Channel and direct

System dependence on channel and direct access device archi-
tecture was addressed with the introduction of System/370. Dis-
cussed are the alternatives to this problem and their evaluation
by a channel architecture program simulator.

Also presented is the solution, a block multiplexer channel and
sector addressing in devices, which resulted in more efficient
channel utilization and reduced programming overhead.

access device architecture
by D. T. Brown, R. L. Eibsen, and C. A. Thorn

During the development, testing, and use of System/360, diffi-
culties and problems were logged, but few received the attention
given to the Direct Access Storage Device (DASD). This was not
necessarily because bASD attachment and use had greater ineffi-
ciencies or design problems than other devices. With Sys-
tem/360, DASD attained a prominence it never had before, since
no previous system was as dependent on a single Input/Output
1/0) device type for satisfactory system performance.

With the introduction of System/370 and the expected continua-
tion of system dependence on DASD, it was necessary that
DASD operations be optimized.

Discussed in this paper are the specific problems experienced
by medium and large systems and the three major solutions
that were developed to address these DASD problems: (1) an
1/0 processor, (2) a buffered DASD controller, and (3) a modi-
fied multiplexer channel with a modified pasD controller. Eval-
uation of these alternatives was aided by the use of a chan-
nel architecture simulator. The third solution, referred to
in this paper as the block multiplexer channel proposal, was
adopted. The multiplexer channel with selector channel speeds
that was defined and a new DASD control unit that was specified
to provide rotational position sensing are then presented.

BROWN, EIBSEN, AND THORN IBM SYST J

The environment

An assumption in the development of System/360 was that the
attachment of direct access storage to the system would be high-
ly desirable and almost universally accepted. This assumption
was based on the fact that disk and drum technologies had suffi-
ciently matured to make their use practical on all systems. Thus,
IBM’s major operating systems, 0S/360 and DOS/360, required at
least one and preferably more direct access devices for external
storage.

The use of DASD by the operating systems was high, for it was
necessary for these devices to be accessed many times during
the setup and execution of every job processed by the system, in
the retrieval of programs and control information, and in the
updating of externally stored information. As users adopted
DASD for data and program storage, these devices became cru-
cial compared with other 1/0 devices in affecting system per-
formance. Both simulations and actual practice showed that, in
many cases, system performance was limited by DASD use.
Because using a Central Processing Unit (CpU) with higher
speed capabilities did little to enhance throughput for these sys-
tems, other approaches were investigated to improve system
performance.

The time taken by a DASD to seek, that is to move the head
from one cylinder to another, was the first area for which a solu-
tion was sought. A means of reducing the effects of this delay
was to prohibit frequently accessed data sets from coresiding on
the same device. Such a distribution of data and accesses al-
lowed these data sets to be accessed without head movement in
most cases. However, while distributing the frequently used
data sets provided the greatest improvement, somewhat less
improvement accrued by doing the same with the other data
sets. Thus, it was found that the benefits achieved from data
set distribution were limited by two factors. First, the number of
frequently accessed data sets was often larger than the number
of available devices. Secondly, as device activities increased,
channel utilization increased until the limit of channel capability
was reached.

The second approach for improving system performance was
the use of additional channels across which the DASD could be
spread to avoid channel capability bottlenecks. As was expect-
ed, the total DASD throughput was aimost directly proportional
(in a very active and well-distributed system) to the number of
channels used by the direct access devices. This resulted in the
extended capability, which is now provided on some systems, to
attach more than seven channels. However, the high cost of this
extended capability was justified on only the very large systems.

NO. 3 - 1972 CHANNEL AND DASD ARCHITECTURE

identified
problems

proposed
solutions

The greatest problems, typical of medium and large Os systems,
were found in architectural difficulties: high utilization of the
channel and the 1/0 interface due to searching for records on
DASD, and high operating system overhead.

The reading or writing of a record on a direct access device in-
volves at least three specific activities at the device: seeking
(selecting the desired track on the device), searching (finding the
desired record on the track), and reading or writing. In the case
of writing, verification typically follows. While seeking requires
very little channel, interface, or control unit activity, searching
monopolizes the channel, interface, and control unit facilities for
a long period of time since it involves the repeated transfer of
the search argument from the channel to the control unit, to be
compared against each record encountered on the device. With
an 1BM 2314, for example, rotation time is 25 ms and a search
takes 12.5 ms on the average. After the search, a read or write
takes place. During the search, a process which does not make
efficient use of the 1/0 facilities, and the subsequent read or
write, no other device is able to use the channel, 1/0 interface, or
control unit.

