Current programming tools and techniques facilitating program
development and maintenance under Operating System/360
and [370 are collected and discussed.

These aids are categorized and defined according to their func-
tion. Abstracts of some of the available programs are also pre-
sented.

A guide to programming tools and techniqueg
by J. W. Pomeroy

Programming has become a major concern within corporate or-
ganizations because programs and programming systems now
assist in the day-to-day conduct and management of most cor-
porate activities, Common to all programming departments or
groups is the rising cost of program development and mainte-
nance. As a result of this increasing concern, programs and tech-
niques have been formulated to facilitate development of other
programs. These programming tools may automate one or more
tasks in the programming process, establish libraries of proved
programs in the form of macroinstructions and subroutines, or
provide assistance in a programming support area such as pro-
gram management and documentation.

The purpose of this guide is to provide information to assist pro-
grammers and their management in selecting the most appropri-
ate tools for their particular needs in the Operating System (0S)
environment. This guide is divided into three parts. The objec-
tive of the first section is to acquaint the programmer and pro-
gramming management with the terminology and functions of
programming tools and techniques. The categories of tools and
techniques discussed are the following:

Modeling and simulation
Measurement and evaluation
Function testing
Implementation
Programming support

POMEROY IBM SYST J

Figure 1 Modeling and simulation tools

MODELING AND
SIMULATION

I I

SIMULATION
LANGUAGES

I—L—‘ l Bl

MODELS SIMULATORS

ANALYTIC SIMULATIVE SPECIAL PURPOSE GENERAL PURPOSE

l—‘—l

SELF-DRIVEN TRACE-DRIVEN

These categories are further subdivided into functions. The sec-
ond section is an index which organizes the program tools that
follow into their appropriate categories and functions. The third
section contains selected abstracts of available program tools in
alphabetical order. Any references mentioned in the abstracts
can be obtained from a local 1BM branch office.

The concepts discussed in the first section are those with which
the author is most familiar and has found to be useful to program-
mers. The programs presented in the following sections are only
those which have been distributed by 1BM. Other programming

tools and techniques have been discussed elsewhere in the
literature.

Modeling and simulation tools

Modeling and simulation tools, illustrated in Figure 1, support
the programming development process in many ways. During
the planning phase, models permit the study of new hardware
configurations, work load variations, software alternatives, and
operating procedures. New system designs are examined and
evaluated before they are implemented. Therefore, performance
problems can be addressed and resolved at an early stage in the
development process. Models also provide a consistent basis for
evaluating design alternatives, for estimating system processing
capacity, and for planning to meet predictable growth in func-
tional capability as systems evolve. In addition, a modeling tool
tends to insure completeness of design by forcing designers to
be specific and to consider details that might otherwise be over-
looked. Simulators are used during testing activities when the
total hardware system is not available. In measurement and

NOo. 3 - 1972 PROGRAMMING TOOLS AND TECHNIQUES

simulation
languages

evaluation activities simulators are also used together with mon-
itors, traces, and timers.

A model is a logical representation of a system such as a flow-
chart, blueprint, or mathematical formula. Models used to repre-
sent computer systems are classified as analytic or simulative.

Analytic models provide a set of mathematical equations for cal-
culating time averaged over some mix of transactions. Because
equations describing complex systems tend to become compli-
cated and often impossible to formulate, it is usually necessary
to make simplifying assumptions. If these assumptions provide
reasonably accurate answers, then the analytic approach be-
comes preferable to a simulation model because of the faster
execution time. FORTRAN, PL/1, and APL are programming lan-
guages most commonly used for constructing analytic models.

Simulative models are logical software representations of the
discrete entities and events of some target system. Structured
usually in two parts, one part of the model represents the hard-
ware and control program services where the hardware may or
may not be the host system. For example, a System/370 configu-
ration can be modeled using System/360 hardware. The second
part represents the application programs and processing work
loads. Many models have the ability to simulate the effects of
running on different configurations or CPU models and to make
operating system changes without the necessity of a systems
generation. Trace-driven simulative models derive their input
from trace data that has been collected during actual execution
of the target or a similar system.” Trace data is not possible, how-
ever, for new software that is being modeled. This type of model
where the programmer or modeler must provide the inputs is
called a self-driven model. Because of the modeler’s direct in-
volvement in input creation, a self-driven model is consider-
ably more difficult and time-consuming to construct than a trace-
driven model.

Most simulative models use special languages designed specifi-
cally for that purpose. Simulation languages are classified as
general-purpose or special-purpose languages. A general-pur-
pose language such as General Purpose Simulation System V
(GPSS V), can be used to model any system. Special simulation
languages, such as Computer System Simulator I1 (CSS 1), have
built-in features specifically aimed at computer systems perfor-
mance studies. A special simulation language describes the sys-
tem hardware components and the way in which they interact in
terms familar to systems engineers and programmers. Much of
the descriptive detail that a generalized language requires of the
modeler can be provided automatically by special simulation
languages.

POMEROY IBM SYST)

A simulator is defined as a tool whose function is to provide to
the target system inputs that resemble those that would have
been provided by the components being simulated. Simulators,
usually associated with software monitors, allow measurement
and analysis when all parts of the system, such as terminals, are
not present.

