The art of machining complex, doubly curved surfaces has been
advanced by experimental extensions to the Automatic Pro-
grammed Tool Language (APT) and its numerical control pro-
gram.

Described are mathematical programming procedures and lan-
guage extensions for directing the cutting path of a machine
tool over a ship’s propeller, which serves as an example.

Hlustrative of an area for future development is the possible
extension of interactively designed surfaces—using graphic dis-
plays —to interface with an APT processor.

Numerical control for machining complex surfaces
by D. B. Aimond

The machining of three dimensional objects that embody com-
plex surfaces such as aircraft contours or ship propellers chal-
lenges the machine tool numerical control programmer. In indus-
tries where automated manufacturing is playing an increasingly
important role, product designs often call for physical surfaces
that cannot be represented analytically by simple mathemati-
cal expressions. An aircraft fuselage or an automobile body,
for example, may be conceived in clay, but eventually it is pro-
duced in aluminum or steel by methods that demand a numerical
representation of the surfaces. With the growth of numerical
control, the need has increased to devise analytical techniques
for the description of these surfaces, particularly for the applica-
tion of the techniques to the Automatic Programmed Tool (APT)
numerical control processor.' In fact, the application of APT, the
most powerful and widely used numerical control parts program-
ming language to more sophisticated and complex machining
requirements, has emphasized the need for a more advanced
numerically controlled sculptured surface technology. By sculp-
tured surface is meant the mathematical description of a concep-
tualized physical surface that requires a process similar to sculp-
turing to produce.

The APT language is a high-level application language that per-
mits a programmer to describe a part shown on an engineering
drawing and to describe the steps required to machine that part.
Briefly stated, the IBM System/360 APT processor program con-
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verts numerical control statements to a form that ultimately
causes a machine tool to produce the part in metal.” Generally,
the geometric surfaces used to define the part are of the classic
types, such as planes, cylinders, and spheres.

The objective of our programming research and development is
to generate APT program statements for the machining of com-
plex, doubly curved surfaces that are furnished as tables of sur-
face points. The project undertaken by the author has resulted in
extensions to APT that permit the writing of statements for ma-
chining ship propellers whose surfaces are to be produced by
sculpturing methods such as milling and grinding. Further, the
required part-sculpturing program has the generality to accept
input parameters of a variety of propeller designs, and to ma-
chine each propeller by choosing from among a muitiplicity of
possible cutter paths. The example application to propeller ma-
chining was performed under contract with the Danly Machine
Corporation.

After reviewing concepts of the APT language and the processor
to translate APT-language instructions into tool commands, ways
in which the language can be extended are introduced. Dis-
cussed are surface notations, emphasizing the elemental sur-
face —surface patch—that are to be used. This experimental
investigation involves the use of vector notation to calculate
cutter-to-surface geometry and cutter path. It is then shown
how these calculations can be embodied into the core of the APT
Arithmetic Element (ARELEM). Practical experience is discussed
in terms of computer time for calculating sculpturing cuts for a
specified ship propeller blade. Ilustrated is a capability for vis-
ually verifying the completed propeller through interactive
graphics.

The resuit is an experimentally augmented APT having the fol-
lowing two novel features: (1) an APT sculptured surface com-
mand, called SCSURF; and (2) an improved Arithmetic Element
ARELEM for generating tool-motion commands for sculptured
surfaces. The addition of SCSURF to APT permits the reduction
of sculptured surface inputs to a canonical form as discussed in
this paper. The capabilities of the ARELEM have been increased
to calculate tool end points and surface normals for machining a
sculptured surface.

APT language

For background and a better understanding of APT it may be
profitable to discuss briefly the APT language principles and their
extensions before considering the surface design [ogic in the
framework of the APT system.
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The APT language allows a numerical control programmer to
define the geometry of a part to be machined, to describe the
path the cutter should take, and to issue machine tool com-
mands. In addition, it permits various arithmetic operations and
calculations using such functions as the sine, tangent, and square
root. The language specifies a variety of geometric forms, in-
cluding points, planes, circles, and tabulated cylinders for de-
scribing a part. Typical APT geometric definitions might be the
following:

P1 = POINT/10, —3.375, 18.75
P2 = POINT/INTOF, LNI, LN2

Here P1 is defined by three coordinates, whereas P2 is the re-
sult of the intersection of two lines L.N1 and LN2.

