
Among the system performance predictive techniques available
to the systems engineer are those of theoretical analysis and
simulation.

One method of simulation uses the random number generator to
simulate the probability distribution of events.

Introduced are principles of random number generator simula-
tion together with examples, the results of which are compared
with theoretical results.

by R. N. Rechtschaffen

This paper discusses the application of random number genera-
tors to the simulation of waiting-line (queuing) phenomena in
real-time computer systems. Random number generators pro-
duce numbers that are probabilistically distributed in a manner
analogous to the throwing of a die. Since one can assume such a
randomness in the times of arrivals of users at a waiting line or
queue, it is at least intuitively plausible that the arrival times can
be simulated by a random number generator. The probabilistic
nature of arrival times and service times as well as other time-
based phenomena are treated in this paper.

One could say that if everything in the system is regular, the
problem would be of no interest. When, for example, each job
arrival requires three units of computer time and arrives every
four time units, then, in the absence of an initial load, no job
must wait. In simulation parlance, the four time units between
arrivals of successive jobs are the interarrival times. The transit
time, that is, the elapsed time between arrival and departure, is
the three-unit service time.

A typical system handles a stream of arrivals wherein the aver-
age interarrival time is four time units, and the average service
time may be three time units. This is quite different from the
regular case. The concept of average suggests that there are in-
terarrival times smaller than four, and service times longer than

NO. 3 * 1972 QUEUING SIMULATION

I
three. If the spread in the interarrival times and service times is 1
such that the shortest interarrival time is smaller than the lon-
gest service time, then waiting lines form. The extent of the over- i
lap determines the magnitude of the waiting time. i

The most direct way of treating such phenomena is by way of
mathematical analysis, which uses a body of knowledge known
as queuing theory.' Analytical and simulative methods are com-
plementary and mutually supportive. Analytical methods typi-
cally have the advantages of low setup time, particularly in the
simpler queuing cases. Simulation studies by computer require
programming, but they can generally handle more complex cases
of queuing with greater ease. In designing and analyzing sys-
tems, the engineer often uses both performance predictive meth-
ods so that one result may confirm the other, thereby giving him
added confidence. Setting up a simulation has another advantage
over analysis for the systems engineer in that the setup process
causes him to think through his design.

There are several distinct types of simulation. As we have men-
tioned, this paper reviews several cases of simulation that use
the random number generator as the driving device. Two other
types of simulation are trace-driven and self-driven simulations,
wherein actual application programs drive program simulated
models of systems. In trace-driven models, a recorded trace of
an application program execution drives the simulation model;
in the self-driven case, the execution of an application program
provides inputs for the simulation model. The effect of simulation
is to make system modeling algorithmic as compared with ana-
lytic.

We have discussed the probabilistic nature of arrival times, in-
terarrival times, and service times. The history of an arrival's
interaction with the system can be summarized by the following
quantities: arrival, start, departure, and waiting times. These
quantities may be expressed in terms of each other in the follow-
ing expressions:

Arrival time = prior arrival time + interarrival time
Start time = the greater of either the prior departure time or the

Departure time = start time + service time
Waiting time interval = start time - arrival time

current arrival time

Using randomly generated interarrival and service times as in-
puts, these formulas have been used recursively for two simula-
tions of fifty transactions each to calculate the other times.
(Waiting line data have also been computed.) These simulations
are summarized in Appendices A and B for use later in this pa-
per.

256 RECHTSCHAFFEN IBM SYST J

This paper first discusses the random number generator and
gives some examples that illustrate its use. Methods of system
analysis and simulation are presented. A problem is worked out
in detail to illustrate the manipulation of the random number
generator and the validation of results.

Using a random number generator

We first define a computer implementation of a random number
generator as a computationally efficient algorithm that generates
a sequence of numbers (events) between 0 and 1 so that the
numbers are uniformly distributed and stochastically indepen-
dent. By way of defining such a process, Feller2 says, “The terms
‘stochastic process’ and ‘random process’ are synonyms and
cover practically all the theory of probability from coin tossing
to harmonic analysis. In practice, the term ‘stochastic process’ is
used mostly when a time parameter is introduced.”

