
Among  the  system  performance  predictive  techniques  available 
to the  systems  engineer are those of theoretical  analysis  and 
simulation. 

One  method of simulation  uses the random  number  generator to 
simulate  the  probability  distribution of events. 

Introduced are  principles of random  number  generator  simula- 
tion together with examples,  the  results of which  are compared 
with  theoretical  results. 

by R. N. Rechtschaffen 

This  paper  discusses  the application of random  number  genera- 
tors  to  the simulation of waiting-line (queuing) phenomena in 
real-time computer  systems.  Random  number  generators pro- 
duce numbers  that  are probabilistically distributed in a  manner 
analogous to  the throwing of a die. Since one can  assume  such a 
randomness in the times of arrivals of users at a waiting line or 
queue, it is at least intuitively plausible that the arrival times can 
be simulated by a  random  number  generator. The probabilistic 
nature of arrival times and  service times as well as  other time- 
based  phenomena are treated in this paper. 

One could say  that if everything in the  system is regular, the 
problem would  be of no interest.  When,  for  example,  each job 
arrival requires  three units of computer  time and arrives  every 
four time units,  then, in the  absence of an initial load,  no job 
must wait. In simulation parlance, the  four  time  units between 
arrivals of successive jobs  are  the interarrival times. The transit 
time, that  is,  the  elapsed time between arrival and  departure, is 
the  three-unit  service time. 

A typical system handles a  stream of arrivals wherein the  aver- 
age interarrival time is four time units,  and the average  service 
time may be three time units. This is quite different from the 
regular case.  The concept of average suggests that  there  are in- 
terarrival times smaller than four,  and  service times longer than 
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three. If the  spread in the  interarrival times and  service times is 1 
such  that  the  shortest  interarrival time is smaller  than  the lon- 
gest  service  time,  then waiting lines form. The  extent of the  over- i 
lap  determines  the magnitude of the waiting time. i 

The most  direct way of treating  such  phenomena is by way of 
mathematical  analysis, which uses  a body of knowledge known 
as queuing theory.'  Analytical  and simulative methods are com- 
plementary  and mutually supportive. Analytical methods typi- 
cally have  the  advantages of low setup  time, particularly in the 
simpler queuing cases. Simulation studies by computer  require 
programming, but  they  can generally handle  more complex cases 
of queuing with greater  ease. In designing and analyzing sys- 
tems,  the engineer often  uses  both  performance  predictive meth- 
ods so that  one  result may confirm the  other,  thereby giving him 
added confidence. Setting up a simulation has  another  advantage 
over analysis for  the  systems engineer in that  the  setup  process 
causes him to think through his design. 

There  are several  distinct  types of simulation. As we have men- 
tioned,  this  paper reviews several  cases of simulation that use 
the random number  generator  as  the driving device. Two other 
types of simulation are trace-driven  and self-driven simulations, 
wherein actual application programs drive program simulated 
models of systems. In trace-driven models, a recorded  trace of 
an application program execution  drives  the simulation model; 
in the self-driven case,  the  execution of an application program 
provides  inputs  for  the simulation model. The effect of simulation 
is to  make  system modeling algorithmic as compared with ana- 
lytic. 

We  have  discussed  the probabilistic nature of arrival  times, in- 
terarrival  times,  and  service times. The history of an arrival's 
interaction with the system  can  be  summarized by the following 
quantities:  arrival, start,  departure,  and waiting times. These 
quantities may be  expressed in terms of each  other in the follow- 
ing expressions: 

Arrival time = prior arrival time + interarrival  time 
Start time = the  greater of either  the  prior  departure time or  the 

Departure time = start time + service  time 
Waiting time interval = start time - arrival time 

current  arrival time 

Using randomly generated  interarrival  and  service times as in- 
puts,  these  formulas  have been used recursively  for  two simula- 
tions of  fifty transactions  each  to  calculate the  other times. 
(Waiting line data have  also been computed.) These simulations 
are summarized in Appendices  A and B for use later in this pa- 
per. 
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This  paper first discusses the random number  generator and 
gives some  examples  that  illustrate its use. Methods of system 
analysis and simulation are presented. A problem is worked out 
in detail to illustrate the manipulation of the random number 
generator  and  the validation of results. 

