

Figure 1 Modeling and simulation tools

7 MODELING AND
SIMULATION

MODELS SIMULATORS

1 1

I

SELF-DRIVEN TRACE-DRIVEN

Thes

ANALYTIC SPECIAL PURPOSE

.o fu e categories are further subdivided int

u GENERAL PURPOSE

Inctions. Th e sec-
ond section is an index which organizes the program tools that
follow into their appropriate categories a.nd functions. The third
section contains selected abstracts of available program tools in
alphabetical order. Any references mentioned in the abstracts
can be obtained from a local IBM branch office.

The concepts discussed in the first section are those with which
the author is most familix and has found to be useful to program-
mers. The programs presented in the following sections are only
those which have been distributed by IBM. Other programming
tools and techniques have been discussed elsewhere in the
literature.

Modeling and simulation tools

Modeling and simulation tools, illustrated in Figure 1, support
the programming development process in many ways. During
the planning phase, models permit the study of new hardware
configurations, work load variations, software alternatives, and
operating procedures. New system designs are examined and
evaluated before they are implemented. Therefore, performance
problems can be addressed and resolved at an early stage in the
development process. Models also provide a consistent basis for
evaluating design alternatives, for estimating system processing
capacity, and for planning to meet predictable growth in func-
tional capability as systems evolve. In addition, a modeling tool
tends to insure completeness of design by forcing designers to
be specific and to consider details that might otherwise be over-
looked. Simulators are used during testing activities when the
total hardware system is not available. In measurement and

NO. 3 ' 1972 PROGRAMMING TOOLS AND TECHNIQUES

A simulator is defined as a tool whose function is to provide to
the target system inputs that resemble those that would have
been provided by the components being simulated. Simulators,
usually associated with software monitors, allow measurement
and analysis when all parts of the system, such as terminals, are
not present.

Measurement and evaluation tools

Program measurement and evaluation are most often used as
adjuncts to system, product, and acceptance testing. In addition
to establishing that performance specifications have been met,
these tools are used to calibrate earlier models, provide useful
information to designers of similar systems, and to tune existing
systems. Tuning activities should consider the total operating
environment in which the program runs and should avoid subop-
timization - optimizing a part to the detriment of the whole.

System characteristics are not always quantifiable. Performance
is a quantitative statement of how well a computer program does
its job. Performance Characteristics such as throughput, re-
source utilization, reliability, job turnaround and response time,
availability, capacity, and effectiveness are measurable. Howev-
er, usability characteristics such as human factors, serviceability,
and maintainability, which express the effect a program has on
its environment and the people who use it, are not measurable.
They assist in establishing the ease of use of a program relative
to other programs.

Performance characteristics are measured by monitors, analyz-
ers, timers, maps, and traces. Also, the functions of monitors,
maps, and traces can be combined with the modeling function.
The organization of these measurement and evaluation tools is
depicted in Figure 2.

Hurdwure monitors are devices that count and time the intervals
between selected voltage pulses in a running computer without
degrading the system. Accomplished by attaching probes to the
target system, these measurements can be used to assess hard-
ware usage such as wait and channel times. System activity is
then recorded in the monitor’s registers or on punched cards or
magnetic tape. Most hardware monitors have reporting and/or
data reduction programs supplied with them. Some of these pro-
grams provide plots as an option.

Whereas hardware monitors are used to measure the mechanical
processing activities of a computer system, software monitors
indicate I/O activity or the processing activity within the Central
Processing Unit (CPU). A software monitor is a program that

NO. 3 * 1972 PROGRAMMING TOOLS A N D TECHNIQUES

write test cases for as many of the valid combinations of func-
tions as can be identified through a manual search. In this ap-
proach, specijication analysis, the program is run using these
test cases, and the actual results are compared with expected
results. Generators and test-result processors are two kinds of
tools currently available to assist programmers with this ap-
proach to function testing.fi Program analysis tools describe an
alternate approach to specification analysis.

generators A generator produces test data, test cases, or job streams to
exercise the target program. Other names commonly given to
this type of tool are “exerciser” and “driver.” A consideration
of generated test cases is that they may be redundant and may
not cover all possible functional variations. In this case, their
use to exercise code or to verify functions is not recommended.
However, when generators are used to drive the target system
for the purpose of gathering information about system capacity
or throughput, they save much time and effort.

test-result Test-result processors perform test output data reduction; for-
processors matting and printing. Some perform statistical analysis where

the original data may be the output of hardware or software
monitors. Others compare expected to actual test results.

Although straightforward in concept, comparing actual with
expected or previous results and then reporting on mismatches
presents problems which in practice are difficult to overcome.
Non-significant output data, such as date and run time, and the
number of unanticipated variations possible in most software
systems can cause the number of valid, but mismatching, results
to be high. This obscures the significant mismatching results that
the technique attempts to uncover.

program Whereas the specification analysis approach to function testing
analysis involves a search for functions described in the specifications,

program analysis involves a search for functions intentionally or
unintentionally implemented in the program. This approach is
effective when used during module testing by the programmer
who developed the module to be tested. The programmer rigor-
ously examines all paths that a program can take. to uncover log-
ic errors such as unexecuted code and execution-sequence-de-
pendent bugs.