The following example particularizes this definition. By subdi-
viding the 0-to-1 interval into six subintervals of equal length the
throwing of a die can be simulated. Thus a 1 has occurred if the
value generated falls in the first subinterval, a 2 if the value gen-
erated falls in the second subinterval, and so forth. For uniform
distribution, one might further demand that each outcome, 1, 2,
. . . , 6, should occur with approximately equal frequency in a
large number of throws. Uniform distribution of the outputs of a
Random Number Generato? (RNG) occurs when equal numbers
of output values (events) similarly fall in each subinterval.

A sequence of events I ,2,3,4,5,6,1,2, . . . possesses the proper-
ty of uniform distribution or equal frequencies, but it does not
represent a satisfactory simulation of a true die being tossed.
The reason is that the successive outcomes are too predictable.
That is, successive RNG outputs are not stochastically inde-
pendent. Reference 3 discusses problems and tests for the sto-
chastic independence of the outputs of a random number genera-
tor.

Because the techniques for generating randomness are computa-
tional, they actually give pseudo-random outputs. The advantage
of generated randomness over pure randomness is that of re-
producibility. If a simulation is found to yield a result worthy of
special attention, the simulation can be recreated and analyzed
in greater depth. It is also possible to exploit the reproducibility
in distinct simulations of similar systems by maintaining a high
degree of parallelism in the use of the random number generator.
This allows the analyst to make matched comparisons.

Certain simulations that involve the random number generator
use its output events directly. For example, in a system having

NO. 3 * 1972 QUEUING SIMULATION

tern created by T' has the same statistical properties as the pat-
tern created by T. The relationship between successive elements
of the two patterns is termed antithetic, and the two generated
patterns are said to be antithetics of each other.

The method of antithetics, wherein a pattern is replaced by its
antithetic, is one way of illustrating the effect of the random
number generator in introducing fluctuations in simulation out-
put. Such a replacement of a pattern by its antithetic in a simula-
tion can have a dramatic effect on the simulation output. This
variation in simulation output is not of itself a bad thing. It may
mirror the variation in system performance that can be expect-
ed. The variation may also indicate that the run size is not suffi-
ciently large to yield a reliable estimate of average system per-
formance.

To place the following example in the proper perspective let us
first consider the analytical or queuing theory (equilibrium) re-
sult, Consider a single server input as simulated by an exponen-
tial arrival pattern so that successive service times are also ex-
ponentially distributed. If the system is allowed to stabilize (i.e.,
reach equilibrium) then the average waiting time Tw can be ex-
pressed in terms of the average service time T s and the server
utilization p, which is the ratio of T s to T A (the latter being the
average interarrival time). For the case in which T s = 80, T =
100, p = 0.8, the analytical value of average waiting time is
computed as follows:

Tw =" T s = 320

Now contrast the analytical result with the results of a random
number generator simulation. Expressions for the simulation
method of determining the arrival pattern and the service pattern
from values found in Appendices A and B are given as follows.
These expressions represent antithetical simulations of the ana-
lytical case just given.

1 - P

Appendix A Appendix B
Interarrival Times "100 In(] -RNG,i-l) -100 In RNGZipl
Service Times -80 In(1 -RNG,,) -80 In RNG,,
i = 1 , 2, 3 , . . ., 50

Using these expressions, the average waiting time for the simu-
lation exhibited in Appendix A is Tw = 100.38, and for Appen-
dix B the result is Tw = 337.44. These values may be compared
with the equilibrium or queuing theory result of Tw = 320 pre-
viously given.

This gross comparison illustrates the dramatic sensitivity of
simulation results to the state of the random number generator.

NO. 3 . 1972 QUEUING SIMULATION

We show later in this paper the basis for this effect of the anti-
thetic method. In the present case, it is clear that the shortness
of the run makes the output statistic (the average waiting time
T,) especially sensitive. This type of analysis, however, is useful
in determining the proper run size to reduce the sensitivity to
acceptable limits.

