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This  paper  reviews  virtual  storage  und  virtual  muchine  con- 
cepts,  consolidating  and  updating  earlier  discussions.  The  man- 
ner  in  which  actual  virtual  storage  and  machine  systems  have 
been  implemented,  and  certain  problems of current  implementa- 
tions,  are  described. T o  better  illustrate  the  muterial,  the  virtual 
machine  system CP-67 for  the  IBMSystem/360 Model 67 is  con- 
sidered  at  some  length. A n  annotated  bibliography  is  included. 
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In  recent  years,  the  concepts of virtual storage  and  virtual ma- 
chines  have  been of increasing interest in the computing commu- 
nity. This paper defines these  concepts  and  describes how vir- 
tual storage  systems  and virtual machine systems are imple- 
mented and used. To give  the  reader  a  more  concrete  conception 
of these  systems,  the IBM virtual machine system CP-67 (Control 
Program - 67) is considered  at  some length. 

A virtual storage  system may be defined generally as  any infor- 
mation storage  system in which there  is,  or may be,  a  distinction 
between the logical  address generated by a program and  the 
physical  address for  some real storage  device  from which infor- 
mation is actually fetched. Similarly, a  virtual machine system 
may be defined as a computing  system in which the instructions 
issued by a program may be different from those actually exe- 
cuted by the  hardware  to perform a given task.  Since  instruc- 
tions generally include storage  addresses as well as  operation 
codes,  a virtual machine system may include virtual storage  as 
well as  other virtual hardware  features. In this  sense,  the  virtual 
machine concept is a generalization of the virtual storage  con- 
cept,  and  .indeed, existing virtual machine systems  such  as CP-67 
do include virtual  storage. Thus it is natural and convenient to 
treat virtual storage  and virtual machine  concepts in a single 
paper. Other papers  that  consider  these  topics are References 2, 
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In this paper,  we first give an  overview of virtual storage, dis- 
cussing its advantages  and  two  approaches  to its organization 
and  management. Then we  describe  details of implementation. 
In  the  latter  part of the  paper, we discuss  virtual machines. With 
CP-67 used  as  the  example,  we  describe  the implementation and 
operation of virtual machines. 

Virtual storage 

Viewed in a high-level programming context,  the definition pre- 
viously stated  for  a virtual storage  system  includes a variety of 
common  storage  schemes,  e.g.,  conventional file systems in 
which data  sets  are  addressed by name rather  than  directly in 
terms of device  and position information. Normally,  however, 
the  term  virtual  storage  refers  to  the  addressing of individual 
memory words by central  processor  instructions,  and in par- 
ticular,  to  systems in which memory addresses  are translated 
or relocated dynamically by hardware. A simple system of this 
type is seen in computers  where  a single relocation  constant is 
added to effective (i.e., logical) addresses,  as  for  example in 
the Disk  Operating  System/360 (DOS) emulator of the IBM Sys- 
tem/370  Models  135, 145, and  155.j6 A more  general form of 
virtual storage  permits virtual address  space  to be split into 
pieces,  each with its own dynamically changeable relocation 
constant, so that individual pieces can  be  swapped back and 
forth  between main and auxiliary storage as deemed  appropriate 
by the  system  control program. It is this  latter  form of virtual 
storage  that  concerns us in the  present  paper. 

Before going into the details of implementation, it is of interest 
to consider the advantages that virtual  storage offers and to re- 
view some of the  systems  that employ it. From  the program- 
mer’s viewpoint,  a major advantage of virtual  storage is the re- 
duced need for  concern  about  storage management. In particu- 
lar,  since only those  portions of virtual storage  that are actually 
in use need occupy main storage at any given time, it  is possible 
to give the programmer much more logical address  space  than 
would otherwise  be possible. Thus  he  can avoid working with 
overlay  structures  that  are often necessary in conventional  stor- 
age  systems.  In  truth, of course,  the overlaying of information 
takes  place in a virtual storage  system too, but it is handled 
automatically by the system  and is logically transparent  to  the 
programmer. For the  programmer who is developing software 
that  must  run in a broad range of system configurations, this ad- 
vantage  has  particular significance. With virtual  storage,  a single 
version of a program can be developed that will run in any  amount 
of main storage.  Moreover,  this single program can  continue  to 
run  when a main storage module is taken off-line for  maintenance, 
and it can be expected  to perform more efficiently as new modules 



