Among the system performance predictive techniques available
to the systems engineer are those of theoretical analysis and
simulation.

One method of simulation uses the random number generator to
simulate the probability distribution of events.

Introduced are principles of random number generator simula-
tion together with examples, the results of which are compared
with theoretical results.

Queuing simulation using a random number generator
by R. N. Rechtschaffen

This paper discusses the application of random number genera-
tors to the simulation of waiting-line (queuing) phenomena in
real-time computer systems. Random number generators pro-
duce numbers that are probabilistically distributed in a manner
analogous to the throwing of a die. Since one can assume such a
randomness in the times of arrivals of users at a waiting line or
queue, it is at least intuitively plausible that the arrival times can
be simulated by a random number generator. The probabilistic
nature of arrival times and service times as well as other time-
based phenomena are treated in this paper.

One could say that if everything in the system is regular, the
problem would be of no interest. When, for example, each job
arrival requires three units of computer time and arrives every
four time units, then, in the absence of an initial load, no job
must wait. In simulation parlance, the four time units between
arrivals of successive jobs are the interarrival times. The transit
time, that is, the elapsed time between arrival and departure, is
the three-unit service time.

A typical system handles a stream of arrivals wherein the aver-
age interarrival time is four time units, and the average service
time may be three time units. This is quite different from the
regular case. The concept of average suggests that there are in-
terarrival times smaller than four, and service times longer than

NO. 3 - 1972 QUEUING SIMULATION

three. If the spread in the interarrival times and service times is
such that the shortest interarrival time is smaller than the lon-
gest service time, then waiting lines form. The extent of the over-
lap determines the magnitude of the waiting time.

The most direct way of treating such phenomena is by way of
mathematical analysis, which uses a body of knowledge known
as queuing theory.! Analytical and simulative methods are com-
plementary and mutually supportive. Analytical methods typi-
cally have the advantages of low setup time, particularly in the
simpler queuing cases. Simulation studies by computer require
programming, but they can generally handle more complex cases
of queuing with greater ease. In designing and analyzing sys-
tems, the engineer often uses both performance predictive meth-
ods so that one result may confirm the other, thereby giving him
added confidence. Setting up a simulation has another advantage
over analysis for the systems engineer in that the setup process
causes him to think through his design.

There are several distinct types of simulation. As we have men-
tioned, this paper reviews several cases of simulation that use
the random number generator as the driving device. Two other
types of simulation are trace-driven and self-driven simulations,
wherein actual application programs drive program simulated
models of systems. In trace-driven models, a recorded trace of
an application program execution drives the simulation model;
in the self-driven case, the execution of an application program
provides inputs for the simulation model. The effect of simulation
is to make system modeling algorithmic as compared with ana-
lytic.

We have discussed the probabilistic nature of arrival times, in-
terarrival times, and service times. The history of an arrival’s
interaction with the system can be summarized by the following
quantities: arrival, start, departure, and waiting times. These
quantities may be expressed in terms of each other in the follow-
ing expressions:

Arrival time = prior arrival time + interarrival time

Start time = the greater of either the prior departure time or the
current arrival time

Departure time = start time + service time

Waiting time interval = start time — arrival time

Using randomly generated interarrival and service times as in-
puts, these formulas have been used recursively for two simula-
tions of fifty transactions each to calculate the other times.
(Waiting line data have also been computed.) These simulations
are summarized in Appendices A and B for use later in this pa-
per.

RECHTSCHAFFEN IBM SYST J

This paper first discusses the random number generator and
gives some examples that illustrate its use. Methods of system
analysis and simulation are presented. A problem is worked out
in detail to illustrate the manipulation of the random number
generator and the validation of results.

Using a random number generator

We first define a computer implementation of a random number
generator as a computationally efficient algorithm that generates
a sequence of numbers (events) between 0 and 1 so that the
numbers are uniformly distributed and stochastically indepen-
dent. By way of defining such a process, Feller? says, “The terms
‘stochastic process’ and ‘random process’ are synonyms and
cover practically all the theory of probability from coin tossing
to harmonic analysis. In practice, the term ‘stochastic process’ is
used mostly when a time parameter is introduced.”

