This paper reviews virtual storage and virtual machine con-
cepts, consolidating and updating earlier discussions. The man-
ner in which actual virtual storage and machine systems have
been implemented, and certain problems of current implementa-
tions, are described. To better illustrate the material, the virtual
machine system CP-67 for the IBM System|360 Model 67 is con-
sidered at some length. An annotated bibliography is included.

Virtual storage and virtual machine concepts
by R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. J.
Hatfield

In recent years, the concepts of virtual storage and virtual ma-
chines have been of increasing interest in the computing commu-
nity. This paper defines these concepts and describes how vir-
tual storage systems and virtual machine systems are imple-
mented and used. To give the reader a more concrete conception
of these systems, the 1BM virtual machine system Cp-67 (Control
Program —67) is considered at some length.

A virtual storage system may be defined generally as any infor-
mation storage system in which there is, or may be, a distinction
between the logical address generated by a program and the
physical address for some real storage device from which infor- -
mation is actually fetched. Similarly, a virtual machine system
may be defined as a computing system in which the instructions
issued by a program may be different from those actually exe-
cuted by the hardware to perform a given task. Since instruc-
tions generally include storage addresses as well as operation
codes, a virtual machine system may include virtual storage as
well as other virtual hardware featurés. In this sense, the virtual
machine concept is a generalization of the virtual storage con-
cept, and indeed, existing virtual machine systems such as CP-67
do include virtual storage. Thus it is natural and convenient to
treat virtual storage and virtual machine concepts in a single
paper. Other papers that consider these topics are References 2,
4,6, and 7 on virtual storage and References 47, 68, 70, 91, and
96 on virtual machines.

NO. 2 -+ 1972 VIRTUAL STORAGE AND MACHINES




overview

programmer
advantages

In this paper, we first give an overview of virtual storage, dis-
cussing its advantages and two approaches to its organization
and management. Then we describe details of implementation.
In the latter part of the paper, we discuss virtual machines. With
CP-67 used as the example, we describe the implementation and
operation of virtual machines.

Virtual storage

Viewed in a high-level programming context, the definition pre-
viously stated for a virtual storage system includes a variety of
common storage schemes, e.g., conventional file systems in
which data sets are addressed by name rather than directly in
terms of device and position information. Normally, however,
the term virtual storage refers to the addressing of individual
memory words by central processor instructions, and in par-
ticular, to systems in which memory addresses are translated
or relocated dynamically by hardware. A simple system of this
type is seen in computers where a single relocation constant is
added to effective (i.e., logical) addresses, as for example in
the Disk Operating System/360 (DOS) emulator of the 1BM Sys-
tem/370 Models 1335, 145, and 155.5% A more general form of
virtual storage permits virtual address space to be split into
pieces, each with its own dynamically changeable relocation
constant, so that individual pieces can be swapped back and
forth between main and auxiliary storage as deemed appropriate
by the system control program. It is this latter form of virtual
storage that concerns us in the present paper.

Before going into the details of implementation, it is of interest
to consider the advantages that virtual storage offers and to re-
view some of the systems that employ it. From the program-
mer’s viewpoint, a major advantage of virtual storage is the re-
duced need for concern about storage management. In particu-
lar, since only those portions of virtual storage that are actually
in use need occupy main storage at any given time, it is possible
to give the programmer much more logical address space than
would otherwise be possible. Thus he can avoid working with
overlay structures that are often necessary in conventional stor-
age systems. In truth, of course, the overlaying of information
takes place in a virtual storage system too, but it is handled
automatically by the system and is logically transparent to the
programmer. For the programmer who is developing software
that must run in a broad range of system configurations, this ad-
vantage has particular significance. With virtual storage, a single
version of a program can be developed that will run in any amount
of main storage. Moreover, this single program can continue to
run when a main storage module is taken off-line for maintenance,
and it can be expected to perform more efficiently as new modules
are acquired. As we shall see later, all of this does not neces-

PARMELEE ET AL IBM SYST J




sarily mean that the programmer may be oblivious to the struc-
ture of his program if he wishes it to perform well in a virtual
storage environment. However, it is easier to isolate and defer
questions of program structure in this environment than in en-
vironments where overlays must be considered from the outset.
More importantly, improvements in program structure for vir-
tual storage environments tend to be valid independent of the
amount of main storage available, and hence have broader
payoffs.

Virtual storage can also offer significant system advantages,
namely, better storage utilization and increased potential for
multiprogramming. In conventional storage systems, main stor-
age may be under-utilized because of the fragmentation as-
sociated with the allocation of large contiguous regions. In
virtual storage systems, the pieces into which virtual storage
is divided can be allocated discontiguously through main storage
wherever there is room. The resulting reduction in fragmenta-
tion, combined with the fact that only the active portions of vir-
tual address space need be in main storage at any given time,
can substantially increase storage utilization and, hence, the
degree to which a system can be multiprogrammed.

In reviewing systems that employ virtual storage, it is of interest
to distinguish between two approaches to virtual storage organi-
zation and management. These are paging, where virtual storage
is allocated to physical storage in fixed-length blocks called
pages, and segmentation, where virtual storage is divided into
variable-length segments that may or may not be subdivided into
pages for allocation to physical storage.

Paging is generally logically transparent to the programmer, and
may be considered solely a storage management mechanism.
Segmentation may or may not be visible to the programmer as a
means of structuring programs and data, depending on system
software.

The first virtual storage system was implemented in the early
1960’s on the Ferranti ATLAS, where paging was used primarily
as a mechanism for “extending” a relatively small main
store.”®®* An early machine with segmented virtnal storage was
the Burrough’s B5000, in which logically distinct program and
data elements were allotted to different segments.” Other more
recent systems implementing virtual storage include:

IBM System/360 Model 40 modified for paging and used for
the experimental virtual machine system cp-40*" "%

GE 645, a large-scale machine with segmentation and paging
for which the MULTICS time-sharing system was imple-
mented” >

- 1972 VIRTUAL STORAGE AND MACHINES

system
advantages

systems with
virtual storage




address
translation

* 1BM System/360 Model 67, a large-scale machine with seg-
mentation and paging for which three time-sharing systems
have been ‘developed: Tss/360.°"%%" mts,” and cp-67/
CMS53,55,68 .

RCA Spectra 70/46 and 70/61, medium-scale paging ma-
chines for which the TSOS time-sharing system was de-
veloped™™

s XDs Sigma 7 (with memory-mapping option), a medium-scale
paging machine.

Implementation of virtual storage

In this section, we consider the manner in which virtual storage
systems are implemented and the implications of virtual storage
on program performance. The implementation of a virtual stor-
age system generally involves two distinct mechanisms: (1) an
address translation mechanism for converting logical, or virtual
addresses, into real addresses, and (2) a storage management
mechanism for handling the transfer of information between
main and auxiliary storage. For convenience of exposition, these
mechanisms are treated separately in the following discussion,
though in practice they may be highly interrelated.

The translation of virtual addresses into real addresses is per-
formed in most virtual storage systems by special hardware in
conjunction with tables maintained by the system control pro-
gram. Consider, for example, a byte-addressable machine with
an address field of » bits and with a paged but nonsegmented vir-
tual storage that has pages 2" bytes in length (m < n). In such a

machine, the left-most (n-m) bits of a virtual address are typical-
ly treated as a virtual page number and the right-most m bits as
a displacement within the indicated virtual page. Then, as illus-
trated in Figure 1, address translation is achieved by using the
virtual page number as an index into a page table supplying, for
each of the 2™ possible virtual page numbers, either a corre-
sponding real page number (sometimes called a page frame
number) or an indication that the page does not presently reside
in main storage. If we assume that the page does reside in main
storage, the address translation hardware merely replaces the
virtual page number of the original virtual address with the real
page number from the page table.

Similarly, in a machine with segmented but nonpaged virtual
storage, certain high-order bits of a virtual address may be used
to index a segment table having fields not only for the beginning
real address of each segment and an indication as to whether the
segment is actually in main storage, but also a length field to be
compared against the displacement field of the virtual address.
Thus a successful translation involves adding the displacement

PARMELEE ET AL IBM SYST J




Figure 1 Address translation in a paged, nonsegmented virtual storage system

VIRTUAL P d I DISPLACEMENT
ADDRESS v h

REAL OR
Pe PHYSICAL
ADDRESS

VIRTUAL
PAGE

NUMBER

REAL PAGE
NUMBER

field from the original virtual address to the beginning-of-seg-
ment address from the segment table.

Finally, the concepts of paging anhd segmentation may be com-
bined in some machines. In these machines, address translation
can be effected by a two-level look-up scheme.

Each of the translation mechanisms described above would ob-
viously cause substantial performance degradation were the
required translation tables kept solely in main storage. Indeed,
the two-level look-up procedure for systems combining seg-
mentation and paging would, for each storage access, require
two additional accesses for address translation. For this reason,
address translation hardware generally includes high-speed reg-
isters in which the most recently used portions, if not all por-
tions, of the translation tables are maintained. For example, the
dynamic address translation (DAT) hardware of the IBM Sys-
tem/360 Model 67 uses eight associative storage registers for
the eight most recent translations and a ninth register for the real
page number of the translated instruction counter.

As implied above, the tables used for virtual address translation
generally contain fields not only for address information per se,
but also for control information indicating possibly, among other
things, whether or not a given portion of virtual address space is
presently available in main storage. In machines combining
segmentation and paging, such availability or validity indicators
may be present in the segment table as well as the page tables;
so the page tables themselves may at times not reside in main
storage.

It is, of course, a function of the translation hardware to inter-
rupt processing whenever a translation table entry is encountered

NO. 2 - 1972 VIRTUAL STORAGE AND MACHINES

storage
management




that indicates that a storage block is unavailable. On detecting
such an interruption, called a translation exception, the system
control program must initiate the operations needed to bring into
main storage the information that is missing. In general, these
operations involve:

1. Determining an area in main storage into which the missing
information can be placed (a function of the replacement al-
gorithm, discussed further below)

. Writing, if necessary, into auxiliary storage the current con-
tents of the selected area

. Reading from auxiliary storage the missing information

. Updating the translation tables to reflect the changes that
have been made

Only when these operations have been cqmpleted can the sys-
temn control program resume execution of the instruction causing
the translation exception. Note that these operations generally
entail reference to (and possibly modification of) additional ta-
bles specifying the location of virtual storage blocks on auxiliary
storage. In CP-67 these tables are called swap tables.

In some virtual storage systems, the transfer of portions of vir-
tual storage between main and auxiliary storage is performed
solely when transldtion exceptions occur. Paged virtual storage
systems implemented in this manner are called demand paging
systems. It should be noted, however, thdt virtual storage trans-
fers need not be handled entirely on a demand basis. For exam-
ple, in time-sharing systems with virtual storage, it may be ad-
vantageous to immediately initiate the transfer of a particular
user’s storage blocks from main to auxiliary storage when-
ever that user is deactivated. This is done, for example, in the
IBM Time-Sharing System/360 (T5S/360) and RCA TSOS systems.
These two systems also employ prepaging, an anticipatory strat-
egy which, in general, involves transferring virtual storage
blocks into main storage before they are actually demanded.

