Enhancement of the computing in an engineering environment
by the installation of a virtual machine time-sharing system is
discussed. This installation has been particularly useful in allow-
ing the engineer to make the computer an integral part of a de-
sign cycle through the interactive use of graphic displays.

Described is a CP-67 system iimplementing the virtual machine
concept. By using an operating system of his choice in his own
virtual machine, the engineering user has great flexibility in the
development of applications..

Virtual machine computing in an engineering environment
by M. McGrath

In the past few years, the virtual concept in computing has been
used with several time-sharing systems.'” There are several
reasons for this recent trend, the most important of which is to
provide a multiaccess computer system that can be shared at the
same time by many users, including personnel not familiar with
the details of data processing.

The requirements of data processing in the engineering environ-
ment have expanded into many different areas and disciplines
during the last four or five years. This is in contrast to the first
twenty-odd years of scientific computing that were characterized
by single-CPU, single-thread, batch job streams. The introduction
of the System/360 family of computers and multiprogramming
was to some extent just an extension of the batch concept. Multi-
programming enabled the computers to perform better from a
systems point of view but had no effect on the philosophy of the
engineering user. Multiprogramming permitted the development
of interactive programs that provided more flexibility for the en-
gineering user but still did not offer a practical method for a large
number of users to have access to different computer systems
simultaneously.

Through time-sharing, computing for engineering is evolving
into a system meeting the diverse needs of a variety of engi-

neering personnel in real time. The engineer has been brought

NO. 2 - 1972 VIRTUAL MACHINE COMPUTING




closer to the computer through interactive program execution at
his own terminal. Thus, some of the traditional and frustrating
delays involved in the batch-processing mode have been allevi-
ated by a man-computer relationship that enhances an engineer’s
problem-solving ability. The availability of time-sharing systems
has also made it economical for the programmer to benefit. De-
velopment, debugging, and execution done interactively on these
systems have reduced program development time. In addition
to the user-oriented benefits, advances have been made in the
management of computer resources such as use of less main
storage and greater utilization of the CPU.

In this paper, CP-67 (Control Program 67),3 is described as im-
plemented in a large-scale engineering environment at Pratt &
Whitney Aircraft Division of United Aircraft Corporation, a
manufacturer of jet engines for many military aircraft and com-
mercial transports, The installation is viewed from the aspect of
its use of virtual machines and the resulting performance. Several
engineering applications are used to illustrate the usefulness of
the virtual machine approach.

System approaches

In 1968, the computing requirements of the engineering depart-
ment at Pratt & Whitney Aircraft fell into several broad cate-
gories. One main requirement was to develop a graphics capa-
bility for the engineer using multiple cathode-ray tube displays,
namely 1BM 2250 display consoles, and the Operating System
FORTRAN Graphics Subroutine Package (GsP).! The other major

requirement was to provide the scientific programmers with an
interactive programming system better suited to their needs than
the RAX (Remote Access Computing System) they had installed
on a System/360 Model 40.

The installation of a graphics system places many diverse de-
mands on the computer system, and these may be characterized
as three distinct states of the engineer and computer relationship.
First, the engineer may be in a think mode — time he uses to con-
sider which of several approaches to further explore based on
the current graphic display. During this time, which may be a
considerable portion of the elapsed time of a day, absolutely no
demands are being placed on the CPU. The second state involves
the interactive process in which a user interacts with the com-
puter system by means of a light pen, an alphanumeric key-
board, or a number of program function keys. The engineer may
be altering the shape of a display picture, changing his input data,
viewing his output data, or selecting the next program to be run.
This state puts very little demand on the cPU, but does require
that when CPU time is requested as a result of a graphics interrup-
tion it be serviced as soon as possible. The third state is a pro-

MC GRATH IBM SYST 1}




gram execution phase in which it is desired to run a noninter-
active portion of the program once the input data and shapes
have been defined interactively. This state has a heavy demand
for CPU time.

In the conversion from a batch to an interactive environment,
the availability of main storage was a major factor that had to be
considered since the graphics programs were essentially large
batch jobs that had graphics capability added to them. In a batch
environment, these programs could be run sequentially in a single
region of 250K of main storage, but in an interactive system, it
was estimated that 1000K of main storage would have to be ded-
icated to satisfy the storage requirements of three interactive dis-
play console regions.

To meet these engineering requirements, several possible sys-
tems were investigated. The first was a traditional batch approach
with different configurations of the System/360 Model 65 being
considered. The system would run under the MVT (multiprogram-
ming with a variable number of tasks) option of Operating Sys-
tem/360 (08/360), and would have many advantages. It would be
compatible with the other computers in the installation, minimiz-
ing problems in operations and making backup possibilities more
realistic. Installation of 0s/360 would be eased by the consider-
able 0S/360 expertise built up by the computing staff, In addition,
MVT has a simple, straightforward scheduling system in which
CPU time can be allocated on a strict priority basis making it
possible to ensure satisfaction of all CPU requests from any graph-
ics user before a request from any other task. This priority sys-

tem would help ensure a minimum response time for ail inter-
active graphics users taken collectively. However, the advan-
tages of installing MvT had to be weighed against its limitations.
Also, prior to TSO (Time-Sharing Option), 05/360 did not have a
replacement for the RAX system that would provide the desired
interactive programming facilities.