The following example particularizes this definition. By subdi-
viding the 0-to-1 interval into six subintervals of equal length the
throwing of a die can be simulated. Thus a 1 has occurred if the
value generated falls in the first subinterval, a 2 if the value gen-
erated falls in the second subinterval, and so forth. For uniform
distribution, one might further demand that each outcome, 1, 2,
- - -, 6, should occur with approximately equal frequency in a
large number of throws. Uniform distribution of the outputs of a
Random Number Generator? (RNG) occurs when equal numbers
of output values (events) similarly fall in each subinterval.

A sequence of events 1,2,3,4,5,6,1,2, - - - possesses the proper-

ty of uniform distribution or equal frequencies, but it does not
represent a satisfactory simulation of a true die being tossed.
The reason is that the successive outcomes are too predictable.
That is, successive RNG outputs are not stochastically inde-
pendent. Reference 3 discusses problems and tests for the sto-
chastic independence of the outputs of a random number genera-
tor. '

Because the techniques for generating randomness are computa-
tional, they actually give pseudo-random outputs. The advantage
of generated randomness over pure randomness is that of re-
producibility. If a simulation is found to yield a result worthy of
special attention, the simulation can be recreated and analyzed
in greater depth. It is also possible to exploit the reproducibility
in distinct simulations of similar systems by maintaining a high
degree of parallelism in the use of the random number generator.
This allows the analyst to make matched comparisons.

Certain simulations that involve the random number generator
use its output events directly. For example, in a system having

NO. 3 - 1972 QUEUING SIMULATION

transformed
use

three types of traffic that follow distinct logical paths, the output
of random number generator (RNG) can be used to simulate the
decomposition of the traffic into the three categories. Thus, if
the fraction of Type 1 traffic is p,, Type 2 is p,, and Type 3 is p,,
one way of distributing the traffic is as follows:

Traffic type Value of RNG
1 0 = RNG = p,
2 P,=RNG =p +p,
3 Otherwise

Since p, + p, + p, equals unity, and assuming RNG values are
uniformly distributed from 0 to 1, the proper fraction is associ-
ated with each type and is preserved in the occurrence of each
type within the traffic stream. Similarly, if seventy-five percent
of a group of users require a certain mode of service and the
remainder do not, this random splitting can also be accom-
plished by using the random number generator output directly.

More typically, numbers generated by the random number
generator are transformed to create specified interarrival-time
and service-time patterns. A natural occurrence of a random
service time within a computer arises, for example, in the timing
of direct access storage devices. The latency time or rotational
delay can vary from zero to a full-rotation time. If the rotation
time of a device is 24 ms, then a simple way to transform the
RNG values into numbers in the proper range is to multiply RNG
by 24.

A simple example of a generic technique that allows RNG values
to be transformed to any specified pattern is as follows. If we
denote successive RNG values by RNG,, and the transformation
associated with a specified pattern by T, then the values of
X, in the following expression have the specified pattern: X ;
= T(RNG))

In the rotational delay example, T represents multiplication by a
constant equal to 24. As another example of such a transforma-
tion, an exponential pattern with a mean (average) of ¢ is given
by the following expression where 1n is the base of the natural
logarithms:

T(a)=—cIn(l - a)

Implementations of such transformations depend on the simula-
tion system used. For GPss v, the approach to the transforma-
tion is based on associating specific (discrete) values or a linear
(continuous) interpolation to various subranges of RNG values.
As an extension of this example, consider two successive trans-
formations T'(RNG) = T(1 — RNG). Since both RNG and
1 — RNG are equally good random number generators, the pat-

RECHTSCHAFFEN IBM SYST J

tern created by 7’ has the same statistical properties as the pat-
tern created by 7. The relationship between successive elements
of the two patterns is termed antithetic, and the two generated
patterns are said to be antithetics of each other.

The method of antithetics, wherein a pattern is replaced by its
antithetic, is one way of illustrating the effect of the random
number generator in introducing fluctuations in simulation out-
put. Such a replacement of a pattern by its antithetic in a simula-
tion can have a dramatic effect on the simulation output. This
variation in simulation output is not of itself a bad thing. It may
mirror the variation in system performance that can be expect-
ed. The variation may also indicate that the run size is not suffi-
ciently large to yield a reliable estimate of average system per-
formance.- ‘