For each geometric type, there may be several methods of defi-
nition that are reduced by the APT processor to a single canoni-
cal form. For so-called “small” surfaces, the canonical form is
fixed in length, as, for example, a point definition reduces to the
x, v, and z coordinates. For “large” surfaces the length is vari-
able as in the case of our sculptured surface, which requires a
canonical form length somewhat proportional to the amount of
input data. Part surface geometry may be named for later refer-
ence in a program or unnamed for temporary application only.
Further, a surface may 'be defined in one coordinate system and
used in another through the use of matrix translation and rota-
tion. Such surfaces are termed “APT surfaces.”

Motion commands are used to position the cutter and to de-
scribe the orientation of the cutter to the surfaces to be ma-
chined. These commands also give the direction of motion. The
following are typical motion commands:

FROM/P1

GOTO/P2

GOJ/ON, CIR, TO, PL1, ON, PL2
GOFWD/CIR, PAST, TABI

The APT words to the left of the slash describe the motion to be
performed, and the words to the right denote surfaces and posi-
tional modifiers (TO, ON, PAST) to specify cutter relationships
with the surfaces.

Statements prepared by the numerical control programmer be-
come inputs to the APT processor for interpreting the data and
for performing the computations to produce an output file. This
file may be deciphered by a user postprocessor program to cre-
ate machine-readable commands for a specific machine tool. It is
the input-translator section of APT that reads programmer input
fusually cards) and converts the data into an intermediate pro-
gram file. This file becomes input to the arithmetic element
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Figure 1 Normal distance

SURFACE

where cutter path coordinates are computed while maintaining
the tolerances specified by the programmer. The process relies
on an iterative technique to generate the cutter path data that is
written into an output file together with other pertinent machin-
ing data.

Moving the cutter to the surfaces as prescribed by the program
is an iterative procedure using what is termed the normal dis-
tance calculation. The normal distance is the distance from a
point TP on the cutter envelope to a point SP on the surface as

illustrated in Figure 1. Such points are oriented so that a line
joining them is normal to the surface and to the cutter envelope.
To compute the normal distance, it is necessary to determine the
directed distance and surface unit normal SN shown in Figure 1.
If one is given a point TP on the cutter and a unit vector TN
normal to the cutter envelope at TP, the surface point SP is the
intersection of a line through TP parallel to TN. The surface nor-
mal SN is a unit vector normal to the surface at the pierce point
SP.

For a surface type to be used as an APT surface it is sufficient to
provide the directed-distance and the unit-normal routines as
well as provisions for dispatching the routines as required by the
APT processor. We now discuss the essential problem of adding
a new APT surface type of the Coons class.

Required are language extensions for defining sculptured sur-
faces that are to be incorporated into the IBM APT system. The
form of the surface representation is such that a surface may be
named and used as any APT surface. Complex surfaces are con-
structed by building sets of surface “patches,” each of which is
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expressed in terms of its boundaries and “blending” functions
that assure continuity across boundaries between adjacent sur-
face patches. For a surface form to be fully integrated with the
APT system it is not sufficient simply to calculate surface points,
but also requires solving for the pierce point of a line with the
APT surface. This problem is complicated by the fact that a
sculptured surface is composed of a large set of the aforemen-
tioned surface patches. A patch search scheme has been devised
to select candidate patches. Then a determination is made of the
line and patch intersection within the candidate patch.

The analytical model employed to define a surface is based on
the work of Coons.” It should be noted that Coons and others
who have defined this class of surfaces were concerned primari-
ly with the surface design process itself when integrated into
computer graphics packages. Nevertheless, because of its sim-
plicity, the Coons surface modeling technique is quite a satisfac-
tory way to describe a surface whether it is related to designing
through visual control at an interactive display terminal, or ex-
pressing analytically a surface composed of a given set of input
points used in a batch processing mode.