Using a random  number generator 

We first define a computer implementation of a random number 
generator as a computationally efficient algorithm that  generates 
a  sequence of numbers  (events) between 0 and 1 so that  the 
numbers are uniformly distributed  and  stochastically indepen- 
dent. By way of defining such  a  process,  Feller2  says,  “The  terms 
‘stochastic  process’ and ‘random process’ are synonyms  and 
cover practically all the theory of probability from coin tossing 
to  harmonic  analysis.  In  practice,  the  term  ‘stochastic  process’ is 
used mostly when a time parameter is introduced.” 

The following example  particularizes this definition. By subdi- 
viding the 0-to-1 interval into six subintervals of equal length the 
throwing of a die can be simulated. Thus a 1 has occurred if the 
value generated falls in the first subinterval, a 2 if the value gen- 
erated falls in the second  subinterval, and so forth.  For uniform 
distribution,  one might further demand that  each  outcome, 1, 2, 
. . .  , 6, should occur with approximately equal  frequency in a 
large number of throws.  Uniform  distribution of the  outputs of a 
Random Number  Generato? (RNG) occurs when equal numbers 
of output values (events) similarly fall in each subinterval. 

A sequence of events I ,2,3,4,5,6,1,2, . . . possesses the proper- 
ty  of uniform distribution or equal frequencies, but it does  not 
represent  a  satisfactory simulation of a  true die being tossed. 
The reason is that the successive  outcomes  are  too  predictable. 
That is, successive RNG outputs  are not stochastically inde- 
pendent.  Reference 3 discusses problems and  tests  for  the  sto- 
chastic  independence of the  outputs of a  random number genera- 
tor. 

Because the techniques  for generating randomness are computa- 
tional, they actually give pseudo-random  outputs. The advantage 
of generated  randomness  over  pure  randomness is that of re- 
producibility. If a simulation is found to yield a result worthy of 
special attention,  the simulation can be  recreated and analyzed 
in greater  depth. It is also possible to exploit the reproducibility 
in distinct simulations of similar systems by maintaining a high 
degree of parallelism in the  use of the random number generator. 
This allows the  analyst  to  make matched comparisons. 

Certain simulations that involve the random number generator 
use its output  events  directly. For example, in a  system having 
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tern  created by T' has the  same  statistical  properties  as the pat- 
tern  created by T.  The relationship between successive  elements 
of the  two  patterns is termed antithetic, and  the  two  generated 
patterns are said to be antithetics of each  other. 

The method of antithetics, wherein a pattern is replaced by its 
antithetic, is one way of illustrating the effect of the  random 
number  generator in introducing fluctuations in simulation out- 
put. Such  a  replacement of a  pattern by its antithetic in a simula- 
tion can have  a  dramatic effect on the simulation output.  This 
variation in simulation output is not of itself a bad thing. It may 
mirror the variation in system  performance that can be expect- 
ed. The variation may also  indicate  that  the  run size is not suffi- 
ciently large to yield a reliable estimate of average  system  per- 
formance. 

To place the following example in the proper  perspective let us 
first consider  the  analytical  or queuing theory (equilibrium) re- 
sult,  Consider  a single server input as simulated by an exponen- 
tial arrival pattern so that  successive  service times are also ex- 
ponentially distributed. If the  system is allowed to stabilize (i.e., 
reach equilibrium) then the  average waiting time Tw can be  ex- 
pressed in terms of the  average  service time T s  and the  server 
utilization p, which is the ratio of T s  to T A  (the  latter being the 
average  interarrival time). For the  case in which T s  = 80, T = 
100, p = 0.8, the analytical value of average waiting time is 
computed as follows: 

Tw =" T s  = 320 

Now  contrast  the analytical result with the  results of a random 
number  generator simulation. Expressions  for  the simulation 
method of determining the arrival pattern  and  the  service  pattern 
from values found in Appendices  A and B are given as follows. 
These expressions  represent antithetical simulations of the ana- 
lytical case  just given. 