To place the following example in the proper perspective let us
first consider the analytical or queuing theory (equilibrium) re-
sult, Consider a single server input as simulated by an exponen-
tial arrival pattern so that successive service times are also ex-
ponentially distributed. If the system is allowed to stabilize (i.e.,
reach equilibrium) then the average waiting time T can be ex-
pressed in terms of the average service time T and the server
utilization p, which is the ratio of T to T, (the latter being the
average interarrival time). For the case in which T3 =80, T =
100, p = 0.8, the analytical value of average waiting time is
computed as follows:

TW=1—f—; T =320

Now contrast the analytical result with the results of a random
number generator simulation. Expressions for the simulation
method of determining the arrival pattern and the service pattern
from values found in Appendices A and B are given as follows.
These expressions represent antithetical simulations of the ana-
lytical case just given.

Appendix A Appendix B
Interarrival Times —100 In(] —-RNG,,_,) —100 In RNG,, |
Service Times —80 In(1 -RNG,,) —80 In RNG,,
i=1,2,3,...,50

Using these expressions, the average waiting time for the simu-
lation exhibited in Appendix A is Ty = 100.38, and for Appen-
dix B the result is Ty = 337.44. These values may be compared
with the equilibrium or queuing theory result of Ty = 320 pre-
viously given.

This gross comparison illustrates the dramatic sensitivity of
simulation results to the state of the random number generator.

No. 3 - 1972 QUEUING SIMULATION

method of
antithetics

evaluating
simulation
results

We show later in this paper the basis for this effect of the anti-
thetic method. In the present case, it is clear that the shortness
of the run makes the output statistic (the average waiting time
T,) especially sensitive. This type of analysis, however, is useful
in determining the proper run size to reduce the sensitivity to
acceptable limits.

A summary observation might be appropriate at this point. The
equilibrium result is not to be expected in these simulation cases
because short runs depend on initial conditions. In both antithetic
runs, the server was initially idle. That is not to say that the equi-
librium result does not apply to short periods of time when rela-
tively few users arrive. The important distinction is that the
initial conditions in situations where equilibrium can be applied
are usually unknown and are the result of prior usage made of
the server.

By examining the simulations in detail one gains an insight into
why the results differ. Compare the interarrival and service
times for users 14 through 23 in Appendix A. These entries
represent a set of long interarrival times in conjunction with
short prior service times, resulting in no waiting line formation.
The opposite effect is observed in Appendix B. Here the same
entries represent short interarrival times and long prior service
times, resulting in a long waiting line formation. Mathematically,
this is to be anticipated if —In(1 — RNG) is large, then —In RNG
is small. The opposite is also true. "

Even though the simulations use different realizations of the ar-
rival and service patterns, the closeness of the realizations to a
given standard for both simulations is the same. In both cases,
we determine the closeness of the RNG values to a uniform pat-
tern, which is the same as the closeness of 1| —RNG to a uniform
pattern (using an arbitrary symmetric measure of closeness).

Several conclusions can be drawn from the examples in the
Appendices. The variation in average waiting time that occurs in
random number generator simulations is due to the modeling of
the chance mechanism, that is, the generator model itself. This
dependency of the output on the random number generator is
the result of two factors: (1) The value of the numbers gener-
ated; and (2) The sequence in which the numbers are generated.
The second dependency dictates which of the interarrival times
generated is juxtaposed with which prior service time. Thus, the
typical simulation procedure is to perform several simulations
and average the results as a way of eliminating both dependen-
cies. The process of averaging over several simulations of the
same system is in many ways similar to a single long simulation.
An equilibrium queuing theory result as a figure of merit corre-
sponding to the performance of the system is thereby justified.

RECHTSCHAFFEN IBM SYST J

Several short simulations with averaging are often more practi-
cal than a long simulation because limited computer time may
not allow for an exhaustive performance study of each system,
especially when several systems are being compared.

A second simulation of the system by using antithetic patterns
can be useful, even though an antithetic simulation is not al-
ways as markedly different as in the example given. This is true
because both the values and the sequence of the numbers gener-
ated are different. Thus, in a statistical context, the output from
a given simulation and its antithetic yield negatively correlated
estimates of quantities of interest. In the main (but not exclu-
sively) when one output is above the “true” value, its antithetic
is below that value. Hence, the average of the complementary
antithetic estimates yields an estimate with smaller variation
than the average of separate simulation results.