Measurement and evaluation tools

Program measurement and evaluation are most often used as
adjuncts to system, product, and acceptance testing. In addition
to establishing that performance specifications have been met,
these tools are used to calibrate earlier models, provide useful
information to designers of similar systems, and to tune existing
systems. Tuning activities should consider the total operating
environment in which the program runs and should avoid subop-
timization — optimizing a part to the detriment of the whole.

System characteristics are not always quantifiable. Performance
is a quantitative statement of how well a computer program does
its job. Performance characteristics such as throughput, re-
source utilization, reliability, job turnaround and response time,
availability, capacity, and effectiveness are measurable. Howev-
er, usability characteristics such as human factors, serviceability,
and maintainability, which express the effect a program has on
its environment and the people who use it, are not measurable.
They assist in establishing the ease of use of a program relative
to other programs.

Performance characteristics are measured by monitors, analyz-
ers, timers, maps, and traces. Also, the functions of monitors,
maps, and traces can be combined with the modeling function.
The organization of these measurement and evaluation tools is
depicted in Figure 2.

Hardware monitors are devices that count and time the intervals
between selected voltage pulses in a running computer without
degrading the system. Accomplished by attaching probes to the
target system, these measurements can be used to assess hard-
ware usage such as wait and channel times. System activity is
then recorded in the monitor’s registers or on punched cards or
magnetic tape. Most hardware monitors have reporting and/or
data reduction programs supplied with them. Some of these pro-
grams provide plots as an option.

Whereas hardware monitors are used to measure the mechanical
processing activities of a computer system, software monitors
indicate 1/O activity or the processing activity within the Central
Processing Unit (CPU). A software monitor is a program that

No. 3 -+ 1972 PROGRAMMING TOOLS AND TECHNIQUES

simulator

monitors

Figure 2 Measurement and evaluation tools

MEASUREMENT
AND EVALUATION

l I

ANALYZERS TIMERS MONITORS TRACES

I"——;l

"HARDWARE SOFTWARE
MONITORS MONITORS

|
| |]

ATTACHED STATISTICAL
CPUS SAMPLERS

SUPER CONTROL HOOK
SYSTEMS CATCHERS

provides detailed statistics in a production processing environ-
ment. A software monitor records usage of system software and
hardware components by counting frequency of use and by re-
cording the amount of use over some sampling period. Statistical
output resulting from these measurements can be reported im-
mediately or can be saved as a chronological trace for postpro-
cessing. Software monitors are generally programmed in machine
language to minimize degradation of normal system process-
ing. The timing source used can be a standard computer interval
timer or some other suitable high-resolution timer. Desirable
features of a software monitor are the ability to add and remove
the monitor without disrupting normal system processing and

the ability to selectively request statistical options.”

The following are the four basic approaches to software moni-
toring:

* Super control system monitoring treats the operating system

being measured as a problem program. The monitor operates
in the supervisor state and receives control when interrupts
occur. It records detailed information about the target sys-
tem, but, in doing so, such a monitor may cause degradation
in target system performance. Special hardware such as a
high-resolution timer may be required for super control sys-
tem monitoring.
Hook catching monitoring relies on instructions placed at
strategic points in a system being measured. These instruc-
tions cause a transfer to a catching routine that records ap-
propriate data for later processing and then returns control to
the measured program.

» Arttached-CPU monitoring uses standard 1BM hardware, in-
cluding a secondary CPU, to feed data to the system being

238 POMEROY IBM SYST J

measured and to analyze the response time of that system. A
primary use of an attached CPU monitor is to analyze tele-
processing systems.

Statistical sampling records events occurring at specific
points in time. This technique has less impact on normal sys-
tem processing than the techniques previously discussed, yet
produces equally valid measurements when optimum sam-
pling intervals are selected correctly.

An analyzer provides source-language or execution-frequency
statistics to assist in performance evaluation. It normally runs
in problem-program state and requires no modification to the
target program. Source-language analyzers are used to optimize
individual programs.

A timer time-stamps and/or computes elapsed time between tar-
get program events. It executes in supervisor or problem-pro-
gram state and may require target program modification. A timer
normally depends on the interval timer for timing information
and may have the capability of refining the interval timer beyond
its normal tolerance. Time span may be from one instruction to
an entire job stream. Many tools combine the timing function
with monitoring and tracing functions.

Maps provide location and/or size information about all or se-
lected parts of the target system or about device-resident data.
A trace records the chronological sequence of events taken by a
target program during its execution. All or selected segments of
the program may be traced. Output from a trace may then be
used to drive models of the system to be measured.

Function testing tools

Function testing assumes three forms at different stages in pro-
gram development. Module testing (debugging) is a form of
function testing that is done by the programmer to ensure that
basic algorithms and routines are coded correctly. Interface test-
ing (component and system testing) is performed when a number
of interdependent modules are linked together by higher level
routines and algorithms. The purpose of interface testing is to
verify that the basic modules have been combined correctly and
that the composite operates according to its specifications. A
third type of function testing, regression testing, is performed to
ensure that a previously tested program correctly executes its
original functions after modification or enhancement. Function
testing tools are presented in Figure 3.