In addition to the essential operations of transferring virtual
storage blocks between auxiliary and main storage, virtual stor-
age management may entail other operations aimed at increased
function or improved performance. For example, in some sys-
tems, the storage management miechanism is generalized so that
programs and data can be introduced into a user’s virtual ad-
dress space without conventional file 1/0 operations. In essence,
this is accomplished by using the same format for files as is used
for virtual storage blocks. Then, by making swap table entries
point to the appropriate file blocks when access is desired, the
blocks can be brought into main storage on a demand basis.
Highly refined mechanisms of this type have been developed in
TSS/360, where they are called virtual access methods (VvAM), and
in thé MULTICS system, where files are almost always treated as

PARMELEE ET AL IBM SYST J




virtual storage segments. As discussed later, a very limited form
of VAM is used in CP-67 to establish an operating system in the
address space of a virtual machine.

Another storage management function in multiuser virtual stor-
age systems may be the provision of a mechanism for informa-
tion sharing. This is accomplished quite simply, in principle, by
making the translation tables for different users point to the
same physical storage areas. In MULTICS and TSS/360, sharing
is effected at the segment level; hence, when users share a
given segment, pointers to the page table for that segment are
placed at the appropriate entry of each user’s segment table. In
CP-67, the sharing of read-only portions of an operating system is
effected at the page level. Thus each user has his own set of
page tables, but individual page tables of different users may
have common entries.

Program performance in virtual storage environments has been
the subject of numerous and often conflicting articles (see Refer-
ences 8§—-46). Here we make no aftempt to treat this subject
exhaustively, but wish to point out some of the factors influenc-
ing program performance other than the obvious factor of pro-
gram size relative to the amount of available main storage. We
also indicate certain techniques that may improve performance.

One factor which has received considerable attention is the re-
placement algorithm, mentioned previously as the mechanism
determining the area of main storage in which to place a newly
d‘emanded‘virtual storage block. In systems with predominantly

demand-based storage management, the replacement algorithm
can greatly affect the rate at which translation exceptions occur
and, hence, system performance in general. Intuitively it would
appear that, to minimize the rate of translation exceptions, the
replacement algorithm should choose the storage area containing
information that has the longest expected time before being re-
ferred to again. This notion, essentially a statement of the princi-
ple of optimality, is in fact embodied in many of the replacement
algorithms that have been implemented and/or theoretically in-
vestigated, for example:

First-in-first-out (FIFO), wherein the storage block that is re-
placed is the one first brought into main storage
Least-recently-used (LRU), wherein the storage block that is
replaced is the one referenced longest ago ’
Working-set (wS) algorithm, wherein the storage block that is
replaced is any block that has not been referenced within
some specified period™ '
Optimal (MIN) algorithm, wherein the storage block that is
replaced is the one that will, in fact, be referenced farthest in
the future

+ 1972 VIRTUAL STORAGE AND MACHINES

program
performance




procedures

The MIN algorithm, though not realizable in practice, was used
in experimental work by Belady as a basis for evaluating other
algorithms."! Actual virtual storage systems generally employ
various approximate forms of the ws and LRU algorithms that
typically generate 10 to 50 percent more translation exceptions
than the MIN algorithm.

11,17

While the control of main storage by the replacement algorithm
is important to performance, it is generally logically transparent
to the application programmer. Thus, more germain from the
programmer’s view, are the factors of programming style and
program structure. A central goal of programming for a virtual
storage environment is that of maintaining locality. Locality is
difficult to specify precisely, but generally it implies staying
within a small set of virtual storage blocks for long periods of
time. Techniques for achieving locality may be roughly divided
into those having to do with procedures and those having to do
with data, and will be so divided here, though the distinction is
not always clearcut.

Since procedures tend to stay in one place in virtual storage
while data is passed around from one location to another, locali-
ty implies compacting procedures internally and clustering those
procedures which are frequently used together. Compacting is
done by removing areas of seldom-used code that are in line
with areas of often-used code, and making each seldom-used
area a separate routine that can be assigned to a virtual storage
space near other seldom-used code. Clustering the often-used
areas can be done on the basis of frequency of use or on the ba-
sis of the number of transfers from one area to another. The in-
formation needed to perform the clustering may be gathered at
little or great expense, depending on the accuracy desired. Auto-
matic techniques have been developed to perform this cluster-
ing, and improvements are usually possible through manual or
automatic methods. See Comeau'® and Hatfield and Gerald.”

Given that the amount of data examined by a program is de-
termined by the problem to be solved, the programmer has
choices left in the manner of structuring and accessing the data
he will use. The access pattern and storage pattern should be
mated, and when one is fixed, the other should conform to it as
much as possible. There is no “best” storage structure (e.g., an
array) independent of the distribution of data values and access
patterns. The array is a reasonable way to store a matrix if no
large fraction of its elements has the same value, but if a matrix
is 80 percent zeros, it probably should be packed, and if symme-
tric, only half need be represented. Where possible, data should
be stored in the order in which it is to be used and vice versa.

Hash-coding has the advantage over list processing of localizing

PARMELEE ET AL IBM SYST J




drastically the storage traversed for the accessing process (i.e., no
intermediate pointers) and usually for the updating process as
well, Therefore it is preferred when a small fraction of a total
data area needs to be examined in a significant period of real
time (the time it would take to fetch all the data area). But if
most of the data area, or more specifically most of the virtual
address space that makes up the data area, must be handled
during a relatively short period of time, the cost of explicitly
storing redundant structural information in the hash-code method
must be considered, and the storage representation that gen-
erates the smallest total storage area chosen.

An aid to increasing data locality is to consider the amount of
parallelism available in a process. For instance, the order of
processing indices is unimportant when initializing or multiplying
a matrix, and that order may be chosen which results in the
fewest passes over a large virtual storage area. In general, the
more flexible is the order of operations between initialization and
result, the more possible it is to increase localization by using
compact intermediate data areas for storing partial results, so as
to reduce the number and scope of accesses over a data base.
Parallelism is specifically important in many large data base
applications, e.g., sort-merge, query languages, and matrix manip-
ulation. See, e.g., Brawn and Gustavson'"'® on sort-merge and
Guertin®’ on source language array processing.

What can be done to procedures can be done to data, i.e., data
areas used together should be placed near one another in virtual
storage. Clustering of data areas can be facilitated if there is a
level of indirection (a compact pointer area) between the data
name and the lower-level array or tree or hash structures. This
permits target data areas to be rearranged periodically on the
basis of use without global changes to the procedure and data
areas used for accessing. An example of a compact, indirect in-
terface is FORTRAN COMMON, which permits rearranging the
storage order of an array list by reordering the names in the
COMMON statement. :

What can be done to data can be done to procedures whenever
there is freedom to reorder dynamically the sequence of use of a
set of procedures. Whenever possible, the procedures used last
in the previous phase of a program should be used first during
the current phase. This is true because nearly all replacement
algorithms tend to expect that storage blocks used longest ago
will not be needed until furthest in the future. Therefore, looping
is the worst possible way to repeatedly traverse a large virtual
storage area. For example, consider the problem of multiplying
two large matrices to produce a third, all stored columnwise. No
matter how the program is written, at least one of the multiplied
matrices must be gone over in the wrong direction (across its

NO. 2 - 1972 VIRTUAL STORAGE AND MACHINES




overview

rows). But if we alternate the direction of the paths across suc-
cessive rows, which can be done because the sum Y a,b,; is
independent of the order of values given to k, we will produce,
instead of a loop over a large storage area, a sawtooth that gives
less page exceptions with all but random replacement algorithms,
especially as the available real memory size approaches that of
the virtual storage area needed for the array.

In general, it is possible to contain procedure and data in local
virtual storage areas if (1) code is segregated by frequency of
use and communication, (2) the order of processing data cor-
responds to the order of storage and intermediate data areas
containing partial results are used when possible, (3) initiation of
data is done immediately before the data is used, and then only a
few storage blocks at a time if the data is to be used serially,
(4) garbage collection is frequent, and (5) retarns from long se-
quences of large jumps through virtual storage are made by
reversing the order of the jumps if the start of the sequence has a
greater probability of being used in the immediate future than
does the end or the middle. Little is known yet of the value of
saving in a temporary array more data than the present pass
through a data base requires on the assumption that it will be
relevant to the next pass. Also, little information is available
concerning under what conditions it is better to do a large over-
lay rather than shift to a new area of virtual storage, or what
statistics are needed for dynamically restructuring a data base.
But usually programs do not require such esoteric remedies.
What seems most helpful, aside from reordering tools that use
detailed examination of program activity, is to consider the pro-
gram as a problem-solving process as free as possible from

(1) preconceived representations of the data involved and (2) pre-
conceived orderings of the detailed sequences of data reduction.

Virtual machines

As stated in the beginning of this paper, in a virtual machine sys-
tem, the instructions issued by a program to perform a given
task may differ from those actually executed by the hardware.
Typically in such a system, one computer, the host machine,
provides functional simulation of one or more other computers,
the virtual machines. Goldberg™ had distinguished two classes
of virtual machine systems: self-virtualizing, where the virtual
machines are identical to the host, and family-virtualizing, where
the virtual machines are all members of the same computer fami-
ly (e.g., 1BM System/360 Models 30 through 65) as the host. In
either case, the virtual machine system must provide functional
simulation of at least four components—system control panel,
central processing unit(s), 1/O system, and storage —the four
basic components of a real system. To the extent that compo-

PARMELEE ET AL IBM SYST J




nents of the virtual machine (vM) have direct or identical coun-
terparts on the host machine, and to the extent that the architec-
tures of both the host and virtual machines permit it, functional
simulation can be effected by utilizing real components or fea-
tures of the host computer; otherwise, a detailed step-by-step
simulation must be performed. The use of components of the
host computer to effect the functional simulation of the virtual
machine depends primarily on the provisions in both the host’s
and the virtual computers’ architectures to segregate and control
those components. For example, if the instruction set of the vir-
tual machine and the host computer are identical, then many
(perhaps most) of the instructions to be executed by the virtual
machine can be handled directly by the host hardware. This can
be the case only if there is a means of preventing the virtual
machine from directly changing or interrogating its status, where
a status change includes, for example, the initiation of an 1/0
operation. If a mechanism is available for excluding status-relat-
ed instructions from the instruction set of a virtual machine,
then the virtual machine control program can effect the function-
al simulation of the virtual machine’s central processor without
recourse to the detailed and highly expensive simulation of each
instruction.

Though the concept of a virtual machine does not necessarily
imply that the virtual machine is other than a duplicate of the
host or that more than one virtual machine is available, the ad-
vantages of virtual machines are enhanced in a mulitiprogram-
ming environment, permitting different members of a family of
similar machines to be used. Listed below are some examples of
facilities which are only available in such a system, or available

at greater convenience than in a more conventional system:

Concurrent running of dissimiliar operating systems by dif-
ferent users. While one virtual machine is used to develop and
test code for the current release level of an operating system,
another virtual machine can be using a back-level release of
the same system.