Of the several programming areas identified as potential prob-
lems in system throughput, the Operating System Input/Output
Supervisor (10S), which managed the initiation and termination
of all 1/0 operations, was a concern. A significant percentage of
supervisory programming overhead was contributed by 10S, due
not only to its size and complexity, but also to the frequency
with which it was called upon. While executing, 10S used the
cpuU facility which could otherwise be used for other program
processing. 10S execution also impeded 1/0 activity because 10S
must run, in part, with 1/0 interruptions disabled, thereby caus-
ing any 1/0 interruption condition arising during the disabled
time to be held off until 10S allowed interruptions. Also, when a
selector channel caused an 1/0 interruption, that channel could
perform no operations until 10§ handled the interruption and
reinstructed the channel.

Three proposals were made for solving the identified problems:

& the /O processor
& the buffered control unit
s the block multiplexer channel

The most comprehensive proposal of the three was the 1/0 pro-
cessor. The processor was assigned many of the functions nor-
mally performed by the operating system. To perform these
functions, the proposed processor included most of the charac-
teristics of a CPU. A suggested instruction set included arithme-
tic and logical operations similar to System/360 as well as 1/0

BROWN, EIBSEN, AND THORN IBM SYST J

operations. As with normal channels on the system, the 1/0 pro-
cessor was directly coupled to the CPU main storage where the
programs, data, and control information for channel operations
resided. Some of the operating system functions subsumed by
the proposed 1/0 processor were simple error recovery, record
blocking and deblocking, retrieval of indexed records, and data
address conversion. To simplify the performance of these func-
tions, changes to the control unit design, data format on the de-
vice, and data indices were also proposed. Furthermore,
changes to the operating system were proposed to provide a
more functionally oriented interface for communication with the
1/0 processor than with normal channels.

The buffered control unit proposal was based on the use of a
selector channel with data and search argument buffering residing
in the control unit. Further, the proposal specified a means for
searching for records which could, in a large number of cases, be
handled by the control unit without prolonged channel participa-
tion. The buffering aspect involved a sufficiently large record
buffer in the control unit. Once the record had been loaded from
the device on an input operation, for example, the transfer to the
channel could take place at a speed limited only by the channel
and buffer.

The block multiplexer channel proposal required a new channel
and a new control unit. The proposed channel was similar to the
selector channel in that both had high date rates, but similar to
the byte multiplexer channel in that a degree of multiplexing was
specified. Inasmuch as neither the 1/0 interface nor the device-
dependent programming interfaces were necessarily changed by
the new channel, current devices of all types could use the chan-
nel. In addition, any buffered device would be particularly suited
to the channel. The proposed control unit was significantly dif-
ferent in that a new order of addressing was introduced. While
current DASD addressing specified cylinder and track, the pro-
posal specified sector addressing, in addition, based on the divi-
sion of all tracks into fixed sectors. The control unit would then
monitor the DASD for a selected sector before beginning the
search for the desired record, thus making the searching time
relatively small. The multiplexing capability of the channel was
intended to make efficient use of the time made available by sec-
tor orientation.

Simulation and evaluation of proposals

As solutions were proposed, it became important to evaluate the
comparative performance potential of each. Early simulation
experiments led to the development of an 1/0 subsystem simula-

NO. 3 - 1972 CHANNEL AND DASD ARCHITECTURE

tor as a vehicle for modeling the proposed designs. The simula-
tor that evolved emphasized the following characteristics:

Detailed modeling of channel, control unit, and device func-
tions integrated with macromodeling of the 10s functions of
the cpU

Use of a flexible, probabilistic request generator to synthe-
size an EXCP stream representative of the unmodeled part of
the system

Modular organization to handle a multiplicity of models at
the channel and control unit level, while minimizing the need
to remodel the common parts of the system

Highly parameterized base model to facilitate representation
of a range of synthetic applications and a variety of DASD
and related cyclic devices

The simulator’s characteristics are now presented in terms of its
modular components, as shown in Figure 1.

request The request generator created simulated 1/0 requests such as
generator GET, PUT, or EXCP supervisor calls which were representative of
a large data base system. The rate at which requests were gener-
ated was not directly specified. Instead, a constant system queue
philosophy was employed under which the number of requests
coexistent in the modeled system was specified as a constant for
each subrun. Once the request generator had injected the speci-
fied number of requests into the model, additional requests were
REQUEST . .
GENERATOR injected only to replace those that completed and exited.

