344008040044
368408040104020
944264240066061

240128068036019

464240092062032
336344008040044
368408040104020
944264240066061

Again, the corresponding Word List, WL2, starts as an empty
vector. TEMPWL2 results from evaluating the elements of
1972
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superencoding

MAPS, five at a time, to base 2000. Since there were 105 mem-
bers of TEMPWLI, there are 21 elements in TEMPWL2.

We are now dealing with small enough lists that you can see that
the new WL2 and TEMPWL?2 are identical. Remembering that
WL2 was empty to start with and, given the orderly enough ar-
rangement of MAP3 to see that no consecutive groups of five
elements are identical, this would necessarily be so.

MAP4 results from finding the positions of each member of
TEMPWL2 in WL2. Since this constitutes mapping one list
against itself, MAP4 consists of the sequence 1 2 3. . . 21. This
is the output of W13.

WL3 (empty)

TEMPWL3
16016012008005 96056032018010 176096052028015 256136072038020
21

WL3
16016012008005 96056032018010 176096052028015 256136072038020
21

MAPS
1 2 3 4 5

The superencoding function, W14, then takes MAP4 and, encod-
ing it five elements at a time to base 2000, forms TEMPWLS3.
TEMPWL3 has five elements, the last one being identical to the
last element of MAP4 (the 5 remainder of 21 is 1).

TEMPWL3 and the second WL3 are identical for reasons already

explained. The orderly appearance of MAPS is also understand-
able.

Thus the simple superencoding of the paragraph, TEXTS, pro-
duces a single number:

W14 1 IN TEXTS
16016012008005

The output of W14 is a single number resulting from the evalua-
tion of the five elements of MAP5 to the base 2000.

The output of W14 and the first element of TEMPWL3 and
TEMPWL2 are identical (16016012008005). This is because they
each resulted from evaluating the sequence 1 2 3 4 5 to the base
2000.

Selective superencoding involves parsing the input into its vari-
ous component parts. This will be discussed later in the applica-
tions discussion since the rules employed for such parsing de-
pend on the particular application. The input is first encoded to
the single-word level. Then, a new APL function scans this en-

HAGAMEN ET AL IBM SYST J




coded string for the presence of certain word groupings that di-
vide it into its component parts. Each part is then selectively
superencoded through one of the W functions, W12, W13, W14,
just described.

The process of decoding is the exact inverse of the processes
just described. The basic decoding function, other than QUT is
called U2.

U2 operates on the principle of extracting successive remainders
which was explained in detail earlier. It assumes the base 2000.
If we use the output of W14 1 IN TEXTS as the input to U2, we
obtain the following:

U2 16016012008005
2 3 4 S

If we then use this to index WL3, we obtain the first five elements
or, in this case, all of WL3.

WL3[U2 16016012008005]
16016012008005 96056032018010 1760960520280t 5 256136072038020
21

If we then, in turn, U2 this, we take it down another level and
obtain MAP4,

U2 WL3[U2 16016012008005]
1 2 3 4 5 6 7 8
15 16 17 18 19 20 21

This may be used to index WL2 and returns TEMPWL2, which in
this case is identical to WL2.

WL2[U2 WL3[U2 16016012008005]]
16016012008005  96056032018010  176096052012014  240128068036019
320168024044023  384200024006026  432224080022003  464240092062032
528016136070036  592304080078040  368328040084010  336344008040044
368360040086003  304048184042047  624384068098050  368408040104020
368360040086053  160336040004054  528440224114058  944264240066061
992208252128065

U2 TEMPWL2 yields MAP3. When MAP3 is used to index WL,
the result is TEMPWLI. This, identical to the output of IN, then
becomes the input for the function OUT.