1 - P  

Appendix  A  Appendix B 
Interarrival  Times "100 In(] -RNG,i-l) -100 In RNGZipl 
Service  Times -80 In(1 -RNG,,) -80 In RNG,, 
i =  1 ,  2, 3 , .  . ., 50 

Using these  expressions, the average waiting time for  the simu- 
lation exhibited in Appendix  A is Tw = 100.38, and  for  Appen- 
dix B the result is Tw = 337.44. These values may be  compared 
with the equilibrium or queuing theory  result of Tw = 320 pre- 
viously given. 

This  gross  comparison  illustrates  the  dramatic sensitivity of 
simulation results to the  state of the random number  generator. 
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We  show  later in this  paper the basis for  this effect of the anti- 
thetic  method. In the  present  case, it is clear  that the  shortness 
of the run makes  the  output  statistic  (the  average waiting time 
T,) especially sensitive. This  type of analysis,  however, is useful 
in determining the  proper  run size to reduce the sensitivity to 
acceptable limits. 

A  summary  observation might be appropriate at this point. The 
equilibrium result is not to be expected in these simulation cases 
because  short  runs  depend  on initial conditions.  In  both  antithetic 
runs,  the  server was initially idle. That is not to say  that  the equi- 
librium result does  not apply to  short periods of time when rela- 
tively few users  arrive. The important  distinction is that  the 
initial conditions in situations  where equilibrium can be applied 
are u-sually unknown and  are  the result of prior usage made of 
the server. 

evaluating By examining the simulations in detail  one gains an insight into 
simulation why the  results differ. Compare  the interarrival and  service 

results times  for  users 14 through 23 in Appendix  A. These entries 
represent  a  set of long interarrival times in conjunction with 
short  prior  service  times, resulting in no waiting line formation. 
The opposite effect is observed in Appendix B. Here  the same 
entries  represent  short  interarrival times and long prior  service 
times, resulting in a long waiting line formation.  Mathematically, 
this is to be anticipated if - h ( l  - RNG) is large,  then -In RNG 
is small. The opposite is also true. 

Even though the simulations use different realizations of the  ar- 
rival and  service  patterns, the closeness of the  realizations to a 
given standard  for both simulations is the  same. In both cases, 
we determine  the  closeness of the RNG values to a uniform pat- 
tern, which is the  same as  the  closeness of 1 -RNG to  a uniform 
pattern (using an arbitrary  symmetric  measure of closeness). 

Several  conclusions  can be drawn from the examples in the 
Appendices. The variation in average waiting time that  occurs in 
random  number  generator simulations is due  to  the modeling of 
the  chance  mechanism,  that  is,  the  generator model itself. This 
dependency of the  output  on  the  random  number  generator is 
the result of two  factors: (1) The value of the numbers  gener- 
ated; and (2) The sequence in which the  numbers are generated. 
The second  dependency  dictates which of the  interarrival times 
generated is juxtaposed with which prior  service time. Thus,  the 
typical simulation procedure is to perform several simulations 
and  average the results as a way of eliminating both  dependen- 
cies. The process of averaging over  several simulations of the 
sfme system is in many ways similar to  a single long simulation. 
An equilibrium queuing theory result as  a figure of merit corre- 
sponding to  the  performance of the system is thereby justified. 
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Several  short simulations with averaging are often more practi- 
cal than a long simulation because limited computer time may 
not allow for an exhaustive  performance  study of each  system, 
especially when several  systems are being compared. 

