
The art of machining  complex,  doubly curved  surfaces  has  been 
advanced  by  experimentul  extensions to  the  Automatic Pro- 
grammed Tool Language ( A P T )  and  its  numerical  control  pro- 
gram. 

Described  are  mathernatical  programming  procedures  and  lan- 
guage  extensions for  directing the  cutting  path of a  machine 
tool  over  a  ship's  propeller, which  serves  as  an  example. 

Illustrative of an  area for  future  development is the  possible 
extension of interactively  designed  surfaces - using  graphic dis- * 

plays - to interface with an A P T  processor. 

Numerical control for  machining  complex surfaces 
by D. B. Almond 

The machining of three dimensional objects  that embody com- 
plex surfaces  such  as  aircraft  contours or ship propellers chal- 
lenges the  machine tool numerical control  programmer. In indus- 
tries  where  automated manufacturing is playing an increasingly 
important  role,  product  designs  often call for physical surfaces 
that  cannot be represented analytically by simple mathemati- 
cal expressions. An aircraft fuselage or an  automobile  body, 
for  example, may be  conceived in clay,  but  eventually it is pro- 
duced in aluminum or  steel by methods  that  demand  a numerical 
representation of the surfaces. With the growth of numerical 
control,  the need has  increased to devise analytical techniques 
for  the  description of these  surfaces, particularly for  the applica- 
tion of the techniques to the Automatic Programmed Tool (APT) 
numerical control  processor.'  In fact,  the application of APT, the 
most powerful and widely used numerical control  parts program- 
ming language to more sophisticated  and complex machining 
requirements, has emphasized the need for a more  advanced 
numerically controlled  sculptured  surface technology. By sculp- 
tured  surface is meant  the  mathematical  description of a  concep- 
tualized physical surface  that  requires a process similar to sculp- 
turing to produce. 

The APT language is a high-level application language that  per- 
mits a  programmer  to  describe  a  part  shown on an engineering 
drawing and to  describe  the  steps required to machine that  part. 
Briefly stated,  the IBM System/360 APT processor program con- 
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verts numerical control  statements  to  a  form  that ultimately 
causes  a machine tool to  produce  the part in  metal.' Generally, 
the geometric  surfaces used to define the  part are of the classic 
types,  such  as  planes,  cylinders,  and  spheres. 

The objective of our programming research and development is 
to  generate APT program statements  for the machining of com- 
plex, doubly curved  surfaces  that are furnished as tables of sur- 
face  points. The project  undertaken by the  author  has  resulted in 
extensions to APT that permit the writing of statements  for ma- 
chining ship propellers whose surfaces are  to be produced by 
sculpturing  methods  such  as milling and grinding. Further,  the 
required part-sculpturing program has the generality to  accept 
input  parameters of a variety of propeller  designs,  and to ma- 
chine  each  propeller by choosing from among a multiplicity of 
possible  cutter  paths. The example application to propeller ma- 
chining was performed under  contract with the  Danly  Machine 
Corporation. 

After reviewing concepts of the APT language and  the  processor 
to translate APT-language instructions  into tool commands, ways 
in which the language can be extended  are  introduced.  Dis- 
cussed are surface  notations, emphasizing the elemental sur- 
face-  surface  patch-  that are  to  be used. This experimental 
investigation involves the  use of vector notation to calculate 
cutter-to-surface  geometry  and  cutter  path. It is then  shown 
how these  calculations can be embodied into the  core of the APT 
Arithmetic  Element (ARELEM). Practical experience is discussed 
in terms of computer time for calculating sculpturing  cuts  for  a 
specified ship  propeller blade. Illustrated is a capability for vis- 
ually verifying the  completed  propeller through interactive 
graphics. 

The result is an experimentally augmented APT having the fol- 
lowing two novel features: (1) an APT sculptured  surface com- 
mand, called SCSURF; and (2) an improved Arithmetic Element 
ARELEM for  generating tool-motion commands  for  sculptured 
surfaces. The addition of SCSURF to APT permits  the  reduction 
of sculptured  surface inputs to  a canonical form  as  discussed in 
this paper. The capabilities of the ARELEM have been increased 
to calculate tool end points and  surface normals for machining a 
sculptured  surface. 

APT language 

For background and  a  better  understanding of APT it may be 
profitable to  discuss briefly the APT language principles and their 
extensions  before considering the  surface design logic  in the 
framework of the APT system. 
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The APT language allows a numerical control  programmer  to 
define the  geometry of a  part  to be machined,  to  describe the 
path  the  cutter should take,  and  to  issue machine tool com- 
mands. In  addition, it permits various  arithmetic  operations  and 
calculations using such functions as  the  sine,  tangent,  and  square 
root. The language specifies a variety of geometric  forms, in- 
cluding points,  planes,  circles,  and  tabulated  cylinders  for  de- 
scribing a  part.  Typical APT geometric definitions might be  the 
following: 

PI = POINT/lO, -3.375, 18.75 
P2 = POINTIINTOF, LN 1, LN2 

Here PI is defined by three  coordinates,  whereas P2 is the re- 
sult of the intersection of two lines LNi and L N ~ .  