The approach to function testing often used by programming
groups is to extract basic functions from the specifications and

NOo. 3 - 1972 PROGRAMMING TOOLS AND TECHNIQUES

analyzers

timers

maps and
traces

Figure 3 Function testing tools

FUNCTION
TESTING

!—I—I

SPECIFICATION
ANALYSIS

PROGRAM
ANALYSIS

1

GENERATORS

TEST RESULT
PROCESSORS

—

STATISTICAL

COMPARATIVE

generators

test-resuit
processors

program
analysis

write test cases for as many of the valid combinations of func-
tions as can be identified through a manual search. In this ap-
proach, specification analysis, the program is run using these
test cases, and the actual results are compared with expected
results. Generators and test-result processors are two kinds of
tools currently available to assist programmers with this ap-
proach to function testing.’ Program analysis tools describe an
alternate approach to specification analysis.

A generator produces test data, test cases, or job streams to
exercise the target program. Other names commonly given to
this type of tool are “‘exerciser” and ‘“‘driver.” A consideration
of generated test cases is that they may be redundant and may
not cover all possible functional variations. In this case, their
use to exercise code or to verify functions is not recommended.
However, when generators are used to drive the target system
for the purpose of gathering information about system capacity
or throughput, they save much time and effort.

Test-result processors perform test output data reduction, for-
matting and printing. Some perform statistical analysis where
the original data may be the output of hardware or software
monitors. Others compare expected to actual test results.

Although straightforward in concept, comparing actua] with
expected or previous results and then reporting on mismatches
presents problems which in practice are difficult to overcome.
Non-significant output data, such as date and run time, and the
number of unanticipated variations possible in most software
systems can cause the number of valid, but mismatching, resuits
to be high. This obscures the significant mismatching results that
the technique attempts to uncover.

Whereas the specification analysis approach to function testing
involves a search for functions described in the specifications,
program analysis involves a search for functions intentionally or
unintentionally implemented in the program. This approach is
effective when used during module testing by the programmer
who developed the module to be tested. The programmer rigor-
ously examines all paths that a program can take.to uncover log-
ic errors such as unexecuted code and execution-sequence-de-
pendent bugs.

Implementation tools

Implementation tools, illustrated in Figure 4, assist program-
mers in coding, debugging, and module testing. Included in this
category are programming languages and operating system func-

tions that support program implementation as well as the pro-

POMEROY IBM SYST }

Figure 4 Implementation tools

IMPLEMENTATION

PROGRAMMING CODING AND PROGRAMMING LANGUAGES
TECHNIQUES DEBUGGING SYSTEMS AND MACRO-INSTRUCTIONS

SEMI-INTERPRETIVE NON-INTERPRETIVE

gramming techniques, specialized compilers, macroinstruction
libraries, and coding and debugging systems. Regarding lan-
guages, our objective is not to propose a ‘“‘best” language, but to
suggest languages that are typically used for particular needs or
applications.

A programming technique may be a conceptual approach to the
entire programming process, or it may also be a description of a
methodology for performing specific programming functions.
The chief programmer concept affects all programming activities
and structured coding is 2 method for a specific programming
activity.”

The coder has a rich variety of programming languages and
macroinstructions from which to choose. Typical of the general
programming languages are COBOL, FORTRAN, and PL/1. Spe-
cialized languages are used for particular applications such as
the simulation languages previously mentioned for use as model-
ing and simulation tools. An experienced programmer applies
the language most appropriate to the application or coding situa-
tion at hand. For example, he may wish to create a prototype of
his system using APL. He may then support his design with a
model written in CSS, and write his application programs in PL/1.
Based on performance predictions or actual system measure-
ments, he may wish to code certain modules in assembler lan-
guage to achieve maximum execution speed.

Macroinstruction languages provide macro libraries that either
provide tested code for frequently encountered operations or
have a special objective such as debugging. Block structured
programming macros, used by chief programmer teams to facili-
tate block structured coding, provide stylized branching within a
set of standard programming figures. The need for explicit
branches to different parts of a program is thus eliminated. The
results are programs that can be read sequentially and that can
be easily understood by programmers not involved in the origi-
nal coding effort.”

No. 3 - 1972 PROGRAMMING TOOLS AND TECHNIQUES

programming
technique

programming
languages and
macroinstructions

coding and
debug systems

Figure 5 Programming support tools

PROGRAMMING
SUPPORT

[
|] |

PROGRAM LIBRARY
MAINTENANCE

PROJECT CONTROL PROGRAM CHANGE

DOCUMENTATION AND REPORTING CONTROL

I |

TEXT OTHER
PREPARATION FLOWCHARTING DOCUMENTATION

Interactive coding and debug systems are aimed at removing the
programmer from the batch processing environment where a
large part of his time is spent awaiting the results of the latest
compile and execute run. These systems attempt to provide
advantages inherent in hands-on testing without the inefficien-
cies in machine utilization.