A summary observation might be appropriate at this point. The
equilibrium result is not to be expected in these simulation cases
because short runs depend on initial conditions. In both antithetic
runs, the server was initially idle. That is not to say that the equi-
librium result does not apply to short periods of time when rela-
tively few users arrive. The important distinction is that the
initial conditions in situations where equilibrium can be applied
are u-sually unknown and are the result of prior usage made of
the server.

evaluating By examining the simulations in detail one gains an insight into
simulation why the results differ. Compare the interarrival and service

results times for users 14 through 23 in Appendix A. These entries
represent a set of long interarrival times in conjunction with
short prior service times, resulting in no waiting line formation.
The opposite effect is observed in Appendix B. Here the same
entries represent short interarrival times and long prior service
times, resulting in a long waiting line formation. Mathematically,
this is to be anticipated if - h (l - RNG) is large, then -In RNG
is small. The opposite is also true.

Even though the simulations use different realizations of the ar-
rival and service patterns, the closeness of the realizations to a
given standard for both simulations is the same. In both cases,
we determine the closeness of the RNG values to a uniform pat-
tern, which is the same as the closeness of 1 -RNG to a uniform
pattern (using an arbitrary symmetric measure of closeness).

Several conclusions can be drawn from the examples in the
Appendices. The variation in average waiting time that occurs in
random number generator simulations is due to the modeling of
the chance mechanism, that is, the generator model itself. This
dependency of the output on the random number generator is
the result of two factors: (1) The value of the numbers gener-
ated; and (2) The sequence in which the numbers are generated.
The second dependency dictates which of the interarrival times
generated is juxtaposed with which prior service time. Thus, the
typical simulation procedure is to perform several simulations
and average the results as a way of eliminating both dependen-
cies. The process of averaging over several simulations of the
sfme system is in many ways similar to a single long simulation.
An equilibrium queuing theory result as a figure of merit corre-
sponding to the performance of the system is thereby justified.

260 RECHTSCHAFFEN IBM SYST J

Several short simulations with averaging are often more practi-
cal than a long simulation because limited computer time may
not allow for an exhaustive performance study of each system,
especially when several systems are being compared.

A second simulation of the system by using antithetic patterns
can be useful, even though an antithetic simulation is not al-
ways as markedly different as in the example given. This is true
because both the values and the sequence of the numbers gener-
ated are different. Thus, in a statistical context, the output from
a given simulation and its antithetic yield negatively correlated
estimates of quantities of interest. In the main (but not exclu-
sively) when one output is above the “true” value, its antithetic
is below that value. Hence, the average of the complementary
antithetic estimates yields an estimate with smaller variation
than the average of separate simulation results.

In systems that resemble each other closely, variations due to
values and sequences of the generated numbers have a consis-
tent effect. The direction of the fluctuation is usually the same;
that is, results of the separate simulations are positively correlat-
ed. Exploiting this effect is known as comparative sirnulation.

Comparison of analysis and simulation

We now compare simulation techniques previously outlined with
problems for which there are also analytic queuing theory solu-
tions. Treatable by both methods is the general class of single
server queuing problems in which the arrival pattern is exponen-
tial. It has been observed that if we combine a large number of
individual arrival streams, each with its own distinctive pattern,
the resultant arrival pattern has exponentially distributed inter-
arrival times. The individual substreams may also have distinc-
tive service requirements, and the resultant sa-vice pattern is the
weighted average of the individual service patterns. (The arrival
pattern is more often observed to be an exponential one than is
the service pattern.)

In analytical terms, the formula that yields the average waiting
time is part of a larger theorem-named after Pollaczek and
Khintchine’ who first studied it-on the pattern of waiting times
as determined by the average interarrival time and the service
pattern. This formula can be applied when the server selects the
next user to be serviced on any basis other than his service re-
quirements. The average waiting time Tw is computed by the
following formula where p is the server utilization, the average
service time is T s , and the variance of service time is ms2:

NO. 3 1972 QUEUING SIMULATION

The three cases to be simulated and compared with each other
and with analytical theory are those in which the service pattern
is exponential, constant, and uniformly distributed over the in-
terval 0 to 140. The average interarrival time is 100, and the
average service time is 70. The results of applying Equation 1 to
the three cases proposed are summarized in Table 1.

For comparison, using random number generator techniques, the
average waiting time Tw was computed by five simulations of five-
thousand users each. The results are given in Table 2. Average
waiting times from queuing theory are displayed at the foot of Ta-
ble 2, and high (H) and low (L) comparisons of simulation with
theory are given with the simulation results. The labeling and,
hence, the direction of fluctuation is the same in each of the five
simulations for the exponentiF1 and uniform service patterns.
The only inconsistent labeling is observed in the second simula-
tion with a constant service pattern.