Figure 1 Simulator macroflow

X D The choice of a constant queue drive was somewhat arbitrary,
but was consistent with the fact that cpu utilization for execu-
tion of application programs was not included in the model.
(RETURN 10 SCREDULER) Therefore, the number of 1/0 requests in the system was logical-
ly limited only by the number of active programs or by the ca-
pacity of the operating system. The case implied was one where
the computer system was fully /O limited, creating maximum
sensitivity to performance of the I/0 subsystem. Since system
queue size was an independent variable, the corresponding de-
SO OCERTED e -zek0) pendent variables became response time and throughput as ap-
plied to the 1/O request stream clocked at the GET/PUT interface.
MR Response time was the elapsed time from the issue of a GET/PUT
call to completion of the resulting POST macro, while throughput
CHANNEL PROGRA was the mean request completion rate.

THRUPUT

joe————— RESPONSE TIME —————3m

SIO-INTERRUPTION
MODEL

The attributes that characterized a simulated 1/0 request were
grouped as primary attributes, which were randomly selected
from their respective probability distributions, and secondary
attributes, which were specified as dependent functions of the
primary attributes, the configuration, and the dynamic state of
the request.

BROWN, EIBSEN, AND THORN IBM SYST J

The primary attributes included:

e Data descriptors
Device address
Cylinder address
Rotational position of record
Record length

¢ Request descriptors
Operation (read/update in place)
Access method (direct/indexed)

The update operation was represented by a simulated channel
program containing the command chained sequence —read, write
and write-check—all to the same record address. The indexed
access method modeled a sequence of channel programs consist-
ing of three index references before reading the data record.
(Although not 1SAM, it incorporated some ISAM facilities.) After
random selection of the data location, the simulator mapped
backward to the fixed relative locations of the associated indices.
The mapping pattern assigned the first two indices to a common
cylinder and the third index to the same cylinder as the data.

Secondary attributes included:

¢ Index record descriptors (one set per index level)
Device address
Cylinder address
Rotational position of record
Record length

¢ Data path descriptors (one set per device address)
Channel address
Control unit address

Although the primary data and request descriptors were selected
probabilistically, the update operation and indexing injected
secondary references that were rigidly interdependent. Also, the
dynamic loading of channels and devices could vary significantly
in spite of the discipline of a constant system queue.

The slo-interruption section of the model represented the soft-
ware and hardware functions that translated a data management
macro, such as GET or PUT, into an appropriate channel pro-
gram, supervised the initiation of the channel program, and re-
ported its completion to the calling program via the POST macro.
Software functions included data management and the I/O super-
visor, while the hardware functions were limited to the interac-
tion of channel, control unit, and device in responding to the
START I/O (S10) instruction and in propagating interruptions to
the cpuU. These functions were modeled in only enough detail to

No. 3 - 1972 CHANNEL AND DASD ARCHITECTURE

Si0-interruption
model

channel
program
model

Figure 2 Simple direct read using a selector channel program model and I1BM 2314
disk

STAND-ALONE SEEK DISK READ
CHANNEL PROGRAM CHANNEL PROGRAM

SEEK SEEK cc

CSEARCH ceC
TIC cC
READ

-
ITERATE

READ
SEALF\’O%I-;TIC J_ DATA

ARM MOTION l
_——]

RECORD FOUND

CE=CHANNEL £ND STATUS
DE=DEVICE END STATUS

simulate their contribution to response time. For example, data
management was modeled only to the extent of holding the sim-
ulated cpU for a length of time representing average execution
time of a GET/PUT macro, before passing the request to the EXCP
interface. 10s involved some logical detail since the management
of logical channel queues was modeled in addition to represent-
ing cpuU utilization for execution of EXCP, SIO, 1/O interruption
handler, pOST and channel-restart routines. However, CPU ac-
tivity other than data management and 10s was ignored. The
most detailed logic of this section modeled the propagation and
queuing of interruptions, including generation of the channel
available interruption condition by the block multiplexer chan-
nels defined later in this paper.

The channel program model represented the operation of chan-
nels, control units and direct access devices during simulated
execution of selected channel programs. This model was unique
for each proposal.