There are two basic approaches to systems that provide interac-
tive testing and debugging facilities. By one technique, instruc-
tions are executed semi-interpretively. Here, the environment is
a virtual system in which the user loads, executes, and directs
the progress of the execution of the source code. An example of
this approach is the pPL/1 Checkout Compiler. TSO TEST and
CP/CMS use a noninterpretive approach, wherein problem pro-
grams are actually executed. The user can suspend execution at
specified locations, display and modify storage and registers, and
continue execution. The noninterpretive approach provides in-
teraction at the object-code level and thus is less convenient to
use by programmers who are accustomed to source-code nota-
tion. Noninterpretive systems, however, do provide a more real-
istic environment for the problem program than do semi-in-
terpretive systems. In the semi-interpretive case, a problem pro-
gram error does not cause its execution to terminate as it may be
in a noninterpretive system. Also, with instruction interpreta-
tion, problem program execution is somewhat slower.

Programming support.tools

Programming support tools are used to contain, control, and
access the data base required during the life span of a program-
ming project. These tools are depicted in Figure 5. The range of
data classes that can be supported includes text, flowcharts,
specifications, source and object code, and load modules. In
addition, cost, schedule, and performance information for pro-
ject control may be included. These tools may support a broad
range of programming activities from architecture through

POMEROY IBM SYST J

maintenance with an integrated system of support functions.
However, many of the tools available provide a specific func-
tion.

Compared to tools in the previously discussed categories, a
greater measure of permanence must be factored into decisions
regarding the selection of support tools because a support data
base is developed that tends to commit the user to a particular
programming support system.

Program documentation spans a wide range of material including
specifications, project workbooks, flowcharts, source listings,
record layouts, set-up sheets, logic manuals, user guides, and
trouble reports and replies. For the descriptive purposes of this
paper, documentation tools are further subcategorized into text
and flowcharting preparation.

Text preparation. Numbers and kinds of functions provided by
text preparation systems vary as do their costs per document. In
the selection of a text preparation tool, the document’s intended
audience must be considered as well as the ease of use, func-
tions supported, and quality of the finished product. The ease of
use attribute includes the following functional supports:

Data entry

Editing —erase, insert, change, and move words or groups of
words

Processing —spelling check, hyphenation, and index genera-
tion

Formatting—page numbering, double and single column,
page and column leveling, paragraph control, and right justifi-
cation

Document maintenance, storage, and retrieval

Output device flexibility

Flowcharting. There are two techniques for flowchart genera-
tion. One approach produces flowcharts by analyzing the pro-
gram’s source code. Flowcharts produced by this method re-
quire no additional programmer efforts, but may be very detailed
and low-level. A second approach uses a flowcharting language,
or commands. Although programmer effort is required, the level
of detail and general appearance of the flowchart can be con-
trolled.

In addition to source, object, and load module library mainte-
nance, program library maintenance tools can be designed to
support related functions such as program version and level con-
trol, test case library maintenance, and project reporting and
control. The closer a library system can come to a centralized
repository for programming data, the more opportunities exist

No. 3 - 1972 PROGRAMMING TOOLS AND TECHNIQUES

documentation

program library
maintenance

project control
and reporting

program
change control

for cross-checking between classes of data such as plans and
project reports, flowcharts and implementation code, and speci-
fications and test plans.

A library maintenance system supporting many of these func-
tions can be built using standard Os utilities and job control lan-
guage. One such system is the Programming Production Library
(PPL) used by a chief programmer team. The PPL consists of
programs and procedures that aid program development where a
highly visible external library is important so that individual
team members can read each other’s code for documentation
and interface information.’

The objective of project control and reporting is to gain visibili-
ty and control over the elements of cost, schedule, and perform-
ance.® Frequent reports do not guarantee control or visibility,
and they may also cost many valuable man-hours in their prepa-
ration. Visibility is the ability to predict a variance in planned
cost, schedule, or performance. Control is exercised when ac-
tion is taken to correct the variation. Visibility and control are
management activities. The recording of project status can be
automated to produce reports comparing actual status to
planned.

Project control and reporting systems vary in the amount of
reporting required and in the control exercised. Many such sys-
tems are variants of some larger, more generalized system,
whereas others are simply procedural with informal or highly
structured review of project progress at specified checkpoints.

The program change control function provides assistance to
programming development activities such as integration test,
release, and maintenance. Analysis of the impact of a proposed
change on other parts of the system, as well as the portion to be
changed, and the assurance that the change will be properly im-
plemented rely on the ability to obtain accurate and current in-
formation on interface requirements over many levels of a sys-
tem.

There are a number of ways to gain this ability. One approach is
to retrieve interface information from data in a specified format
supplied by programmers. Another approach is to analyze
source programs for interface information. A third approach is
to establish office and machine procedures to limit access to
operational program modules.

Concluding remarks

The terms and definitions previously discussed introduce one to
the categories and functions of programming tools and tech-

POMEROY IBM SYST J

niques. It is hoped that this information will assist programmers
and their management in the design and implementation of pres-
ent and future systems.

An index to a selection of programming tools by category and
function is next presented. This selection comprises those tools
available to computer users as Program Products, Field Devel-
oped Programs, or programs classified as Type 1, Type I, or
Type I11. ABSTRACTS of these tools then follow.