In systems that resemble each other closely, variations due to
values and sequences of the generated numbers have a consis-
tent effect. The direction of the fluctuation is usually the same;
that is, results of the separate simulations are positively correlat-
ed. Exploiting this effect is known as comparative simulation.

Comparison of analysis and simulation

We now compare simulation techniques previously outlined with
problems for which there are also analytic queuing theory solu-
tions. Treatable by both methods is the general class of single
server queuing problems in which the arrival pattern is exponen-
tial. It has been observed that if we combine a large number of
individual arrival streams, each with its own distinctive pattern,
the resultant arrival pattern has exponentially distributed inter-
arrival times. The individual substreams may also have distinc-
tive service requirements, and the resultant service pattern is the
weighted average of the individual service patterns. (The arrival
pattern is more often observed to be an exponential one than is
the service pattern.)

In analytical terms, the formula that yields the average waiting
time is part of a larger theorem-—-named after Pollaczek and
Khintchine' who first studied it—on the pattern of waiting times
as determined by the average interarrival time and the service
pattern. This formula can be applied when the server selects the
next user to be serviced on any basis other than his service re-
quirements. The average waiting time Ty is computed by the
following formula where p is the server utilization, the average
service time is T, and the variance of service time is o :

pTs [0'52
=5 |1+ = 1
Y201 = p) Tsl] 2

« 1972 QUEUING SIMULATION

The three cases to be simulated and compared with each other
and with analytical theory are those in which the service pattern
is exponential, constant, and uniformly distributed over the in-
terval 0 to 140. The average interarrival time is 100, and the
average service time is 70. The results of applying Equation 1 to
the three cases proposed are summarized in Table 1.

For comparison, using random number generator techniques, the
average waiting time T was computed by five simulations of five-
thousand users each. The results are given in Table 2. Average
waiting times from queuing theory are displayed at the foot of Ta-
ble 2, and high (H) and low (1) comparisons of simulation with
theory are given with the simulation results. The labeling and,
hence, the direction of fluctuation is the same in each of the five
simulations for the exponential and uniform service patterns.
The only inconsistent labeling is observed in the second simula-
tion with a constant service pattern.

An application of this type of comparison is in the situation
where structurally similar systems are being simulated. If one
system has a known solution, that system can be used as the
basis of comparison, and the labels can be transposed to the
other systems. Generally, the transposed labels are correct. The
simulation of a system that is structurally similar to an unknown
system (and has a known solution) in conjunction with the sys-
tem that does not have a known solution increases our confi-
dence in the validity of judgments made on the basis of simula-
tion. Further, even when none of the systems has a known solu-
tion, the task of picking the best system is simplified on the basis
of multiple matched comparisons.

For the simulations in Table 2, consider the ratios of constant
and uniform average waiting times to those for the exponential
cases. The corresponding analytical theory yields the result that
the average waiting time in the exponential case is twice the
average waiting time in the constant case. In a given simulation
run, however, both the exponential and the constant cases may
differ from the theoretical values. A determination of whether
simulation output ratios approach two may indicate the validity
of both the simulations and the theory. The ratio is a natural
means of comparison in queuing theory because all results are
scale dependent if they measure time. If one doubles interarrival
times and service times, then all the waiting times and the aver-
age waiting time double. By computing ratios we eliminate scale
dependence. The ratios of successive simulations in Table 2 are
given in Table 3.

On a percentage basis, the comparison of the simulations with
theory is better for the uniform case than for the constant case.

This is due to interaction between arrival and service patterns

RECHTSCHAFFEN IBM SYST J

Table 1 Theoretical computation of three service patterns

Ratio with the
Service pattern p oslTs Tw exponential case

Exponential 0.7 1 163.333
Constant 07 0 81.666
Uniform[0,140] 0.7 0.333 108.888

Table 2 Random number generator simulations of three service patterns compared
with queuing theory

Simulation Exponential Constant Uniform

156488 L 77360 L 107.020L
156.588 L 87.726 H 107.902 L
136805 L 76.677L 97.751 L
175403 H 86424 H 117.156 H
168.443 H 85828 H 111.384 H

Queuing theory 163.333 81.666 108.888

Table 3 Average waiting time ratios for simulations compared to queuing theory

Simulation Exponential | constant Exponential [uniform

2.022 1.462
1.785 1.451
1.784 1.400
2.030 1.497
1.963 1.512

Queuing theory 2 1.5

previously noted. In the constant service time case, the results
are high or low depending on clustering or nonclustering in the
arrival patterns. If the service pattern also allows for variation, a
reenforcement or a cancellation may occur within the simulation
run. Thus the exponential and uniform patterns react as the the-
ory predicts with respect to each other. This also explains the
more consistent high-low labeling in these two cases than in the
constant service case.