sarily mean that  the  programmer may be oblivious to  the  struc- 
ture of his program if he wishes it to perform well  in a  virtual 
storage environment. However, it is easier  to  isolate  and  defer 
questions of program structure in this  environment  than in en- 
vironments  where  overlays  must be considered from the  outset. 
More  importantly,  improvements in program structure  for vir- 
tual storage  environments  tend  to  be valid independent of the 
amount of main storage available, and hence  have  broader 
payoffs. 

Virtual  storage  can  also offer significant system  advantages, 
namely, better  storage utilization and  increased  potential  for 
multiprogramming. In conventional  storage  systems, main stor- 
age may be under-utilized because of the  fragmentation as- 
sociated with the allocation of large contiguous regions. In 
virtual storage  systems,  the pieces into which virtual storage 
is divided can  be allocated discontiguously through main storage 
wherever  there is room. The resulting reduction in fragmenta- 
tion, combined with the  fact  that  only  the  active  portions of vir- 
tual address  space need be in main storage  at  any given time, 
can substantially  increase  storage utilization and,  hence,  the 
degree  to which a system can be multiprogrammed. 

In reviewing systems  that employ virtual storage, it is of interest 
to distinguish between two  approaches  to virtual storage organi- 
zation and management. These  are paging, where  virtual  storage 
is allocated to physical storage in fixed-length blocks called 
pages, and segmentation, where virtual storage is divided into 
variable-length segments that may or may not  be subdivided into 
pages for allocation to physical storage. 

Paging is generally logically transparent  to  the programmer, and 
may be considered solely a  storage management mechanism. 
Segmentation may or may not be visible to  the programmer as a 
means of structuring programs and data, depending  on  system 
software. 

The first virtual storage  system was implemented in the early 
1960’s on  the  Ferranti ATLAS, where paging was used primarily 
as a mechanism for  “extending”  a relatively small main 

An early machine with segmented virtual storage was 
the Burrough’s B5000, in which logically distinct program and 
data  elements  were allotted to different segmentsG7  Other more 
recent  systems implementing virtual storage  include: 

IBM System/360 Model 40 modified for paging and used for 
the experimental virtual machine system CP-40 
GE 645,  a large-scale machine with segmentation  and paging 
for which the MULTICS time-sharing system was imple- 

47,61,66 
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have  been  developed: T S S / ~ ~ O ,  37,6R,fi5,72 
MTS,48 and CP-671 

CMS')' "" ' - 3  ' 5  68 

RCA Spectra 70146 and 70161, medium-scale paging ma- 
chines for which the TSOS time-sharing system  was  de- 
~ e l o p e d ~ ~ ' ~ ~  
XDS Sigma 7 (with memory-mapping option), a medium-scale 
paging machine. 

Implementation of virtual storage 

In this  section,  we  consider  the  manner in which virtual  storage 
systems  are implemented and the implications of virtual  storage 
on program performance. The implementation of a virtual stor- 
age  system generally involves two  distinct  mechanisms: (1) an 
address  translation mechanism for converting logical, or virtual 
addresses, into  real  addresses,  and (2 )  a storage  management 
mechanism for handling the transfer of information between 
main and auxiliary storage. For convenience of exposition,  these 
mechanisms are  treated  separately in the following discussion, 
though in practice  they may be highly interrelated. 