For each  geometric  type,  there may be  several  methods of defi- 
nition that  are reduced by the AFT processor  to B single canoni- 
cal form. For so-called “small” surfaces, the canonical form is 
fixed in length, as, for  example,  a point definition reduces  to  the 
1, y ,  and z coordinates. For “large”  surfaces thg length is vari- 
able as in the  case of our  sculptured  surface, which requires  a 
canonical form length somewhat  proportional  to the amount of 
input data.  Part  surface  geometry  ‘may  be named for  later refer- 
ence in a program or unnamed for  temporary application only. 
Further, a  surface may’be defined in one  coordinate  system  and 
used in another through the  use of matrix  translation  and  rota- 
tion. Such  surfaces are termed “APT surfaces.” 

Motion  commands are used to position the  cutter and to de- 
scribe  the  orientation of the  cutter  to  the  surfaces  to  be ma- 
chined. These commands  also give the  direction of motion. The 
following are typical motion commands: 

FROM/Pl 
GOTO/P2 
GO/ON, CIR, TO, PLl,  ON, PL2 
GOFWDICIR, PAST. TAB1 

The APT words  to  the left of the  slash  describe  the motion to be 
performed,  and the words  to  the right denote  surfaces  and posi- 
tional modifiers (TO, ON,  PAST) to specify cutter relationships 
with the surfaces. 

Statements  prepared  by  the numerical control  programmer be- 
come  inputs to  the APT processor  for  interpreting  the  data  and 
for performing the  computations to produce  an  output file. This 
file may be deciphered by a  user  postprocessor program to  cre- 
ate  machine-readable  commands  for a specific machine tool. It is 
the input-translator  section of APT that  reads  programmer input 
(usually cardsrand converts  the  data  into  an  intermediate pro- 
gram file. This file becomes input to  the arithmetic  element 
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Figure 1 Normal distance 

where  cutter path coordinates are computed while maintaining 
the  tolerances specified by the programmer. The process relies 
on an  iterative  technique  to  generate  the  cutter  path data  that is 
written into  an  output file together with other  pertinent machin- 
ing data. 

Moving the  cutter  to  the surfaces as prescribed by the program 
is an  iterative  procedure using what is termed the normal dis- 
tance  calculation. The normal distance is the distance from a 
point TP on  the  cutter  envelope  to  a point SP on the surface  as 
illustrated in Figure 1.  Such  points  are  oriented so that  a line 
joining them is normal to  the  surface  and to  the  cutter envelope. 
To compute  the normal distance, it  is necessary  to  determine  the 
directed  distance  and  surface unit normal SN shown in Figure 1. 
If one is given a point TP on  the  cutter and  a unit vector TN 
normal to  the  cutter envelope  at TP, the  surface point SP is the 
intersection of a line through TP parallel to TN. The surface nor- 
mal SN is a unit vector normal to  the surface at the pierce point 
SP. 

For a  surface  type to be used as an APT surface it  is sufficient to 
provide  the  directed-distance  and  the unit-normal routines as 
well as provisions for  dispatching  the  routines as required by the 
APT processor. We now discuss  the  essential problem of adding 
a new AFT surface  type of the  Coons  class. 

Required are language extensions for defining sculptured sur- 
faces  that are to be incorporated  into  the IBM APT system. The 
form of the  surface  representation is such  that  a  surface may be 
named and used as any APT surface.  Complex  surfaces are con- 
structed by building sets of surface  “patches,”  each of which is 
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expressed in terms of its boundaries  and “blending” functions 
that  assure  continuity  across  boundaries  between  adjacent  sur- 
face  patches. For a  surface form to  be fully integrated with the 
APT system it  is not sufficient simply to calculate  surface  points, 
but  also  requires solving for  the  pierce point of a line with the 
APT surface.  This problem is complicated by the  fact  that  a 
sculptured  surface is composed of a large set of the aforemen- 
tioned surface  patches.  A  patch  search  scheme has been devised 
to select  candidate  patches. Then a determination is made of the 
line and  patch  intersection within the  candidate  patch. 

The analytical model employed to define a surface is based on 
the work of Coons.3  It should be noted that  Coons  and  others 
who  have defined this  class of surfaces  were  concerned primari- 
ly with the  surface design process itself when integrated into 
computer graphics packages.  Nevertheless,  because of its sim- 
plicity, the Coons surface modeling technique is quite  a  satisfac- 
tory way to describe  a  surface  whether it  is related  to designing 
through visual control  at  an  interactive display terminal,  or  ex- 
pressing analytically a  surface  composed of a given set of input 
points  used in a batch processing mode. 

The present numerical control  state-of-the-art  includes  a  number 
of specialized programs that  have been developed  to  interface 
with APT processors  to  satisfy specific machining requirements 
and raw data  inputs.  Several of these programs are available to 
members of the APT Long Range Program (ALRP) administered 
by the Illinois Institute of Technology  Research  Institute.4 On 
the  one  hand, a specialized program may contain  the  particular 
characteristics  that allow a numerical control  programmer to 
fulfill a specific assignment. It may,  however,  be  disconcerting to 
one with a complex programming task  that involves sculptured 
surfaces to discover he lacks  the generalized programming tools 
to easily complete  the  task. 