OUT itself calls U2 once as a subfunction to produce MAP2.
When MAP2 is used to index WLO, the result is TEMPWLO. We
cannot perform U2 TEMPWL0 because U2 assumes the base
2000 and we now need the base 129. This is simply a coding
decision on our part. Execution is faster by making this an inte-
gral part of the function OUT than by giving the subfunction U2
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a left argument. However, the logic is the same. Thus, decoding
TEMPWLO to base 129 produces MAP! which is then used to
index our alphabet. The final result is identical to TEXTS:

1 OQUT WL[U2 WL2[U2 WL3[U2 16016012008005]1]
ALTHOUGH WLO0 IS NOT PREDETERMINED, ONCE ANY PART OF IT HAS
EVOLVED, THIS ORDER MUST BE PERMANENTLY STORED. TEMPWL0, ON
THE OTHER HAND, IS A TRANSIENT PHENOMENON. IT IS FORMED BY
THE SAME RULES AS WL0 EXCEPT THAT REDUNDANCIES ARE
PERMITTED. MAP2 REPRESENTS THE POSITIONS OF ELEMENTS OF
TEMPWLO IN WLO. IF THE QUTPUT OF IN IS STORED, BOTH TEMPWLO
AND MAP2 CAN BE RECREATED DURING THE PROCESS OF DECODING.
THE OUTPUT OF IN CONSISTS OF ELEMENTS OF WLO EVALUATED AS
SINGLE BASE 2000 NUMBERS (AS MANY AS FIVE AT A TIME).

Some applications

The function IN can encode words, each containing as many as
40 characters, into single numbers. W12 can represent in one
single number as many as 5 words; W13, as many as 25 words;
and W14, as many as 125 words at a time. This is as far as we
have gone in our own applications. However, this cut-off point is
arbitrary. A W17 will permit representation of as many as 15,-
625 words as a single number which is the size of some books.
A W20 will encode 1,953,125 words as one number.

If one could represent an entire book as a single number, one
should consider the implications this has in relieving data trans-
mission telephone line loads or in reducing the physical require-
ments for the storage of data.

In the introduction we suggested that human discourse involves
encoding and decoding, and that the sender and recipient must
have certain data and experiences in common. We also made the
points that our alphabets were arbitrary and predetermined, but
that the wordlists reflected the evolution or historical sequence
of the input. Both the sender and receiver use the same alpha-
bet. This is true of any form of data transmission, but it takes us
only to the word-fragment level. The further encoding of groups
of word fragments involves the creation of WL0. Both parties
would also have to have this “experience” in common. If we
were to go to W14, they would need WL0O, WL, WL2, and WL3.

Thus, it would seem apparent that representation of text as a
single 16-digit number is misleading, since it would have to be
accompanied by each of its underlying wordlists. However,
there are data on word frequency which might ease this restric-
tion somewhat.

Meier, ® in counting eleven million words of German text which
included a vocabulary of 258,000 different words, found that
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200 of these words accounted for 54 percent of the total text. If
it were assumed that the encoder and decoder shared this basic
vocabulary, as well as the alphabet, the burden would be signifi-
cantly reduced. A basic vocabulary of 1000 words would repre-
sent 69 percent of the text. In other words, approximately 70
percent of WL0O and WL1 would already exist, and only those
words not included would have to be stored with the data.

The amount of space that is saved is a function of the redundan-
cy of the text. It may help to illustrate this by first picking two
extremes. If we were to choose two pieces of text, each consist-
ing of 15,625 words with each word being exactly 40 characters
in length, this would cost 640,624 bytes of storage without en-
coding for each piece of text. If in the first instance each word
were different, then encoding to a single number would cost
781,248 bytes, or an efficiency of 82 percent. On the other hand,
if each word were identical, encoding to a single number would
cost only 96 bytes, or an efficiency of 667,317 percent.

We have performed measurements on a manuscript stored in our
workspace consisting of 3,420 total words in the text and a vo-
cabulary of 906 words. WLO was 958 and WL was 906. This
ratio of 1.1 to 1.0 between the two is relatively constant in our
applications. The average word length, including the space, was
7.76 characters.

When stored in literal form, this text occupied 26,540 bytes.
When stored as the output of IN, with WLO also retained, it cost
21,340 bytes. This then was 1.24 times as efficient a form of
storage. However, when stored as the output of W12, with WLO
and WLI retained, it cost only 16,760 bytes —that is, 1.58 times
as efficient, If we took it up through W17 which resulted in a
single number plus WL0O, WL1, WL2, WL3, WL4, WL5, and WL,
it required 18,152 bytes —reducing the efficiency to a factor of
1.46.