The Time-Sharing System/360 (TSS/360) was also considered be-
cause it addressed many of the problems encountered in using
a batch system. TSS/360 is a sophisticated time-sharing system
designed for the Model 67 and has many facilities that make it
very appealing to the time-sharing user. Among these is the table-
driven scheduler that controls the task management functions in
a paging environment and can be adjusted to meet the require-
ments of most installations. Also of note is the data management
system provided by the virtual access method and designed spe-
cifically for a time-sharing system. TSs/360 was designed to en-
compass the widest range of computer facilities and satisty si-
multaneously the batch, time-sharing, and data base requirements
of an installation. Although TSS/360 has made advances in time-
sharing systems, its ability to meet the requirements of the engi-

No. 2 - 1972 VIRTUAL MACHINE COMPUTING

MVT
approach

TSS/360
approach




chosen
approach

operating
levels

neering environment discussed here was limited by several fac-
tors. First was the lack of support for the 2250 displays, which
was the main requirement of the engineering system. Other
limiting factors include its incompatiblity with 08/360 and its com-
plex structure that would have prevented early installation of the
system and delayed development of the graphics applications.

The System/360 Model 67 hardware and Cp-67 were chosen as
the system that would best meet the interactive engineering re-
quirements mentioned previously. In this system, the necessary
support for the display consoles in available, real main storage is
not a problem since a virtual memory technique is used, and the
Cambridge Monitor System (CMs)” provides the required inter-
active programming facility. cp-67 will also dynamically allocate
CPU time in a manner that will give a higher priority to the inter-
active user who requires a quick response time and a lower pri-
ority to the compute-bound user who can tolerate some delay in
his program execution.

Graphics with CP-67

CP-67 is a control program that manages the resources of the
Model 67 in a multiuser time-sharing environment.*® Cp-67 has
implemented the virtual machine concept that provides each user
with a replica of a complete System/360 consisting of a virtual
CPU, virtual storage, virtual 1/0 devices, an operator’s console,
and certain additional features available only under cP-67. Each
virtual machine can be loaded with the operating system of his
choice. An example of the virtual machines run during prime shift
on the installation being discussed is shown in Figure 1.

The virtual machine of each user is defined in a directory that
is maintained as a utility function in cP-67. The directory will
specify information such as the user’s identification, password,
priority, virtual storage size, and all virtual 1/0 devices attached
to his virtual machine. Virtual disk drives that are specified for
each user may be either a complete disk pack device of 203
cylinders, or just a portion of the pack. Data files may also be
shared between virtual machines based on entries in the CP-67
directory. For example, some files may be completely dedicated
to a user; others may be shared on a read-only basis, and access
to other files may be on a password basis.

The CP-67 system operates in three distinct levels. The first level
is the CpP-67 control program which runs in the supervisor state
in a nonrelocatable mode. Some of the major functions performed
by cP-67 include handling and processing of all hardware inter-
ruptions, scheduling and executing all real 1/0 operations, per-
forming paging functions, allocating CPU time to the competing

MC GRATH IBM SYST J




Figure 1 Typical virtual machines

VIRTUAL MACHINES
WITH OPERATING SYSTEMS

DISPLAY

05/360 1BM 2250
PCP
768K CONSOLE

DISPLAY
768K CONSOLE

05/360 1BM 2250
PCP

DISPLAY
768K CONSOLE

05/360 IBM 2250
PCP

SYSTEM/360 05/360
MODEL 67 PCP
768K 768K

IBM 2741
TERMINAL

1BM 2741
TERMINAL

users, and simulating virtual machine privileged instructions. The
second level is used for the virtual machine operating systems
such as 05/360 and cMs.>” These operating systems are run by
CP-67 in the problem state. The third level is used for the applica-
tion programs that are run by the virtual machine operating
system. This level is also run in the problem state.

The allocation of CPU time to the time-sharing users is performed
by the dispatch function in cp-67. In Version 3 Level 1 the dis-
patching algorithm considers two main areas: overall system
performance and the demand each individual user places on the
system. In considering user demands, CP-67 classifies each user
as being either interactive or noninteractive. The dispatcher al-
locates CPU time to an eligible user in the interactive queue who
is performing terminal 1/O operations before it allocates time
to a user in the noninteractive queue who probably requires more
of the system resources and whose terminal response time might
not be critical. Some of the factors the Cp-67 dispatcher considers
in selecting a user for an execution queue include an installation-
defined user priority, a system priority that ensures allocation of
some CPU time to each user, and a paging activity index that re-
flects the paging demand a user is expected to put on the system.