The approach  taken in the  development of the APT sculptured 
surface programming discussed in this paper is to  achieve  a fair- 
ly high degree of generality while maintaining simplicity of use. 
For example,  input is an  ordered  set of points or points and sur- 
face  tangents  that may be specified by the programmer or points 
that  are defined in APT. Although inputs must form a  mesh-type 
surface, it is not  necessary  that  the  pattern of points  be as a lat- 
tice.  Furthermore,  there is no  restriction imposed as  to  the 
single-valuedness of the surface with respect to some  reference 
plane. However,  a  surface  that is intersected by a line at more 
than  one point could encounter difficulties in the APT Arithmetic 
Element (ARELEM).~ The machining of ship  propellers (which is 
the APT application discussed in this paper) demonstrates  the 
attractiveness of the APT language extensions  as  a  parts pro- 
gramming instrument. 
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Surface description 

The surfaces  to  be  described  and machined are  Coons  surfaces 
composed of sets of piecewise continuous  surface  patches  each 
having four  corner  points  and  boundary  curves.  Two  intersect- 
ing sets of curves are constructed through the points to divide 
the  surface  into  the  quadrilateral  surface  segments  or patches 
with which we are concerned. As previously  mentioned,  the 
Coons modeling technique is intended  for the designing of a  sur- 
face, beginning with few  constraints and a single patch and sub- 
dividing only as design requirements  dictate.  On  the  other  hand, 
our  concern  here is to describe  a  surface  that  contains exactly 
the given surface  points, although not without paying a small 
penalty for having to deal with a large number of patches. 

The particular  advantages of Coons surfaces are that  they are 
first of all parametric,  and,  secondly,  that  they may be expressed 
in a matrix form that permits simple arithmetic  calculations. 
A parametrically designed surface allows for  the definition of 
slopes  that in a  nonparametric  description may be infinite and, 
therefore,  troublesome  to handle. The boundaries and blending 
functions are of the  same  form,  thereby permitting the surface 
equation to be expressed in an easily calculable  tensor form. 
Blendingfunctions are scalar  functions of a single variable that 
serve  to influence the  shape of the  surface by a blending of the 
boundary  curves  over the surface. 

Although the mathematical structure of the  Coons  surface may 
be implemented in a variety of ways,  the usual method is that of 
parametric bicubics. Other surface modeling forms that may be 
of interest to  the  reader include rational polynomials,5 quartics,6 
and BCzier f~nct ions.~  The author,  however,  seeks  the simplest 
APT canonical  form  for  a  sculptured  surface  without  recourse to 
the  preprocessing of input  data or interfacing with a  computer- 
graphics-designed surface. 

A cubic is the lowest  order polynomial that  can  symbolize  a 
curve  that twists through space  and,  therefore,  form  patch 
boundaries  that are nonplanar. In addition, bicubic surfaces offer 
computational  economy  because  the  cubic is easily evalcated. 
Illustrative of recourse  to bicubic surfaces is the engineering 
design program of Eshleman and Meriwether.' 

Before considering the  surface-patch  equation in detail, we 
should first discuss  some matrix notation that it uses. If we let 
the x, y ,  and z coordinates of a point on a  surface be expressed 
in terms of two  independent  variables u and w, we have 
x =f ( 4 w )  
Y = I: ( u , w )  
z = h (u ,w)  
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For any  pair of I I  and w values,  the  surface point is specified 
assuming that  the  functions f, g ,  and h are known. A curve can 
be  generated in space by holding either of the  independent vari- 
ables u or w constant. 

By symbolizing a  surface point P in vector  notation we have 

P = [x y 21 = [f(U,W’) R ( U , W )  h ( u , w ) I  

or, in terms of the independent  variables,  the  surface  point is 

P =  [u  w] 

Further simplication of notation may be made by removing the 
brackets so that  the bilateral symbol uw represents  the  vector. 

One constraint placed on  the  variables u and w is that  their 
range over  a  patch is from 0 to 1. A unit square in uw space is 
topographically equivalent to a surface  patch. 

Figure 2 illustrates  a  patch having four  boundary  curves u0, 
u 1, Ow, and 1 w and  four  corner  points 00, 01, 10, and 11. Typi- 
cally u0 stands  for  the  boundary  curve with w = 0 and u varying. 
Similarly, 00 represents  the x, y, and z coordinates of the vector 

Figure 2 A surface patch 

[f(o,o> g(070) h(0,O)I. 