With our particular method of encoding we gain efficiency
through the W12 level, then begin to lose efficiency. This is be-
cause along with IN one has to store WLO which consists of 8-
byte numbers, plus the output of IN which is only 4 bytes per
number. However, the number is equal to the number of words
of text. When we go one level higher we have WL0, plus WL1
consisting of four-byte numbers, plus the output of W12. The
output of W12 consists of eight-byte numbers, but there are only
one-fifth as many elements as words of text. Also, the length of
WLL1 is also usually much less than the number of words of text
depending on the amount of redundancy.

The amount of this redundancy in our example is 3420 to 906 or
3.77. In Meier’s much larger text, the ratio is 10,910,777 to
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258,173, or 42.26. If we use his ratio in our data—that is, if we
multiply our WLO and WL1 by .09, then our efficiency through
W12 is 4.01 instead of 1.58.

The reason WL1 and the output of IN consist of four-byte num-
bers is because we have yet to encounter a word of more than
24 characters. If we did, then this would introduce an eight-byte
number and thus convert the whole vector into eight-byte ele-
ments.

It should be remembered that our goals for a terminal-based
conversational system involved not only conservation of space,
but also ease of manipulation and rapid response time. The latter
two factors are enhanced when we encode a greater number of
elements at a time. When working in a 32K workspace, it might
be to our advantage to move up to six words at a time. This
would limit the length of each wordlist to 645 (rather than 2352)
which we seldom exceed in our tutorials.

However, if one were primarily concerned with conservation of
space and relatively unconcerned with response time, he would
do better with selective superencoding where certain patterns of
words not necessarily adjacent to one another were sought out,
or with the reducing of the number of words encoded at a time
to two. The latter would not only have the advantage of keeping
the elements to four-byte numbers, but a considerable redundan-
¢y might occur in the couplets that were produced. This redun-
dancy is the greatest single space-conserving factor.

The authors have a text formatting and editing program written
in APL. It incorporates the usual features of permitting the typist
to enter the text casually, and then allowing the specification of
the width, length per page, centering, various forms and amounts
of indentation, tabulation, and so forth. Right margin justifica-
tion is also a feature and variable spacing is selectively random
in that preference is given to inserting the extra space following
certain types of punctuation.

There are two reasons for discussing this application within the
context of this paper. Despite the foregoing discussion, the text
is stored in literal form and is encoded only a line at a time for
editing purposes. Secondly, the editing facilities illustrate one of
the basic advantages of simple encoding.

The basic reason for storing such text in literal form is that we
do not feel we would save enough storage space to pay for the
cost in response time entailed by the encoding and decoding. As
a result of the preceding calculations, in the future we may inves-
tigate this further. There are several other advantages in storing
the text in numeric form, such as being able to replace every in-
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stance of a misspelled word with a single command, or being
able to find a piece of text without knowing its exact location.
These are discussed further in the tutorial application that fol-
lows.

The typist initiates editing by calling for a known paragraph. He
is then asked which line he wants to edit. The editing options
provided are:

Cutting after a word (erasing either the entire line or that
portion that follows the given word)

Inserting one or more words into the line

Erasing a word or words

Replacing any word or series of words with any number of
other words

The line to be edited is the only existing text that is encoded.
Any insertions are subsequently encoded. It makes little differ-
ence to the program whether it is a single word that is to be
erased or replaced, or a number of words, since they exist as
single numbers. Similarly, it does not matter whether a single
word is to be replaced by another word of the same or different
length, or by a series of words, since in any case it involves re-
placement of one number by another. Erasure involves the in-
sertion of 0s. If a word in question occurs more than once, the
typist is asked which occurrence of the word should be erased,
replaced, followed by an insertion, and so forth. After a line has
been edited, all the encoded wordlists are destroyed.

A Tutorial System (ATS) provided the initial impetus for de-
veloping the concept of superencoding verbal data, and perhaps
best illustrates the interweaving of the conservation of space
with ease of manipulation. The details of the system are docu-
mented elsewhere.”® We shall first briefly describe some of the
highlights of the system to give the reader some idea of the mag-
nitude of the problem, and then show how encoding aids in solv-
ing it. In evaluating this, the reader should remember that both
the functions described and the data that comprise the content
of each tutorial reside in a 32K APL\360 workspace without file
capacity, and that we must maintain a response time consistent
with human discourse. ATS is designed for experienced teachers
who want to create sophisticated computer-mediated tutorials,
but who neither know nor have the desire to know anything about
computer programming. ATS comprises two main parts—an
author-interrogation program and a tutorial supervisor with
author feedback.