INDEX TO PROGRAMMING TOOLS BY CATEGORY AND
FUNCTION

Modeling and simulation tools

+ Simulative languages
css 11
GPSS V

Measurement and evaluation tools

* Software monitors
GTF
SMF

¢ Timers
GTF

e Traces
GTF

Function testing tools

¢ Generators
OS utility IEBDG

e Test-result processors
SMFSA

Implementation tools

e Programming languages and coding aids
APL
PL/1 Checkout Compiler
PL/1 Optimizer

¢ Coding and debug systems
APL
COBOL Debug
CP-67/CMS
ITF
PL/1 Checkout Compiler
TSO TEST

Programming support tools

¢ Documentation tools
ATS
OS Flowcharts
OSFLOW
TEXT360

1972 PROGRAMMING TOOLS AND TECHNIQUES

APL

ATS

246

Library maintenance systems
OS utility IEBUPDTE

Project control and reporting
MINIPERT
PMS IV

ABSTRACTS OF PROGRAM TOOLS

APL{360

Function: interactive programming language

Availability: Program Product

Description

APL is a conversational, time-sharing system based on a concise mathemati-
cal programming language with simple syntax. The system has a large set of
primitive operations that work directly on arrays of information.

There are two modes of operation: (1) immediate-execution, and (2) program
definition. The system is designed to provide fast response to all requests.
Current work may be saved between sessions. The system also allows users
to create programming packages and to exchange programs and data online.
Uses of the system include mathematical and statistical calculation, symbol
manipulation, computer assisted instruction, and general data processing.
Concurrent processing is possible in as many additional regions or partitions
as are supported by the host operating system.

Programming systems
Operating systems: System/360 OS/MFT, OS/MVT, and DOS
Programming language: assembler
Mode of operation: terminal-oriented, time-sharing using IBM 2740,
2741, or 1050 communications terminals

Documentation
OS and DOS
APL/360 Users Manual GH?20-0906
APL/360 Primer GH20-0689
General Information Manual GH20-0850

Administrative Terminal System under OS/360

Function: documentation aid
Availability: Type 11

Description

ATS provides data and text input, editing and formatting capabilities which
are time-shared among terminals. Text and data are stored on direct-access
devices and can be retrieved at a terminal or other output device on demand.
Free-form and fixed-format data may be intermixed. Changes to existing data
are entered from the terminals with automatic realignment of the information
set. Text-formatting functions such as right justification, page numbering,
heading, and footing are also included.

Background programs may be run simultaneously with ATS since it resides
entirely in one partition or region. The system is open ended in that user-
written application programs may be catalogued and called.

Programming systems
Operating systems: System/360 and System/370 configurations of
OS/MFT (Version 2), OS/MVT, and DOS
Programming language: assembler
Mode of operation: terminal-oriented, time-sharing using IBM 2741
communication terminals

POMEROY IBM SYST J

Documentation
0S DOS
Program Description Manual GH?20-0582 GH20-0508
Application Description Manual GH20-0297 GH20-0510

Online COBOL Symbolic Debug under TSO
COBOL Interactive Debug

Function: noninterpretive debug system

Availability: Field Developed Program
Program Product

Description

COBOL Debug, when invoked under the Time Sharing Option (TSO) of
OS, can monitor, direct, and debug the execution of ANS COBOL programs
by referencing data and paragraph names. The facilities of the symbolic de-
bugging system are available to the programmer when an external interrup-
tion occurs from the console, a program interruption occurs within the
COBOL program, a breakpoint set by the programmer is encountered during
execution, or an unrecoverable 1/O error occurs. Some of the facilities avail-
able to the programmer are a paragraph trace option, display and/or altera-
tion of data fields, data field address display, source. statement display, snap-
shots of main storage, and the ability to resume execution at a paragraph or
statement number determined by the programmer.

Programming systems
Operation systems: System/360 and System/370 versions of OS/MVT
with TSO
Modes of operation: terminal-oriented and time-sharing

Documentation
FDP Program Description and Operations Manual SB21-0284
Program Product General Information Manual GC28-6454

Control Program-67]{Cambridge Monitor System

Function: coding and debugging system
Availability: Type 111

Description

CP-67/CMS is a time-sharing system that provides conversational use of a
terminal-oriented System/360 Model 67 configuration. The system has two
components that may be executed independently of each others: Control
Program-67 (CP-67), which manages the resources of the Model 67 and
provides time-sharing to any system; and Cambridge Monitor System (CMS),
which is a conversational operating system that provides its capabilities
through a terminal command language.

CP-67 builds and maintains for each user a virtual machine (a functional
simulation of a real computer and its I/O devices) from a predescribed con-
figuration. CP-67 allocates the resources of the real machine to each virtual
machine, in turn, for a slice of time. Regardless of the virtual machine confi-
gurations, each user controls his machine from his terminal (his console key-
board).

CMS gives the user the following capabilities at his terminal: creating and
managing files, compiling and executing problem programs, and debugging.
Because each user has his own copy of CMS residing in his own virtual
machine, he is unable to affect other users or CP-67. Also provided is a
batch monitor for program compilation and execution.

Programming systems
Operating systems: CP-67, a hardware control program
CMS, an operating system
Programming language: assembler

1972 PROGRAMMING TOOLS AND TECHNIQUES

CP-67/CMS

CSS il Computer System Simulator 11
e Function: special simulation language
o Availability: Program Product

s Description

CSS II.provides a language for constructing models of computer systems to
be studied. The language and structure of CSS II closely follow those of the
system under study. Equipment operation, specified by means of control
cards, is automatically accounted for by CSS II. System programs, both ap-
plication and control, are written by the user in flowchart fashion using the
CSS 11 instruction set. Program execution causes CSS II to simulate actual
system operation. Output statistics, which quantitatively describe system
behavior, are automatically and user provided. Examples of these statistics
are job throughput, channel utilization, distribution of response times, and
storage usage statistics.