The patch  equation is expressed in terms of the blending func- 
tions  and  a  boundary-condition matrix. In matrix  notation,  the 
equation  has the following compact form where the superscript 
t  indicates the transposed  matrix: 

uW = UMBMtWt  

U M  and MW denote  the blending functions, which are functions 
of u and w respectively.  When  the  boundary  curves  and blending 
functions  are  related  to  cubic basis vectors,  the  surface  patch 
becomes a bicubic surface,  and the cubic basis vectors are 

u = [u3  uf u 11 
w =  [w w w I ]  3 2  

The blending functions  are  related to the basis vectors by the fol- 
lowing constant  matrix, which can  be  evaluated by the method 
given by Coons3: 

M =  
-3 3 -2 -1 

0 0 1 0  

2 - 2  1 0 0 0  * 1 
B is the  boundary-condition  matrix, which contains all the in- 
formation  concerning the patch  boundaries. In compact nota- 
tion,  the  boundary-condition matrix is expressed as follows: 
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(The  subscripts  refer  to partial derivatives with respect  to  the 
subscripted  elements. For example, 00, = a(uw) / a u  where 
14 = W = 0.) 

The upper left four values are  the  corner  coordinates,  and  the 
upper right and  lower left submatrices  contain  the  corner  slopes. 
The lower right submatrix  consists of the  corner  cross  deriva- 
tives (also called the twist  vectors), which are considered to be 
zero by the program. The B matrix is a  tensor  that  contains  the 
x, y ,  and z components of coordinates,  slopes,  and  twists. 

For this  experiment,  we  deliberately  chose  to let the twist  vec- 
tors  be  zero, realizing that  first-order  slope  continuity at patch 
boundaries  alone  could leave a  residue of second-order  quasi- 
flattening at patch corners.  In  our  experiment,  the decision was 
justified in that  propeilers machined by the  present SCSURF pro- 
gram exhibit no measureable flattening. We do,  however,  intend 
to  improve  our program by incorporating  second-order continui- 
ty control, which will,  of course, involve additional storage  and 
execution time. 

For a  particular  patch,  the matrix product M B M t  is constant  and 
is computed  before evaluating the  patch  equation  for given u and 
w values. If  we  let S ,  represent M B M t ,  the  equation may now 
be  expressed  as follows: 

P ,  = us, W t  

where 

k = 1,2,3 * . . 
and 

x = P,  

y = P, 

z = P, 

The slopes or tangents along w-curves and  wcurves may be 
readily obtained by computing the  derivative of the patch  equa- 
tion with respect to u and w as follows: 
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Figure 3 Two surface patches 
with a common  bound- 

a ‘Y 

tangent 
vector 
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for k = 1,2,  and 3 

and 0 5 u,  w 5 1 

It follows that  the  surface normal may be obtained by computing 
the  cross  product of the  tangent  vectors  evaluated at  the given 
u and w values. 

Tangent vectors and boundary continuity 

Thus  far  the discussion  has mostly concerned  a single surface 
patch. The total surface  that  this  paper  addresses,  however, 
consists of a piecewise fitting of many surface  patches so as  to 
provide continuity across patch boundaries. To  attain  the  de- 
sired continuity,  a method of computing tangent  vectors  at  the 
patch  corners has been developed. 

Consider  two  patches with a common boundary  such  as  those in 
Figure 3 .  Patch 19 has boundary 1 w ,  and patch  20  has  boundary 
Ow. Assume  that  the  corner point coordinates  and  the  slopes 
along the boundary at the  corner points are respectively equal. 
Then  the boundary is common,  and  the  patches are said to have 
zero  order  or Co continuity  across  the common boundary  curve. 
This condition may be expressed as follows: 

19 ( I w )  = 20(0w) 

The two  patches are not  necessarily  continuous in slope  across 
their common boundary;  that  is,  the partial derivative with re- 
spect  to u may  differ when considering each patch equation. In 
the shorthand symbolism 

uw, = __ a(uw)  

is the partial derivative with respect  to LL Coons  has shown  that 
by imposing certain  contraints on the blending functions,  the 
derivatives  across  the  boundary in the u direction depend only 
upon the derivatives of the end points of the boundary. That is, 
if 

19(10)u = 20(00)u and 

19(11)u=20(01)u,then 

1 9 ( 1 w ) u  = 2o(ow)u 

That is to  say, if the boundary  curves are continuous in slope in 
the u direction at  the end points,  the  slopes in the u direction are 
continuous  everywhere along the common boundary of the end 
points. 

Our method  for obtaining the  required  tangent  vectors  on  a  sur- 
face is based  on  the method of South  and Kelly,’ which consists 

a14 
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of generating  cubic  space  curves through the given input points 
such  that  the required continuity is achieved between adjoining 
curves. (A similar strategy is employed by Ahuja to develop 
spline-like curves using rational polynomials.'") Referring to 
Figure 4, the technique  involves equating the  second  derivative 
of the  (j-l)st  curve  at Pj with the  jth  curve second  derivative 
at Pj. 

A  space  curve may be written in terms of parametric  equations, 
where v is the single parameter,  as follows: 

x = x(v )  

y = y(v)  

2 = z ( v )  

The notation may be simplified  by denoting  the  functions  as  the 
following vector: 

S(V) = [x(v) Y ( V )  Z ( V ) l  

A cubic  space  curve would have  the following vector  form: 

S(v)  = A + Bv + Cv2 + Dv3 

where  the  vector coefficients are evaluated as in the following 
example: 

A = a,i + a$ + a,k 

Referring again to  Figure 4, the j th space  curve  and its deriva- 
tive  become 

Sj(v) = Aj + Bjv + Cjv2 + Djv3 

Sfj(v) = Bj + 2Cjv + 3Djv' 

for v in the interval (O,Rj). Rj represents  the  distance Pj to Pj+l. 