The author-interrogation program converses with the teacher in
ordinary English, telling him what type of information it needs at
any point and formatting his tutorial for him. It is often possible
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for an author to create a tutorial at the terminal in less time than
it would take to type it if it were already written out in longhand.
This is the result of certain special features such as:

s a FIND command that locates a block of text containing one
or more words the author may remember, obviating much of
the need for producing time-consuming course listings
a CHANGE command that changes every occurrence of a
word or block of text
a COPY command together with various text editing functions
which permit him to copy and edit an already existing unit of
text

The tutorial supervisor program runs the tutorial, interfaces with
the student, and collects certain data for the author’s use in up-
dating his tutorial on the basis of student interaction. This super-
visor program contains certain functions which provide each
tutorial with an aura of intelligent behavior without the author’s
awareness of them. It not only recognizes when a student is ask-
ing a question, rather than answering one, based on the syntax of
his response, but also chooses the most logical route along
which to lead the student to reason through the answer to his
own question —without anticipation or intervention on the part
of the author. If a student asks an ambiguous question, either
because he is too verbose or because he is not specific enough,
the program recognizes this and attempts to keep him in normal
conversation until his question can be understood. Because the
program has the ability to keep track of the subject under dis-
cussion and, if necessary, to assign a hierarchy of meanings to
the indefinite pronoun according to the context of the student’s
question, it permits the students to use pronouns whose meaning
is indefinite unless considered in the context in which they are
used. Thus when a student asks “What does that mean?” or
“What is its action?”, the meaning of the pronoun is updated not
only on the basis of his location in the program, but also on the
basis of what he himself has said. The supervisor program also
handles words which would negate the meaning of an otherwise
correct answer. It does not accept words that are outside the
domain of the discussion, thereby shielding the author from
many of the normal pitfalls of key-word analysis.

The supervisor program not only provides a record of the stu-
dent’s route through the tutorial, but provides the following four
types of information verbatim and in the context in which they
occurred:

Any words used by the student that the program did not
understand

Any questions the student asked that the program could not
answer
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Every answer a student gave that was not anticipated by the
author

Any comments the student made during the course of the
discussion

The data comprising any ATS tutorial exists as a series of named
numeric vectors, most of which represent literal data encoded to
various levels. This data is created by the author-interrogation
program, and it is with this data that the students interact. This
data, or information regarding his particular subject, is all that
the author provides. The APL functions are common to every
tutorial and are independent of the data.

We now single out four types of data to illustrate how these are
interrelated, and the role that simple superencoding plays in
their manipulation.

Each tutorial must contain a series of questions which the pro-
gram is prepared to ask the student. We shall call this list the
Vector of Author Questions (VAQ). Each element of VAQ con-
sists of a single number which is the output of W14 —that is, the
number can represent as many as 125 words of text.

Associated with each element of VAQ there are several other
numbers which, in order to conserve space, we store in vector
form by binary compression but which are more easily con-
ceived and described as a series of matrices. We call these ma-
trices the Matrix of Anticipated Answers (MAA), the Matrix of
Author Responses (MAR), and the Matrix of Branches (MBR).

For each question or element of VAQ the author provides, he is
asked to supply up to 25 key words which he feels will define
the essential meaning of each of the various answers he antici-
pates a student may give. The key words representing each of
these anticipated answers are encoded into a single number via
W13. Within this framework he is given many additional options
such as treating certain phrases as single words and specifying
whether the order or sequence between words and phrases is
important. He is then asked whether there are any equivalent or
synonymous answers he would anticipate. Equivalent answers
are those that the author would respond to in an identical man-
ner. As many as five such equivalent answers are encoded one
level further, corresponding to the output of W14, and these
numbers then become the elements of MAA.