A simple example was that of a nonindexed read operation that
was initiated by a simulated call specifying Basic Direct Access
Method (BDAM). A comparison could be made between the
channel programs for the selector and block multiplexer chan-
nels. The selector channel attached an 1BM 2314 and the block
multiplexer channel attached an iBM 3330. In the selector chan-
nel model, a nonindexed read invoked a sequence of two sepa-
rate channel programs illustrated in Figure 2 —the “‘stand-alone
seek” program inserted by 10S to free the channel during arm-
motion, and the basic read program provided by the access
method. The block multiplexer channel model, depicted in Fig-
ure 3, mapped the nonindexed read into a single channel pro-
gram since the stand-alone seek program is not needed. The

BROWN, EIBSEN, AND THORN IBM SYST [

Figure 3 Simple direct read using block multiplexer channel program model and IBM
3330 disk

DISK READ
CHANNEL PROGRAM

SEEK cc

SET SECTOR cc U
CE=CHANNEL END STATUS
CSEARCH cc DE=DEVICE END STATUS
TIC cc

READ

SET
SECTOR F

DE READ
CE L DATA J

DEVIGE SEARCH
ARM MOTION] IL FORSECTOR |

RECORD FOUND

channel disconnected from the device during arm-motion time
by storing the address of the next operation to be performed by
the device in the subchannel associated with the device. The
channel program could then be resumed when the device pre-
sented Device-end (DE). The channel program command then
primed the device with a rotational position cue and allowed the
channel to disconnect again. When the disk rotated to the cued
position, the device presented DE and the Transfer-in-channel
(T1C) loop of the read program was entered.

While Figure 2 and Figure 3 show the level of detail at which
the channel programs were modeled, contention for the channels
and control units that occurred before most operations and re-
sulted in wait times is not explicitly shown.

Simulation was used to investigate approximately three-thou-
sand combinations of system configurations, queue sizes and
application descriptions including a wide range of CPU’s, several
device types (with an emphasis on the iBM 2314, 3330, 2301 and
2305 devices), and the various proposed channels and control
units. The request mix used for the results obtained consisted of
a record length distribution ranging from ten bytes to ten thou-
sand bytes with a mean value of three hundred fifty bytes,
uniform device and cylinder distributions except for index rec-
ords, and a request mix of 75 percent indexed requests and 17
percent updates. Indexed requests and updates were chosen
independently, resulting in four request categories:

Indexed read — 62 percent
Indexed write — 13 percent
Direct read —21 percent
Direct update —4 percent

No. 3 - 1972 CHANNEL AND DASD ARCHITECTURE

simulation
results

Simulation results using o varioble number of 1IBM 3330-like devices on a
single channel

DEVICES

REQUESTS PER SECOND

BLOCK
MULTIPLEXER
CHANNELS

SELECTOR
CHANNELS

QUEUE SIZE

Most requests involved the access of more than one record.

Some results of the block multiplexer channel and the selector
channel comparisons are shown in Figures 4, 5, and 6. The term
device is used to indicate a single disk pack and arm rather than
an entire storage facility. Throughput, in requests per second as
depicted in Figures 4 and 5, is given as a function of queue size.
All resulting figures apply to a particular work load defined by
the above request mix, statistically uniform device loading, and
a constant request queue. It is also interesting to note that the
model was designed to predict results from queue lengths up to
100, although such lengths are not experienced in current
systems.

A device on a selector channel operated independently only for
the seek operation and required the channel for searching as
well as for reading. For this reason, the channel quickly became
a bottleneck as 1/0 activity (the request queue) increased. In-
creasing the number of 1BM 3330-like devices on a selector
channel of the modeled System/360 Model 85 did not propor-
tionately increase the utilizations as shown by the curves of
Figure 4. The utilizations of the simulated selector channel with
eight devices were 35 percent at a queue of one, 85 percent at a
queue of five, and 98 percent at a queue of ten. Increasing the
number of devices to 16 produced corresponding utilizations of
35,93, and 100 percent.

BROWN, EIBSEN, AND THORN IBM SYST J

Figure 5 Simulation results using I1BM 3330-like devices evenly distributed among o
variable number of channels

BLOCK
MULTIPLEXER
CHANNELS

REQUESTS PER SECOND

SELECTOR
CHANNELS

QUEUE SIZE

Figure 6 [/O response time distributions for a constant queuve of 25

B §
7 N
%, N
SELECTOR MULTIPLEXER
MEAN RESPONSE 0.72 0.25 SEC.