Evaluating these  equations at  the end  points Pj and Pj+' yields 

Sj(0) = P. = A. 
3 J  

sj ( R ~ )  = pj+' = + B ~ R ~  + c ~ R ~ '  + 
Sfj(0) = T. = B. 

S ; ( R j )  = Tj+, = Bj + 2CjRj + 3D.R.2 . I 1  

Tj and Tj+l are  tangents to the  curve  at Pj and Pj+, respectively. 

3 J  

Solving for  the coefficients we have 

Aj = Pj 

Bj = Tj 

3 1 c. = - (P. J + l  - Pj) - - (Tj+' + 2Tj) 
Rj .I Rj2 
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is T j  as is the  slope of Sj for v = 0. The constraint  to be imposed 
on the  curves is that  the first and  second  derivatives  across  the 
point Pj be continuous. The second  derivatives  are  expressed as 
follows: 

S j - ,  ( v )  = 2Cj-, + 6Dj-,v for v in interval [O,Rj-,] 

S j ( v )  = 2Cj + 6Djv for v in interval [O,Rj] 

Evaluating  these  equations at Pj and  setting the results  equal, we 
obtain  the following difference  equation: 

Cj = Cj-, + 3Dj-,Rj-, 

when the values previously determined for  the coefficients of Cj, 
Cj-l, and Dj-, are substituted in the equation, simplification 
yields the following equation: 

J" J - I '  

Figure 5 Tangent vector a t  a 
point RjTj-, + 2(Rj + Rj-,)  Tj + Rj-,Tj+, = 

/gy" 3 CRj-12(Pj+l - pj, + Rj' <Pj - pj-JllRjRj-, 

There  are n - 2 of these difference equations  for j = 2,  3,  . . ., 
n - 1 .  Thus, two  more  equations are required,  namely,  those  that 

PI impose  end  conditions on the  curves. 

An arbitrary but useful scheme is used to  obtain the tangent vec- 
tor T, at  end point P,, which represents  the  slope  at  that point as 
shown in Figure 5. 

A  scalar  value k is solved for  such  that k = 2  VleV2, where V1 
is a  unit  vector along PIP,, and V2 is a unit vector along P1P3. By 
vector  subtraction we have 

T, = kV1 - T, 

and 

TI + T, = 2V1 . V2V1 

T, is approximately  equal to V2. When T, = V2, the tangent vec- 
tor TI is a unit vector. 

Similarly, an  end  condition  equation may be developed  for 
point P,. 

There now exist n equations  that may be solved for  the n tan- 
gent  vectors. Let 

HIJ = 1 
H I ,  = 1 



B, = 2 VI . V2V1 

Hn-1,n = 1 

Hn,n = 1 
Bn = 2 V3 . V4V3 

and 

3 [Rj-lS(Pj+l - Pj, + Rj"Pj - Pj-,)] 

RjRj4 
B .  = 

J 

f o r j  = 2, 3, 4; * ., n - 1 

The equations may be  expressed in matrix notation, so that,  for 
n = 5 ,  we have  the following matrix  equation. 

HI , I  Hl,2 0 0 0  

4 1  Hz,z Hz3 

0 H 3 , z  H 3 , 3  4 4  

0 0 H4,3 

0 0 0 

The tridiagonal matrix on the left may be converted to an upper 
triangular matrix and  the  tangent  vectors  solved by backward 
substitution. 

The tangent vectors are approximately unit vectors  that  must  be 
modified  by a magnitude that is the minimum of the  distances  to 
the  two  adjacent points. The magnitude of an end-point tangent 
vector is chosen as  the  distance  from the end point to its adja- 
cent neighbor. The slopes of the tangent vectors  provide  the 
directions of the  curve at  the points,  and the magnitudes influ- 
ence  the  shapes of the  curves. By choosing  the  lesser of the dis- 
tances to adjacent  points,  undesired  loops  or bulges are elimi- 
nated -although  a flattening of the  curve may result. For best 
results, the point inputs should be approximately equally spaced 
or changing moderately with changes in curvature. For surface 
continuity,  the  slope  entering  a  curve  at  a point must equal the 
slope leaving the point on the  next  curve, but the magnitudes 
may differ. The purpose of choosing a single vector is to mini- 
mize the  amount of data that define the  surface  canonical  form. 