Implementation tools

Implementation tools, illustrated in Figure 4, assist program-
mers in coding, debugging, and module testing. Included in this
category are programming languages and operating system func-
tions that support program implementation as well as the pro-

240 POMEROY IBM SYST J

Figure 5 Programming support tools

SUPPORT

I
I I 1

PREPARATION DOCUMENTATION

coding and Interactive coding and debug systems are aimed at removing the
debug systems programmer from the batch processing environment where a

large part of his time is spent awaiting the results of the latest
compile and execute run. These systems attempt to provide
advantages inherent in hands-on testing without the inefficien-
cies in machine utilization.

There are two basic approaches to systems that provide interac-
tive testing and debugging facilities. By one technique, instruc-
tions are executed semi-interpretively. Here, the environment is
a virtual system in which the user loads, executes, and directs
the progress of the execution of the source code. An example of
this approach is the PL/I Checkout Compiler. TSO TEST and
CP/CMS use a noninterpretive approach, wherein problem pro-
grams are actually executed. The user can suspend execution at
specified locations, display and modify storage and registers, and
continue execution. The noninterpretive approach provides in-
teraction at the object-code level and thus is less convenient to
use by programmers who are accustomed to source-code nota-
tion. Noninterpretive systems, however, do provide a more real-
istic environment for the problem program than do semi-in-
terpretive systems. In the semi-interpretive case, a problem pro-
gram error does not cause its execution to terminate as it may be
in a noninterpretive system. Also, with instruction interpreta-
tion, problem program execution is somewhat slower.

Programming support. tools

Programming support tools are used to contain, control, and
access the data base required during the life span of a program-
ming project. These tools are depicted in Figure 5. The range of
data classes that can be supported includes text, flowcharts,
specifications, source and object code, and load modules. In
addition, cost, schedule, and performance information for pro-
ject control may be included. These tools may support a broad
range of programming activities from architecture through

242 POMEROY IBM SYST J

maintenance with an integrated system of support functions.
However, many of the tools available provide a specific func-
tion.

Compared to tools in the previously discussed categories, a
greater measure of permanence must be factored into decisions
regarding the selection of support tools because a support data
base is developed that tends to commit the user to a particular
programming support system.

Program documentation spans a wide range of material including documentation
specifications, project workbooks, flowcharts, source listings,
record layouts, set-up sheets, logic manuals, user guides, and
trouble reports and replies. For the descriptive purposes of this
paper, documentation tools are further subcategorized into text
and flowcharting preparation.

Text preparation. Numbers and kinds of functions provided by
text preparation systems vary as do their costs per document. In
the selection of a text preparation tool, the document’s intended
audience must be considered as well as the ease of use, func-
tions supported, and quality of the finished product. The ease of
use attribute includes the following functional supports:

Data entry
Editing-erase, insert, change, and move words or groups of
words
Processing- spelling check, hyphenation, and index genera-
tion
Formatting-page numbering, double and single column,
page and column leveling, paragraph control, and right justifi-
cation
Document maintenance, storage, and retrieval
Output device flexibility

Flowcharting. There are two techniques for flowchart genera-
tion. One approach produces flowcharts by analyzing the pro-
gram’s source code. Flowcharts produced by this method re-
quire no additional programmer efforts, but may be very detailed
and low-level. A second approach uses a flowcharting language,
or commands. Although programmer effort is required, the level
of detail and general appearance of the flowchart can be con-
trolled.

In addition to source, object, and load module library mainte- program library
nance, program library maintenance tools can be designed to maintenance
support related functions such as program version and level con-
trol, test case library maintenance, and project reporting and
control. The closer a library system can come to a centralized
repository for programming data, the more opportunities exist

NO. 3 . 1972 PROGRAMMING TOOLS AND TECHNIQUES 243

for cross-checking between classes of data such as plans and
project reports, flowcharts and implementation code, and speci-
fications and test plans.

A library maintenance system supporting many of these func-
tions can be built using standard OS utilities and job control lan-
guage. One such system is the Programming Production Library
(PPL) used by a chief programmer team. The PPL consists of
programs and procedures that aid program development where a
highly visible external library is important so that individual
team members can read each other’s code for documentation
and interface inf~rmation.~

project control The objective of project control and reporting is to gain visibili-
and reporting ty and control over the elements of cost, schedule, and perform-

ance.8 Frequent reports do not guarantee control or visibility,
and they may also cost many valuable man-hours in their prepa-
ration. Visibility is the ability to predict a variance in planned
cost, schedule, or performance. Control is exercised when ac-
tion is taken to correct the variation. Visibility and control are
management activities. The recording of project status can be
automated to produce reports comparing actual status to
planned.