The results of antithetic simulations of each of these three
queuing problems are now contrasted with the corresponding
straight simulations. One should not consider the antithetic rela-
tionship as an asymmetric one; the terms “‘straight” and ‘‘anti-

NOo 3 - 1972 QUEUING SIMULATION

antithetic
simulations

simulation
validation

Table 4 Straight and antithetic simulations

Simulation Straight Antithetic Average

156.488 L 191.990 H 174.239
Exponential 156.588 L 140.817 L 148.699
service 136.805 L 170.036 H 153.420
175.403 H 155.268 L 165.335
168.443 H 144.800 L 156.621

77.360 L 87.485 H 82.422
Constant 87.726 H 74977 L 81.350
service 76.677 L 80.543 L 78.610
86.424 H 87.146 H 86.785
85.828 H 80.774 L 83.300

107.020 L 121.951 H 114.485
Uniform 107.900 L 95.535 L 101.718
service 97.751 L 111.825 H 104.788
117.156 H 112.405 H 114.780
111.384 H 102.043 L 106.713

thetic” are used merely for ease of reference. Either simulation
may be performed first on the basis of a different initial setting of
the random number generator. Comparative simulation results
are summarized in Table 4.

According to Table 4, the majority of the simulation run results
bracket those of the queuing theory results. The variations from
queuing theory for the average of the straight and antithetic runs
are smaller than the results themselves. By the usual measure of
variation, the sample variance is difficult to see. Consider, how-
ever, the maximum and the minimum in the columns to see the
reduction in variances resulting from antithetical averaging.

Even in the most thoroughly tested model, the formulator may
question its dependency on randomness. It is of central impor-
tance that the systems engineer have confidence in the results of
a simulation study or else it becomes an empty exercise, and the
comparative antithetic approaches assist in establishing this
confidence. Further, neither running a simulation for a long time
nor repeating the simulation validates the results. Repeating
with a change of starting point of the random number generator
(random number seed) may be a useful validation technique.
This must be implemented carefully to avoid repeating a major
part of the old run. Knowing enough about the random number
generator and counting the uses made of it can, in many cases,
avoid the problem of repetition.

A more powerful suggestion is that of using the antithetic ap-
proach. The antithetic in combination with the straight run gives

RECHTSCHAFFEN IBM SYST J

a better estimator than two separate runs. Of more importance,
however, is the fact that the antithetic tends to expose runs that
are sensitive to the random number generator output. That is, if
a large discrepancy exists between a true value and the result of
a simulation, the antithetic is more likely to expose this fact by
its being markedly different.

A case study of 1/0 buffering

Consider the problem of analyzing a teleprocessing system to
determine the requirements for input and output buffer sizes.
(The input buffer is designated as COREI and the output as COR-
EO0.) The problem system services 50 terminals that connect to
the Central Processing Unit (CPU) by 14.8 cps lines. Three types
of messages are transmitted at a joint rate of three messages per
terminal per minute, and have the following characteristics:

Type 1 Type2 Type3
Probability 0.1 0.8 0.1
Input message length 40 80 20
Input processing time (ms) 5 1 10
Output message length 20 0 100
Additional processing time (ms) 0 0 5-15

In their logical flow through the system, messages wait at ter-
minals until they can be accommodated in COREIL. Messages
hold the terminal, line, and their assigned storage area in COREI
until transmitted. Since several messages may require the chan-
nel at the same time, a queue may develop, and thereby increase
the amount of time a given message holds COREI. A second
channel operation takes place by which the message is written
onto an auxiliary storage device. At this point, that message
space in COREl is free for other message inputs.

Each of the three message types requires a different processing
routine as follows:

Type 1 retrieves a message from auxiliary storage and sched-
ules its output (1 ms) when storage space is available in the
output buffer COREOQ, and goes to the wrapup routine.

Type 2 schedules its output (I ms), waits for space in COR-
EO, and goes to the output routine.