The present numerical control state-of-the-art includes a number
of specialized programs that have been developed to interface
with APT processors to satisfy specific machining requirements
and raw data inputs. Several of these programs are available to
members of the APT Long Range Program (ALRP) administered
by the lIilinois Institute of Technology Research Institute.* On
the one hand, a specialized program may contain the particular
characteristics that allow a numerical control programmer to
fulfill a specific assignment. It may, however, be disconcerting to
one with a complex programming task that involves sculptured
surfaces to discover he lacks the generalized programming tools
to easily complete the task.

The approach taken in the development of the APT sculptured
surface programming discussed in this paper is to achieve a fair-
ly high degree of generality while maintaining simplicity of use.
For example, input is an ordered set of points or points and sur-
face tangents that may be specified by the programmer or points
that are defined in APT. Although inputs must form a mesh-type
surface, it is not necessary that the pattern of points be as a lat-
tice. Furthermore, there is no restriction imposed as to the
single-valuedness of the surface with respect to some reference
plane. However, a surface that is intersected by a line at more
than one point could encounter difficulties in the APT Arithmetic
Element (ARELEM).” The machining of ship propellers (which is
the APT application discussed in this paper) demonstrates the
attractiveness of the APT language extensions as a parts pro-
gramming instrument.
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Surface description

The surfaces to be described and machined are Coons surfaces
composed of sets of piecewise continuous surface patches each
having four corner points and boundary curves. Two intersect-
ing sets of curves are constructed through the points to divide
the surface into the quadrilateral surface segments or patches
with which we are concerned. As previously mentioned, the
Coons modeling technique is intended for the designing of a sur-
face, beginning with few constraints and a single patch and sub-
dividing only as design requirements dictate. On the other hand,
our concern here is to describe a surface that contains exactly
the given surface points, although not without paying a small
penalty for having to deal with a large number of patches.

The particular advantages of Coons surfaces are that they are
first of all parametric, and, secondly, that they may be expressed
in a matrix form that permits simple arithmetic calculations.
A parametrically designed surface allows for the definition of
slopes that in a nonparametric description may be infinite and,
therefore, troublesome to handle. The boundaries and blending
functions are of the same form, thereby permitting the surface
equation to be expressed in an easily calculable tensor form.
Blending functions are scalar functions of a single variable that
serve to influence the shape of the surface by a blending of the
boundary curves over the surface.

Although the mathematical structure of the Coons surface may
be implemented in a variety of ways, the usual method is that of
parametric bicubics. Other surface modeling forms that may be
of interest to the reader include rational polynomials,” quartics,’
and Bézier functions.” The author, however, seeks the simplest
APT canonical form for a sculptured surface without recourse to
the preprocessing of input data or interfacing with a computer-
graphics-designed surface.

A cubic is the lowest order polynomial that can symbolize a
curve that twists through space and, therefore, form patch
boundaries that are nonplanar. In addition, bicubic surfaces offer
computational economy because the cubic is easily evaluated.
Illustrative of recourse to bicubic surfaces is the engineering
design program of Eshleman and Meriwether.®

Before considering the surface-patch equation in detail, we
should first discuss some matrix notation that it uses. If we let
the x, y, and z coordinates of a point on a surface be expressed
in terms of two independent variables # and w, we have

x=f (u,w)
y=g (uw)
z=h (u,w)
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Figure 2 A surface patch

For any pair of «# and w values, the surface point is specified
assuming that the functions f, g, and # are known. A curve can
be generated in space by holding either of the independent vari-
ables u or w constant.

By symbolizing a surface point P in vector notation we have
P=[x y zl=[fluw) gluw)  huw)]

or, in terms of the independent variables, the surface point is
P=]u w]

Further simplication of notation may be made by removing the
brackets so that the bilateral symbol uw represents the vector.

One constraint placed on the variables # and w is that their
range over a patch is from 0 to 1. A unit square in u#w space is
topographically equivalent to a surface patch.