An application of this type of comparison is in the situation
where structurally similar systems are being simulated. If one
system has a known solution, that system can be used as the
basis of comparison, and the labels can be transposed to the
other systems. Generally, the transposed labels are correct. The
simulation of a system that is structurally similar to an unknown
system (and has a known solution) in conjunction with the sys-
tem that does not have a known solution increases our confi-
dence in the validity of judgments made on the basis of simula-
tion. Further, even when none of the systems has a known solu-
tion, the task of picking the best system is simplified on the basis
of multiple matched comparisons.

For the simulations in Table 2, consider the ratios of constant
and uniform average waiting times to those for the exponential
cases. The corresponding analytical theory yields the result that
the average waiting time in the exponential case is twice the
average waiting time in the constant case. In a given simulation
run, however, both the exponential and the constant cases may
differ from the theoretical values. A determination of whether
simulation output ratios approach two may indicate the validity
of both the simulations and the theory. The ratio is a natural
means of comparison in queuing theory because all results are
scale dependent if they measure time. If one doubles interarrival
times and service times, then all the waiting times and the aver-
age waiting time double. By computing ratios we eliminate scale
dependence. The ratios of successive simulations in Table 2 are
given in Table 3.

On a percentage basis, the comparison of the simulations with
theory is better for the uniform case than for the constant case.
This is due to interaction between arrival and service patterns

Table 1 Theoretical computation of three service patterns

Ratio with the
Service pattern p (T ~ I T ~ Tu. exponential case

Exponential 0.7 1 163.333 1 : l
Constant 0.7 0 8 1.666 2: 1
Uniform[O,l40] 0.7 0.333 108.888 1.5: 1

Table 2 Random number generator simulations of three service patterns compared
with queuing theory

Simulation Exponential Constant Uniform

1 156.488 L 77.360 L 107.020 L
2 156.588 L 87.726 H 107.902 L
3 136.805 L 76.677 L 97.751 L
4 175.403 H 86.424 H 117.156 H
5 168.443 H 85.828 H 11 1.384 H

Queuing theory 163.333 81.666 108.888

Table 3 Average waiting time ratios for simulations compared to queuing theory

Sirnulation Exponential1 constant Exponentialluniform

2.022
1.785
1.784
2.030
1.963

Queuing theory 2

1.462
1.45 1
1.400
1.497
1.512

1.5

previously noted. In the constant service time case, the results
are high or low depending on clustering or nonclustering in the
arrival patterns. If the service pattern also allows for variation, a
reenforcement or a cancellation may occur within the simulation
run. Thus the exponential and uniform patterns react as the the-
ory predicts with respect to each other. This also explains the
more consistent high-low labeling in these two cases than in the
constant service case.

The results of antithetic simulations of each of these three antithetic
queuing problems are now contrasted with the corresponding simulations
straight simulations. One should not consider the antithetic rela-
tionship as an asymmetric one; the terms “straight” and “anti-

NO 3 . 1972 QUEUING SIMULATION 263

a better estimator than two separate runs. Of more importance,
however, is the fact that the antithetic tends to expose runs that
are sensitive to the random number generator output. That is, if
a large discrepancy exists between a true value and the result of
a simulation, the antithetic is more likely to expose this fact by
its being markedly different.

A case study of I/O buffering

Consider the problem of analyzing a teleprocessing system to the
determine the requirements for input and output buffer sizes. problem
(The input buffer is designated as COREI and the output as COR-
EO.) The problem system services 50 terminals that connect to
the Central Processing Unit (CPU) by 14.8 cps lines. Three types
of messages are transmitted at a joint rate of three messages per
terminal per minute, and have the following characteristics:

Type 1 Type 2 Type 3
0.1 0.8 0.1

~~~ 

Probability 
Input message length 40 80 20 
Input processing time  (ms) 5 1 10 
Output message length 20 0 100 
Additional processing time (ms) 0 0 5-15 

In  their logical flow through the  system, messages wait at  ter- 
minals until they can be  accommodated in COREI. Messages 
hold the  terminal, line, and their assigned storage  area in COREI 
until transmitted.  Since  several messages may require the chan- 
nel at  the  same  time,  a  queue may develop, and thereby  increase 
the  amount of time a given message holds COREI. A  second 
channel  operation  takes place by which the message is written 
onto  an auxiliary storage  device. At this point,  that message 
space in COREI is free  for  other message inputs. 

Each of the  three message types  requires  a different processing 
routine as follows: 

Type 1 retrieves  a message from auxiliary storage  and  sched- 
ules its output (1 ms) when storage  space is available in the 
output buffer COREO, and goes to  the wrapup  routine. 
Type 2 schedules its output ( I  ms), waits for  space in COR- 
EO, and goes to  the  output routine. 
Type 3 performs the required processing,  schedules its out- 
put, waits for  space in COREO, and goes to  the wrapup rou- 
tine. 

The wrapup  routine  releases  the terminal and line back to  the 
user  and  frees  the  space in COREO after the message has  been 
transmitted.  Message  transmission  into COREI and out of CORE0 

NO. 3 . 1972 OUEUING SIMULATION 265 





These  results give a clue to buffer size  sensitivity. The changing 
of the  output  and input buffer sizes has altered  the  use of the 
random  number  generator, so that  the number of arrivals at ter- 
minal 1 is different under  each buffer-size condition. The types 
of messages handled in the individual runs are different as well. 
With the information available at  this  point, it  is  difficult to find a 
systematic  pattern relating to buffer sizes and  their possible in- 
teraction with the  random  number  generator. 

The  cause of this interaction  goes back to  the implementation of 
the  problem,which  results in a random splitting of Type 3 mes- 
sages  into two groups with differing processing times and output 
message lengths. During  the  simulation,  the arrival times to this 
section of the model depend on COREI and COREO. Then when 
the  random  number  generator is used to effect the splitting, its 
usage affects the  subsequent  random numbers required by the 
remainder of the simulation. 

Since  we recognize that  the  interaction of the simulation events 
with the usage of the random number  generator may bias the 
comparison of buffer sizes,  we now illustrate the reimplementa- 
tion of the problem with the planned usage of the random num- 
ber  generator. Basically, Type 3 messages are now broken up 
into Type 3 and Type 4 messages at  the terminals  but with the 
same probabilities as previously given. Thus  the new problem 
conditions are given as follows: 

Type 1 Type 2 Type 3 Type 4 
Probability 0.1 0.8 0.075 0.025 
Input message length 40 80 20  20 
Input  processing  time  (ms) 5 1 10 10 
Output message length 20 0 100 500 

1 Additional processing time (ms) 0 0 5- 15 50- 100 

' Under  the new formulation of the problem, we compute  the fol- 
lowing simulated average  transit times in milliseconds for  the 
buffer storage sizes: 

CORE1 = 3000 CORE1 = 1420 
Simulation COREO = 3000 COREO = 2640 

1 9118 902 1 
2 10785 10857 
3 9044 9093 
4 9675 9673 
5 10269 10475 

The previously noted  interaction  has  thus  been  removed as illus- 
trated by the following activity of terminal 1 in which times are 
given in milliseconds: 



COREI = 3000 
COREO = 3000 

Number of Number of 
Simulation arrivals T, arrivals 

1 33 1783 6477 33 
2 25 1228 7697 35 
3 26 449 6131 26 
4 29 756 6338 29 
5 30 1508 6337 30 

COREI = 1420 
COREO = 2640 

T, & 
1940 6352 
1295 7832 
478 6087 
853 6339 

1662 6006 