For any given question, the author may provide as many antici-
pated answers as he desires. The number of rows in MAA corre-
sponds to the number of questions or elements of VAQ and the
number of columns corresponds to the largest number of antici-
pated answers he provides for any question. It is precisely be-
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cause he may have 30 anticipated answers for one question and
only 1 for another that we actually represent this in vector, rath-
er than matrix form. Empty boxes in the matrix cost as much as
full ones, but we shall continue with the description as though
this were the way the storage actually occurs. The last column
of MAA may be conceived as containing all zeros, representing
the unanticipated answers to each question. No matter how
many answers an author provides, a student may come up with
one he did not anticipate and thus fail to obtain a match. We call
this the unanticipated answer.

For each anticipated answer he provides as well as for the unan-
ticipated answer, the author is given the option of providing a
comment which will be shown to the student before being given
another question. These are stored as single numbers, the output
of W14, in MAR. The dimensions of MAR are identical to MAA,
and the absence of a response is represented by a zero.

After a student has been asked a question and his answer has
been analyzed, he is then presented with the author’s comment,
if any, and an appropriate branch is chosen. Thus MBR consists
of a matrix of numbers corresponding to the location or index of
the appropriate question in VAQ. MBR has the same dimensions
as MAA and MAR.

Therefore, a question is selected on the basis of a number which
indicates the position of the question in the vector VAQ. This
element of VAQ is decoded and presented to the student as his
question. The student’s answer is then compared against the
elements of the corresponding row of MAA. The particular
match, or lack of a match, specifies the intersection of the row
with a certain column of MAR. This number is then decoded and
presented to the student as the author’s comment (a zero de-
codes as an empty line), and the corresponding box in MBR de-
termines what the student will be asked next.

This brief description illustrates the basic contribution of encod-
ing to the compactness of storage and retrievability of the data.
Each question, response, and anticipated answer (as many as
five equivalent answers) exist as single numbers, each of which
requires the same amount of storage allocation and is easily in-
dexed by its simple position in the vector. If there are 200 ques-
tions, the largest list we have to search contains 200 numbers.

Consider the alternatives. If one question contained 125 words
(as many as 5125 characters), either an equal 5125 bytes would
have to be assigned to every other question or some means of
subdividing the text into questions, other than numeric indexing,
would have to be devised. The reader should see the implica-
tions without the presentation of a detailed numerical analysis.
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There tends to be more redundancy in words in a tutorial than in
a manuscript. Thus, in a typical tutorial we get more than ten
times the reduction in storage requirements by encoding to the
W12 level, compared with the storing of the data in literal form
with only a space separating the words. However, this repre-
sents only a part of the total compression actually achieved. One
must also consider the storage space that would be consumed by
the storing of units of text in blocks, each element of which is
equal to the size of the largest unit, were it not for the represen-
tation of these units as single numbers. By direct comparison of
identical tutorials written in ATS and certain other authoring lan-
guages, we have found that the actual reduction is often in ex-
cess of thirty-fold.

Perhaps the best known attempt to simulate human discourse is  simulation
Joseph Weizenbaum’s original DOCTOR script, ELIZA. This was  of human
written in MAD-Slip, a list-processing language, for the IBM  discourse
7094." We have written a literal translation of his program in

APLN\360. Discussing it here allows us to illustrate the use of

selective superencoding.

The ELIZA program has a list of key words and each key word is
given a relative rank or preference. The program scans the input
and selects the key word with the highest rank. If no key word is
found, it goes, as described by Weizenbaum, to its “memory”’
and may request more discussion regarding something the ‘“‘pa
tient” said earlier. If its “memory” is empty, it will respond with
a relatively noncommittal remark such as PLEASE CONTINUE.

Certain routine functions such as the transformation of personal

pronouns such as YOU =1 or MY = YOUR are performed on the
encoded input before any analysis.

The selected key word leads the program to a list containing one
or more Decomposition Rules (DR). Thus, if the subject used the
word MY, this would be transformed into YOUR. If YOUR was
the highest ranking key word in the input, it would go to the as-
sociated DR. There happen to be two of these associated with
the key word YOUR. In the DOCTOR script some key words have
as many as 13 associated DRs. The way we print these out for
the author is as follows:

YOUR
155156 157 158

40

(0 YOUR 0 *MOTHER MOM DAD FATHER SISTER BROTHER WIEE CHILDREN) 0)

YOUR

159 160 161
41

(0 YOUR 0)
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Associated with every DR there are a number of Reassembly
Rules (RR). In the listing for the author the key word is shown,
followed by the locations or indices of the RR associated with
this DR, the number of this DR in the list, and the DR itself.