Figure 2 illustrates a patch having four boundary curves w0,
ul, Ow, and 1w and four corner points 00, 01, 10, and 11. Typi-
cally #0 stands for the boundary curve with w = 0 and « varying.
Similarly, 00 represents the x, y, and z coordinates of the vector

[f(0,0) £(0,0) A(0,0)].

The patch equation is expressed in terms of the blending func-
tions and a boundary-condition matrix. In matrix notation, the
equation has the following compact form where the superscript
t indicates the transposed matrix:

uW = UMBM'W"

UM and MW denote the blending functions, which are functions
of 1 and w respectively. When the boundary curves and blending
functions are related to cubic basis vectors, the surface patch
becomes a bicubic surface, and the cubic basis vectors are

U=[d® o u 1]
w=[w w w 1]

The blending functions are related to the basis vectors by the fol-
lowing constant matrix, which can be evaluated by the method
given by Coons”:

B is the boundary-condition matrix, which contains all the in-
formation concerning the patch boundaries. In compact nota-
tion, the boundary-condition matrix is expressed as follows:
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1 (1o, 11,
01, [00,, 01

u uw uw

10, 11, |10, 11,,

01 Loow 01,

(The subscripts refer to partial derivatives with respect to the
subscripted elements. For example, 00, = o(uw)/du where
u=w=20.)

The upper left four values are the corner coordinates, and the
upper right and lower left submatrices contain the corner slopes.
The lower right submatrix consists of the corner cross deriva-
tives (also called the twist vectors), which are considered to be
zero by the program. The B matrix is a tensor that contains the
x, v, and z components of coordinates, slopes, and twists.

For this experiment, we deliberately chose to let the twist vec-
tors be zero, realizing that first-order slope continuity at patch
boundaries alone could leave a residue of second-order quasi-
flattening at patch corners. In our experiment, the decision was
justified in that propellers machined by the present SCSURF pro-
gram exhibit no measureable flattening. We do, however, intend
to improve our program by incorporating second-order continui-
ty control, which will, of course, involve additional storage and
execution time.

For a particular patch, the matrix product MBM' is constant and
is computed before evaluating the patch equation for given u and
w values. If we let §, represent MBM . the equation may now
be expressed as follows: '

P, = us wt
where
k=123 - -

and

x=P,
y=P,
z=P,

The slopes or tangents along w-curves and w-curves may be
readily obtained by computing the derivative of the patch equa-
tion with respect to « and w as follows:

opP,

E{—=[3u2 2u 1 0] S, W w ow 1]

aP s ‘
EM—f=[u" Wwou 11 S, 3w 2w 1 0]
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Figure 3 Two surface patches
with a common bound-

tangent
vector

158

fork=1,2, and 3
and 0 =u,w=1

Tt follows that the surface normal may be obtained by computing
the cross product of the tangent vectors evaluated at the given
u and w values.

Tangent vectors and boundary continuity

Thus far the discussion has mostly concerned a singie surface
patch. The total surface that this paper addresses, however,
consists of a piecewise fitting of many surface patches so as to
provide continuity across patch boundaries. To attain the de-
sired continuity, a method of computing tangent vectors at the
patch corners has been developed.

Consider two patches with a common boundary such as those in
Figure 3. Patch 19 has boundary 1w, and patch 20 has boundary
Ow. Assume that the corner point coordinates and the slopes
along the boundary at the corner points are respectively equal.
Then the boundary is common, and the patches are said to have
zero order or C° continuity across the common boundary curve.
This condition may be expressed as follows:

19 (1w) =20(0w)

The two patches are not necessarily continuous in slope across
their common boundary; that is, the partial derivative with re-
spect to # may differ when considering each patch equation. In
the shorthand symbolism

_ d(uw)
u ou

uw

is the partial derivative with respect to u. Coons has shown that
by imposing certain contraints on the blending functions, the
derivatives across the boundary in the u direction depend only
upon the derivatives of the end points of the boundary. That is,
if

19(10)u = 20(00)u and

19(11)u =20(01)u, then

19(1w)u =20(0w)u

That is to say, if the boundary curves are continuous in slope in
the u direction at the end points, the slopes in the u direction are
continuous everywhere along the common boundary of the end
points.