The canonical form of the  surface is given by the following 
quantities: 
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Two integer words  that provide values for  the  number of 

The surface points 
The w-curve tangent  vectors 
The LI-curve  tangent  vectors 

When a particular patch equation is to  be evaluated, the quanti- 
ties m and n are used to  extract  the  boundary-condition matrix 
elements  from  the canonical-form data  array.  The M B M t  matrix 
multiplication results in forty-eight equation coefficients, sixteen 
for each of the x, y ,  and z coordinates to be computed. 

curves (m) and  the  number of points per  curve (n)  

extended Generally, a sculptured  surface is usable as an APT surface only 
surface within the topographical area defined by its input. There  are 

sometimes  requirements  for an APT numerical  control program- 
mer to machine to  the edge of a surface or even  beyond.  There- 
fore, a special case  has  been  devised  to  extend  the  surface on all 
sides.  Figure 6 illustrates such a surface,  where  the solid lines 
represent  the defined surface  and  the  dashed lines denote  the 
extended portion. The extension is accomplished by generating 
new point  coordinates,  hence,  four new boundary  curves. The 
new points are a result of the  extrapolation of existing curves. 

Figure 6 An  extended surface APT ARELEM considerations 

To add a new surface  type  to  the APT processor  Arithmetic 
Element (ARELEM), it is necessary  to provide directed  distance S 
and surface normal SN calculation routines for  the surface. The 
routines are independent of basic APT ARELEM except  for  the 

,,p, :, \! \“-j input  and  output  conditions imposed by the ARELEM design. Of \ ,- 

b, 1 ~_J--I---L---~ 
1 >-” course, provisions must be made in ARELEM for  dispatching to 
\ ,’ 
L, the new routines. 

The primary problem to be solved is that of locating the pierce 
point SP of the surface by a line that  contains  the tool point TP 
and parallels the tool normal TN vector, all  in the relationship 
shown in Figure 1. When the solution is found,  the  directed dis- 
tance S and  surface normal SN at SP are calculated. 

Before the  surface  and line intersection  can be computed, it is 
necessary to determine which surface  patch  contains the point. 
If ARELEM is in a start-up  mode,  that  is,  an APT GO/ command is 
being processed, a search of the  surface is conducted  to  select 
candidate  patches. This is done by listing in two  sets  the  patches 
intersected by two planes that  contain the pierce  line,  and isolat- 
ing the patches common to  the  two sets.  Figure 7 illustrates  the 
two planes intersecting  a  surface with patches 13 and 18 as can- 
didate  patches. The selected  patches are solved in sequence  for 
the point of intersection,  and  patch 13 in Figure 7 contains  the 
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Figure 7 Locating  the  surface-line  pierce  point 

PIERCE LINE 

\ 

correct solution. Also,  the  solution in terms of the  parameters LL 

and w must be within the  patch  boundaries,  that is, 0 I u, w I 1. 

After a solution is obtained  for a start-up  condition,  the patch 
number is saved  for  subsequent calls to  the directed  distance 
routines of the  sculptured  surface with the  assumption  that the 
next  pierce line will intersect  this  patch or an  adjacent neighbor. 

Assume  that a patch  and  two planes containing the pierce line 
have  been  selected. The intersection of the patch and planes is 
transformed  into  parametric  space, which yields two simultane- 
ous, nonlinear, bicubic equations in u and w. Thus if P(u,w) = 
[x(u,w) y ( ~ , w )  z(u,w)]  is a  representative  surface  point,  then  for 
a  particular pair of u and w we obtain the following equations: 

R X ,  = PLl,X(U,W) + PLl,y(Cr,W) + PLI,z(u,w) + PL1, 

R X ,  = PL2,  x ( u , w )  + PL2,y(u,w) + PL2,z(u,w) + PL2, 

The values R X ,  and RX,  signify a measure of the distances from 
the uw point to  each of the planes PL1 and PL2. The RX,  
(where i = 1,2) may be said to be a  measure of error. If R X ,  I E ,  

where E is a preassigned small number,  the solution has been 
obtained;  otherwise  correction  values are computed. 

The RX, are differentials of the  function PLi of the following 
form: 
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The differential equations may also be expressed in the follow- 
lg rn-matrix form: 

If u,  and w, are typically the nth trial values of u and 1%’ then 

Un+, - 14, - dl1 - 

- w,,, - w, - dw 
become the new trial values. 

The iteration usually succeeds in three  and  four trials if the point 
of convergence is within the patch boundaries,  that  is, 0 5 u,  
IV 5 1.  Because of uncertainties of the patch configuration exte- 
rior to patch  boundaries,  there may be a divergence.  In any 
case. a  solution  exterior to  the patch is considered  to be a fail- 
ure,  and  another  patch  must be selected. 

APT SCSURF definition formats 

In the surface  sculpturing program additions,  referred to as 
SCSURF, there  are five formats available to a numerical control 
programmer to define a SCSURF sculptured  surface. As an exam- 
ple,  let SRFl = SCSURF/m, n ,  k (=l). In this  case,  the point input 
formats  for sculpturing one  surface are expressed in records as 
follows: 

x,, Y , ,  z ,  
x,, Y,’ 2 2 . . .  . . .  . . .  
x,, Y,, z ,  
. . .  
e . .  . . .  