A second simulation of the  system by using antithetic  patterns 
can be useful, even though an antithetic simulation is not al- 
ways as markedly different as in the  example  given.  This is true 
because  both  the values and the  sequence of the  numbers  gener- 
ated are different. Thus, in a  statistical  context, the output from 
a given simulation and its antithetic yield negatively correlated 
estimates of quantities of interest.  In  the main (but not  exclu- 
sively) when one  output is above the  “true”  value, its antithetic 
is below that value. Hence,  the  average of the  complementary 
antithetic  estimates yields an  estimate with smaller variation 
than  the  average of separate simulation results. 

In  systems  that resemble each  other  closely,  variations  due  to 
values and  sequences of the generated  numbers  have  a  consis- 
tent effect. The direction of the fluctuation is usually the  same; 
that is, results of the  separate simulations are positively correlat- 
ed. Exploiting this effect is known as comparative  sirnulation. 

Comparison of analysis  and simulation 

We now compare simulation techniques previously outlined with 
problems for which there  are  also  analytic queuing theory solu- 
tions. Treatable by both methods is the general class of single 
server queuing problems in which the arrival pattern is exponen- 
tial. It has been observed  that if we combine  a large number of 
individual arrival streams,  each with its own distinctive  pattern, 
the  resultant  arrival  pattern  has exponentially distributed  inter- 
arrival times. The individual substreams may also  have distinc- 
tive service  requirements,  and  the  resultant  sa-vice  pattern is the 
weighted average of the individual service  patterns.  (The  arrival 
pattern is more often observed  to be an  exponential  one  than is 
the  service pattern.) 

In analytical terms,  the formula that yields the  average waiting 
time is part of a larger theorem-named  after Pollaczek and 
Khintchine’ who first studied it-on  the pattern of waiting times 
as  determined by the  average  interarrival time and the service 
pattern.  This formula can be applied when the  server  selects  the 
next  user  to be serviced on any basis other  than his service re- 
quirements. The average waiting time Tw is computed by the 
following formula where p is the  server utilization, the  average 
service time is T s ,  and  the  variance of service time is ms2: 
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The three  cases  to be simulated and  compared with each other 
and with analytical theory are those in which the service  pattern 
is exponential,  constant,  and uniformly distributed  over  the in- 
terval 0 to 140. The average  interarrival  time is 100, and  the 
average  service time is 70. The results of applying Equation 1 to 
the  three  cases  proposed  are summarized in Table 1. 

For comparison, using random number  generator  techniques,  the 
average waiting time Tw was computed by  five simulations of five- 
thousand  users  each. The results  are given in Table 2. Average 
waiting times from queuing theory are displayed at  the  foot of Ta- 
ble 2, and high (H) and low (L) comparisons of simulation with 
theory are given with the simulation results. The labeling and, 
hence,  the  direction of fluctuation is the  same in each of the five 
simulations for  the exponentiF1 and uniform service  patterns. 
The only inconsistent labeling is observed in the  second simula- 
tion with a  constant  service  pattern. 

An application of this type of comparison is in the  situation 
where  structurally similar systems are being simulated. If one 
system  has  a known solution,  that  system  can be used as  the 
basis of comparison, and the labels can be transposed  to  the 
other  systems.  Generally, the transposed labels are  correct.  The 
simulation of a system  that is structurally similar to  an  unknown 
system  (and  has a known solution) in conjunction with the sys- 
tem that  does  not  have  a known solution increases our confi- 
dence in the validity of judgments made on  the  basis of simula- 
tion. Further, even when none of the systems  has a known solu- 
tion,  the  task of picking the  best  system is  simplified on  the basis 
of multiple matched  comparisons. 