DR 40, which heads the list associated with YOUR, may be inter-
preted as follows. Those words following the * are not key
words. Rather they are the members of a set (in this case, family
or relatives). The DR says that one or more of these words must
occur in the input in order to match. If this match occurs, then
the input is parsed into five parts:

Any words that precede YOUR

YOUR

Any words that occur between YOUR and the first word of
the list of relatives that may be present

The family word selected

Any words that may follow this

If a match occurs on this DR, the program goes to the list of
RRs associated with the DR. There are an average of four RRs
for each DR. The ones associated with this DR are shown
below:

RR 155 TELL ME MORE ABOUT YOUR FAMILY.

RR 156 WHO ELSE IN YOUR FAMILY (5) ?

RR 157 YOUR (4)

RR 158 WHAT ELSE COMES TO MIND WHEN YOU THINK OF
YOUR (4) ?

Once the program gets to this point, there is no further question
of matching. It selects whatever RR is at the top of the list. That
RR is then shifted to the bottom of the stack and will not be called
again until all the others have been used.

Assume the actual input were:

BUT MY MEAN BROTHER IS A STUPID BULLY
This first is transformed to:

BUT YOUR MEAN BROTHER IS A STUPID BULLY

It then is parsed into five parts:

(1) BUT

(2) YOUR

(3) MEAN

(4) BROTHER

(5) IS A STUPID BULLY
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If RR 155 were first, the program responds with:

TELL ME MORE ABOUT YOUR FAMILY

If RR 156 were selected, it would respond:
WHO ELSE IN YOUR FAMILY IS A STUPID BULLY?

Thus the fifth element of the parsed input becomes the second
element of the output.

With RR 158 the response is:

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR
BROTHER?

Here the fourth element of the parsed input becomes substi-
tuted as the second element of the output.

It should be pointed out that, failing to match on DR 40, any
input containing MY (= YOUR) cannot fail to match on DR 41
(the word YOUR, preceded and followed by none or any number
or words).

The literal parts of the RRs exist as single numbers — the output
of W13, which can decode into as many as 25 words. Thus in
RR 156, WHO ELSE IN YOUR FAMILY would be one number, and
the ? would be another.

Each of the five elements resulting from the parsing of the input
are then selectively or individually encoded using W13. There-
fore the input, in this case, is represented as five numbers. Using
RR 156, the first element of the RR, the fifth element of the input,
and the third element of the RR are then catenated and decoded
to produce the literal response.

The important point to be made here about selective superen-
coding is that it is analogous to our encoding to the word level.
Between single words there are natural word delimiters —spaces
and punctuation. In this application, there are logical delimi-
ters —specific words —that are the basis for the parsing and sub-
sequent selective superencoding.

In one sense, ATS is a very logical system. A completely de-
bugged computer program that converses with both the author
and.student in English, it has a very formal set of rules it follows
to cope with every contingency. However, it does not apply
even the simplest rules of logic to the meaning of the input. Its
intelligence is only an illusion. Thus, if an author says that two
plus two equals four in one part of his tutorial, and two plus two
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equals three in another part, the author-interrogation program
will not recognize the contradiction.

Furthermore, the student may ask questions of his own and get
into a dialogue resembling a debate, but there is no way for him
to win or lose, except as predetermined by the author. If he dis-
agrees with the author’s conclusions, the student cannot apply
his reasoning powers to prove the author wrong to the satisfac-
tion of the program.

A third problem is that a good teacher may produce a poor tu-
torial because of inexperience or lack of patience with the medi-
um. Therefore, aside from some basic intelligence and informa-
tion written into the program to recognize what the student is
doing, the tutorial is only as good as the information the author
may provide.