X m n ’  Y m n )  zmn 

This is the first format (k  = l),  with m equal to  the number of 
curves and n being the  number of points per curve. The coordi- 
nates of input points numbering one  through mn immediately 



The second  format (k = 2) is similar except  that  the  tangent vec- 
tors are included. For example, the j th record would be as fol- 
lows: 

x., y., z . ,  "Xj, uyj, " Z j ,  "Xj, IVYj, wzj 
3 3 3  

Formats  three and four  have  been most frequently applied in our 
propeller  sculpturing program because  they  use  the inclusive 
subscript  format of IBM APT to list previously defined and sym- 
bolically named points as  surface  points.  This is particularly 
important  because  input  parameters  to  the  propeller  sculpturing 
program had to be transformed in APT to coordinate  values  that 
represent  surface points. Thus it is possible to  go from the pro- 
grammer-coded input parameters  to  the post-processed  output 
for  the machine tool controller  without  intermediate handling of 
data.  An  example definition format is the following statement: 

SRF3 = SCSURF/m,n,k, p ( a ,  THRU, b )  

Here P(u, THRU, b)  represent  an  array of points P(u) through 
P(b), the  mmber of points being equal  to mn. When k = 3 the 
surface  consists only o f  the  area  spanned by the input points. 
When k = 4, we have the extended  surface previously discussed. 

The fifth case  permits  the numerical control  programmer  to  de- 
fine a  sculptured  surface parallel to a previously defined surface. 
This  has been used to machine an area  that is parallel to  the 
basic  propeller  blade  surface. The format of an  example  state- 
ment is the following: 

SRFS = SCSURFIPARLEL, t ,  SRF3 

This  statement defines a surface parallel to a surface symbolized 
by SRF3 at a distance o f t .  The direction from SRF3 is determined 
by the direction of surface normal vectors of SRF3 and the sign 
given r. 

One notable problem that  complicates  the writing of the propel- 
ler  sculpturing program led to  the defining of two additional APT 
geometric  constructions using SCSURF. Propeller  surfaces are 
specified to be machined by maintaining the milling cutter nor- 
mal to  the surface. This is not  possible,  however,  where the  cut- 
ter housing intersects  an  adjacent propeller blade. Further, pro- 
pellers differ in number of  blades and in individual surface  con- 
figurations. 

To generalize  the  calculations for  the limiting line of surface- 
normal machining, a point definition is used. The surface normal 
at  the defined point on the  surface  contains  a point exterior  to 
the  surface. By using a series of points on an  adjacent  blade,  the 
numerical control programmer can find surface points to  define  a 
space  curve  that  becomes  the machining limit, as shown in Fig- 
ure 8. The point format is as follows: 
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PT 1 = POINT/Pl,  PERPTO, SRFl 

where P1 is a point exterior  to  the named surface SRFl. 

To determine  an  optimum tool-axis vector  to machine the  sur- 
face eclipsed by an  adjacent  blade, a vector definition is included 
in the  expanded APT program to define surface normal vectors  at 
given surface points. The format  for  the  vector is as follows: 

VI = VECTORIm, n, PERPTO, SRF3 

where SRF3 is the symbolically named sCSURF, m is the  curve 
number and n the point on curve m at which to  compute  the vec- 
tor,  One can see in Figure 9 eclipsed areas  associated with adja- 
cent  propeller blades where limit lines for  surface-normal ma- 
chining must be established. 

Experience and concluding remarks 

Figure 9 Graphic display showing One of the limitations of the  sculptured  surface  routines  that  are 
embodied in the IBM AFT processor is the  size of the  input  array 
and the  canonical form of the surface,  both of which must  be 
compared with the  expansion of other APT tables to satisfy  the 
generalized sculpturing program requirements  and a 360K  stor- 
age region. For example,  every input point is accepted as  exact 
and only one  pair of tangent  vectors  can be accommodated  at 
each  point. Thus  far there has been no effort to allow defining 
data  other than an ordered  array of points. There is neither  pre- 
processing  to eliminate “wild points,”  nor averaging of point 
data. For the  user whose data might be large in quantity  and 
inexact in nature- having been extracted from a rough model, 
for example-it is presently  necessary  to  preprocess  that  data 
through a user-developed program before its application to sur- 
face sculpturing. A similar confrontation  exists for  the user 
whose  conceptual  surface  exists as a family of curves,  whether 
planar or three-dimensional. Preprocessing is again necessary. 

areas of blade overlap 

Thus  far  there  has been little opportunity to compare  processing 
time with other similar programs  because  none are available that 
possess similar programming attributes. Emperical evidence 
gathered in generating cutter path coordinates  for machining 
propeller blades indicates a relatively slow processing. To the 
experienced numerical control  programmer it may be of interest 
that, using a System/360  Model  65,  three minutes of CPU time 
are required to  process  the program that mills the  surface  shown 
in Figure 8. Here approximately five hundred  cutter offset posi- 
tions are calculated. The surface  under  the  adjacent blade is cut 
using a ball end mill and  a fixed tool axis. ARELEM requires five 
minutes  to  generate  approximately twelve hundred cutter posi- 
tions. 
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I Figure 10 Interactive displays using a single data base 

A  PLAN VIEW 8 ABOUT 30' ABOVE HORIZON C ABOUT 20- ABOVE HORIZON 

Future considerations may include additional provisions for a 
variety of functions  to suit the design needs of a skilled numeri- 
cal control programmer. Other problems might include allowing 
for a break h e ,  that is, a discontinuity of slope along a  curve in 
a named surface.  Another facility might be  the blending of a 
sculptured  surface with another  surface. It might be useful to 
have  a regional programming capability that utilizes a  sculptured 
surface  for permitting one APT language statement  to  describe  a 
bounded  surface  area to be machined. Such  a capability would 
have  the  advantage  that  the  number of program statements and 
opportunities  for human error would be reduced. 