For  the simulations in Table 2, consider  the  ratios of constant 
and uniform average waiting times  to  those  for  the  exponential 
cases. The corresponding  analytical  theory yields the  result  that 
the average waiting time in the  exponential  case is twice the 
average waiting time in the  constant  case.  In a given simulation 
run,  however,  both  the  exponential and the  constant  cases may 
differ from the  theoretical values. A  determination of whether 
simulation output  ratios  approach  two may indicate the validity 
of both the simulations and  the  theory. The ratio is a  natural 
means of comparison in queuing theory  because all results are 
scale  dependent if they  measure time. If one  doubles  interarrival 
times and  service  times,  then all the waiting times and  the  aver- 
age waiting time double. By computing ratios  we eliminate scale 
dependence. The ratios of successive simulations in Table 2 are 
given in Table 3.  

On a  percentage  basis,  the  comparison of the simulations with 
theory is better  for  the uniform case  than  for the  constant  case. 
This is due  to interaction  between arrival and service  patterns 



Table 1 Theoretical  computation of three service patterns 

Ratio with the 
Service  pattern p ( T ~ I T ~  Tu. exponential  case 

Exponential 0.7  1 163.333 1 : l  
Constant 0.7 0 8 1.666 2: 1 
Uniform[O,l40] 0.7  0.333 108.888 1.5: 1 

Table 2 Random  number generator simulations of three service patterns  compared 
with queuing  theory 

Simulation  Exponential  Constant  Uniform 

1 156.488 L 77.360 L 107.020 L 
2  156.588 L 87.726 H 107.902 L 
3  136.805 L 76.677 L 97.751 L 
4  175.403 H 86.424 H 117.156 H 
5 168.443 H 85.828 H 11 1.384 H 

Queuing  theory  163.333  81.666 108.888 

Table 3 Average  waiting  time  ratios  for simulations compared to queuing  theory 

Sirnulation  Exponential1  constant  Exponentialluniform 

2.022 
1.785 
1.784 
2.030 
1.963 

Queuing  theory  2 

1.462 
1.45 1 
1.400 
1.497 
1.512 

1.5 

previously noted. In the  constant  service time case,  the  results 
are high or low depending  on  clustering or nonclustering in the 
arrival patterns. If the  service  pattern also allows for  variation, a 
reenforcement or a cancellation may occur within the simulation 
run. Thus  the exponential and uniform patterns  react  as the the- 
ory  predicts with respect  to  each  other.  This  also explains the 
more  consistent high-low labeling in these  two  cases  than in the 
constant  service  case. 

The results of antithetic simulations of each of these  three antithetic 
queuing problems are now contrasted with the  corresponding simulations 
straight simulations. One should not consider  the  antithetic rela- 
tionship as an  asymmetric one;  the terms  “straight”  and  “anti- 
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a  better  estimator  than  two  separate runs. Of more importance, 
however, is the  fact  that  the  antithetic  tends to expose  runs  that 
are sensitive  to  the  random  number  generator  output. That is, if 
a large discrepancy  exists  between a true value and  the  result of 
a simulation, the  antithetic is more likely to  expose this fact by 
its being markedly different. 

A case study of I/O buffering 

Consider  the problem of analyzing a  teleprocessing  system to the 
determine  the  requirements  for input and output buffer sizes. problem 
(The input buffer is designated as COREI and  the  output  as COR- 
EO.) The problem system  services 50 terminals that  connect to 
the  Central  Processing  Unit (CPU) by 14.8 cps lines. Three  types 
of messages are transmitted at a joint  rate of three messages per 
terminal per minute, and  have  the following characteristics: 