NO. 2 - 1972 VIRTUAL MACHINE COMPUTING

135




system
configuration

Figure 2 System/360 Model 67 real hardware configuration

IBM 2301
IBM 1403 DRUM STORAGE
PRINTER UNITS

00D
=

SYSTEM/360

MULTIPLEXER MODEL 67
IBM 2401

TAPE DRIVE

CHANNEL 768K

IBM 2250
DISPLAY
CONSOLE

IBM 2250
DISPLAY IBM 2840 -

CONSOLE CONTROL UNIT IBM 2314 IBM 2314
DiSK DRIVES DISK DRIVES

1BM 2250
DISPLAY
CONSOLE

1BM 2741

COMMUNICATIONS IBM 2703

TRAI
CONTROL UNIT

COMMUNICATION
TERMINALS

Overall system performance is considered by limiting the number
of users demanding attention at any time in either the interactive

or noninteractive queue. This reduces the possibility of poor per-
formance caused by all users competing for real main storage at
the same time. The number of users allowed in the interactive
queue is fixed depending on the size of the real main storage. The
number of users allowed in the noninteractive queue is dynami-
cally adjusted, and it is calculated by comparing the number of
available system pages with the sum of the paging activity values
of each user active in the queue. Further details of CP-67 opera-
tions can be found in References 1, 3, and 6.

The hardware configuration that is used in this CP-67 installation
is shown in Figure 2. The Model 67 has 768K of main storage.
The direct access storage consists of two IBM 2301 drum storage
units that are used as paging devices and twelve modules of the
IBM 2314 direct access storage facility, Installed on a selector sub-
channel of the multiplexer channel are eight IBM 2401 magnetic
tape units and an 1BM 2840 Model 1 display control unit with three
attached 2250 Model 3 display consoles. Attached to the IBM 2703
transmission control unit are 20 slow-speed terminals consisting
of IBM 2741 communications terminals and IBM 1052 printer-key-
board consoles with attached IBM 1056 card readers.

MC GRATH IBM SYST )




An interesting example of sharing devices between virtual ma-
chines under CP-67 arises in the use of the 2250 graphic display
system to display graphic information associated with the engi-
neering applications. The display control unit for the three dis-
play consoles contains a single buffer of 32K which is used to
store the graphics order programs that generate the displays of
all three consoles. These order programs are sent to the buffer
by the FORTRAN application program running on the CPU. In a
system like MVT, the operating system would manage the con-
trol unit buffer by allocating a portion of this buffer to each dis-
play console. However, under CP-67, three separate virtual
primary control program (PCP) machines, each with one display
console, share the single hardware buffer of 32K. This is made
possible both by the way the PCP systems are generated and by
the manner in which CP-67 processes virtual 1/0 operations. Each
PCP nucleus has a unit control block generated for all three con-
soles, each with a specific 10K of the 32K buffer. However, in
the cp-67 directory that defines each user’s virtual machine,
only one of the three consoles is entered for each graphics user.
This will prevent one graphics user from interfering with a con-
sole or portion of the buffer of any other graphics user. CP-67
performs the 1/0 operation to the consoles for all the users on an
individual basis and keeps a user identification associated with
each 1/O operation. 1t is not aware of the fact that the control
unit buffer is being shared or that other consoles are on the
system. "

To install the display consoles and the related graphic subroutine
package, an option of 0S/360 had to be selected to run the graphic
virtual machines.” It was first determined that three separate vir-

tual machines, either PCP or MVT, would perform better than one
large multiprogrammed MVT system with a region for each user.
Both MVT and PCP systems were installed and tested with the pCP
system outperforming the MVT system by a significant factor.
MVT is a multiprogramming system, and in this case, would be
run under CP-67, another system with multiprogramming capa-
bility. Overhead caused by facilities that are necessary in an MVT
stand-alone system but are only a duplication of existing CP-67
facilities when used in a time-sharing environment resulted in the
lower performance. It is more efficient to run a single usef virtual
system such as PCP and let CP-67 perform the multiprogramming.
Another factor is that with MvT all card input is double-spooled,
once by CP-67 and once by the MVT reader. In pCP, this problem
does not exist because data and job control cards can be read and
executed one step at a time, thus eliminating the 0S/360 spooling
operation.