Output allows the user to determine whether the system meets defined oper-
ating criteria and points to strong and weak areas of the system. Effects of
changes to existing systems can also be evaluated.

CSS 11 can be used to model a wide range of configurations and systems —
card, tape, and/or disk, multiprocessor, multiprogrammed, real-time, and
time-sharing systems. Equipment operation including System/360 and Sys-
tem/370 configurations with rotational position sensing and cross-channel
switching, the effects of control unit blocking, and storage interference are
automatically accounted for by CSS I1.

Equipment that can be modeled includes multiple processors with shared
main storage; selector, multiplexer, and block multiplexer channel operation;
tapes; drums; disk storage (2302, 2311, 2314, 3330); 2321 data cells; punch
card data processing equipment and general I/O devices; and communication
lines and terminals with provision for handling various line speeds, input
rates, and polling disciplines.

Three features incorporated especially for time-sharing systems include the
ability to perform the following: priority processing, creation of interruption
conditions with an internal timer, and use of terminals in a conversational
mode.

Other features include a “‘help” facility that permits the user to add his own
coded modules to the program to perform special operations. Also, a library
facility is provided whereby standard models such as operating system rou-
tines can be added and easily called by the user.

e Programming systems
Operating systems: System/360 and System/370 configurations of
OS/MFT and OS/MVT
Programming language: assembler
Mode of operation: batch

* Documentation
Application Description Manual GH20-0874
Program Description and Operations Manual SH20-0875

GPSS V General Purpose Simulation System V
» Functions: general purpose simulation language
e Availability: Program Product

"o Description

GPSS V is a general purpose simulation tool for modeling and examining the
behavior of systems in the engineering and management science areas. The
user is able to explore alternatives and identify capacity limitations. Pro-
posed changes to existing policies, methods, and operations can be subjected
to critical performance criteria and evaluated. Free-form coding of GPSS
statements and the ability to interface between GPSS and user-written PL/1
routines are among its features.

248 POMEROY IBM SYST J

. Program’ming systems
Operating systems: System/360 or System/370 configurations of
OS/MFT, OS/MVT, and DOS
Programming language: assembler
Mode of operation: batch

* Documentation
Qs DOS

GPSS V Application Description Manual GH20-0825 GH20-0826
Introductory User’s Manual SH20-0866 SH20-0866

Generalized Trace Facility

Functions: time, trace, software monitor (hook catcher)
Availability: Type I

Description: .
GTF is an optional serviceability feature that assists in problem determina-
tion and diagnosis. It is invoked from the master console and operates in a
region under the MFT and MVT control program options. Some of the func-
tional capabilities provided by GTF include the following:
. optional tracing of system events either internally in the GTF region or
externally to an 1/O device;
. optional tracing of minimal or comprehensive data for system events
. selective tracing of only specific system events
. optional recording of user trace data in additional to normal system en-
tries on tape or direct access storage.

Programming Systems
Operating systems: System/360 and System/370 versions of OS/MFT
and OS/MVT
Modes of operation: batch, terminal-oriented, and time-sharing

Documentation
OS Service Aids GC28-6719

Interactive Terminal Facility

Function: interactive coding and debugging system
Availability: Program Products

Description

ITF is a terminal-oriented, low-entry time-sharing system providing interac-
tive problem-solving capability. Available programming languages are ITF-
BASIC and ITF-PL/1 (a subset of PL/1).

All system and terminal functions are controlled by the user from his termin-
al. Some of the facilities are:

. Program editing on a single-line or multiple-line basis

. Source statement syntax analysis

. User interaction with executing programs

. Direct access file 1/O statements

. On-line error messages

. Debugging of programs via execution-monitoring aids

. Desk calculator mode

. Private and common libraries for program and data storage

Programming systems
Operating systems: System/360 OS/MFT, OS/MVT (including TSO
environment), and DOS
Programming language: ITF-BASIC and ITF-PL/1
Mode of operation: terminal-oriented time-sharing

Documentation

0OS/DOS and OS(TSO) Interactive Terminal Facility:
PL/1 and BASIC General Information GC28-6825

1972 PROGRAMMING TOOLS AND TECHNIQUES

MINIPERT

os
Flowcharts

OSFLOW

0S utility
IEBDG

MINIPERT
* Function: project control
. Availabiiity: Program Product

* Description .

An interactive Critical Path Method (CPM) program, MINIPERT, an APL
application, provides a solution to project scheduling problems. A project is
treated as a series of interrelated activities done in parallel or serially to form
a network. A critical path is the longest time path through this network to
complete the project. All other paths have slack and are called non-critical.
MINIPERT schedules critical and non-critical work to take the best advan-
tage of available resources and to make the critical path as short as possible.
Features of MINIPERT include a flexible calendar capable of specifying
holidays and vacation periods, manpower loading, various reporting func-
tions including diagrams and bar charts, and the ability to accept activity
time durations in days, weeks, or months.