Project control and reporting systems vary in the amount of
reporting required and in the control exercised. Many such sys-
tems are variants of some larger, more generalized system,
whereas others are simply procedural with informal or highly
structured review of project progress at specified checkpoints.

program The program change control function provides assistance to
change control programming development activities such as integration test,

release, and maintenance. Analysis of the impact of a proposed
change on other parts of the system, as well as the portion to be
changed, and the assurance that the change will be properly im-
plemented rely on the ability to obtain accurate and current in-
formation on interface requirements over many levels of a sys-
tem.

There are a number of ways to gain this ability. One approach is
to retrieve interface information from data in a specified format
supplied by programmers. Another approach is to analyze
source programs for interface information. A third approach is
to establish office and machine procedures to limit access to
operational program modules.

Concluding remarks

The terms and definitions previously discussed introduce one to
the categories and functions of programming tools and tech-

244 POMEROY IBM SYST J

PROGRAMMING TOOLS AND TECHNIQUES 245

Primer GH20-0689
nformation Manual GH20-0850

erminal System under OS1360

documentation aid

Documentation
os DOS

Program Description Manual GH20-0582 GHZO-0508
Application Description Manual GH20-0297 GH20-05 10

Online COBOL Symbolic Debug under TSO
COBOL Interactive Debug

Function: noninterpretive debug system

Availability: Field Developed Program
Program Product

Description
COBOL Debug. when invoked under the Time Sharing Option (TSO) of
OS, can monitor, direct, and debug the execution of ANS-COBOL programs
by referencing data and paragraph names. The facilities of the symbolic de-
bugging system are available to the programmer when an external interrup-
tion occurs from the console, a program interruption occurs within the
COBOL program, a breakpoint set by the programmer is encountered during
execution, or an unrecoverable l/O error occurs. Some of the facilities avail-
able to the programmer are a paragraph trace option, display and/or altera-
tion of data fields, data field address display, source statement display, snap-
shots of main storage, and the ability to resume execution at a paragraph or
statement number determined by the programmer.

Programming systems
Operation systems: System/360 and System/370 versions of OS/MVT

Modes of operation: terminal-oriented and time-sharing
with TSO

Documentation
F D P Program Description and Operations Manual SB21-0284
Program Product General Information Manual GC28-6454

Control Program-67/Cambridge Monitor System

Function: coding and debugging system

j Availability: Type 111

Description
CP-67/CMS is a time-sharing system that provides conversational use of a
terminal-oriented System/360 Model 67 configuration. The system has two
components that may be executed independently of each others: Control
Program-67 (CP-67), which manages the resources of the Model 67 and
provides time-sharing to any system: and Cambridge Monitor System (CMS),
which is a conversational operating system that provides its capabilities
through a terminal command language.

CP-67 builds and maintains for each user a virtual machine (a functional
simulation of a real computer and its 1 / 0 devices) from a predescribed con-
figuration. CP-67 allocates the resources of the real machine to each virtual
machine, in turn, for a slice of time. Regardless of the virtual machine confi-
gurations, each user controls his machine from his terminal (his console key-
board).

CMS gives the user the following capabilities at his terminal: creating and
managing files, compiling and executing problem programs, and debugging.
Because each user has his own copy of CMS residing in his own virtual
machine, he is unable to affect other users or CP-67. Also provided is a
batch monitor for program compilation and execution.

Programming systems
Operating systems: CP-67, a hardware control program

Programming language: assembler
CMS, an operating system

COBOL
Debug

CP-67lCMS

NO. 3 * 1972 P R O G R A M M I N G TOOLS A N D TECHNIQUES 247

GTF

ITF

OS utility
IEBUPDTE

PL/I Checkout
Compiler

PL/I Optimizer

Programming systems
Operating systems: System/360 and System/370 versions of OS/MFT

Programming language: PL/ 1
and OS/MVT with the SMF option

Documentation
Program Description and Operations Manual SB2 1-0047

TEXT360

Function: text preparation

Availability: Type 111

Description
TEXT360 is a text-processing system with data entry, updating, and page
formatting capabilities. Input is free-form on punched cards. Output is on a
line printer. Standard text processing functions are hyphenation, justification,
double column alignment, and indentation. Also, horizontal and vertical rules
for tables and figures can be generated. The system consists of the following
four main processing programs: file maintenance, build line, page layout, and
post processor. There are also four peripheral programs-prescan, print,
spelling check, and dictionary update.

Programming system
Operating system: OS/360
Programming languages: PL/ 1 and assembler
Mode of operation: batch

Time Sharing Option TEST command

Function: debugging facility

Availability: Type I

I level programs. The TEST command allows. the programmer to debug or test
his program dynamically without special provisions in the source code. The

modification of storage, general registers, and floating-point registers. The
user may suspend execution of his program at specified locations, perform an
analysis or modification, and continue processing. The programmer may also
alter the environment in which he is testing his program by doing such things
as freeing or getting storage, loading a program, or deleting a program.

TSO TEST differs from some debugging packages in that it allows actual
execution of the problem program rather than interpretive execution. This
means that problem program execution may be terminated due to error con-

TEXT360

TSO TEST

254 POMEROY