Recently we have begun to correct these deficiencies in what
will become a new version of ATS. It is important for the reader
to realize the distinction between writing a special-purpose pro-
gram in which the subject matter is known beforehand, and writ-
ing an author-interrogation program to produce tutorials on an
unlimited range of topics. The fact that this fits into the latter
category means that we cannot rigidly restrict the rules of syn-
tax. The program does not use any form of matrix, but the tech-
niques we want to describe are perhaps better understood by
referring to Figure 2.

Figure 2 depicts a matrix of 13 rows and 8 columns. It is really
two matrices —the upper one being 5 by 8 and the lower being 8
by 8. The headings for the columns are identical in the two ma-
trices. On the left there is literal text, presented as such so you
can read it, but actually stored as single numbers.

The words specifying the five rows of the top matrix are key
words the author supplies with each of his questions. These es-
sentially define the meaning of the question. The words that
specify the eight rows of the lower matrix and the columns of
both matrices are the key words the author defines to extract the
meaning of a student’s response. Since these €ight entries speci-
fy the columns as well as the rows, they are shown both in their
literal and encoded form, the latter only being shown above each
column,

This representation in binary matrix form shows the relationship
between the key words that are used to extract the meaning of a
response and those that define the meaning of a question. Thus,
from the upper matrix the reader can extract the fact that for the
question: WHAT IS THE ACTION OF THE SUPERIOR RECTUS?, the
author expects the student’s answer to contain the key words
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Figure 2 Relationship between key words in questions and responses

(1) (2) (3) (%) (5) (6) (7)

ACTION
+SUPERIOR
RECTUS+

TEST
+SUPERIOR
RECTUS+ (0)

+SUPERIOR
RECTUS+
=INSERT

+SUPERIOR
RECTUS+
=APPROACH

+SUPERIOR
RECTUS+
EQUATOR

=MEDIAL
(1)

=LATERAL
(2)

=INFERIOR
(3)

=SUPERIOR
(%)

*=ROTAT
=INTERNAL*
(s)

*=ROTAT
=EXTERNAL*
(6)

=POSTERIOR
(7)

=ANTERIOR
(8)

=MEDIAL, =SUPERIOR, and *=ROTAT =INTERNAL*. The se-
quence of appearance of these three word groupings does not
matter. From the lower matrix he can determine that none of
these key words is contradictory.

There is a certain amount of special notation that we use in ATS
which must be explained to the reader. The words enclosed
between the plus signs (+), such as +SUPERIOR RECTUSH, are
treated as though they were single words. That is, they must
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occur in juxtaposition and in the prescribed sequence. The letter
O means that the order of the key words that define the antici-
pated answer does matter. The equal sign (=) preceding any key
word means that there are a number of other words or phrases
that may be substituted for it. This representation is stored in a
dictionary. Thus, =ROTAT may stand for ROTATE, ROTATES, or
ROTATOR.

The asterisks (*) enclosing a group of words mean that they
must be considered as a unit in analyzing the key word compo-
nents. This is one of only two additional pieces of information
that the author-interrogation program needs that it does not al-
ready receive in the current version of ATS. The key words are
still stored as they were before. Anticipated answers are selec-
tively encoded through W13; then as many as five equivalent
anticipated answers are further encoded through W14. However,
for the additional analyses the program will perform, it must
know what the individual units of each anticipated answer are.
The program will assume that each key word represents such a
unit unless (1) two or more words are enclosed between plus
signs which indicates that the words must occur in that sequence
with nothing intervening, or (2) they are enclosed between aster-
isks which implies nothing about juxtaposition or sequence, but
that the author considers that grouping to constitute a unit.

The other information the program requires is which elements
making up the total list of key word units are mutually contra-
dictory. The author is interrogated regarding this before his tu-
torial is finished.

The reader is reminded that for every anticipated answer the
author provides, as well as for the unanticipated answer or null
response, he must supply a branch pointing to the question the
student should be asked next. The author may also insert a re-
sponse or comment between the student’s answer and the next
question.