The three pCP virtual machines each have 768K of main storage
and an 1/0 configuration as shown in Figure 3. The virtual 1052

printer-keyboard that is used for the pCP operator’s console is

No. 2 - 1972 VIRTUAL MACHINE COMPUTING

virtual
machine
setup




Figure 3 0OS$/360 virtual machines

]

IBM 1052
CONSOLE

1BM 1403
PRINTER

1BM 2540
CARD READER
IBM 2250

DISPLAY IBM 2840
CONSOLE CONTROL UNIT 0S/360
PCP SYSTEM

SYSTEM/360
768K

IBM 2314 IBM 2314
DISK DISK
STORAGE STORAGE

in reality a 2741 communications terminal that is physically placed
next to each display console. Several changes to a normal pCp
operation were made to improve performance in a virtual ma-
chine environment. Since there is practically no memory con-
straint, the PCP systems have resident access method (RAM), a
function called BLDL to create a list of most used supervisor
instructions in main storage, and svC (supervisor call instruction)
resident lists that are much more inclusive than would be fea-
sible in a stand-alone system. By making many of these modules
resident in virtual storage, a request for their use would be satis-
fied by either finding the PCP page already in real main storage,
or at worst, by paging it in from the high-speed drum. However,
if the routines have not been made resident in the PCP system, a
request for their use will possibly involve a paging operation plus
the additional overhead of reading the module from a slower-
speed disk.

Another function of Cp-67 that facilitates the operation of vir-
tual machines is the procedure that initially loads the program by
name. A CP-67 utility program saves on disk a copy of a user’s
complete virtual main storage as it exists anytime after the pro-
gram is initially loaded. When a user subsequently issues the
Cp-67 command for the procedure to initially load the program,
the saved copy of main storage is brought into the user’s virtual
machine, thereby eliminating the lengthy loading procedure.
Changes have also been made in the nucleus initialization pro-
gram code in 0S/360 to automatically vary off-line any disk de-
vices not defined in a user’s virtual machine directory thus elim-
inating unnecessary mount messages. A modification to PCP has
also been made to pick up the time and data fields from Cp-67 dur-

MC GRATH IBM SYST J




ing the initial loading by name procedure. With these few
changes, plus the 0S8/360 system generation operations of au-
tomatically starting the 0$/360 reader and writer, the proced-
ure to initially load an 0S/360 system has been reduced to ap-
proximately 14 seconds and takes only two commands after a
user has logged onto the system. The commands that must be
issued are the CP-67 command to load the saved copy of pPCP
into virtual storage followed by the 08/360 command to initiate
the first job.

Despite these changes that have been made to ease the operation
of the 08/360 virtual machines, an inconvenience still exists. A
communications terminal beside each display console acts as the
087360 operator’s console. Thus an engineer at the display con-
sole must be somewhat familiar with the 0S/360 operator mes-
sages and be able to respond to them when required. Since engi-
neers have little inclination to become proficient 0S/360 operators,
they are occasionally confronted with messages that can only be
answered by help from knowledgeable personnel. When this
help is not immediately forthcoming, irritating delays may result.
However, this problem is not as extensive as it might first appear
because the command structure of PCP is not as complex as the
other options of 0S/360. Normally the engineer knows the re-
sponses to standard messages, and it is only the exceptional mes-
sage that becomes a problem. Although this is a recognized de-
ficiency, it has not hindered the development of graphics ap-
plications.

Another example of CP-67 performing a function that is not im-
plemented in MVT is the command to save card information
already read into the computer. By using this command, CP-67
will not delete a job or job stream from the user’s virtual card
reader even after it has been read by the 0S/360 reader. This re-
reading of the card reader is especially helpful to a programmer
at a terminal when he is debugging an interactive 0S/360 program.
Many times when a program terminates or ends abnormally,
he would like to execute it again immediately. With this facility,
all cards can be saved in the CP-67 spool area and submitted to
the virtual machine without having the cards physically reread.

Use of CMS

CMS is a control program’ designed for an interactive user that
runs on any model of the System/360 or in a virtual machine
under CP-67. When CMS is run under CP-67, many users have ac-
cess to their own complete virtual machines, each with its own
CcMs control program. Since cMS was designed as a single user
system, it is not encumbered by facilities such as multiprogram-
ming or spooling that would only be a duplication of CP-67 func-

NO. 2 - 1972 VIRTUAL MACHINE COMPUTING




Figure 4 CMS virtual machines

256K OR 512K VIRTUAL MEMORY

USER AREA

1BM 1052
CONSOLE

IBM 1403 1BM 2401 {BM 2461
PRINTER TAPE DRIVE TAPE DRIVE

~ |
1BM 2540 5.25 CYL

CARD READER

193
A

tions. For this reason a cMS virtual machine will run very effic-
iently under CP-67. A typical CMS virtual machine configuration
in this installation is shown in Figure 4. A user’s communications
terminal acts as a virtual printer-keyboard console that is attach-
ed to the virtual machine. All of a user’s console commands and
interactive communications will be entered and received through
this virtual communication console. The facilities of a card

reader/punch and a printer are available to the CMS user for large
volume 1/0 operations through the CP-67 spooling function. The
tape drives may be attached by the CP-67 system’s operator di-
rectly to a user’s virtual machine when needed.