Both system and application programs may be developed and
debugged for machine configurations that are different from
that of the host machine. Thus a host machine with a modest
amount of main storage can provide the environment for
development and test of a system to run on a machine with
alarge amount of main storage.

One virtual machine is totally insulated from the effects of
software failures occurring in other virtual machines.

The host machine can aid in the measurement of hardware
and software usage by the various virtual machines. Specific
virtual machines built for monitoring can communicate di-
rectly with the host without impacting the machines being
monitored.

« 1972 VIRTUAL STORAGE AND MACHINES

utility




implemented
virtual
machine
systems

In providing functional simulation of a nonexistant computer
system, a virtual machine system provides lead time for soft-
ware development and early checkout of a hardware architec-
ture and its software implications prior to actual hardware con-
struction.

One of the earliest virtual machine systems was cp-40""*""* men-
tioned previously as an example of a system with virtual storage.
cp-40 was developed in 1965 ~66 for an IBM System/360 Model
40 augmented by special dynamic address translation hardware.
A prototype for the CcP-67 system discussed in detail in the fol-
lowing section, CP-40 allowed concurrent running of as many as
15 virtual System/360’s. It should be noted that, unlike CP-67,
CP-40 did not support virtual machines that used dynamic ad-
dress translation themselves, i.e., CP-40 was family-virtualizing
but not self-virtualizing. Other implemented virtual machine sys-
tems include: '

& [BM M44/44X, an experimental system that was neither family-
nor self-virtualizing, but provided virtual machines similar to
the 1BM 7044 from which the M44 was derived "%
System/360 Model 30 hierarchical control program, a sys-
tems evaluation tool supporting a single virtual System/36094
MTS (Michigan Terminal System), an operating system for
the 1BM System/360 Model 67 that supports multiple virtual
System/360"s*"

HITAC-8400 program simulator, a system development and
debugging aid supporting a single virtual HITAC-8400"%"
cpr-67"""% developed in 1967 (currently an IBM program with

Class A maintenance), is perhaps the most widely used virtual

machine system to date and is discussed below.,

CP-67

CP-67 is a multiuser virtual machine system for the 1BM Sys-
ten/360 Model 67 that provides functional simulation of the Sys-
tem/360 family of computers, including the Model 67 itself. Fur-
ther, depending on the programs (and operating systems)
running within the virtual System/360’s, CP-67 can provide an
interactive time-sharing environment. Its responsiveness —a term
used loosely here —is determined by many factors, including the
system operating in the virtual machine, the dispatching algo-
rithms in CP-67, and the demands of other users. Although re-
sponsiveness is of importance to the acceptability of CpP-67 in
various environments (e.g. high throughput, interactive), it is not
central to its definition as a virtual machine system. The emphasis
here will be on that definition and its interrelationships to virtual
storage. The reader interested in CP-67 performance should see
References 74, 76, 77, 79, and 84.

PARMELEE ET AL IBM SYST I




To convey a more concrete understanding of how CpP-67 oper-
ates, a brief discussion of CP-67’s simulation of each of the com-
ponents of a System/360 is given in the succeeding paragraphs.
Following these are discussions of the manner in which CP-67
supports virtual machines with address translation hardware and
some of the problems arising from the lack of address translation
hardware on the 1/0 channels. The section concludes with a dis-
cussion of some of the exploitations of virtual storage that are
within the framework of a virtual machine system.

For each virtual machine requested by a user, CP-67 maintains a
set of tables containing the description and status of these com-
ponents. Where appropriate, these tables correlate hardware
components of the host Model 67 with components of the vir-
tual System/360. Thus, for example, a keyboard device such as
an IBM 2741 communications terminal is correlated with the sys-
tem control panel and operator’s console of each virtual ma-
chine.

CP-67 associates with each virtual machine a keyboard device
(either remote or locally attached) and maps onto this device the
major portion of the functions available on the system control
panel. Thus the RESET button on the System/360 panel becomes
the typed character sequence “RESET”, which causes CP-67 to initi-
ate a detailed step-by-step simulation that resets the appropriate
status data in the tables describing the virtual System/360. In
the same fashion, CP-67 simulates other features of the system
control panel.

In addition to the various control-panel functions, CP-67 also
maps onto the keyboard device of each virtual machine a virtual
printer-keyboard IBM 1052-7. As the 1052-7 is an 1/O device to a
System/360, its support by CP-67 is covered under the discussion
on the 1/0 system.

The distinction in System/360 between problem and supervisor
state enables CP-67 to execute most of a virtual machine’s in-
structions directly. When the central processing unit (CPU) is in
problem state, any attempt to execute an instruction that
changes or interrogates the state of the system, i.e., a privileged
instruction, causes a program interruption. Thus by executing
virtual machine instructions only while in the problem state, CP-
67 is ensured of regaining control whenever a privileged instruc-
tion is encountered. When such an event occurs, CP-67 simulates
the appropriate functional effect of the privileged instruction as
follows. From a table describing the virtual CPU, its status is
determined — specifically, whether it is in problem or supervisor
state. If the virtual machine is in problem state, CP-67 must simu-
late a program interruption to the virtual machine. This entails
storing the virtual machine’s CPU status in the virtual machine

NO. 2 - 1972 VIRTUAL STORAGE AND MACHINES

simulation of
System/360

system
control
panel




1/0 system

program old psw (Program Status Word) location, fetching the
virtual machine’s program new pSw, and updating appropriately
the data in CP-67’s table for the virtual cpu. If, on the other
hand, the virtual machine is in supervisor state, CP-67 must de-
code the instruction and perform a simulation of that instruction.
For example, on a virtual machine’s sSK (Set Storage Key) in-
struction, CP-67 must determine the key value and block address,
and then, if the corresponding page is in main storage, set its key
to the value specified. If the page is not in main storage, CP-67
must store the key value in the appropriate swap table entry. In
either case, CP-67 must update appropriately the tables (and
hardware) to reflect the change in the virtual machine’s status
before it can resume running the virtual machine.

As we have mentioned, CP-67 maintains in tables a description of
the O structure of each virtual machine. These tables indicate
not only the existence of each 1/0 element but also the status of
the element (e.g., busy or free) and the real hardware component
to which it corresponds. Thus when a virtual machine issues a
SIO (Start 1/0) instruction, CP-67 must first determine that the 1/0
address is valid in the virtual machine’s 1/0 structure and that
the elements composing the virtual 1/0 path (channel, control
unit, device) are free. CP-67 must then mark the virtual path busy
and build an equivalent 1/0 task for the real hardware. At its
simplest level, a virtual machine’s S10 to an 1BM 2314 direct ac-
cess storage device at 1/0 address 190 could result in CP-67 issu-
ing an STO to a real 2314 at address 332. The real path may, of
course, be busy (as when an 1/0 task for another virtual machine
is utilizing the required channel), and if so, the task must be de-
ferred until the real path becomes free. Then CpP-67 can issue an
S1O instruction and proceed with the instructions following the
virtual machine’s S10. When the 1/0 task is completed (interrup-
tion), CP-67 must reflect this fact in the tables describing the vir-
tual machine’s 1/0 structure; in particular, it must indicate that
the previously busy virtual path has become free and that an in-
terruption is pending. Then, when the virtual CPU becomes en-
abled for the interruption, CP-67 must simulate the effects of the
interruption, including the updating of the virtual machine’s chan-
nel status word.

The procedure just described is followed in cases where direct
counterparts exist for the elements of the virtual machine’s 1/0
structure. Where no direct counterparts are available, CP-67
must effect detailed simulation of the data flow through the vir-
tual machine 1/0 structure. Two examples are:

& Unit record devices. Though available on the host machine
(and attachable to the virtual machine), unit record devices
such as printers and card readers are most efficiently utilized
if cp-67 simulates 1/0 to these devices on a detailed basis,

PARMELEE ET AL IBM SYST J




using a disk to buffer the flow of data between many virtual
machines and the individual real devices.

Operator’s console. CP-67 maps the 1052-7 printer-keyboard
onto the same keyboard device used to simulate the system
control panel. This entails simulating the data flow between a
virtual machine and a 1052-7 using a transmission control
unit and communications terminai (e.g., an 1BM 2703 and
2741). This simulation is complicated by the fact that not
only must a range of different terminals be supported, but a
terminal must serve the two dissimilar functions of virtual
machine 1/0 and system control panel simulation.

It is often convenient to add a virtual 1/0 device for which there
is no exact equivalent. An example of such a device is a ““mini-
disk™ —a logical subset of a direct access storage device such as a
2314. That is, a minidisk may be in every way a 2314, except that
it has fewer than 203 cylinders. By partitioning a 203-cylinder
2314 into several smaller equivalents, operational economy is
obtained.

CP-67 employs the dynamic address translation hardware on the
Model 67 to establish and maintain a virtual address space for
each virtual machine. In the tables that CP-67 uses to describe a
virtual CpU, there is a set of segment, page, and swap tables
describing an address space of up to 16 million bytes. To start
running a virtual machine, CP-67 loads a control register with
the address of the segment table associated with the virtual
machine. Next the PSw is set to problem state, address-transla-
tion or “relocate” mode, and enabled for all interruptions; fur-
ther, the psw contains the virtual machine’s psw key and in-
struction counter. The Model 67 is now ‘“running” the virtual
machine’s CpU and will do so until an interruption is received.
As an example, on a translation exception interruption, CP-67
must determine that the virtual address is in the address span of
the virtual machine’s storage. If it is outside the span, CP-67
must present an addressing exception interruption to the virtual
machine. Otherwise, it must make a page frame available (a
function of the page replacement algorithm), find in the swap
table the location on auxiliary store of the image of the needed
page, bring this page image into main storage, and set its storage
keys to the values specified by the swap table. Only when these
actions are complete can CP-67 resume running the virtual ma-
chine.

Though not central to its definition as a virtual machine system,
the page replacement algorithm of Cp-67 has a profound effect on
system utilization and responsiveness.”” Using storage refer-
ence bits set automatically by the hardware, this algorithm tends
to keep in main storage virtual machine pages that have recently
been used. If enough pages for a virtual machine are in main

No. 2 - 1972 VIRTUAL STORAGE AND MACHINES

storage




address
translation
hardware

storage, CP-67 can execute the virtual machine’s instruction se-
quences for substantial periods of time without incurring page
exceptions. Further, if enough pages for each of several virtual
machines can reside in main storage, then those machines can be
multiprogrammed efficiently. It is an objective of the Ccp-67 dis-
patching algorithm to run only virtual machines with a reason-
able chance of having the required pages in, or brought into, the
available main storage. Thus the dispatching algorithm must be
complementary to the page replacement algorithm, which has
the function of preserving in storage the required pages of each
dispatchable virtual machine.

In addition to system utilization being a goal, responsiveness is a
goal and is often a crucial aspect of performance. The central
philosophy is to ensure that short jobs are not inordinately de-
layed by long jobs. This gives rise in CP-67 to a dispatching algo-
rithm with both time-slicing (i.e., each virtual machine is run a
certain length of time, then set aside until others have had a
turn) and multi-queue dispatching (i.e., on the occurrence of
some event, the virtual machine is placed in a high-priority queue
and allowed to be dispatched ahead of other virtual machines).