Type 3 performs the required processing, schedules its out-
put, waits for space in COREO, and goes to the wrapup rou-
tine.

The wrapup routine releases the terminal and line back to the
user and frees the space in COREO after the message has been
transmitted. Message transmission into COREI and out of COREO

No. 3 - 1972 QUEUING SIMULATION

the
problem

the
simulation

Simulation

requires 68 times the message length in milliseconds on the basis
of a 14.8 cps line.

Before running the simulation, the systems engineer implements
the problem by forming two message groups in a 1:3 ratio. The
smaller groups requires 50 -150 ms processing time and has an
output of 500 characters, and the larger group has 5—15 ms pro-
cessing time and 100 characters of output as previously given.

One way of simulating such a system is to make the capacity of
the buffers large, and, thereby, determine the number of posi-
tions actually required. Another approach is to mathematically
approximate BLOCKIN-BLOCKOUT buffering, which is the
scheme discussed in this paper.

The following analysis highlights the fact that even though most
messages require no output, the long outputs generated by the
infrequent Type 3 messages dictate that COREO should be larger
than coRrel (The technique is known as the sampling of transit-
time phenomena.) Our estimate for this problem is that a COREI
of 1420 characters and a COREO of 2640 characters is sufficient.
The simulation has been run using those buffer sizes as well as
using buffer COREI of 3000 and COREO of 3000 characters re-
spectively. Five simulations of 10 minutes of system operation
each have been computed for each of these two choices of COR-
El and COREO. The average simulated transit time is given in
milliseconds as follows:

COREI = 3000 COREI = 1420
Simulation COREO = 3000 COREO = 2640
10103 9928
9633 10465
10679 10442
11315 10118
10640 10275

This is a rather surprising result in that the smaller buffer stor-
age yields reduced average transit times in four of the five simu-
lations. To examine the results in more detall the simulated ac-
tivity at terminal 1 yields the following results in milliseconds:

COREI = 3000 COREI = 1420
COREO = 3000 COREO = 2640
Number of Number of
arrivals Tw Ts arrivals Tw Ts

266

26 415 8020 29 1850 8319
29 2226 6962 33 2286 6277
26 1125 7479 30 1977 7304
34 3242 7277 39 3035 6646
34 4279 8131 34 2633 6561

RECHTSCHAFFEN IBM SYST J

These results give a clue to buffer size sensitivity. The changing
of the output and input buffer sizes has altered the use of the
random number generator, so that the number of arrivals at ter-
minal 1 is different under each buffer-size condition. The types
of messages handled in the individual runs are different as well.
With the information available at this point, it is difficult to find a
systematic pattern relating to buffer sizes and their possible in-
teraction with the random number generator.

The cause of this interaction goes back to the implementation of
the problem which results in a random splitting of Type 3 mes-
sages into two groups with differing processing times and output
message lengths. During the simulation, the arrival times to this
section of the model depend on COREI and COREO. Then when
the random number generator is used to effect the splitting, its
usage affects the subsequent random numbers required by the
remainder of the simulation.

Since we recognize that the interaction of the simulation events
with the usage of the random number generator may bias the
comparison of buffer sizes, we now illustrate the reimplementa-
tion of the problem with the planned usage of the random num-
ber generator. Basically, Type 3 messages are now broken up
into Type 3 and Type 4 messages at the terminals but with the
same probabilities as previously given. Thus the new problem
conditions are given as follows:

Type 1 Type 2 Type 3
Probability 0.1 0.8 0.075

Input message length 40 80 20
Input processing time (ms) 5 1 10
Output message length 20 0 100
Additional processing time (ms) 0 0 5-15

Under the new formulation of the problem, we compute the fol-
lowing simulated average transit times in milliseconds for the
buffer storage sizes:

COREI = 3000 COREI = 1420

Simulation COREO = 3000 COREO = 2640
1 9118 9021
10785 10857
9044 9093
9675 9673
10269 10475

The previously noted interaction has thus been removed as illus-
trated by the following activity of terminal 1 in which times are
given in milliseconds:

NO 3-1972 QUEUING SIMULATION

Simuiation

COREI = 3000 COREI = 1420
COREQ = 3000 COREO = 2640

Number of Number of
arrivals Tw Ts arrivals Tw Ts

33 1783 6477 33 1940 6352
25 1228 7697 35 1295 7832
26 449 6131 26 478 6087
29 756 6338 29 853 6339
30 1508 6337 30 1662 6006

From these results, we see the tradeoff that occurs when the
buffer size is decreased. With the decrease in COREI, fewer mes-
sages are contending in the channel, and the resulting waiting
times are reduced. Similarly, a shorter queue develops 4t the
point where COREO is involved. These factors reduce the service
time 7'g at the expense of increasing the waiting time Tw. There
is an overall lengthening of the transit time Ty + Tg.