Programming systems
Operating systems: APL/360-OS and APL/360-DOS
Programming language: APL
Mode of operation: interactive and terminal-oriented

Documentation ‘
Introduction to MINIPERT GH?20-0852

OS Flowcharts

¢ Function: documentation aid

e Availability: Type 111

. Descriptidn . .
This program is an OS version of FLOWCHART, a DOS/360 program,
which enables users to produce clear, standardized, and maintainable flow-
charts.

Programming systems
Operating system: 0S/360
Programming language: F-level assembler
Mode of operation: batch

OS System[360 Flowchart: DOS FLOWCHART under OS
e Function: documentation aid
s Availability: Type 111

¢ Description
This aid, a modification of FLOWCHART, a DOS/360 program (360A-SE-
22X), gives Operating System users the flowcharting capability that is avail-
able under DOS. The program enables the user to obtain clear and reprodu-
cible flowcharts and to standardize flowcharting techniques.

* Programming systems
Operating system: 08S/360
Programming language: assembler
Mode of operation: batch

OS utility IEBDG
¢ Function: generator
* Availability: Type 1

e Description
One of the OS utilities, IEBDG, generates a data set from a sequentially
organized input data set. Repositioning and converting of fields within re-
cords are accomplished by programmer-specified utility control statements.
User exits are also available.

POMEROY IBM SYST J

Programming systems
Operating systems: System/360 OS/MFT and OS/MVT

Documentation
System/360 Operating System Utilities GC28-6586

OS utility IEBUPDTE

Function: library maintenance
Availability: Type 1

Description

One of the OS utilities, IEBUPDTE can create and update symbolic librar-
ies. It can make changes to any sequential or partitioned data set containing
records of 80 bytes or less. Also, the utility can change data set organization
from sequential to partitioned and vice-versa. Other features are add, copy,
and replace functions and the ability to assign sequence numbers.

Programming systems
Operating systems: System/360 OS/MFT and OS/MVT

Documentation
System/360 Operating System Ultilities GC28-6586

PL|1 Checkout Compiler

Functions: programming language, interactive debugging system
Availability: Program Product

Description

The PL/1 Checkout Compiler, a semi-interpretive language processor, is a
companion product for the PL/1 Optimizer and is compatible in terms of
source language and object time interface. Programs consisting of mixtures
of optimized code and checkout interpretive modules are supported. FOR-
TRAN and COBOL. object module interfaces are provided.

When supported under TSO, full interactive program development which
includes monitoring of text execution and source program changes during

test run is supported.

Programming systems
Operating systems: System/360 and System/370 versions of OS/MFT
and OS/MVT
Modes of operation: batch, terminal oriented, and time-sharing

Documentation
General Information Manual GC33-0003

PL/1 Optimizing Compiler

Function: programming language compiler
Auvailability: Program Product

Description

The PL/1 Optimizer is an optimizing compiler for the PL/1 language with
language extensions beyond level F of the language provided under OS. The
optimizer uses flowtracing, constant expression recognition, statement rear-
rangement, register use optimization, and increased inline code. Also, the
optimizer is compatible with and designed for use with the PL/1 Checkout
Compiler.

Programming systems
Operating systems: System/360 and System/370 versions of OS/MFT,
OS/MVT, and DOS
Programming language: assembler macroinstructions
Mode of operation: batch

1972 PROGRAMMING TOOLS AND TECHNIQUES

OS utility
IEBUPDTE

PL/l Checkout
Compiler

PL/1 Optimizer

Documentation
0S DOS

General Information Manual GC33-0001 GC33-0004

Project Management System 1V

Function: project control
Availability: Program Product

Description

This system is a collection of programs that can be combined to provide crit-
ical-path and general cost analyses. PERT and PERT COST, precedence
and precedence/cost, resource allocation, and report generation capabilities
are also provided. The programs comprising the system are a network, re-
source allocation, cost, and report processors.

Programming systems
Operating system: 08S/360
Programming language: assembler
Mode of operation: batch

Documentation
Application Description Manual GH?20-0855

System Management Facilities

Function: software monitor

Availability: Type I

Description

These facilities are optional features of OS/360 and OS/370 selected at sys-
tem generation time in conjunction with the MFT or MVT options. Exam-
ples of data elements collected include job and job-step CPU time, main
storage requested, main storage used, number of SYSIN records, number of
SYSOUT records, EXCP counts for user data sets by unit address, start and
stop times, and Time Sharing Option (TSO) terminal statistics. This data can
then be used by user-written routines to perform job accounting or system
analysis. In addition to job accounting, the gathered data can be used to de-
termine items such as channel usage, number of initiators used, and time-
sharing driver performance.

SMF also provides control program exists that are used by user-written rou-
tines to monitor processing of the job stream. Exits are provided in the
breader/interpreter, the initiator/terminator, the supervisor and the timer
second-level interruption handler. Additionally, SMF supports both back-
ground batch and foreground time sharing processing when TSO is used.