In pondering future application of sculptured  surface technology 
in the  framework of APT, we should perhaps  consider the role of 
interactive graphics in numerical control. Although there  have 
been a number of programs developed to design surfaces at a 
graphics  terminal,  the utilization of these programs is in the 
embryonic  stage  as  they  relate  to APT. It appears  reasonable, 
however,  to  project the development of data bases  that  interface 
between the  computer  graphics design of complex surfaces and 
an APT processor.  Figure 10 shows  three  skeleton views of a 
seven-bladed propeller, all developed from the same data base. 
Although any  other angle could have  been produced at  the IBM 
2250 display terminal,  the  three shown here are: (A) plan view; 
(B) about thirty degrees  above  horizon;  and, (C) about  twenty 
degrees  above  the  horizon. 

The display programs and visual outputs  were  developed to 
confirm the designs and machinability of marine propellers. The 
obvious  next step is to design propellers and other complex sur- 
faces directly at an  interactive graphics terminal and to apply the 
potency of APT to machining the  surfaces. 
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The program extensions  to  the IBM System/360 A P T  processor 
described  here may be applied to a variety of sculptured-surface 
machining problems. Maximum benefit is derived  where a por- 
tion of a defined surface is to be machined,  thus  necessitating 
the  sort of bounding capability found in using APT drive  and 
check  surfaces.  We feel that  the prime contribution of the pro- 
gram extensions to System/360 APT is the  cutter  path calcula- 
tion,  that  is,  the directed-distance and unit-normal computations. 
Further improvements might include expanding the surface- 
defining techniques, especially with regard to interactive-graphics- 
developed  surfaces  and  the APT canonical  form. 

ACKNOWLEDGMENT 
The author wishes to  acknowledge  the implementation of the 
APT extensions by T. J .  Thometz  and R. L. Stormberg,  and  the 
program testing  by  R. J. Roth, F. M. Balay, G. J. Vesely, and 
R. L. Steele. Programming and producing the  propeller displays 
are  the work of A. Appel of the IBM Research  Division. 

CITED  REFERENCES  AND  FOOTNOTE 
I .  IBM System1360 APT  Numerical Control  Processor, 360A-CN-lOX,  Ver- 

sion 4 ,  Part Programming Manual, Form  GH20-0309-4,  Fifth Edition 
(November 1970).  International  Business Machines  Corporation,  Data 
Processing  Division,  White  Plains, New  York  10604. 

2. IBM  Systenll360  APT  Numericul Control  Processor, 360A-CN-I0X,  Ver- 
sion 4 ,  Systems  Manual, Form GYZO-0080-2, Third Edition (February 
1969). lnternational Business Machines  Corporation,  Data Processing  Divi- 
sion,  White Plains, New York 10604. 

3.  S. A. Coons, Surfaces f o r  Computer-Aided  Design of Space  Forms, MAC- 
TR-41, Clearinghouse  for Federal Scientific and Technical  Information, 
Springfield. Virginia (June  1967). 

4.  Examples  are FMILL/APTLFT and GEMESH available from ALRP  APT 
Library, TIT Research  Institute, 10 West 35 Street,  Chicago, Illinois 60616. 

5. D. V.  Ahuja  and S. A. Coons,  “Geometry  for  construction  and display,” 
I B M  Systems  Journal 7, Nos. 3 and 4, 188-205 (1968). 

6 .  K. J. MacCallum, “Surfaces of interactive  graphical  design,” The  Computer 
Journal 13, No. 4 (November 1970). 

7. P. Btzier,  “ProcCdt  de definition numCrique des  courbes  et  surfaces  non 
mathematiques,” Automutisme XIII, No. 5 (May 1968). 

8. A. L. Eshleman  and H. D.  Meriwether,  “Graphic applications to aerospace 
structural  design  problems,” McDonnell Douglas Corporation.  Presented  at 
the SHARE  4th Annual  Design  Automation Workshop, Los Angeles,  Cali- 
fornia (June 2 1, 1967). 

9. J .  P. Kelly and N .  E. South, Analytic  Surface  Methods  Numerical Control 
Development  Unit, Ford  Motor  Company,  Dearborn, Michigan (December 
1965). 

10. D. V. Ahuja. “An algorithm for generating spline-like curves,” IBM  Sys- 
tems Journul7,  Nos. 3 and 4, 206-217 (1968). 

168 ALMOND 