Concluding remarks

Partly by tutorial and partly by example, the use of random
number generator techniques for system simulation has been in-
troduced. To gain confidence and to validate results of simula-
tions, comparisons have been made with analytical system per-
formance evaluations.

A test of reasonableness and a variation of the problem as a re-
sult of the test also illustrate some principles underlying the ran-
dom number generator simulation method. Even where the re-
sults may be inconclusive, the exercise of problem formulation
is useful in understanding the system and in determining the
next predictive step to take. More elaborate trace-driven or self-
driven system simulation is justified when the engineer knows
that analytical and random number methods do not produce val-
id results. As a final caution, one should be aware of the basical-
ly cyclic logic that underlies the validations and comparisons.
The quantities that one measures against are produced by the
indirect methods just as the quantities being measured. There is
no independent standard. Thus one should always apply the test
of reasonableness. For example, the first results of the example
system simulation might lead the unwary engineer to believe
that smaller buffers yield higher throughput. This observation
being superficially unreasonable, suggests the reimplementation
of the problem. If the initial conclusion were generally true, it
should be true under the reimplementation. That it is not, con-
firms us in our skepticism.

RECHTSCHAFFEN IBM SYST J

Appendix A

72

30

69
32
75
282
143
175
1
202
133
752
26
43
89
53
31
77

0
0
0
0
0
4]
1
2
3
4
4
2
3
1
0
0
0
o]
0
0
0
1
2
3
0
1
1
2
1
0
0
0
0
0
0
0
1
o]
o
0
0
0
0
0
0
1
1
2
2
3

796

874

887

987

994

99y
1092
1113
1143
1351
1442
1481
1542
2150
2398
2410
2452
2518
2571
2830
2847
2926
3010
3138
3198
3238
3836
38u8
4018
4218
4232
4268
Huyus
4625
4800
5014
5033
5279
5997
6053
6189
6238
6318
6457

6553

O RPNWNPOODOODOCOOORPOOODOOOORPEPNPORPRNWOODOOOOOFFRERNWUNWFFOODOODO

131
144
191
187
236

298

No 3-1972

QUEUING SIMULATION

Appendix B

1084
1450
1702
2166
2193
2307
2398
2432
2462
2537
2690
2703
2706
2858
2929
2974
3031
3034
3162
3199
3233
3250
3309
3436
344y
3600
3671
3680
3825
3905
4065
4127
4190
4195
4317
4324
4335
4389
4405
4466
4502
4517
4545

0
0
0.
0
0
0
0
0
0
0
0
1
1
2
3
mn
5
6
7
6
7
7
8
6
7
7
5
6
6
7
i
8
6
7
8
5
S
6
7
8
y
S
5
6
6
6
6
S
3
2

OHMroww:mmmmmmmJ:(.nm\lmmmmqmm\zm\lmmm\lqo:qco\)m\:l—*oooooooooo

348
373

499
375
526
528
409
491
565
698

382
474
ug1
347
297
261
234
139

92

270 RECHTSCHAFFEN IBM SYST J

CITED REFERENCES AND FOOTNOTE

1. W. Chang, “Single-server queuing processes in computing systems,”[BM
Systems Journal 9, No. 1, 36-71 (1970).

2. W. Feller, An Introduction to Probability Theory and Its Applications, 368,
John Wiley and Sons, Inc., New York, New York (1964).

3. PAW. Lewis, A. S. Goodman, and J. M. Miller, “A pseudorandom number
generator for System/360,” IBM Systems Journal 8, No. 2, 136-145 (1969).

4. IBM General Purpose Simulation System V, Introductory User's Manual,
Form SH20-0866; and IBM General Purpose Simulation System V, User
Manual, Form SH20-0851, International Business Machines Corporation,
Data Processing Division, White Plains, New York 10604.

No 3-1972 QUEUING SIMULATION 271