Our method for obtaining the required tangent vectors on a sur-
face is based on the method of South and Kelly,” which consists
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of generating cubic space curves through the given input points
such that the required continuity is achieved between adjoining
curves. (A similar strategy is employed by Ahuja to develop
spline-like curves using rational polynomials.'’) Referring to
Figure 4, the technique involves equating the second derivative
of the (j-1)st curve at P; with the jth curve second derivative
at P;.

A space curve may be written in terms of parametric equations,
where v is the single parameter, as follows:

x=x(v)

y=y)

z=2z(v)

The notation may be simplified by denoting the functions as the
following vector:

Figure 4 Tangent vectors on a

S(V) = [X(V) y(v) Z(V)] surface
A cubic space curve would have the following vector form:
S)=A+Byv +CV' + D’

where the vector coefficients are evaluated as in the following
example:

A=aji+a,j+ak

Referring again to Figure 4, the jth space curve and its deriva-
tive become

_ 2 3

Sj(v)—Aj + By +Cy” + Dy
7 _— 2
Sj(v) =B, +2Cy + 3Dy

for v in the interval (0.R). Rj represents the distance P toP, .

Evaluating these equations at the end points P, and P, | yields
§;(0) =P, = A,
_ _ 2 3
S;(R;)) = P,,,=A; +BR; + CR + DR,
§,(0)=T;= B,
' _ . 2
S',(R)) = T,., =B; + 2CR; + 3D,R;

T; and T, , are tangents to the curve at P; and P, , respectively.

Solving for the coeflicients we have

—P) —— (T, +2T,)

Jj+1

1
= (
R,
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Figure 5 Tangent vector at a
point

2
D.=—F (Pj+1—Pj) +

J
J

T

J+1

+T,)

1
=3 (
Rj

Now consider the pair of curves §; , and S; with the common
end point P;. Here the slope of curve S;_, (evaluated at v = R;_)
is T;as is the slope of S; for v = 0. The constraint to be imposed
on the curves is that the first and second derivatives across the
point P; be continuous. The second derivatives are expressed as

follows:
§"_,(v) =2C;_, + 6D,_v for v in interval [O,R,_, ]
S”j(v) =2C; + 6Djv for v in interval [O,Rj]

Evaluating these equations at P, and setting the results equal, we
obtain the following difference equation:

C,=C,_, +3D,_R,

—17"j-1

when the values previously determined for the coefficients of C;,
Cj—l’ and Dj_1 are substituted in the equdtion, simplification
yields the following equation:

RT,_ +2(R,+R_)T, +R_T,, =

2 2
3[R, *(P,,, — P) + R (P,— P_)1IRR,_,

There are n — 2 of these difference equations for j=2, 3,
n — 1. Thus, two more equations are required, namely, those that
impose end conditions on the curves.

An arbitrary but useful scheme is used to obtain the tangent vec-
tor T, at end point P,, which represents the slope at that point as
shown in Figure 5.

A scalar value £ is solved for such that k =2 V1-V2, where V1
is a unit vector along P,P,, and V2 is a unit vector along P P,. By
vector subtraction we have

T,=kVl —T,

and

T, + T,=2V1 - V2VI

T, is approximately equal to V2. When T, = V2, the tangent vec-

tor T, is a unit vector.

Similarly, an end condition equation may be developed for
point P,.

There now exist n equations that may be solved for the » tan-
gent vectors. Let
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B, =2V3-V4V3
and

H. R

Gi-1 T Y

H,,=2(R,+R,_)
H . =R

Jrj—1 Jj-1
3 [R_*(P,,—P)+R’(P,—P_))]
J RR,

J it

forj=2,3,4,--,n—1

The equations may be expressed in matrix notation, so that, for
n =5, we have the following matrix equation.

rTl_ 1_
T,

2 2

4

T3
T4
LT,

5

The tridiagonal matrix on the left may be converted to an upper
triangular matrix and the tangent vectors solved by backward
substitution.