%

—
z
o
=]
-3
w
[
i
>
18}
z
)
>
o
e}
@
o

STD. DEVIATION 0.52 0.13 SEC.
TRANSACTIONS/SEC 35.0 100.7

RESPONSE—SECONDS

Devices with rotational position sensing on the model of a block
multiplexer channel did not require the channel for searching
and, thus, performance was limited less by the channel and more
by the number of devices, assuming a uniform distribution of
activity among the devices. The curves in Figure 4 show the
resuits as the number of devices on a block multiplexer channel

No. 3 -« 1972 CHANNEL AND DASD ARCHITECTURE

were varied on the modeled System/360 Model 85. Channel uti-
lization was less than 1 percent at a queue of one, 7 percent with
eight devices at a queue of 10, and 19 percent with 128 devices
at a queue of 10.

The number of channels on the modeled System/360 Model 85
containing 64 1BM 3330-like devices allocated evenly among the
channels was also varied and is shown in Figure 5. The perfor-
mance with eight block multiplexer channels was only slightly
better than with four, indicating that simulated performance in
this case was almost entirely limited by the devices. Simulated
performance continued to improve as selector channels were
added, but eight selector channels did not match the performance
of one block multiplexer in this application.

Furthermore, the mean response time in a system was lower
with a block multiplexer channel than with a comparably driven
selector channel because there was less waiting for the channel.
Figure 6 shows the response times on a modeled 1BM Sys-
tem/370 Model 155 for the two types of channels, both driven by
a constant queue of 235 transactions. The block multiplexer
channel achieved almost three times the throughput with about
one-third the response time of the selector channel. Also,
the standard deviation of response time was much lower for the
block multiplexer channel. This contradicted a belief that the
response time distribution for a block multiplexer had a long tail
due to transactions that repeatedly found the channel busy when
the desired record became available at each revolution. In fact,
this effect was much less significant than the effect of variable
wait time to capture a highly used selector channel.

In addition to the block multiplexer and selector channels, an 1/0
processor and several varieties of buffered control units were
modeled. The performance of the 1/0 processor was comparable
to that of the block multiplexer channel except when attached to
a slow CPU with high 1/O activity. In this case which represented
an extreme situation, the 1/0 processor was better because the
CPU became totally utilized in performing 10S functions when
connected to a block multiplexer channel. However, as model-
ing of the 1/0 processor progressed, it was determined that at
that point in time the 1/0 processor created problems of hardware
compatibility and increased cost. It, therefore, was not adopted.

Configurations of more than one buffered control unit per chan-
nel, when driven by a large request queue, performed somewhat
better than the block multiplexer proposal because data trans-
fers between control units and devices could occur simultane-
ously. Also, channel time for data transfer was generally re-
duced. When the request queue was small, however, the addi-
tional time required to unload the buffer after the read degraded

BROWN, EIBSEN, AND THORN IBM SYST ¥

performance. After extensive modeling, a buffered control unit
was not adopted because its slight performance advantage in a
configuration of multiple buffered control units per channel was
outweighed by the performance disadvantage with small request
queues. Furthermore, it benefited only direct access devices
compared to the block multiplexer which could be used ad-
vantageously by other i/0 devices.

After the block multiplexer proposal had been chosen over the
other alternatives, the simulator was still used to evaluate design
details such as the necessary resolution of angular address
(sector size) and the value of multiple requesting capability for
the 1BM 2305. One simulation of a 2305 on a block multiplexer
channel showed a throughput increase, due to the request
queuing facility, of 50 percent at a queue of two and 160 percent
at a queue of eight.

Other details that affect performance, but are generally invisible
to the system user, were considered. One was an expanding re-
cord window that was proposed to operate as follows. After an
unsuccessful attempt to capture the channel, the device ad-
vances the point at which it requests the channel so that on the
next revolution, the channel request begins earlier. The request
point is further advanced each revolution until the channel is
captured. The effect was to increase the probability of channel
capture for requests that had had to wait, thus decreasing the
variability of response time. The disadvantage, among others was
that channel utilization was increased because early channel cap-
ture meant a longer channel hold time. Simulations showed a
small decrease in response time variance and some decrease in
throughput, as well as some increase in mean response time. Con-
sequently, this feature was not adopted.

As a result of the decision to implement the block multipiexer
channel proposal, the new channel type and a new DASD func-
tion, rotational position sensing, were defined in complete detail.