From  these  results,  we  see  the tradeoff that  occurs when the 
buffer size is decreased. With the  decrease in COREI,  fewer mes- 
sages are contending in the channel, and the resulting waiting 
times are reduced. Similarly, a  shorter  queue  develops  at  the 
point where COREO is involved. These  factors  reduce  the  service 
time Ts  at  the  expense of increasing the waiting time Tw. There 
is an overall lengthening of the  transit  time Tw + Ts .  

Concluding remarks 

Partly by tutorial and partly by example,  the use of random 
number  generator  techniques  for  system simulation has  been in- 
troduced. To  gain confidence and to validate  results of simula- 
tions,  comparisons  have  been made with analytical  system  per- 
formance  evaluations. 

A test of reasonableness  and a variation of the problem as a re- 
sult of the  test  also  illustrate  some principles underlying the ran- 
dom  number  generator simulation method.  Even  where  the re- 
sults may be inconclusive, the  exercise of problem formulation 
is useful in understanding the system  and in determining  the 
next  predictive  step to take.  More  elaborate  trace-driven or self- 
driven  system simulation is justified when the engineer knows 
that  analytical  and  random  number  methods  do  not  produce val- 
id results. As a final caution,  one should be aware of the basical- 
ly cyclic logic that underlies the validations and  comparisons. 
The quantities that one  measures  against are produced by the 
indirect  methods just  as  the quantities being measured. There is 
no independent  standard. Thus  one should always apply the  test 
of reasonableness. For example,  the first results of the  example 
system simulation might lead the unwary  engineer to believe 
that smaller buffers yield higher throughput.  This  observation 
being superficially unreasonable, suggests the reimplementation 
of the  problem. If the initial conclusion were generally true, it 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1 3  
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

49 
50 

4a 

14 
61 
24 

113 
27 2 
73 
3 

15 
0 

54 
88 

187 
9 

53 
241 
30 

1 3 3  
100 
47 1 
28 

128 
105 
99 
31 

145 
27 
44 
66 

239 
235 
72 

431 
30 

295 
69 
32 
75 

282 
143 
175 

1 
202 
133 
752 
26 
43 
89 
53 
31 
17 



Appendix B 

1 202 99 202 0 202 0 301 0 
2 77 149 279 0 301 0 450 22 

4 38 50 468 0 468 0 518 0 
5 6 3 474 0 518 0 521 44 

3 151  17  430 0 450 0 467  20 

6 65 47 539 0 539 0 586 0 
7 336 37 875 0 875 0 912 0 

9 486 26 1424 0 1424 0 1450 0 
8 63  146  938 o g a e  7 1084 il 

10 87 191 1511 0 1511 0 1702 0 
11 52 464 1563 0 1702 1 2166 139 
12 16 27 1579 1 2166 7 2193 587 
13 238 114 1817 1 2193 6 2307 376 
14 87 91 1904 2 2307 7 2398 403 
15 9 34 1913 3 2398 8 2432 485 
16 133 30 2046 4 2432 7 2462 386 
17 30 75 2076 5 2462 6 2537 386 
18 45 153 2121 6 2537 7 2690 416 
19 0 13 2121 7 2690 7 2703 569 
20 139 3 2260 6 2703 6 2706 443 
21 32 152 2292 7 2706 5 2858 414 
22 42 71 2334 7 2858 6 2929 524 
23 45 45 2379 8 2929 7 2974 550 
24 129 57 2508 6 2974 8 3031 466 
25 26 3 2534 7 3031 7 3034 497 
26 143 128 2677 7 3034 6 3162 357 
27 1n2 37 2779 5 3162 8 3199 383 
28 72 34 2851 6 3199 7 3233 348 
29 9 17 2860 6 3233 6 3250 373 
30 10 59 2870 7 3250 5 3309 380 
31 66 127 2936 7 3309 5 3436 373 
32 1 8 2937 8 3436 8 3444 499 
33 132 156 3069 6 3444 7 3600 375 
34 5 71 3074 7 3600 6 3671 526 
35 69 9 3143 8 3671 5 3680 528 

37 63 80 3334 5 3825 5 3905 491 

39 27 62 3367 7 4065 6 4127 698 

41 414 5 3799 4 4190 6 4195 391 
42 14 122 3813 5 4195 5 4317 382 
43 30 7 3843 5 4317 5 4324 474 
44 0 11 3843 6 4324 4 4335 481 

36 128 145 3271 5 3680 4 3825 409 

30 6 160 3340 6 3905 6 4065 565 

40 18 63 3385 8 4127 6 4190 742 

4S 145 54 3988 6 4335 3 4389 347 
46 104 16 4092 6 4389 3 4405 297 
b 7  52 61 4144 6 4405 2 4466 261 
48 80 36 4232 5 4466 2 4502 234 
49 131 15 4363 3 4502 1 4517 139 
5 0  62 28 4425 2 4517 0 4545 92 

270 RECHTSCHAFFEN IBM SYST J 



QUEUING  SIMULATION 271 