The tangent vectors are approximately unit vectors that must be
modified by a magnitude that is the minimum of the distances to
the two adjacent points. The magnitude of an end-point tangent
vector is chosen as the distance from the end point to its adja-
cent neighbor. The slopes of the tangent vectors provide the
directions of the cuive at the points, and the magnitudes influ-
ence the shapes of the curves. By choosing the lesser of the dis-
tances to adjacent points, undesired loops or bulges are elimi-
nated —although a flattening of the curve may result. For best
results, the point inputs should be approximately equally spaced
or changing moderately with changes in curvature. For surface
continuity, the slope entering a curve at a point must equal the
slope leaving the point on the next curve, but the magnitudes
may differ. The purpose of choosing a single vector is to mini-
mize the amount of data that define the surface canonical form.

The canonical form of the surface is given by the following
quantities:
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extended
surface

Figure 6 An extended surface

Two integer words that provide values for the number of
curves (m) and the number of points per curve ()

& The surface points

« The w-curve tangent vectors

&« - The u-curve tangent vectors

When a particular patch equation is to be evaluated, the quanti-
ties m and n are used to extract the boundary-condition matrix
elements from the canonical-form data array. The MBM"® matrix
multiplication results in forty-eight equation coefficients, sixteen
for each of the x, y, and z coordinates to be computed.

Generally, a sculptured surface is usable as an APT surface only
within the topographical area defined by its input. There are
sometimes requirements for an APT numerical control program-
mer to machine to the edge of a surface or even beyond. There-
fore, a special case has been devised to extend the surface on all
sides. Figure 6 illustrates such a surface, where the solid lines
represent the defined surface and the dashed lines denote the
extended portion. The extension is accomplished by generating
new point coordinates, hence, four new boundary curves. The
new points dre a result of the extrapolation of existing curves.

APT ARELEM considerations

To add a new surface type to the APT processor Arithmetic
Element (ARELEM), it is necessary to provide directed distance §
and surface normal SN calculation routines for the surface. The
routines are independent of basic APT ARELEM except for the
input and output conditions imposed by the ARELEM design. Of
course, provisions must be made in ARELEM for dispatching to
the new routines.

The primary problem to be solved is that of locating the pierce
point SP of the surface by a line that contains the tool point TP
and parallels the tool normal TN vector, all in the relationship
shown in Figure 1. When the solution is found, the directed dis-
tance S and surface normal SN at SP are calculated.

Before the surface and line intersection can be compiuted, it is
necessary to determine which surface patch contains the point.
If ARELEM is int a start-up mode, that is, an APT GO/ command is
being processed, a search of the surface is conducted to select
candidate patches. This is done by listing in two sets the patches
intersected by two planes that contain the pierce line, and isolat-
ing the patches common to the two sets. Figure 7 illustrates the
two planes intersecting a surface with patches 13 and 18 as can-
didate patches. The selected patches are solved in sequence for
the point of intersection, and patch 13 in Figure 7 contains the
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Figure 7 locating the surface-line pierce point

PIERCE LINE

correct solution. Also, the solution in terms of the parameters u
and w must be within the patch boundaries, that is, 0 = u, w = 1.

After a solution is obtained for a start-up condition, the patch
number is saved for subsequent calls to the directed distance
routines of the sculptured surface with the assumption that the
next pierce line will intersect this patch or an adjacent neighbor.

Assume that a patch and two planes containing the pierce line
have been selected. The intersection of the patch and planes is
transformed into parametric space, which yields two simultane-
ous, nonlinear, bicubic equations in « and w. Thus if P(u,w)=
[x(u,w) y(u,w) z(u,w)] is a representative surface point, then for
a particular pair of 4 and w we obtain the following equations:

RX, = PL1x(uw) + PL1,y(uw) + PL1,z(u,w) + PL1,
RX,=PL2 x(uw) + PL2,y(u,w) + PL2.z(u,w) + PL2,

The values RX, and RX, signify a measure of the distances from
the uw point to each of the planes PL1 and PL2. The RX,
(where i = 1,2) may be said to be a measure of error. If RX, = ¢,
where € is a preassigned small number, the solution has been
obtained; otherwise correction values are computed.