Type 1 Type 2 Type 3 
0.1 0.8 0.1 

~~~ 

Probability 
Input message length 40 80 20 
Input processing time  (ms) 5 1 10 
Output message length 20 0 100 
Additional processing time (ms) 0 0 5-15 

In  their logical flow through the  system, messages wait at  ter- 
minals until they can be  accommodated in COREI. Messages 
hold the  terminal, line, and their assigned storage  area in COREI 
until transmitted.  Since  several messages may require the chan- 
nel at  the  same  time,  a  queue may develop, and thereby  increase 
the  amount of time a given message holds COREI. A  second 
channel  operation  takes place by which the message is written 
onto  an auxiliary storage  device. At this point,  that message 
space in COREI is free  for  other message inputs. 

Each of the  three message types  requires  a different processing 
routine as follows: 

Type 1 retrieves  a message from auxiliary storage  and  sched- 
ules its output (1 ms) when storage  space is available in the 
output buffer COREO, and goes to  the wrapup  routine. 
Type 2 schedules its output ( I  ms), waits for  space in COR- 
EO, and goes to  the  output routine. 
Type 3 performs the required processing,  schedules its out- 
put, waits for  space in COREO, and goes to  the wrapup rou- 
tine. 

The wrapup  routine  releases  the terminal and line back to  the 
user  and  frees  the  space in COREO after the message has  been 
transmitted.  Message  transmission  into COREI and out of CORE0 
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These  results give a clue to buffer size  sensitivity. The changing 
of the  output  and input buffer sizes has altered  the  use of the 
random  number  generator, so that  the number of arrivals at ter- 
minal 1 is different under  each buffer-size condition. The types 
of messages handled in the individual runs are different as well. 
With the information available at  this  point, it  is  difficult to find a 
systematic  pattern relating to buffer sizes and  their possible in- 
teraction with the  random  number  generator. 

The  cause of this interaction  goes back to  the implementation of 
the  problem,which  results in a random splitting of Type 3 mes- 
sages  into two groups with differing processing times and output 
message lengths. During  the  simulation,  the arrival times to this 
section of the model depend on COREI and COREO. Then when 
the  random  number  generator is used to effect the splitting, its 
usage affects the  subsequent  random numbers required by the 
remainder of the simulation. 

Since  we recognize that  the  interaction of the simulation events 
with the usage of the random number  generator may bias the 
comparison of buffer sizes,  we now illustrate the reimplementa- 
tion of the problem with the planned usage of the random num- 
ber  generator. Basically, Type 3 messages are now broken up 
into Type 3 and Type 4 messages at  the terminals  but with the 
same probabilities as previously given. Thus  the new problem 
conditions are given as follows: 

Type 1 Type 2 Type 3 Type 4 
Probability 0.1 0.8 0.075 0.025 
Input message length 40 80 20  20 
Input  processing  time  (ms) 5 1 10 10 
Output message length 20 0 100 500 

1 Additional processing time (ms) 0 0 5- 15 50- 100 

' Under  the new formulation of the problem, we compute  the fol- 
lowing simulated average  transit times in milliseconds for  the 
buffer storage sizes: 

CORE1 = 3000 CORE1 = 1420 
Simulation COREO = 3000 COREO = 2640 

1 9118 902 1 
2 10785 10857 
3 9044 9093 
4 9675 9673 
5 10269 10475 

The previously noted  interaction  has  thus  been  removed as illus- 
trated by the following activity of terminal 1 in which times are 
given in milliseconds: 



COREI = 3000 
COREO = 3000 

Number of Number of 
Simulation arrivals T, arrivals 

1 33 1783 6477 33 
2 25 1228 7697 35 
3 26 449 6131 26 