Block multiplexer channel

The block multiplexer channel, deriving two major characteris-
tics from the selector and byte multiplexer channels — speed and
multiplexing capability, is designed to handle devices with the
high data rates normally handled by selector channels. The 1BM
2880 Block Multiplexer Channel, for example, can operate at
speeds up to 3.0 million bytes per second. Multiplexing implies
multiple subchannels, and, like the byte multiplexer channel, the
block multiplexer channel has both shared and nonshared sub-
channels. The multiplexing capability of the block multiplexer

NO. 3 + 1972 CHANNEL AND DASD ARCHITECTURE

channel, however, is limited to interleaving complete blocks of
data because of the expected data rates on the channel. Logical
disconnection of a device from the channel is permitted between
blocks and occurs only if a significant delay is anticipated before
another operation can be executed by the device.'™

Two allied functions were found necessary because of block
multiplexing. While the 1/0 interface definition already accom-
modated multiplexing of blocks on the interface, no facility ex-
isted to efficiently interleave the execution of most 1/0 instruc-
tions with bursts of channel activity on the interface. The chan-
nel available interruption condition was thus defined to alert the
operating system that the channel, which previously rejected an
instruction because it was busy, is now available.>*

A new instruction, HALT DEVICE, was also defined largely be-
cause of the block multiplexing operation. Its function is simi-
lar to HALT 1/O except that, when a channel is busy, only the
addressed device is affected.””

Rotational position sensing

The tracks on DASD employing rotational position sensing are
divided into sectors. The number of sectors per track is fixed for
each device but varies among models. In general, a large number
of sectors, not exceeding 256, is implemented. The 1BM 3330
uses 128 sectors; the IBM 2305 Model 1 uses 90, and the 1BM
2305 Model 2 uses 180.

The one-byte sector number is sent to the DASD by a new com-
mand called set sector. When it receives the sector number, the
control unit logically disconnects from the channel until the de-
sired sector is reached or is about to be reached. Reconnection
is then attempted. Since device rotation causes the sector to be
available only temporarily, a busy channel can result in a missed
sector4and a delay of one rotation time before the sector is again
ready.

The sector number to be used in the set sector command can be
obtained in two ways. When the records on the track are of a
fixed length and format, the sector can be derived from the track
capacity and the sectors per track. Alternatively, when a record
is read, written or searched, its sector can be retrieved by a read
sector command.

The request queuing facility of the 1BM 2305 further uses the
block multiplexer channel and the rotational position sensing
concept by allowing up to eight operations to be simultaneously
in process for a single device. The device is assigned eight de-

BROWN, EIBSEN, AND THORN iBM SYST J

vice addresses to which operations can be arbitrarily directed.
The control unit for the 2305 effectively sorts these operations
so that they are handled in the order in which their respective
sectors become ready at the device.”

Concluding remarks

The effective use of direct access devices in System/360 was
limited by channel and device architecture. Because System/370
was expected to continue with the same dependence on DASD,
the problems were defined and solutions were developed. With
the assistance of a simulator used during evaluation, the block
multiplexer channel proposal was selected. This effort thus
provided the basis of the block multiplexer channel and block
multiplexing devices that are available today.

ACKNOWLEDGMENT

The authors wish to acknowledge J. E. MacDonald, under
whose direction the simulator models were developed, and also
those individuals who evaluated the proposals at the Systems
Development Division Laboratories in Poughkeepsie, Kingston,
Endicott, and San Jose.

CITED REFERENCES

1. IBM System{360 and System{370 1]O Interface Channel to Control Unit
Original Equipment Manufacturers’ [nformation. Form GA22-6974, Inter-
national Business Machines Corporation, Data Processing Division, White
Plains, New York 10604,

. IBM System|360 Principles of Operation, Form GA22-6821, International
Business Machines Corporation, Data Processing Division, White Plains,
New York 10604.

. IBM System|370 Principles of Operation, Form GA22-7000, International
Business Machines Corporation, Data Processing Division, White Plains,
New York 10604.

. IBM System{360 Component Summary: 3830 Storage Control and 3330
Disk Storage, Form GA26-1592, International Business Machines Corpora-
tion, Data Processing Division, White Plains, New York 10604.

. 1BM System|360 Component Description: 2835 Storage Control and 2305
Fixed Head Storage Module, Form GA26-3599, International Business
Machines Corporation, Data Processing Division, White Plains, New York
10604.

CHANNEL AND DASD ARCHITECTURE

199