The RX,; are differentials of the function PLi of the following
form:
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IRX

aw

dRX, IRX,
RX, = du + dw
. du aw

1

aRX,
RX, = du + dw
u

The differential equations may also be expressed in the follow-
ing m-matrix form:

dRX, aRX,
ou aw

aRX, IRX,

ou ow

du RX

1

dw RX

2

If u, and w, are typically the nth trial values of v and w then

U, ,,=u,—du

W, =w,—dw

n+1

become the new trial values.

The iteration usually succeeds in three and four trials if the point
of convergence is within the patch boundaries, that is, 0 = u,
w = 1. Because of uncertainties of the patch configuration exte-
rior to patch boundaries, there may be a divergence. In any
case, a solution exterior to the patch is considered to be a fail-
ure, and another patch must be selected.

APT SCSURF definition formats

In the surface sculpturing program additions, referred to as
SCSURF, there are five formats available to a numerical control
programmer to define a SCSURF sculptured surface. As an exam-
ple, let SRF1 = SCSURF/m, n, k (=1). In this case, the point input
formats for sculpturing one surface are expressed in records as
follows:

X Ve T,

KXpo Voo Ty
xn’ yn’ Zn
X

mn’® ymn’ Zmn

This is the first format (k = 1), with m equal to the number of
curves and n being the number of points per curve. The coordi-
nates of input points numbering one through mn immediately
follow the definition statement.
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The second format (k = 2) is similar except that the tangent vec-
tors are included. For example, the jth record would be as fol-
lows:

xjs yj’ Zj’ uxj, H)’j, I/le, "ij, Wyj, sz

Formats three and four have been most frequently applied in our
propeller sculpturing program because they use the inclusive
subscript format of IBM APT to list previously defined and sym-
bolically named points as surface points. This is particularly
important because input parameters to the propeller sculpturing
program had to be transformed in APT to coordinate values that
represent surface points. Thus it is possible to go from the pro-
grammer-coded input parameters to the post-processed output
for the machine tool controller without intermediate handling of
data. An example definition format is the following statement:

SRF3 = SCSURF/m,n .k, P{a, THRU, b)

Here P(a, THRU, b) represent an array of points P(a) through
P(b), the number of points being equal to mn. When & = 3 the
surface consists only of the area spanned by the input points.
When k = 4, we have the extended surface previously discussed.

The fifth case permits the numerical control programmer to de-
fine a sculptured surface parallel to a previously defined surface.
This has been used to machine an area that is parallel to the
basic propeller blade surface. The format of an example state-
ment is the following:

SRF5 = SCSURF/PARLEL, ¢, SRF3

This statement defines a surface parallel to a surface symbolized
by SRF3 at a distance of ¢. The direction from SRF3 is determitied
by the direction of surface normal vectors of SRF3 and the sign
given ¢.

One notable problem that complicates the writing of the propel-
ler sculpturing program led to the defining of two additional APT
geometric constructions using SCSURF. Propeller surfaces are
specified to be machined by maintaining the milling cutter nor-
mal to the surface. This is not possible, however, where the cut-
ter housing intersects an adjacent propeller blade. Further, pro-
pellers differ in number of blades and in individual surface con-
figurations.

To generalize the calculations for the limiting line of surface-
normal machining, a point definition is used. The surface normal
at the defined point on the surface contains a point exterior to
the surface. By using a series of points on an adjacent blade, the
numerical control programmer can find surface points to define a
space curve that becomes the machining limit, as shown in Fig-
ure 8. The point format is as follows:
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Figure 9 Graphic display showing
areas of blade overlap

PT 1 = POINT/P1, PERPTO, SRF1
where P1 is a point exterior to the named surface SRF1.