To support the development of code for the Model 67 itself, there
is a need for virtual Model 67’s (V67). Except for the simula-
tion of several additional instructions and a new psSw format, the
logic for handling the V67’s CPU is the same as that for handling
any System/360 CPU, and is of little interest here. More interest-
ing is the functional simulation of the DAT hardware. Before
discussing V67’s on CP-67, let us review briefly the operation of a

Model 67. To run in relocate mode, the control program in the
Model 67 must among other things load Control Register O (the
segment table register) with the address of a segment table. It
can then load a Psw indicating that address translation is active.
Each address translation invalves a search of associative storage
registers maintained by the DAT hardware, and relies on seg-
ment and page tables if this search fails. To support a V67, Cp-67
utilizes the host Model 67°s DAT hardware to simulate the transia-
tion hardware of the V67. The tables of the control program in
the V67 indicating how its virtual addresses are to be translated
into “real addresses” must be combined with CP-67's tables in-
dicating how the V67’s ‘“‘real addresses” are to be mapped onto
the main storage of the host Model 67. In CP-67, the combined
tables are called shadow segment and page tables. Shadow tables
can be illustrated by the following example.

CP-67's map might indicate that page 6 of a virtnal machine’s
storage is at page 100 of the host Model 67’s storage (see Figure
2, point A). If the virtual machine is a V67 in relocate mode, it
has a map relating virtual addresses to real addresses which
might indicate that “virtual 16 equals real 6. That is, within this

PARMELEE ET AL NO. 2 - 1972




Figure 2 Use of shadow tables to support a virtual Model 67

PAGE TABLE
USED BY CP-67 TO RUN V67 PAGE TABLE BUILT BY
IN NONRELOCATE MODE CONTROL PROGRAM IN V67

PAGENO. ©

1

“SHADOW""
PAGE TABLE

USED BY CP-67 !
TO RUN V67 : 6
IN RELOGATE MODE

t
ADDRESS SPACE OF V67

m

HOST STORAGE ON VIRTUAL STORAGE
MODEL 67 RUNNING CP-67 SUPPORTED BY CONTROL
PROGRAM IN V67

POINT

A: TABLE ENTRY USED BY CP-67 TO MAP PAGE 6 OF V67'S ADDRESS SPACE INTO PAGE 100 OF THE HOST STORAGE
B: TABLE ENTRY WITHIN V67 THAT MAPS VIRTUAL STORAGE PAGE 16 ONTO ITS PAGE 6
C: THE SHADOW TABLE ENTRY THAT MAPS PAGE 16 OF VIRTUAL STORAGE ONTO PAGE 100 OF HOST STORAGE

V67, any virtual address in page 16 is to be converted to one in
page 6 of its storage (Figure 2, point B). To effect the functional
simulation of the V67’s map of virtual addresses to its “real”
storage, CP-67 must build a shadow table that maps virtual page
16 to real page 100 (Figure 2, point C). Then, when running a
V67 in nonrelocate mode, CP-67 uses the normal page tables,
and when the V67 enters relocate mode, CP-67 uses the shadow
tables. It is in this fashion that CP-67 maintains a functional simu-
lation of sufficient fidelity such that both CP-67 itself and TSS/360
can be run in a V67.

As mentioned in the discussion on the /O system, a virtual ma-
chine’s start 1/O instruction to a nonsimulated device results in
CP-67 constructing an 1/0 task equivalent to that demanded by
the virtual machine. A major technical factor is that the virtual
machine’s channel program is defined in the virtual storage of
that virtual machine. That is, all addresses in the channel com-
mand words (CCW’s) that comprise the channel program are vir-
tual addresses. The 1/0 structure on the Model 67 is such that
1/0 tasks are not subject to dynamic address translation, i.e., the
channels deal with real, not virtual, addresses. In constructing
an equivalent channel program, CP-67 obtains a copy of the vir-
tual machine’s channel program and builds in its working storage
a translated equivalent of the program. This process involves the
following operations:

IBM SYST J VIRTUAL STORAGE AND MACHINES

channel
program
translation




virtual
storage
exploitation

1. For each virtual data address, a real address must be ob-
tained. All pages of virtual storage involved in the 1/0 opera-
tion must be determined, and any pages that are missing must
be brought into main storage. Further, all pages involved in
the 1/0 operation must be locked in storage until the 1/0 opera-
tion is completed.

. Channe! commands that indicate data areas crossing page
boundaries must be translated into multiple data-chained
commands. This is necessary because, in general, contiguous
virtual pages are not contiguous in real storage.

One consequence of the translation of channel programs is that,
because a virtual machine’s entire channel program is fetched at
the start 1/0 instruction time, CP-67’s support of virtual machines
is at variance with standard System/360 channel architecture,
wherein channel command words are fetched only when needed.
Thus, modifications made to the channel command words in a
virtual machine’s address space after a start 1/0 instruction has
been issued can have no effect on the 1/0 operation. In practical
use of cp-67, this variance has not been a major problem. Fur-
ther, no such variance occurs in the case of simulated devices,
e.g., card readers. Here CPp-67’s simulation of the data flow
through the virtual machine’s 1/0 structure permits conformity
with the channel architecture.

Another consequence of channel program translation is that
some devices are not, in general, available to virtual machines
under CP-67. For example, the data transfer rate of an IBM 2301
drum unit is too great relative to the storage speed of a Model 67
to permit data chaining (except at a record gap). Thus, these drum

units can be used by a virtual machine only if it can be assured
that no data areas will span page boundaries. A final consequence
of channel program translation is that the page replacement al-
gorithm must be able to recognize and pass over locked pages in
main storage.

To summarize, the lack of address translation hardware on 1/0
channels necessitates a software translation of channel pro-
grams, This translation may have considerable impact on system
performance and may impose minor 1/O programming or hard-
ware restrictions. Preferred virtual machines, a technique dis-
cussed by Parmelee,* permits the elimination of channel pro-
gram translation, hence, the achievement of substantial perfor-
mance improvements and the relaxation of restrictions.

One interesting exploitation of virtual storage by CP-67 is seen in
its ability to establish a program (or data) in an address space
without actual 1/0 or paging operations. In particular, the initial
program load (IPL) function, which on a System/360 is used to
cause a sequence of 1/0 operations followed by CPU execution of

PARMELEE ET AL IBM SYST J




the input data, has been enhanced in Cp-67 in the following man-
ner. In addition to supporting the standard System/360 initial
program load function, CP-67 permits the permanent assignment
on backing store of the page images of an operating system at a
point late in the program loading process. On being requested to
initially load such a system, e.g., to “IPL OS”, CP-67 needs only to
establish in the virtual machine’s swap tables appropriate entries
indi¢ating the permanently assigned area on backing store. Thus
the virtual address space for an entire operating system can be
established without the expense of i/0 simulation. Furthermore,
during subsequent use of the operating system, only those por-
tions of the system that are actually used will be paged-in. From
the user’s point of view, a particular advantage of this feature of
CP-67, which is called “named system IPL”, is that it is unneces-
sary to repeat the system initialization dialogue each time a sys-
tem is run. In effect, the user can create a frozen “checkpoint”
of the system that can be quickly and cheaply re-established.

A further exploitation of virtual storage is the sharing among
several virtual machines of read-only pages of storage. This is
effected by CpP-67 on initially loading the program of a named
system, which initializes a virtual machine’s address space. As
part of this initialization, CP-67 establishes in the virtual ma-
chine’s page tables pointers to common or shared page frames of
the host machine’s main storage.

To conclude this discussion of virtual machines, it must be em-
phasized that Cp-67, in providing virtual System/360’s, makes
very direct and simple use of the address translation hardware of
the host Modet 67. The more eiaborate forms of virtual storage,
e.g., general virtual access methods and segment sharing, being
outside the definition of System/360, are not supported. That is,
a virtual machine system, and in particular CP-67, provides the
basic resources of the computer hardware, but does not other-
wise support or effect high-level user functions.

Summary

In this paper, we have discussed some of the salient aspects of
virtual storage systems. Further, in the discussions of virtual
machines and cP-67, we have illustrated an implementation of a
virtual storage system as well as the generalization of the virtual
storage concept to virtual machines. Although a virtual machine
system does not within its strictly defined limits admit to the
more complex uses of virtual storage, it does serve to illustrate
the major problems confronted by many virtual storage systems.
The utility of the virtual storage and machine concepts is well-
established, and in the future, the application and extension of
these concepts is certain to increase.

No. 2 -« 1972 VIRTUAL STORAGE AND MACHINES

shared
virtual
storage




BIBLIOGRAPHY

general 1. B. W. Arden, B. A. Galler, T. C. O’Brien, and F. H. Westervelt, *‘Program
discussions and addressing structure in a time-sharing environment,” Journal of the
and surveys ACM 13, No. 1, 1 - 16 (January 1966). Discusses hardware and system soft-
ware features desirable for time-shared computing facilities, specifically the
motivation for segmentation and paging mechanisms. Describes in some
detail a scheme for segment sharing. A key paper in the evolution of the Mich-

igan Terminal System (MTS) for the IBM System/360 Model 67.

. J. B. Dennis, “Segmentation and the design of multi-programmed computer
systems,” Journal of the ACM 12, No. 4, 589-602 (October 1965). A key
paper in the evolution of the MULTICS system for the GE 645. Explains
motivation behind segmentation and paging, vis-a-vis multiprogramming and
time-sharing.

. P. J. Denning, “Virtual memory,” Computing Surveys 2, No. 3, 153-189
(September 1970). Motivates and defines virtual-memory concepts and dis-
cusses the implementation of virtual memory via segmentation and/or pag-
ing. Discusses problem of fragmentation in systems without paging, con-
tending that the internal fragmentation associated with paging is usually
offset by program compaction and at any rate can be controlled by proper
choice of pagé size. Discusses replacement algorithms, the working-set con-
cept, the effect of program structure on performance in virtual memory, and
various hardware mechanisms to improve the performance of virtual memo-
ry systems. Contains an extensive bibliography.

. H. Katzan, “‘Storage hierarchy systems,” 4FIPS Conference Proceedings,
Spring Joint Computer Conference 38, 325-336 (1971). Reviews storage
hierarchy concepts and developments, considering (1) buffer/core systems
and LCS, (2) overlay schemes, relocation methods, and virtual memory, and
(3) hierarchical data management and data base organization.

. D.J. Kuck and D. H. Lawrie, The use and Performance of Memory Hier-
archies: A Survey, Univeristy of Illinois at Champaign-Urbana, Department
of Computer Science Report No. 363 (December 4, 1969). Reviews litera-
ture discussing (1) effects of memory and page size on page fault rate, (2) ef-
fects of page size on memory fragmentation and program superfluity, (3) page
replacement algorithms, (4) effects of program organization on paging rates
and programming guidelines to reduce paging, (5) paging and CPU utilization
in multiprogramming systems, and (6) factors affecting 1/O times for paging.
Includes a large bibliography.