Five types of virtual disk drives are attached to each CMs user’s
virtual machine. Each of these drives appears to the CMS machine
as a separate device with the addresses shown in Figure 4. How-
ever, this disk space is allocated on “‘mini-disks,” and in reality
several of the virtual disk drives might be on the same physical
device. In addition, the P, or permanent disks, of many users are
on the same physical drive. The S, or systems disk, contains all
the cMS systems modules such as the cMS nucleus, macroin-
structions, and compilers. This disk is shared on a read-only basis
by all cMS users. The C disk can be considered as a read-only
extension to the S disk that contains installation-supplied routines
available to all users. Included on this disk would be FORTRAN
error-handling routines, scientific subroutines, and standard EXEC
procedures. (The EXEC procedure is a method whereby a user
can create his own command language by combining a series of

MC GRATH IBM SYST J




commands and logic statements that can be executed by typing
a single line.) The P disk is space-designated to each user identi-
fication for permanent data or program files. It is also used as
temporary storage space during an interactive programming
session. The A disk contains files that are shared by users on a
selective basis. In this installation, each major department will
maintain a common data base and subroutine library that may
be accessed only by the identification that is associated with their
own department. The T disk is space assigned to eligible users
on a temporary basis for the duration of their interactive session.
CP-67 maintains a pool of temporary space and allocates it to the
users as they log onto the system.

The major facilities of CMS that are used in this installation fall
in the three broad areas of file manipulation, compilation, and
program execution. The file-handling commands allow a user to
manipulate a disk file that is usually either a source program or
engineering data. Through the context editor, the user can create
a new source program or data file, or make changes to existing
files contained in his library. Several of the commands that facili-
tate the editing of these files allow a user to insert or delete lines,
locate occurrences of character strings, change character strings,
print selected portions of the file, and store the changed file on
disk.

CMS contains several language processors, some that are extens-
ively used and others that are limited in use to the needs of special
interest groups. The FORTRAN 1V G compiler is the most widely
used by the engineers and scientific programmers. CMS has ac-
commodated the 08/360 compiler, and therefore, programs are
compatible at both the source and object levels. This compati-
bility is extremely useful in developing and debugging programs
under cMS. Then the object code can be transferred to a virtual
05S/360 machine or punched into cards for use on nonvirtual com-
puters. Assembler F and pL/1 F are additional 0$/360 processors
that are available under CMS, but their use in our application is
primarily in systems programming and special application areas.
Other processors available for use with CMS, which are used to
a limited degree at this installation, include BRUIN (Brown Uni-
versity Interpreter, an interpretive language that performs desk
calculator functions), SNOBOL (a string processor), and SCRIPT
(a text processor). A debugging facility is also available with
CMS to assist in determining program errors. Using this facility,
a programmer may stop his program at any point during execu-
tion and inspect any storage location, register, or the program
status word, make changes in any of these, and then continue
execution.

The execution control commands of cMs allow a fully interactive
program execution capability. Through the cms loading com-

NO. 2 - 1972 VIRTUAL MACHINE COMPUTING

major CMS
facilities
used




response
time

mands that may be used by programs during execution, complete
overlay structures may be built and executed. A engineering user
can also create his own command language by an EXEC proced-
ure. This makes it extremely helpful to nonprogramming engi-
neers because they are not interested in learning all the complex-
ities of the full command structure.

cMs also provides a batching capability for running noninter-
active jobs. The CMS batch monitor is run in a virtual machine
and accepts input from a card reader or tape drive and writes
output on tape, the printer, or the card punch.

Performance considerations

Although it has been discussed by many people at great length,
performance of a computing system is still not a well-defined
science. This is especially true in the case of time-sharing com-
puters where even a definition of performance can include many
different meanings. To the interactive programmer, a response
time of five seconds to his terminal request might indicate poor
performance. The criterion of measurement for the graphics user
is the delay in generating graphic displays. The criterion of the
systems group might be the total number of jobs run or system
throughput. However, a programmer using the batch facility
might be satisfied with a job turnaround time of several hours
according to his criterion. Even if a performance criterion is
agreed upon, a method to quantify and measure the results is
still a major obstacle toward a solution that would improve per-
formance. Another question that would have to be addressed
concerns the trade-offs involved in maximizing any criteria; for
example, how much system throughput degradation would be
tolerated to obtain a measureable improvement in graphic re-
sponse time?