Programming systems
Operating systems: System/360 and System/370 versions of OS/MFT
and OS/MVT
Programming language: assembler
Modes of operation: batch and terminal-oriented

Documentation
0S/360 Planning for System Management Facilities GC28-6712

System Management Facilities Selectable Analyzer

Function: test-result processor
Availability: Field Developed Program

Description

The SMFSA processes tape containing SMF data records produced by the
System Management Facilities. Reports give job, job-step, and systems
usage analysis through a generalized accounting routine for user billing. The
system summary report is produced for each run of the SMF selectable ana-
lyzer. All other reports are selectable under operator control.

POMEROY IBM SYST J

¢ Programming systems
Operating systems: System/360 and System/370 versions of OS/MFT
and OS/MVT with the SMF option
Programming language: PL/1

o Documentation
Program Description and Operations Manual SB21-0047

TEXT360 TEXT360
e Function: text preparation
e Availability: Type III

¢ Description

TEXT360 is a text-processing system with data entry, updating, and page
formatting capabilities. Input is free-form on punched cards. Output is on a
line printer. Standard text processing functions are hyphenation, justification,
double column alignment, and indentation. Also, horizontal and vertical rules
for tables and figures can be generated. The system consists of the following
four main processing programs: file maintenance, build line, page layout, and
post processor. There are also four peripheral programs—prescan, print,
spelling check, and dictionary update.

Programming system
Operating system: 0S/360
Programming languages: PL/1 and assembler
Mode of operation: batch

Time Sharing Option TEST command TSO TEST

o Function: debugging facility
e Availability: Type I

¢ Description .
TSO TEST is an interactive test and debugging facility for use with object
level programs. The TEST command allows the programmer to debug or test
his program dynamically without special provisions in the source code. The
system can be used to test user or control programs, allowing the display and
modification of storage, general registers, and floating-point registers. The
user may suspend execution of his program at specified locations, perform an
analysis or modification, and continue processing. The programmer may also
alter the environment in which he is testing his program by doing such things
as freeing or getting storage, loading a program, or deleting a program.

TSO TEST differs from some debugging packages in that it allows actual
execution of the problem program rather than interpretive execution. This
means that problem program execution may be terminated due to error con-
ditions produced by the problem itself. Such a testing method provides a re-
alistic environment for the program, since it does not degrade the problem
program execution speed as occurs in interpretive executions.

Programming system
Operating systems: System/360 and System/370 versions of OS/MVT
with TSO
Programming language: assembler
Mode of operation: terminal-oriented time-sharing

Documentation
TSO Command Language GC28-6732

ACKNOWLEDGMENT

The author wishes to acknowledge the many individuals in IBM
who have helped bring together the ideas and concepts present-
ed in this guide, and especially the help of the following. G.
DeSalvo and W. Newman provided assistance in compiling the

No. 3 - 1972 PROGRAMMING TOOLS AND TECHNIQUES

254

list of programming test tools. Information regarding function
testing came from W. Elmeéndorf and P. Schlender. R. Bender
and E. Pottorf advised the author on program analysis tech-
niques. F. Schulman and R. Phillips provided information on
hardware monitors. Measurement definitions were contributed
by K. LaCroix. Computer systems analysis topics came from M.
Lehman, R. Hill, and W. Stanley. R. Merikallio assisted with
software monitors. Modeling and simulation information was
contributed by G. Pirtle and W. Duerksen. Assistance on simu-
lation languages came from D. Braddock and P. Skiko. H. Mills
provided information on programming techniques.

CITED REFERENCES

1. C. D. Warner, “Monitoring: a Key to Cost Efficiency,” Datamation 17, No.
1,40-42, 49 (January 1, 1971).

2. H. N. Cantrell and A. L. Ellison, “Multiprogramming system performance
measurement and analysis,” AFIPS Conference Proceedings, Spring Joint
Computer Conference 32,213 -221 (1968).

. K. W. Kolence, “A Software View of Measurement Tools,” Datamation 17,
No. 1, 32-38 (January 1, 1971). .

. P. S. Cheng, “Trace-driven system modeling,” IBM Systems Journal 8, No.
4,280-289 (1969).

. W. L Stanley, “Measurement of system operational statistics,” IBM Systems
Journal 8, No. 4, 299 -308 (1969).

. K. V. Hanford, “Automatic generation of test cases,” IBM Systems Journal
9, No. 4, 242-257 (1970).

. F. T. Baker, “Chief programmer team management of production program-
ming,” IBM Systems Journal 11, No. 1, 56 -73 (1972).

. E. M. Hahne, “An hypothesis with applications for total systems manage-
ment,” A Forum on Systems Management, Bureau of Economic and Busi-
ness Research, School of Business Administration, Temple University, Phila-
delphia, Pennsylvania (June 1967).

GENERAL REFERENCES

C. D. Allen, “The application of formal logic to programs and programming,”
IBM Systems Journal 10, No. 1,2 -38 (1971).

A. J. Bonner, “Using system monitor output to improve performance,”
IBM Systems Journal 8, No. 4, 290-298 (1969).

M. E. Drummond, Jr., “*A perspective on system performance evaluation,” IBM
Systems Journal 8, No. 4, 252 -263 (1969).

H. G. Kolsky, “Problem formulation using APL,” IBM Systems Journal 8, No.
3,204 -219 (1969).

P. H. Seaman and R. C. Soucy, “Simulating operating systems,” IBM Systems
Journal 8, No. 4, 264-279 (1969).

POMEROY IBM SYST J.