. W. C. McGee, “On dynamic program relocation,” IBM Systems Journal 4,
No. 3, 184-199 (1965). Shows desirability of dynamic program relocation
and reviews several methods of achieving same, namely: (1) relocation
and limit registers, as in the multiprogramming package for the IBM 7090,
(2) paging mechanisms, as in the Ferranti ATLAS machine, (3) segmentation
schemes, as in the Burroughs B5000, (4) base registers (with appropriate
programming restrictions), as provided by the standard addressing technique
of the IBM System/360, and (5) two-level dynamic address translation, as
on the System/360 Model 67. )

. B. Randell and C. J. Kuehner, “Dynamic storage allocation systems,”
Communications of the ACM 11, No. 5, 297-306 (May 1968). Describes
hardware techniques for dynamic storage allocation, introducing concepts
such as segmentation, paging, replacement strategies, etc. Contains a brief
survey of several computer systems with dynamic allocation facilities, viz.,
ATLAS, M44/44X, B5000, Rice University machine, B8500, MULTICS,
and System/360 Model 67.

program The following articles are studies of program behavior and memory management
behavior strategies.
and memory
management 8. A. V. Aho, P. J. Denning, and J. D. Ullman, ‘“‘Principles of optimal page
replacement,” Journal of the ACM 18, No. 1, 80-93 (January 1971). Con-

PARMELEE ET AL IBM SYST J




tains succinct definitions of virtual memory and paging concepts. Shows that
the optimal paging policy is a demand policy when the cost C (n) of placing
n pages in memory satisfies C(n) = nC(1). Defines as k-optimal a page re-
placement algorithm A(k) which minimizes page faults for a program whose
reference string is generated by a kth-order Markov process. Shows how to
implement A4(0), and shows that the LRU and working-set algorithms approx-
imate A(0) when the probability that a given page will be referenced varies
slowly with time.
. A. Batson, S.-M. Ju, and D. C. Wood, “Measurements of segment size,”
Second ACM Symposium on Operating System Principles, Princeton Uni-
versity, 25-29 (October 20-22, 1969). Presents segment size distributions
measured on a Burroughs B5500 under normal “production conditions” at a
university. As ALGOL was the predominant programming language, and as
ALGOL program blocks and data array rows are represented as distinct
segments on the B5500, segments tended to be small, with about 60 percent
containing fewer than 40 words.
. M. H. J. Baylis, D. G. Fletcher, and D. J. Howarth, ““Paging studies made
on the .LC.T. ATLAS computer,” IFIP Proceedings of the 1968 Congress
2, 831-837 (1968). Describes performance measurements of several paging
algorithms, storage access patterns of 300 jobs, and a simulation study
showing the effects of varying page size. The paging algorithm measure-
ments showed that the replacement policy, which is actually used on the
ATLAS, and which assumes a strictly cyclic page usage pattern, produces
about the same number of page swaps as an LRU policy, and about one-half
as many swaps as a purely random policy. The simulation studies showed
that, for all programs considered, substantial advantages could be gained by
using smaller pages, provided system overheads could be reduced. Page size
on the ATLAS is 512, 48-bit words.

. L. A. Belady, *‘A study of replacement algorithms for a virtual-storage com-

puter,” IBM Systems Journal 5, No. 2, 78-101 (1966). Develops optimal

replacement algorithm MIN as a basis for evaluation of random, FIFO,

ATLAS, and several variants/approximations to LRU. Concludes from

simulation experiments based on two problem programs that LRU-type al-

gorithms have best overall performance. Nonoptimal algorithms in general
caused two to three times as many page faults as the MIN algorithm.

. L. A. Belady and C. J. Kuehner, “Dynamic space-sharing in computer sys-
tems,” Communications of the ACM 12, No. 5, 282-288 (May 1969). De-
fines a storage cost function, program lifetime function, storage value func-
tion, and value per unit cost function to show formally how program behav-
ior, processor efficiency, space allocation, and hardware factors are inter-
related in multiprogramming systems.

. L. A. Belady, R. A. Nelson, and G. S. Shedler, “An anomaly in space-time
characterstics of certain programs running in a paging machine,” Communi-
cations of the ACM 12, No. 6, 349353 (June 1969). Shows how increasing
memory availability may in certain cases increase the number of page ex-
ceptions a program incurs. Considers FIFO replacement primarily. Cf.
Mattson, et al. (1970).

. D. P. Bovet and G. Estrin, “A dynamic memory allocation algorithm,”
IEEE Transactions on Computers C-19, No. 5, 403-411 (May 1970). Dis-
cusses memory management in multiprocessing environments, explicitly
excluding “‘time-shared systems in which the effects of time quanta associ-
ated with multiplexing-independent processes completely swamp out the
effects of interaction factors within a given program.” Proposes a replace-
ment policy for a system with variable-length segments based on a graph
model of program behavior in which branching probabilities and cycle fac-
tors are known.

. B. S. Brawn and F. G. Gustavson, “Program behavior in a paging environ-

ment,” AFIPS Conference Proceedings, Fall Joint Computer Conference

33, 1019-1032 (1968). Presents run times under paging of “‘casually writ-

ten”” and corresponding virtual memory-oriented programs for three dissimi-

1972 VIRTUAL STORAGE AND MACHINES

119




lar “real”” problems. The three problems involved (1) inverting a 100 X 100
matrix, (2) performing a large data-correlation calculation, and (3) sorting a
large data set. Results indicated ‘‘that, if reasonable programming techniques
are employed, the automatic paging facility compares reasonably well (even
favorably in some instances) with programmer-controlled methods.” Fur-
ther, that “the basically external consideration of programming style can be
considerably more important than the internal systems design consideration
of replacement algorithms.”

. B. S. Brawn, F. G. Gustavson, and E. S. Mankin, *“Sorting in a paging envi-
ronment,” Communications of the ACM 13, No. 8, 483 -494 (August 1970).
Discusses the performance of various sorting programs in virtual memory,
again showing the importance of intelligent program/data organization [see
Brawn and Gustavson (1968)]. Presents specific experimental results in
which 100,000-word data sets were arranged in virtual memory and sorted
in several ways with varying real core sizes. When data and programs were
“properly” organized, performance was “comparable to that achieved by
conventional methods . . . even when run in a very limited core space envi-
ronment.” Rules of thumb for proper program/data organization are given.

. E. G. Coffman and L. C. Varian, “Further experimental data on the behav-
ior of programs in a paging environment,” Communications of the ACM 11,
No. 7, 471-474 (July 1968). Presents trace/simulation results showing be-
havior under paging of a SNOBOL compiler, a program for computing
Fourier transforms, a WATFOR compiler, and a differential equation solv-
er. Effects on paging rates and page residence times of page size, core size,
and paging algorithm are indicated. Conclusions: ““(1) with the possible ex-
ception of carefully designed programs, page turning . . . appears excessive
in light of current or proposed paging system designs; (2) a least-recently-
used page replacement algorithm yields a performance within about 30 to
40 percent of that of the optimum page replacement sequence” (i.e., the
Belady MIN algorithm); “and (3) for page residence confined primarily to
small areas within the page size, performance is improved substantially
more by increasing the number of pages held in core than by increasing the
page size.”

. L. W. Comeau, “A study of the effect of user program optimization in a pag-
ing system,” ACM Symposium on Operating System Principles, Gatlinburg,
Tennessee, (October 1-~4, 1967). Discusses the effects of deck-ordering of
routines in the CMS nucleus for CP-40 on the paging performance of an
assembler and a FORTRAN compiler. In experiments with the assembler,
page transfers numbered approximately 6500, 4200, 2400, and 1200 when
alphabetic, random, programmer-devised (intuition), and programmer-revised
(trace-assisted) orderings, respectively, were employed. It was concluded
that “‘user optimization is not only easily achieved, but absolutely necessary
for frequent operation in a paging environment.”

. F. J. Corbato, A Paging Experiment with the MULTICS System, Massa-
chusetts Institute of Technology Project MAC Memorandum MAC-M-384
(July 8, 1968). Describes the paging algorithm used in MULTICS and pre-
sents results of experiments showing the effects of varying a parameter
which, at one extreme, yields a FIFO algorithm and, at the other, LRU.
Concludes that efficient performance is obtained with a parameter setting
corresponding to a particularly simple case of the algorithm, viz., when a
single “used bit” determines whether a page is to be replaced.

. P.J. Denning, “The working set model for program behavior,” Communica-
tions of the ACM 11, No. 5, 323-333 (May 1968). Attempts to make the
concept of “memory demand” more precise by defining the working set
W(t,T) of a program at time ¢ as the set of pages referenced during the time
interval (¢-T 7). Discusses the problem of determining/estimating a program’s
working set and the use of the working set as a basis for a paging policy.

. P. J. Denning, “Thrashing: Its causes and prevention,” AFIPS Conference
Proceedings, Fall Joint Computer Conference 33, 915-922 (1968). Shows
how inefficiencies in multiprogramming systems due to thrashing, i.e., ex-

PARMELEE ET AL IBM SYST J




cessive paging. increase with increasing auxiliary storage access time and
with the probability that a program will reference a missing page. Asserts
that the latter probability cannot be adequately controlled when paging algo-
rithms are applied globally to all programs, but can be controlled by using a
working set policy in which a program is allowed to be active only if there is
enough uncommitted momory space to contain its working set. Also recom-
mends the use of three-level memory systems, with bulk core as an interme-
diate level between main fh emory and rotating storage.

. P. J. Denning, “On the management of multilevel memories,” Proceedings
of the 3rd Princeton Conference on Information Science and Systems,
Princeton University, 162165 (1969). Describes a method for estimating
page reference densities (i.e., frequencies) and for using such estimates to
determine how to distribute pages in an addressable multilevel memory.

. R. R. Fenichel and J. C. Yochelson, “A LISP garbage-collector for virtual-
memory computer systems,” Communications of the ACM 12, No. 11,
611-612 (November 1969). Déscribes an algorithm for compacting list
structures in a virtual memory compliter system, noting that compaction is
necessary, even though virtual memory may be essentially infinite, in order
to avoid performance degradation when lists become spread over a large
region.

. G. H. Fine, C. W. Jackson, and P. V. Mclsaac, “Dynamic program behav-
ior under paging,” Proceedings of the 21st National Conference of the
ACM P-66, 223 -228 (1966). Reports on paging behavior of several large
programs (e.g., a LISP system) as determined by simulation experiments
based on an AN/FSQ-32 computer with 48-bit words and 1024-word pages.
One set of experiments showed an average page residency of 109.4 instruc-
tions. Concludes that the programs tested “will require considerable reor-
ganization to operate efficiently in a demand-paging environment.”

. L. F. Freibergs, “The dynamic behavior of programs,” AFIPS Conference
Proceedings, Fall Joint Computer Conference 33, 1163-1167 (1968). Pre-
sents results of program-trace experiments run at McGill University on an
IBM 7044 computer. Shows (1) various data-reflecting memory utilization
assuming 1024-word page organization, (2) percentages of instructions by
class (e.g., branch, register-only, etc.) for a FORTRAN compilation, GPSS
simulation, and several other jobs, and (3) frequency of SVC’s for vari-
ous jobs.