In this installation, graphic response time is considered the most
important measure of performance. However, it is difficult to
guantify or measure a user’s degree of satisfaction with the sys-
tem when response time is based on a variety of demands being
placed on the system resources by many other users. Despite
the difficulties in obtaining precise measurements, a graphics pro-
grammer or engineer sitting at a display console can judge
whether the system is meeting his own performance criteria.
For example, through experience he can give a good estimate of
how much time it should take for compiling, or whether the delay
in displaying certain graphic frames is excessive. The display
console user’s comments in this installation indicate that re-
sponse and program execution time can vary according to the
number of users on the system and the demands that they are
placing on system resources. Under conditions prevailing in this

MC GRATH IBM SYST J




installation, performance of the virtual machine under CP-67 is
satisfactory and consistent with the users’ expectations.

Further improvements in graphics performance under CP-67 is
still a goal that is being actively pursued. One of the more basic
methods of improving performance is through external schedul-
ing. Programs that are not interactive by design or jobs that put
a heavy demand on the CPU are scheduled to be run in the 08/360
or CMS batch virtual machines that can be run during nonpeak
periods of the day. It was found that two of the major graphics
systems put a high paging demand on the system. They were then
scheduled to run at different times during the day and a notice-
able performance improvement was obtained. The dispatcher in
CcP-67 has been modified to give the 08/360 virtual machines pri-
ority. When the display consoles are in an interactive mode, they
will be given priority over any other interactive user. When the
display program becomes compute-bound, it will enter the non-
interactive queue and compete for CPU resources with other com-
pute-bound programs. As mentioned previously, CP-67 limits the
number of users that can be active in this queue; however, modifi-
cations made to the CP-67 dispatcher ensure that the 0S/360 virtual
machines dedicated to graphics never have to wait to enter the
queue or be forced out of the queue because of an accumulation
of CPU time.

Systems performance is another of the criteria mentioned on
which a computer installation should be measured. By investi-
gating systems performance a number of conclusions were
reached regarding both the ability of CP-67 to meet the overall
computer requirements and the ability of the hardware configura-
tion to support the load placed on it by CP-67. Measurements of
systems performance were obtained by two different methods.
First, a hardware monitor, the Systems Measurement Instrument
(SMI), was attached to the system; second, a software package
was installed in CP-67. A summary of the results obtained by sMI
are given in Table 1. These results were obtained on Version 2 of
Cp-67 during the nine-hour prime shifts of a one-week period.
Software measurements have verified the measurements given
in Table 1.

A few general comments may be made regarding the performance
of the hardware configuration. The total CPU utilization is quite
high considering the interactive nature and the number of users
in this installation. A look at the channel statistics shows that the
CPU was seldom in a wait state due to a pending 1/0 operation on
any individual channel. Therefore, little would be gained by the
installation of more channels. The effects of reducing the real
main storage from 768K to 512K were also investigated. Soft-
ware measurement showed that the paging rate jumped from ap-
proximately 25 pages per second to 75 pages per second. A dras-

No. 2 - 1972 VIRTUAL MACHINE COMPUTING

systems
performance




Table 1 Performance results

Average for Average for busiest

entire shift 2 hours each day
Total CPU execution time (percent) 88
Supervisor State (CP-67) 36
Problem State (virtual machines) 52

Total CPU wait time (percent) 1
CPU wait no channel busy
CPU wait Channel 1 busy
CPU wait Channel 2 busy
CPU wait Channel 3 busy

Number of users

Paging rate (pages per second)
768K real main storage
512K real main storage

tic decrease in overall performance resulted according to users’
estimates.

It should not be assumed from the supervisor time shown in
Table 1 that an additional overhead factor of 32 percent is incur-
red by running CpP-67. These measurements were made at a spe-
cific installation, and they might vary considerably depending on
the work load and number of users on the system. Overhead, for
the purpose of this brief discussion, may be defined as additional
CPU time used that would not occur in the running of these jobs
if they were executed in a nontime-sharing batch environment,
such as 08/360. Certainly paging time and most of the time needed
to translate channel command words would be considered over-
head. However, CP-67 dispatching time and time taken to spool
card and printer 1/0 would normally occur in any batch environ-
ment. Therefore, the additional overhead caused by the use of
CP-67 is less than the 32 percent given in the table. Again, if sys-
tem performance were a main criterion, a higher job throughput
rate could probably be obtained by introducing more batch virtual
machines into the system. However, this would be at the expense
of terminal response time.

Applications of the system
Many applications have been developed for use in the environ-

ment of this installation under Cp-67. Several of these applications
are now described.