To determine an optimum tool-axis vector to machine the sur-

face eclipsed by an adjacent blade, a vecror definition is included

in the expanded APT program to define surface normal vectors at
given surface points. The format for the vector is as follows:

V1 = VECTOR/m, n, PERPTO, SRF3

where SRF3 is the symbolically named SCSURF, m is the curve
number and n the point on curve m at which to compute the vec-
tor. One can see in Figure 9 eclipsed areas associated with adja-
cent propeller blades where limit lines for surface-normal ma-
chining must be established.

Experience and concluding remarks

One of the limitations of the sculptured surface routines that are
embodied in the IBM APT processor is the size of the input array
and the canonical form of the surface, both of which must be
compared with the expansion of other APT tables to satisfy the
generalized sculpturing program requirements and a 360K stor-
age region. For example, every input point is accepted as exact
and only one pair of tangent vectors can be accommodated at
each point. Thus far there has been no effort to allow defining
data other than an ordered array of points. There is neither pre-
processing to eliminate “wild points,” nor averaging of point
data. For the user whose data might be large in quantity and

inexact in nature —having been extracted from a rough model,
for example—it is presently necessary to preprocess that data
through a user-developed program before its application to sur-
face sculpturing. A similar confrontation exists for the user
whose conceptual surface exists as a family of curves, whether
planar or three-dimensional. Preprocessing is again necessary.

Thus far there has been little opportunity to compare processing
time with other similar programs because none are available that
possess similar programming attributes. Emperical evidence
gathered in generating cutter path coordinates for machining
propeller blades indicates a relatively slow processing. To the
experienced numerical control programmer it may be of interest
that, using a System/360 Model 65, three minutes of CPU time
are required to process the program that mills the surface shown
in Figure 8. Here approximately five hundred cutter offset posi-
tions are calculated. The surface under the adjacent blade is cut
using a ball end mill and a fixed tool axis. ARELEM requires five
minutes to generate approximately twelve hundred cutter posi-
tions.
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Figure 10 Interactive displays using a single data base

A. PLAN VIEW B. ABOUT 30° ABOVE HORIZON C. ABOUT 20° ABOVE HORIZON

Future considerations may include additional provisions for a
variety of functions to suit the design needs of a skilled numeri-
cal control programmer. Other problems might include allowing
for a break line, that is, a discontinuity of slope along a curve in
a named surface. Another facility might be the blending of a
sculptured surface with another surface. It might be useful to
have a regional programming capability that utilizes a sculptured
surface for permitting one APT language statement to describe a
bounded surface area to be machined. Such a capability would
have the advantage that the number of program statements and
opportunities for human error would be reduced.

In pondering future application of sculptured surface technology
in the framework of APT, we should perhaps consider the role of
interactive graphics in numerical control. Although there have
been a number of programs developed to design surfaces at a
graphics terminal, the utilization of these programs is in the
embryonic stage as they relate to APT. It appears reasonable,
however, to project the development of data bases that interface
between the computer graphics design of complex surfaces and
an APT processor. Figure 10 shows three skeleton views of a
seven-bladed propelier, all developed from the same data base.
Although any other angle could have been produced at the IBM
2250 display terminal, the three shown here are: (A) plan view;
(B) about thirty degrees above horizon; and, (C) about twenty
degrees above the horizon.

The display programs and visual outputs were developed to
confirm the designs and machinability of marine propellers. The
obvious next step is to design propellers and other complex sur-
faces directly at an interactive graphics terminal and to apply the
potency of APT to machining the surfaces.
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The program extensions to the 1BM System/360 APT processor
described here may be applied to a variety of sculptured-surface
machining problems. Maximum benefit is derived where a por-
tion of a defined surface is to be machined, thus necessitating
the sort of bounding capability found in using APT drive and
check surfaces. We feel that the prime contribution of the pro-
gram extensions to System/360 APT is the cutter path calcula-
tion, that is, the directed-distance and unit-normal computations.
Further improvements might include expanding the surface-
defining techniques, especially with regard to interactive-graphics-
developed surfaces and the APT canonical form.
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