In the present version of ATS if the student were asked WHAT IS
THE ACTION OF THE SUPERIOR RECTUS? and the author had
provided only the single anticipated answer indicated (MEDIAL,
SUPERIOR, INTERNAL ROTATION), then an answer such as IT
MOVES THE EYE MEDIALLY AND SUPERIORLY would not match
and the student would take the branch corresponding to the
unanticipated answer. In the version we are describing he would
be told: MEDIALLY AND SUPERIORLY IS CORRECT, BUT INCOM-
PLETE. On first occurrence of this, he is given another chance. If
it recurs, he is taken to the branch corresponding to an unantici-
pated answer. In other words, if the author fails to anticipate
each possible answer, the student still is treated selectively as
long as the information is present. By using the asterisks the
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program knows that this group of words constitutes a single
element of the anticipated answer, and thus, a single entry in our
hypothetical matrix.

If the student were to answer the same question with: IT MOVES
THE EYE MEDIALLY AND LATERALLY, the program says: MEDI-
ALLY AND LATERALLY ARE CONTRADICTORY. This is the
meaning of the 1’s in the lower matrix in Figure 2.

If the student answers the question, HOW WOULD YOU TEST
THE SUPERIOR RECTUS? with the response, LOOK SUPERIORLY,
THEN LATERALLY, the program responds with YOUR SEQUENCE
IS WRONG. This information is obtained from the (O) associated
with the author’s AQ. No conflict arises here because, if you
recall, we do not actually employ a matrix. The reason for this is
that we already have this information encoded in our various
vectors, and a glance at the matrix shows the large percentage of
zeros or meaningless data.

If the author contradicts himself by asking the same question in
another place in the tutorial and specifying a different anticipat-
ed answer, the program does not accept this entry until he re-
solves the discrepancy. For example, the action of the superior
rectus muscle varies depending on the starting position of the
eye. Thus, in this example, the author would have to go back
and redefine the key words or subject for the original question to
include something such as STRAIGHT AHEAD OR MEDIALLY to
define the starting position, before he could enter his second
version. This, in our opinion, is a significant monitor on the au-
thor’s activity. It is unlikely that an author would not know this,

but it is likely that he might overlook it.

A second place where the author might contradict himself is in
lack of agreement between his response or comment and the an-
ticipated answer he specified. Thus, the author’s responses are
treated by the new version of the author-interrogation program
the same as a student answer, and an author’s comment or re-
sponse to this question that said: YES, THE SUPERIOR RECTUS
MOVES THE EYE MEDIALLY, SUPERIORLY, AND ROTATES IT
EXTERNALLY, is likewise rejected until the author resolves the
discrepancy.

Thus we have made a start towards correcting two of the defi-
ciencies we cited at the outset—being able to provide the stu-
dent with more individualized instruction than the author might
have the patience to provide and being able to prevent some of
the self-contradictions the author might introduce.

We also have the technical facility to give the student the ability
to debate. However, it is impossible for the student to debate on
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the basis of the author’s failure to see the full implications of
something he has said because the program automatically fills in
the missing pieces. Therefore, an argument such as: if A is true,
and B is true, therefore C must be true does not arise because
the program already knows that C is true and would have said
so. However, the situation could arise where the student either
disagrees with the factual information the program has, or has
additional information that supersedes it.

In such a situation we can give the student the ability to act
temporarily as an author and alter the information in the matrix.
There are two restrictions. The changes he makes are deleted
when he exits from the program. Also, the fact that he is making
a change is flagged and any response based on this change is
qualified by: IF YOUR INFORMATION IS CORRECT. The latter
reservation is often made in discussions when one is confronted
with new information that he has not personally verified. How-
ever, we have learned from tests of an experimental variation of
ATS which permitted the student to define new words that most
students have little patience for this sort of exercise.

Concluding remarks

The technique of encoding verbal information as unique num-
bers arose from the authors’ need for the capability to store and
process large quantities of data in a 32K APL workspace. The
algorithms, programmed in APL\360, support several levels or
hierarchies of encoding and decoding where associated with
each level is its alphabet or wordlist. The first level results in the
representation of words as single numbers. Higher levels pro-
vide single numbers which can represent phrases, sentences, or
paragraphs. Because the encoding process has no finite limit, the
implication is that very large quantities of information, such as
the amount contained in books or data files, can be represented
as single numbers. Perhaps one of the greatest implications for
the future is the concept of data compaction where main storage,
peripheral storage, and data transmission are optimized.
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