The major interactive application installed on this system is for
computer-aided design of jet engine turbine blades using the

MC GRATH IBM SYST J




Figure 5 Interactive graphics systems flow

PROGRAM SELECTION DATA INPUT

GEOMETRY DEFINITION
DATA INPUT

HEAT TRANSFER
STRESS ANALYS(S
DATA FILES
PROGRAM
LIBRARIES

PROGRAM
EXECUTION

OUTPUT DISPLAYS

% OUTPUT DATA

graphic display consoles. Historically, this design system had
been a batch operation with all programs being run in a sequential
manner. The output results of one program would have to be
analyzed before a decision regarding the next batch run could be
made. With the use of the interactive graphics system, the engi-
neer can now communicate with the computer on a real-time
basis. As a result of the previous display, the engineer at the con-
sole may decide which analysis to perform next, allowing him to
dynamically iterate through difficult computations in one session
at a terminal. The system also allows data to be transferred be-
tween analyses through a common data structure, eliminating
the need for an engineer to prepare data between each computa-
tion. A display of input and output data in either curve or tabu-
lated form is also another advantage. A simplified diagram of the
design system is shown in Figure 5.

A typical session by an engineer sitting at a display console might
go according to the following sequence. An engineer first selects
the geometric definition program to define the shape of the de-
sired air foil. He may enter preliminary geometric coordinates
through the card reader and then dynamically delete, add, or
change points or line that are displayed in picture form on the
console. The engineer may then select a program such as a heat
transfer analysis to be run, using the geometry just defined and

No. 2 - 1972 VIRTUAL MACHINE COMPUTING




program
development

systems
programming

other data on a disk data set. The results of this program will us-
ually be displayed in graphic form on the console. After studying
these graphic data, the engineer might decide to go back to the
initial input phase and redefine his geometry, or he may decide to
proceed further with the analysis and select another program to
be run.

By making many of the engineering programs interactive in na-
ture, the graphics system has substantially reduced the design
cycle time in the development of air foils. However, installation
of the graphics system was made practical because of the time-
sharing and virtual machine facilities of CP-67.

Interactive program development under CMS is another major
use of the Model 67. At present, this facility is used almost ex-
clusively in the scientific environment with most of the programs
being written in the FORTRAN language. In some instances, the
development time of batch scientific programs has been substan-
tially reduced through the use of CMS in comparison to the pre-
viously used batch method of development. This reduction can be
attributed to the advantages of time-sharing systems in which a
programmer at a single terminal session can perform many itera-
tions in the compiling, debugging, and testing phases of program
development. Once the batch programs have been developed
under CMS, they can be put into production on a batch computer.

CMS is also used to develop the 0s/360 graphics programs. Since
the virtual 0s/360 machines and the display consoles are primar-
ily used as a production tool, very little time is available for pro-
gram testing. To conserve virtual 0S/360 machine time, all graph-
ics programs are compiled and initially debugged under cMms.
When the programs have been successfully compiled, the object
code can then be tested on the virtual 0S/360 machine. Using the
EXEC procedure facility of CMS, the object deck can be combined
with the proper 08/360 job control language cards into a single
file. This file can be transferred to the CP-67 spooling disk where
it can be read by the 0S/360 virtual machine when test time is
available.

System programmers have made excellent use of the virtual ma-
chine facilities. Modifications and additions to PCP and CMS are
made by the systems programmer at his terminal. These changes
can be completely tested and debugged in a virtual machine that
is isolated from any of the production systems. Once the test
results are satisfactory, the modifications can be incorporated
into the other production systems. New releases of operating sys-
tems such as 08/360 can be generated in a virtual machine during
the prime shift. If it is desired to debug or test a new release of
CP-67, the new release can be run in a virtual machine under the
existing production version of CP-67.

MC GRATH IBM SYST J




Several engineering departments have the requirement to inter-
change programs and data with other manufacturers and vendors
in the industry. In some cases, these programs were written at
other installations where the hardware configuration enabled
these programs to be developed using a large amount of main
storage. On smaller systems, these large programs were very
inconvenient to schedule or they required modifications to fit
within existing main storage limitations. With a virtual storage
system, size is no longer a factor that has to be considered when
running these jobs.

An interactive program execution facility at low-speed terminals
has been provided for the use of the engineers. CMS EXEC proce-
dures have been written to assist the user in executing programs
during a terminal session. The engineer is led through a series
of questions about a program he wants executed, the input media
he would use, and the device that would be used for his output.
An engineer may choose to submit input data to his program from
his terminal keyboard or its attached card reader, the card reader
at the computer installation, or from a stored data set on disk. The
output may be received at the terminal, or if the volume is large,
it may be directed to the CP-67 spool file, then printed on the prin-
ter. A typical user of this facility is a design engineer who may
execute approximately 30 programs that are stored on the CMS
A disk library which is maintained by his group. These programs
are usually of short duration and may include moment of inertia
or gear calculations, stress or vibration programs, or a weight
analysis. This application is designed primarily to give the engi-
neer a quick turnaround capability for small batch jobs rather
than providing an interactive capability during program execu-
tion.