. M. N. Greenfield, “FACT segmentation,” AFIPS Conference Proceedings,
Spring Joint Computer Conference 21, 307 -315 (1962). Describes the soft-
ware mechanism used on the Honeywell 800 to dynamically relocate pro-
gram segments created by the FACT (commercial) compiler.

. R. L. Guertin, “Programming in a paging environment,” Datamation 18,
No. 2, 48 —55 (February 1972). Discusses techniques for taking advantage
of the parallelism in many program operations so as to increase the locality
of executed code. The areas of array manipulation and expression evaluation
are considered. The effects of ordering the sequence of operations on multi-
ply dimensioned arrays and ordering the sequence of elements in an expres-
sion are examined in detail.

. D. J. Hatfield and J. Gerald, “Program restructuring for virtual memory,”

IBM Systems Journal 10, No. 3. 168-192 (1971). Describes a method for

increasing program localization in virtual memory by rearranging relocatable

sectors on the basis of traces of actual program operation. Reports paging
reductions of from 2:1 to 6:1 over both alphabetic and programmer-devised
ordering of the modules of an assembler and of an AED-0 compiler for the

IBM System/360.

. D. J. Hatfield, “Experiments on page size, program access patterns, and

virtual memory performance,” IBM Journal of Research and Development

16, No. 1, 58 -66 (1972). Discusses the problem of page size selection, pres-

enting experimental results showing that, contrary to common belief, smaller

pages do not necessarily mean fewer paging 1/O operations. Experiments
were based on full instruction traces of real System/360 programs. From

1972 VIRTUAL STORAGE AND MACHINES




these traces, page request sequences for page sizes of 1024 to 16,384 bytes
were obtained. These sequences were processed by programs simulating sev-
eral single-user page replacement algorithms, It was observed that, for a given
program and real memory size and for replacement algorithms in use today,
halving the page size often resulted in more than twice as many page excep-
tions, hence, actually more paging I/O operations. Furthermore, it was
shown that address sequences are possible that can cause three or four times
as many exceptions when the page size is halved.

. H. Hellerman, “Complementary replacement— A meta scheduling princi-
ple,” Second ACM Symposium on Operating System Principles, Princeton
University, 43 -46 (October 20-22, 1969). Notes that computer resource
scheduling typically involves applications of two types of rules: admission
and replacement. Introduces a notation for expressing admission rules and
defines a procedure —the complementary replacement meta principle —for
deriving a replacement rule from a given admission rule. Asserts that a vari-
ety of known schedulers are encompassed by this formalism, giving MIN
and LRU replacement algorithms as examples.

. R. M. Jones, “Factors affecting the efficiency of a virtual memory,” /EEE
Transactions on Computers C-18, No. 11, 1004 -1008 (November 1969).
Describes paging algorithms for the U. S. Seventh Army tested during de-
velopment of the Tactical Operating System for the CDC 3300, a machine
which offers relocation hardware permitting partial page allocation in units
of a quarter page. It was found that an algorithm that proceeded in round-
robin fashion through virtual memory, selecting the first available page for
replacement, gave better performance than one which cycled through physi-
cal memory —a result which presumably reflects some bias in the way pages
were allocated. A least-frequently-used (LFU) policy gave better perfor-
mance than either of the round-robin algorithms, while the best performance
was obtained by replacing pages belonging to programs lowest in the sched-
uling queue.

. M. Joseph, ““An analysis of paging and program behaviour,” Computer Jour-
nal 13, No. 1, 48 —54 (February 1970). Discusses the dependence of paging
behavior on page size, available memory, and paging algorithm. Presents
simulation results, based on program traces showing: (1) the percentage of
accesses to the nth last-used page, as a function of n; (2) page exception
rates versus number of available pages for various page sizes; (3) exception
rates versus page size for various memory sizes; (4) amount of storage refer-
enced versus time for two page sizes; (5) space-time integrals versus page
size for different programs and paging algorithms; and (6) program-halt
counts versus page size for different paging algorithims, including, in particu-
lar, algorithms in which adjacent pages were prepaged.

. B. W. Kernighan, “Optimal segmentation points tor programs,” Second
ACM Sympdsium on Operating System Principles, Princeton University,
47-52 (October 20-22, 1969). Describes a miethod of partitioning a pro-
gram so as to minimize the number of page transitions. Envisions programs
as directed graphs whose nodes are indivisible groups of instructions, data
areas, etc. “The nodes are assumed to have a given ordering which may not
be changed . . . nodes on any page must be contiguous, so the orly degree
of freedom is in selecting ‘break points’ between the pages.” Node sizes and
transition probabilities are assumed to be given. Cf. Hatfield and Gerald
(1971).

. W. F. King, Analysis of Paging Algorithms, IBM Thomas J. Watson Re-
search Center Report RC-3288, Yorktown Heights, New York (March
17, 1971). Models a program reference string as a sequence of independent,
identically distributed random variables and obtains expressions for the ex-
pected page fault rate F for the LRU and FIFO algorithms and for the A(0)
algorithm of Aho, et al. (1971). Finds that F(FIFO) = F(LRU) = F(A(0))
for several distributions.

. C. J. Kuehner and B. Randell, “Demand paging in perspective,” AFIPS
Conference Proceedings, Fall Joint Computer Conference 33, 1011-1018

122 PARMELEE ET AL IBM SYST J




(1968). Discusses causes of poor performance of paging systems and possi-

ble remedies, viz., module repacking, recoding, and prepaging.

. P. AL W. Lewis and P. C. Yue, “Statistical analysis of program reference

patterns in a paging environment,” [EEE Computer Society Conference,

Boston, Massachusetts, 133134 (September 2224, 1971). Presents sta-

tistical data based on distance-string representations of reference patterns of

three dissimilar programs. Shows how loop structures within these programs
are revealed by cumulative periodograms derived from finite Fourier trans-
forms of their distance strings.

. A. C. McKellar and E. G. Coffman, Jr., “Organizing matrices and matrix
operations for paged memory systems,” Communications of the ACM 12,
No. 3, 153-165 (March 1969). “Matrix representations and operations are
examined for the purpose of minimizing the page faulting occurring in a paged
memory system . . . Examination of addition, multiplication, and inversion
algorithms shows that a partitioned matrix representation (i.e., one subma-
trix or partition per page) in most cases induced fewer page faults than a
row-by-row representation.” (Authors’ abstract)

. J. R. Martinson, Utilization of Virtual Memory in Time Sharing System/360,
IBM Corporation Systems Development Division, Yorktown Heights, New
York, Technical Report TR 53.0001 (October 28, 1968). “This report ex-
plores the TSS/360 definition of virtual memory and the program struc-
ture imposed upon it. Guidelines are presented to describe how programs
should and should not be constructed for effective utilization of virtual
memory.” (Author’s abstract)

. R. L. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger, “Evaluation tech-

niques for storage hierarchies,” IBM Systems Journal 9, No. 2. 78-117

(1970). Defines as stack algorithms replacement policies which, for a given

reference string, produce a memory state with an m-page memory which

is a subset of the state produced with an (m + 1)-page memory. Shows that

LRU, WS, and a variant of the MIN algorithm are stack algorithms; also

any other algorithm that replaces pages on the basis of a priority list which

is independent of memory size. Notes that FIFO is not a stack algorithm.

Defines the success function F(m) of a given algorithm for a given memory

size m as the fraction of references in a given reference string that do not

cause exceptions, and notes that for any stack algorithm F(m + 1) = F(m)

for any reference string. Shows how F(m) can be evaluated for stack algo-

rithms. Obtains results for hierarchies with congruence mapping, where
each page is restricted to occupy a member of a subset of the available page
frames, and for hierarchies of more than two levels.

. B. Randell, “A note on storage fragmentation and program segmentation,”

Communications of the ACM 12, No. 7, 365-372 (June 1969). Presents

results of simulation experiments showing the dependence of memory uti-

lization on page size and indicating, in particular, that as page size increases

“the loss of utilization due to increased internal fragmentation distinctly

outweighs the gain due to decreased external fragmentation.” To reduce

internal fragmentation, recommends partitioned segmentation, wherein
segments are subdivided into pages which are subdivided further into smaller
storage units to permit the allocation of partial pages.

. D. Sayre, “Is automatic ‘folding’ of programs efficient enough to displace

manual?”’ Communications of the ACM 12, No. 12, 656 -660 (December

1969). Compares performance of automatically and manually folded (i.e.,

overlaid) programs, citing experimental results of Brawn, et al. (1968). An-

swers title question affirmatively, asserting that automatic folding can reduce
programming costs by 25 to 45 percent, with a penalty in average program
performance of no more than 25 percent.

. J. E. Shemer and S. C. Gupta, “On the design of Bayesian storage allocation

algorithms for paging and segmentation,” IEEE Transactions on Computers

C-18, No. 7, 644-651 (July 1969). Recommends basing storage allocation

decisions on usage history and demands, giving as an example a page re-

placement strategy that is a somewhat elaborated version of the one used in

1972 VIRTUAL STORAGE AND MACHINES




virtual
storage
systems

MULTICS (Cf. Corbato, 1968). Suggests that, in addition to “referenced,”
“altered,” and other bits, systems should keep “pattern bits” distinguishing
between random and sequential reference patterns.

. S. S. Sisson and M. J. Flynn, “Addressing patterns and memory-handling
algorithms,” AFIPS Conference Proceedings, Fall Joint Computer Confer-
ence 33, 957-967 (1968). Presents results of program address trace analy-
ses showing performance of systems with look-ahead, high-speed buffering.
and memory interleaving.

. J. M. Thorington and J. D. Irwin, ““A new philosophy in dynamic memory
allocation,” Proceedings of the 4th Hawaii Conference on Systems Science,
University of Hawaii, 341-343 (January 12-14, 1971). Examines the per-
formance of three ‘“‘dynamically adaptive” replacement algorithms using
simulator-generated pseudo reference strings. Reports average performance
improvements with one algorithm of 398%, 140%, and 2528% over FIFO,
LRU, and LFU, respectively.

. E. W. Ver Hoef, “Automatic program segmentation based on Boolean con-
nectivity,” AFIPS Conference Proceedings, Spring Joint Computer Confer-
ence 38, 491-496 (1971). Describes a method of partitioning programs into
pages so as to reduce the number of interpage references. Using only con-
nectivity information, the method is oriented primarily toward a priori parti-
tioning in conjunction with program compilation. Cf. Hatfield and Gerald
(1971).

46. J. W. Welil, “A heuristic for page turning in a multiprogrammed computer,”
Communications of the ACM 5, No. 9, 480-481 (September 1962). Sug-
gests a page replacement policy in which each page has a figure of merit that
is incremented whenever the page is brought into memory and decreased in
an exponential manner as other pages are brought into memory. The page
with the lowest figure of merit is chosen for replacement.

The following references are discussions of particular systems with virtual
storage.