4 29 756 6338 29 
5 30 1508 6337 30 

COREI = 1420 
COREO = 2640 

T, & 
1940 6352 
1295 7832 
478 6087 
853 6339 

1662 6006 

From  these  results,  we  see  the tradeoff that  occurs when the 
buffer size is decreased. With the  decrease in COREI,  fewer mes- 
sages are contending in the channel, and the resulting waiting 
times are reduced. Similarly, a  shorter  queue  develops  at  the 
point where COREO is involved. These  factors  reduce  the  service 
time Ts  at  the  expense of increasing the waiting time Tw. There 
is an overall lengthening of the  transit  time Tw + Ts .  

Concluding remarks 

Partly by tutorial and partly by example,  the use of random 
number  generator  techniques  for  system simulation has  been in- 
troduced. To  gain confidence and to validate  results of simula- 
tions,  comparisons  have  been made with analytical  system  per- 
formance  evaluations. 

A test of reasonableness  and a variation of the problem as a re- 
sult of the  test  also  illustrate  some principles underlying the ran- 
dom  number  generator simulation method.  Even  where  the re- 
sults may be inconclusive, the  exercise of problem formulation 
is useful in understanding the system  and in determining  the 
next  predictive  step to take.  More  elaborate  trace-driven or self- 
driven  system simulation is justified when the engineer knows 
that  analytical  and  random  number  methods  do  not  produce val- 
id results. As a final caution,  one should be aware of the basical- 
ly cyclic logic that underlies the validations and  comparisons. 
The quantities that one  measures  against are produced by the 
indirect  methods just  as  the quantities being measured. There is 
no independent  standard. Thus  one should always apply the  test 
of reasonableness. For example,  the first results of the  example 
system simulation might lead the unwary  engineer to believe 
that smaller buffers yield higher throughput.  This  observation 
being superficially unreasonable, suggests the reimplementation 
of the  problem. If the initial conclusion were generally true, it 
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Appendix B 

1 202 99 202 0 202 0 301 0 
2 77 149 279 0 301 0 450 22 

4 38 50 468 0 468 0 518 0 
5 6 3 474 0 518 0 521 44 

3 151  17  430 0 450 0 467  20 

6 65 47 539 0 539 0 586 0 
7 336 37 875 0 875 0 912 0 

9 486 26 1424 0 1424 0 1450 0 
8 63  146  938 o g a e  7 1084 il 

10 87 191 1511 0 1511 0 1702 0 
11 52 464 1563 0 1702 1 2166 139 
12 16 27 1579 1 2166 7 2193 587 
13 238 114 1817 1 2193 6 2307 376 
14 87 91 1904 2 2307 7 2398 403 
15 9 34 1913 3 2398 8 2432 485 
16 133 30 2046 4 2432 7 2462 386 
17 30 75 2076 5 2462 6 2537 386 
18 45 153 2121 6 2537 7 2690 416 
19 0 13 2121 7 2690 7 2703 569 
20 139 3 2260 6 2703 6 2706 443 
21 32 152 2292 7 2706 5 2858 414 
22 42 71 2334 7 2858 6 2929 524 
23 45 45 2379 8 2929 7 2974 550 
24 129 57 2508 6 2974 8 3031 466 
25 26 3 2534 7 3031 7 3034 497 
26 143 128 2677 7 3034 6 3162 357 
27 1n2 37 2779 5 3162 8 3199 383 
28 72 34 2851 6 3199 7 3233 348 
29 9 17 2860 6 3233 6 3250 373 
30 10 59 2870 7 3250 5 3309 380 
31 66 127 2936 7 3309 5 3436 373 
32 1 8 2937 8 3436 8 3444 499 
33 132 156 3069 6 3444 7 3600 375 
34 5 71 3074 7 3600 6 3671 526 
35 69 9 3143 8 3671 5 3680 528 

37 63 80 3334 5 3825 5 3905 491 

39 27 62 3367 7 4065 6 4127 698 

41 414 5 3799 4 4190 6 4195 391 
42 14 122 3813 5 4195 5 4317 382 
43 30 7 3843 5 4317 5 4324 474 
44 0 11 3843 6 4324 4 4335 481 

36 128 145 3271 5 3680 4 3825 409 

30 6 160 3340 6 3905 6 4065 565 

40 18 63 3385 8 4127 6 4190 742 

4S 145 54 3988 6 4335 3 4389 347 
46 104 16 4092 6 4389 3 4405 297 
b 7  52 61 4144 6 4405 2 4466 261 
48 80 36 4232 5 4466 2 4502 234 
49 131 15 4363 3 4502 1 4517 139 
5 0  62 28 4425 2 4517 0 4545 92 
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