A spooling capability has been developed for use under CMS to
facilitate the operations involved in creating tapes that are to be
used with off-line plotters. In the past, a CMS user who wished
to create a plot tape would have to wait until a seven-track tape
became available. This might have taken a considerable amount
of time. A systems operator would then dedicate a free tape drive
to the user, usually for the duration of his terminal session. The
spooling capability was implemented by using many of the facili-
ties of virtual machine computing in the following manner. The
original plot subroutines contained in the user’s program have
been modified to punch card images into a virtual card punch in-
stead of creating plot records directly on tape. When the plot
deck has been completely punched into the virtual card punch,
the card image file is transferred to the virtual card reader of
a virtual cMS machine dedicated completely to the plotting ap-
plication. The virtual machine will read the card images as if they
came from the physical card reader and then write the plot data
onto tape. This virtual plot machine runs in a disconnect mode

NO. 2 - 1972 VIRTUAL MACHINE COMPUTING

program
interchange

interactive
program
execution

plot
facility




remote
batch job
entry

0S/360
usage

which means that the physical terminal that was used to initially
load the system may be disconnected from the operation of the
virtual machine. This disconnect feature thus eliminates the need
for a physical terminal being tied up whenever the virtual plot
machine is active. This virtual machine is usually started by the
systems operator at the beginning of the day and remains on as
long as CP-67 is running. When there is no plot work being per-
formed, the cMS machine places no demands on any of the com-
puter resources and is probably completely paged out of main
storage within minutes after it has become inactive. It will re-
main in this dormant state until it has been notified that there is
a file to be processed in its card reader. This system has improved
the utilization of tape drives and also increased operator effi-
ciency since the plot files of many users may now be spooled
onto a single physical tape.

A ¢Ms batch machine is also available to run programs that are
not interactive in nature or do not require a quick turnaround.
These jobs may be submitted from the local card reader or by a
user at a terminal who transfers an input file from his virtual ma-
chine to the CMsS batch virtual machine. This batch machine
runs in a disconnect mode, not requiring a terminal to be ded-
icated to its use.

An 08/360 batch system is available to run special processors that
are supported only in an 0S/360 environment. These processors
include the General Purpose System Simulator (Gpss) and the
FORMAC interpreter, which is an extension to PL/1 and provides
for the symbolic manipulation of mathematical expressions. A
user at a CMS terminal may interactively create or modify the
GPSS or FORMAC parameters and then use an EXEC procedure to
combine the processor input and the 05/360 job control language
into a single file. This file can then be transferred to the 0s/360
batch machine for execution.

Although the development of many applications has been made
possible by the installation of CP-67 CMS, a major limitation is
processor speed. For example, in a complete air foil analysis,
several programs are still not included in the interactive graphics
system because they would require several hours of CPU time
even if no other user was on the system. A more powerful CPU
would be needed to make these programs interactive in a practi-
cal sense.

Summary

The Model 67 with CP-67 was installed at Pratt & Whitney Air-
craft to meet specific requirements of their engineering depart-
ment that could not be met by a traditional batch computer sys-

MC GRATH IBM SYST J




tem. An extensive interactive graphics system, using graphic
display consoles, has been developed to assist the engineer and
reduce the development cycle time of an engineering design. The
interactive programming and job execution facilities provided by
CMS have given the engineers and programmers simultaneous
computer capabilities at local terminals through the use of virtual
machines. The concepts of time-sharing and of virtual machines
have certainly proved beneficial for the present applications and
will definitely be a valuable tool in implementing many engineer-
ing applications in the future.

ACKNOWLEDGMENTS

The author would like to thank Thomas Barry of the System
Programming staff at Pratt & Whitney Aircraft for his major
contribution in the areas of the CP-67 installation and systems
performance. Discussions with Jeanne Bourque, also of Pratt &
Whitney Aircraft, were very helpful in areas concerning the engi-
neering users and applications.

CITED REFERENCES

1. R. P. Parmelee, T. 1. Peterson, C. C. Tillman, and D. J. Hatfield, “Virtual
storage and virtual machine concepts,” in this issue.

2. P. J. Denning, “Virtual memory,” Computing Surveys 2, No. 3, 153-189
(September 1970).

. R. A, Meyer and L. H. Seawright, “A virtual machine time-sharing system,”
IBM Systems Journal 9, No. 3, 199 -218 (1970).

. A. D. Rully, “Interactive graphics in data processing: A subroutine package
for FORTRAN,” IBM Systems Journal 7,Nos. 3 & 4,248 -256 (1968).

. CP-67/CMS Version 3 System Description Manual, GH20-0802-1, Interna-
tional Business Machines Corporation, Data Processing Division, White
Plains, New York (1970).

. CP-67 Program Logic Manual, GY20-0590-0, International Business Ma-
chines Corporation, Data Processing Division, White Plains, New York
(1970).

. CP-67: Operating Systems in a Virtual Machine, GH20-1029, International
Business Machines Corporation, Data Processing Division, White Plains,
New York (1971).

VIRTUAL MACHINE COMPUTING

149