47. R. J. Adair, R. U. Bayles, L. W. Comeau, and R. J. Creasy, A Virtual Ma-
chine System for the 360/40, IBM Corporation, Cambridge Scientific Center,
Report No. 320-2007 (May 1966). One of the first papers describing the
implementation of the virtual machine concept. An IBM System/360 Model
40 was modified with an associative memory to provide dynamic translation
of addresses, and a control program was developed to allocate resources of
the host machine to the virtual machines. Multiprogramming and multipro-
cessing tasks could then be studied in terms of machine utilization.

. M. T. Alexander, Time-Sharing Supervisor Programs, In notes for Univer-
sity of Michigan Engineering Summer Conference, “Advanced Topics in
Systems Programming” (June 21-July 21, 1971). Describes the structure of
the supervisor programs of four time-sharing systems employing relocation:
UMMPS, CP-67, TSS/360, and MULTICS. Concentrates on the functions
of memory allocation, processor scheduling, and I/O processing. Discusses
the degrees to which segmentation and sharing are supported by the systems
considered.

. A. Auroux and C. Hans, “Le Concept de Machines Virtuelles,” Revue
Francaise d’ Informatique et de Recherche Operationelle 15, No. B3, 45-51
(December 1968). Discusses the virtual machine concept and CP-67/CMS
applications at the University of Grenoble, France.

. J. N. Bairstow, “Many from one: The ‘virtual machine’ arrives,” Computer
Decisions 2, No. 1,29 =31 (January 1970). An easy-to-read synopsis of the
development of CP-67 and the concept of virtual machines, as represented
by that system.

. A. Bensoussan, C. T. Clingen, and R. C. Daley, “The MULTICS virtual
memory,” Second ACM Symposium on Operating System Principles,
Princeton University, 30-42 (October 20-22, 1969). Describes the MUL-
TICS virtual memory from a more practical, implementation-oriented point

PARMELEE ET AL IBM SYST J




of view than that of the earlier papers by Dennis, Corbato, and Vyssotsky,

et al. in 1965, and by Daley and Dennis in 1968. Presents arguments for

segmentation convincingly and explains the MULTICS segment linkage,
protection, and attribute mechanisms in some detail.

. F. J. Corbato and V. A, Vyssotsky, “Introduction and overview of the

MULTICS system,” AFIPS Conference Proceedings, Fall Joint Computer

Conference 27, Part 1, 185-196 (1965) One of several key papers on

MULTICS presented at the 1965 FICC.

. CP-67/CMS, Program 360D-05.2.005, International Business Machines

Corporation, Program Information Department, Hawthorne, New York

(June 1969).

. R. C. Daley and J. B. Dennis, “Virtual memory, processes, and sharing in
MULTICS,” Communications of the ACM 11,No. 5,306-312 (May 1968).
Discusses concepts of paging and segmentation as implemented and used
in MULTICS. Mechanisms for intersegment linking and addressing are ex-
plained in detail.

. M. S. Field, Multi-Access Systems—The Virtual Machine Approach, 1BM
Corporation, Cambridge Scientific Center, Report No. 320-2033 (Septem-
ber 1968). A first paper on the implementation of CP-67 on the IBM System/
360 Model 67. Emphasis is on the concept, applications, and the software
implementation.

. Emulating DOS under OS for IBM System/{360, Systems Reference Library,
GC26-3777, IBM Corporation, Data Processing Division, White Plains,
New York.

. R. E. Fikes, H. C. Lauer, and A. L. Vareha, Jr., “Steps toward a general-
purpose time-sharing system using large capacity core storage and
TSS/360,” Proceedings of the 23rd National Conference of the ACM P-68,
7-18 (1968). Describes modifications to TSS/360 made at Carnegie-Mellon
University to support LCS. Discusses problem of deciding when to execute
pages in LCS versus moving them to main memory. See also Vareha, et al.
(1969).

. J. Fotheringham, “Dynamic storage allocation in the Atlas computer, in-
cluding an automatic use of a backing store,” Communications of the ACM
4, No. 10, 435-436 (October 1961). A key paper describing the address
interpretation mechanism of the ATLAS.

. E. L. Glaser, J. F. Couleur, and G. A. Oliver, “*System design of a computer
for time-sharing applications,” AFIPS Conference Proceedings, Fall Joint
Computer Conference 27, Part 1, 197 -202 (1965). One of several key pa-
pers on MULTICS presented at the 1965 FICC.

. S. E. Gluck, “Impact of scratchpads in design: Multifunctional scratchpad

memories in the Burroughs B8500,” AFIPS Conference Proceedings, Fall

Joint Computer Conference 27, Part I, 661 -666 (1965). Describes B8500

architecture, emphasizing the thin-film scratchpad memories used for data

buffering, storage of temporary CPU results, counter storage, instruction
look-ahead, addressing operations, etc. Also described is the 28-word asso-
ciative memory used to speed address translation.

. G. E. Hoernes and L. Hellerman. “An experimental 360/40 for time-

sharing,” Datamation 1, No. 4, 39-42 (April 1968). A complementary paper

to Adair, et al. (1966), describing associative-memory modifications to the

IBM System/360 Model 40.

. J. G. Jodeit, “‘Storage organization in programming systems,” Communica-

tions of the ACM 11, No. 11, 741 -746 (November 1968). Describes the

segmented storage allocation system used on the Rice University computer,
noting possible extensions to the areas of multiprogramming and multilevel
storage control.

. O. W. Johnson and J. R. Martinson, Virtual Memory in Time-Sharing Sys-

temf{360, TSS/360 Compendium, IBM Corporation, Data Processing Divi-

sion, White Plains, New York (1969). Discusses virtual memory advantages

and implementation in general, then outlines features of virtual memory in

TSS/360, e.g., segment sharing, variable-length segments, virtual access

.2 - 1972 VIRTUAL STORAGE AND MACHINES




method, dynamic loading, and protection. See also Lett and Konigsford
(1968).

. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, “One-level
storage system,” IRE Transactions EC-11, No. 2, 223 -235 (April 1962).
A key paper describing the overall architecture of the Ferranti ATLAS and,
in particular, its dynamic memory allocation mechanism.

. A. S. Lett and W. L. Konigsford, “TSS/360: A time-shared operating sys-
tem,”” AFIPS Conference Proceedings, Fall Joint Computer Conference 33,
Part I, 15-28 (1968). Describes TSS/360 control system organization, user
services, and task structure, noting several design changes that have been
made to improve performance. Includes discussions of the TSS dynamic-
loading and segment-sharing mechanisms, and of its page-oriented data
management facilities. See also Johnson and Martinson (1969).

. A. B. Lindquist, R. R. Seeber, and L. W. Comeau, “A time-sharing system
using an associative memory,” Proceedings of the IEEE 54, No. 12, 1774 -
1779 (December 1966). Describes the IBM System/360 Model 40 virtual
machine system discussed also by Adair, et al. (1966), and by Hoernes and
Hellerman (1968). Emphasis is on the associative memory feature used for
dynamic address translation and for page replacement operations.

. F. B.. MacKenzie, ‘“Automated secondary storage management,” Datama-
tion 11, No. 11, 24-28 (November 1965). Describes the dynamic memory
allocation mechanism of the Burroughs B5500, reporting running times of
several jobs (compilations, matrix operations) with varying core sizes and
both single- and dual-processor configurations.

. R. A. Meyer and L. H. Seawright, ““A virtual machine time-sharing system,”
IBM Systems Journal 9, No. 3, 199 -218 (1970). Describes the CP-67/CMS
system, outlining features and applications.

. G. Oppenheimer and N, Weizer, “Resource management. for a medium
scale time-sharing system,” Communications of the ACM 11, No. 5, 313 -
322 (May 1968). Describes the RCA Spectra 70/46 Time-Sharing Operating
System (TSOS), particularly the task scheduling and paging algorithms.
Notes simulation results leading to final design decisions.

. D. Sayre, On Virtual Systems, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York (April 15, 1966). An early paper emphasizing
the multiprogramming aspects of virtual machines. Results are shown for
multiprogramming with the IBM M44/44X system.

. D. Sayre, “Adding computers virtually,” Computing Report Ill, No. 2, 12—
15 (March 1967). A more colloquial presentation of the material in Sayre
(1966). )

. A. L. Vareha, R. M. Rutledge, and M. M. Gold, *“Strategies for structuring
two-level memories in a paging environment,” Second ACM Symposium on
Operating System Principles, Princeton University, 54-59 (October 20-22,
1969). Discusses memory-management strategies used on the Carnegie-
Mellon TSS/360 system with LCS [see Fikes, et al. (1968)]. A central
problem with this configuration has been deciding what programs should
execute from high-speed memory (HSM), and what ones should execute
from LCS. Initially, only shared system pages were allowed to run in HSM
(and these were swapped to LCS when more HSM space was needed),
while private user pages were run in LCS and swapped to disk. A more re-
cent policy calls for “executing the entire system from LCS and using the
high-speed memory for only the paging tables, the system work areas, and
the resident supervisor.” Ultimately a mechanism is desired for dynamically
determining the appropriate memory level for a page, according to its actual
activity. It is noted that implementing such a mechanism may be impractical
without additional data-gathering hardware.

. N. Weizer and G. Oppenheimer, “Virtual memory management in a pag-
ing environment,” AFIPS Conference Proceedings, Spring Joint Computer
Conference 34, 249-256 (1969). Discusses hardware and software aspects
of virtual memory management in TSOS, giving justifications for important
design decisions, e.g., the partitioning of virtual memory to concurrently

126 PARMELEE ET AL IBM SYST J




accommodate the system and a single user. Describes the management of
shared code and the allocation of backing store. See also Oppenheimer and
Weizer (1968) and DeMeis and Weizer (1969).

In this group are system performance studies. performance

74. R. Adair and Y. Bard, CP-67 Measurement Method, 1BM Corporation,
Cambridge Scientific Center, Report No. G320-2072 (May 1971). De-
scribes a software measurement method employed on a virtual machine run-
ning under CP-67 to measure activities of the host machine. The method
involves having CP-67 maintain various time and event counters which a
virtual machine of priviledged class can sample and record at appropriate
intervals. It is thus possible to determine, e.g., the identity of the currently
running user, the number of logged-on users, the percentage of CPU time
spent in various states, the rate of virtual and real start 1/O’s, and the rate
of page reads, writes, and steals.

. W. Anacker and C. P. Wang, “Performance Evaluation of Computing Sys-
tems with Memory Hierarchies.” IEEE Transactions on Computers EC-16,
No. 6, 764 -773 (December 1967). Shows how upper and lower bounds on
the performance of systems with memory hierarchies can be obtained, for
specific computational loads, from program address traces and hardware
data.

. Y. Bard, “Performance criteria and measurement for a time-sharing sys-
tem,” IBM Systems Journal 10, No. 3, 193-216 (1971). Describes software
measurements taken on CP-67 at the IBM Cambridge Scientific Center with
two different versions of CP-67 and two different real storage configurations.
CP-67 overhead, i.e., CPU time spent by CP-67 in servicing users’ re-
quests for system resources, was analyzed by a linear regression model which
relates overhead to various types of requests. Significantly improved per-
formance resulted when additional real storage was provided. This marked
effect was also noted in examining average throughput, approximately de-
fined as the amount of work performed per unit time. Still another measure
of performance, saturation, obtained from Pareto-maximal points represent-
ing maximal throughput, again confirmed this improvement, and also the
improvements made in software. Evaluation of a particular software change
in the module that manages free storage areas indicated that most of the
software improvement was attributable to this change.

. Y. Bard, B. H. Margolin, T. 1. Peterson, and M. Schatzoff, CP-67 Measure-
ment and Analysis, 1: Regression Studies, I1BM Corporation, Cambridge
Scientific Center, Report No. G320-2061 (June 1970). An earlier report of
results subsequently incorporated into Bard (1971).

. J. Buzen, “Optimizing the degree of multiprogramming in demand paging
systems,” IEEFE Computer Society Conference, Boston, Massachusetts,
141-142 (September 22-24, 1971). Discusses the calculation and optimi-
zation of throughput estimates using a central server model of a multipro-
gramming system with paging.

. P. Callaway, Performance Considerations for the Use of the Virtual Ma-
chine Capability, IBM Corporation, Thomas J. Watson Research Center,
Yorktown Heights, New York, Report RC-3360 (May 12, 1971). Discusses
software measurements taken on CP-67 by activating and deactivating
hooks for taking such measurements. Principal output was: elapsed time and
CPU wait time; total virtual CPU time and virtual memory time; distribu-
tion of various counts, including working set size; and counts of page excep-
tions, privileged instructions, and other interrupts. The great difference on
resources imposed by OS and CMS is graphically shown: e.g., one OS four-
task virtual machine having multiprogramming with a variable number of
tasks is equivalent to 54 editing CMS virtual machines when measured in
terms of core-time product per minute of elapsed time.

. W. M. DeMeis and N. Weizer, ‘“Measurement and analysis of a demand
paging time-sharing system,” Proceedings of the 24th National Conference

1972 VIRTUAL STORAGE AND MACHINES




of the ACM P-69, 201 =216 (1969). Describes performance measurements
of TSOS (RCA Spectra 70/46) based on controlled load tests in which a
master program generated and ran pseudo-programs and simulated user in-
teractions. Shows response time as a function of number of tasks, CPU utili-
zation, and drum utilization, and shows how thrashing is avoided by a sched-
uling algorithm utilizing the working-set principle.

. D. P. Gaver and G. S. Shedler, “*Approximate models for multiprogramming
computer systems,” [EEE Computer Society Conference, Boston, Massa-
chusetts, 135-136 (September 22 -24, 1971). Describes a multiprogramming
system model based on a continuous state approximation, namely, one-
dimensional diffusion (Fokker-Plank equation) with two reflecting barriers. A
simple explicit formula for CPU utilization is derived which compares favor-
ably with more involved semi-Markov results. :

. S. J. Morganstein, S. Winograd, and R. Herman, “SIM/61: A simulation
measurement tool for a time-shared, demand paging operating system,”
ACM SIGOPS Workshop on System Performance Evaluation, Harvard
University, 142-172 (April 5-7, 1971). Describes a program for simulating
the steady-state performance of the RCA Spectra/70 Virtual Machine Oper-
ating System. Using statistical models of task paging behavior, compute
times, etc., the program predicts response times, overhead percentages, page
rates, etc. for alternate system configurations and decision algorithms. Re-
sults were found to be highly sensitive to changes in load-characterizing pa-
rameters; hence “‘the authors are extremely skeptical of quantifying results of
predictive runs (where precise information about the load characteristics is
impossible to obtain) without qualifying them with a nominal 15 percent
margin for error.”

. R, W. O’Neill, “Experience using a time-shared multiprogramming system
with dynamic address relocation hardware,” AFIPS Conference Proceed-
ings, Spring Joint Computer Conference 30, 611-621 (1967). Describes the
experimental IBM M44/44X system, reporting performance measurements
taken to establish dependence of core requirements on page size and running
time on core size (parachor curve). Also discussed are effects of multipro-
gramming and time-sharing on performance.

. R. P. Parmelee; Preferred Virtual Machines for CP-67, IBM Corporation,
Cambridge Scientific Center, Report No. G320-2068 (to appear). Discusses
experimental studies in which CP-67 was modified to give preferential treat-
ment to a virtual machine running OS having multiprogramming with a vari-
able number of tasks. Specifically, all pages of the OS machine were locked
in memory, and all pages except page zero were assigned real addresses
identical to their virtual addresses. Thus paging and channel program trans-
lation were eliminated, and dynamic channel program modification became
possible. As a result, execution stretchout was reduced by 65 percent and
overhead by 63 percent in benchmark tests in which a single OS machire
processed a commercial job stream.

. G. S. Shedler and S. C. Yang, “Simulation of a model of paging system
performance,” IBM Systems Journal 10, No. 2, 113 -128 (1971). Describes
the simulation of a probabilistic model of a multiprogrammed single-proces-
sor system with a fixed number of tasks operating under demand paging.
Assumes that the running times of tasks between page exceptions and other
CPU service times are exponentially distributed, whereas paging service
times are constant. Presents means and variances of CPU and paging sys-
tem utilization, and of various overhead service times, obtained by straight-
forward sampling, by the method of antithetic variables, by the method of
stratification, and by a method combining antithetic variables and stratifica-
tion. Observes that variances can generally be reduced by using the method
of antithetic variables, although not necessarily in all response variables.
Further variance reductions may be obtained by combining antithetics with
stratification.

. J. L. Smith, “Multiprogramming under a page on demand strategy,” Com-
munications of the ACM 10, No. 10, 636 -646 (October 1967). Analyzes a

128 PARMELEE ET AL IBM SYST J




probabilistic model of a multiprogramming system with demand paging, ob-
taining performance estimates for user programs typical of those arising in
an interactive time-sharing environment. Concludes that “a conservative
outlook . . . must be maintained” for such a system, although with sufficient
high-speed memory ‘it does seem that there is some advantage (dependent
on system overhead) to be gained from multiprogramming.”

. V. L. Wallace and D. L. Mason, “Degree of multiprogramming in page-on-

demand systems,” Communications of the ACM 12, No. 6, 305-308 (June
1969). Describes a simple Markov model of a multiprogrammed time-
sharing system using page-demand statistics that imply a burst of page de-
mands at the beginning of each job. Shows CPU utilization as a function of
the degree of multiprogramming, the average number of page demands per
job, the average execution time per job, and the average page fetch time dur-
ing burst paging. Shows how the optimum degree of multiprogramming is
determined, given the relationship between the average number of page
demands per job and the degree of multiprogramming. A linear relationship
is treated.

Here included are other articles related to virtual memory and machines.

88.

K. Fuchi, H. Tanaka, Y. Manago, and T. Yuba, ‘““A program simulator by
partial interpretation,” Second ACM Symposium on Operating System Prin-
ciples, Princeton University, 97 — 104 (October 2022, 1969). Describes a
program for the HITAC-8400, a machine very much like the RCA Spectra
70/45, by which a single virtual HITAC-8400 is simulated. As in CP-67 and
other virtual machine control programs, nonprivileged virtual CPU instruc-
tions are executed directly by the hardware, and privileged instructions are
interpreted by software.

. K. Fuchel and S. Heller, “Considerations in the design of a multiple com-

puter system with extended core storage,” Communications of the ACM 11,
No. 5, 334-340 (May 1968). Discusses the (proposed) usage of a one
million-word ECS for a dual CDC 6600 system at Brookhaven National
Laboratory. Presents analytic performance estimates.

. E. Gelenbe, “Optimum choice of page sizes in a virtual memory with a

hardware executive and a rapid-access secondary storage medium,” ACM
SIGOPS Workshop on System Performance Evaluation, Harvard Univer-
sity, 321-336 (April 5-7, 1971). Determines, for a system with multiple
page sizes, the set of sizes minimizing the expected amount of storage needed
for page tables. The smallest page size is assumed to be fixed at a value such
that the cost of storage wasted because of internal fragmentation is negligi-
ble compared to that used for page tables. Results are obtained for uniform
and exponential segment-sized distributions.

. R. P. Goldberg, Virtual Machine Systems, Massachusetts Institute of Tech-

nology Lincoln Laboratory Report MS-2687 (September 4, 1969). Hard-
ware characteristics are categorized for a virtual machine system. The
notion of “‘sensitive’ instructions is introduced to provide integrity of the
supervisor state. Implementation of a virtual CP-67 under CP-67 is then dis-
cussed and shown to be feasible. With some restrictions, CP-67 as a virtual
machine system running on a IBM System/360 Model 65 is also shown to
be practicable.

. R. P. Goldberg, “Hardware requirements for virtual machine systems,”

NO.

Proceedings of the 4th Hawaii Conference on Systems Science, University
of Hawaii, 449-451 (January 12-14, 1971). Defines a virtual machine in
terms of minimal criteria: (1) the method of execution of nonprivileged in-
structions in supervisor and problem state must be roughly equivalent for a
large subset of the instruction repertoire; (2) a method of protecting the su-
pervisor from the active virtual machine must be available; and (3) a method
automatically signaling the supervisor when a virtual machine attempts to
execute a sensitive instruction must be available, On this basis, it is shown
that certain machines are suitable for a virtual machine system, while others
cannot serve this purpose.

2 - 1972 VIRTUAL STORAGE AND MACHINES

related
material




93. R. P. Goldberg, “Virtual machines: Semantics and examples,” IEEE Com-
puter Society Conference, Boston, Massachusetts, 141 -142 (September
22-24, 1971). Defines a virtual machine as a “duplicate of a real existing
machine, in which a nontrivial subset of the virtual machine’s instructions
execute directly on the host machine in native mode.” Compares this defini-
tion with the notions of “‘extended” and “emulated” machines, virtual mem-
ory, and virtual machine time-sharing systems. Outlines certain types of vir-
tual machine architectures and gives examples of these types.

. D. D. Keefe, “Hierarchical control programs for systems evaluation,” /BM
Systems Journal 7, No. 2, 123 -133 (1968).

. J. S. Liptay, “Structural aspects of the System/360 Model 85, Part 11, The
cache,” IBM Systems Journal 7, No. 1, 15-21 (1968). Discusses the organi-
zation of the high-speed buffer, or cache, used on the IBM System/360
Model 85 and the studies by which its parameters were selected.

. S. E. Madnick, “Time-sharing systems: Virtual machine concept vs. con-
vertional approach,” Modern Data 2, No. 3, 34-36 (March 1969). A dis-
course on time-sharing systems belonging to two categories: conventional
and virtidal machines. Features of both are discussed, with the following
guidelines given. Conventional time-sharing systems: (1) computer utility,
providing basic functions to many users; (2) pool of resources; and (3) effi-
ciency. Virtual-machine time-sharing systems: (1) modular development;
(2) medium-scale time-sharing systems; (3) development of systems pro-
grams; and (4) program evaluation and measurement.

130 PARMELEE ET AL IBM SYST J