address The translation of virtual addresses  into  real  addresses  is  per- 
translation formed in most virtual storage  systems  by special hardware in 

conjunction with tables maintained by the system  control pro- 
gram. Consider,  for  example, a byte-addressable machine with 
an  address field  of n bits and with a paged but  nonsegmented vir- 
tual  storage  that  has pages 2" bytes in length ( m  < n). In  such  a 
machine, the left-most (n-m) bits of a virtual address  are typical- 
ly treated  as  a virtual page  number and the right-most m bits as 
a displacement within the indicated virtual page. Then,  as illus- 
trated in Figure 1, address  translation is achieved by using the 
virtual page number as an  index  into  a page table supplying, for 
each of the 2(n-m) possible virtual page numbers,  either  a  corre- 
sponding real page  number (sometimes called a page  frame 
number) or an  indication  that the page does  not  presently  reside 
in main storage. If we  assume  that  the page does reside in main 
storage, the  address  translation  hardware merely replaces  the 
virtual page number of the original virtual address with the real 
page number  from the page table. 

Similarly, in a machine with segmented  but nonpaged virtual 
storage,  certain high-order bits of a virtual  address may be used 
to  index a segment  table having fields not only for  the beginning 
real address of each segment and  an indication as  to  whether  the 
segment is actually in main storage,  but  also  a length field to be 
compared  against the displacement field of the virtual address. 
Thus a successful  translation involves adding the displacement 
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Figure 1 Address translation  in  a paged, nonsegmented  virtual  storage system 
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field from the original virtual address to the beginning-of-seg- 
ment address from the segment table. 

Finally,  the  concepts of paging ahd  segmentation may be com- 
bined in some machines. In these  machines,  address  translation 
can be effected by a two-level look-up scheme. 

Each of the  translation mechanisms described  above would ob- 
viously cause  substantial  performance  degradation  were the 
required translation  tables  kept solely in  main storage.  Indeed, 
the two-level look-up procedure  for  systems combining seg- 
mentation and paging would, for  each  storage  access,  require 
two additional accesses for address  translation. For this  reason, 
address  translation  hardware generally includes high-speed reg- 
isters in which the most  recently used portions, if not all por- 
tions, of the  translation tables are maintained. For example,  the 
dynamic  address  translation (DAT) hardware of the IBM sys- 
tem/360 Model 67 uses eight associative  storage  registers  for 
the eight most  recent  translations  and  a ninth register  for the real 
page number of the  translated  instruction  counter. 

As implied above,  the  tables  used  for virtual address  translation 
generally contain fields not only for  address information per se, 
but also for control information indicating possibly, among other 
things, whether  or  not  a given portion of virtual address  space is 
presently available in  main storage.  In machines combining 
segmentation and paging, such availability or validity  indicators 
may be  present in the segment table  as well as  the page tables; 
so  the page tables  themselves may at times not  reside in  main 
storage. 

It is, of course, a function of the translation  hardware to inter- 
rupt  processing  whenever a translation  table  entry is encountered 
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that indicates that  a  storage block is unavailable. On  detecting 
such  an  interruption, called a translation  exception, the  system 
control program must initiate the  operations  needed  to bring into 
main storage  the information that is missing. In  general,  these 
operations  involve: 

1. Determining  an  area in main storage  into which the missing 
information can be placed (a  function of the replacement al- 
gorithm, discussed  further below) 

2. Writing, if necessary,  into auxiliary storage  the  current  con- 
tents of the  selected  area 

3.  Reading from auxiliary storage  the missing information 
4. Updating the translation  tables to reflect the changes  that 

have been made 

Only when these  operations  have been completed  can  the  sys- 
tem control program resume  execution of tiie instruction causing 
the  translation  exception. Note  that  these operations generally 
entail reference to (and possibly modification of) additional ta- 
bles specifying the location of virtual storage blocks on auxiliary 
storage. In CP-67 these  tables are called swap  tables. 

In some virtual storage  systems,  the  transfer of portions of vir- 
tual  storage  between main and auxiliary storage  is  performed 
solely when translation  exceptions  occur. Paged virtual storage 
systems implemented in this  manner are called demand  paging 
systems. It should be  noted,  however,  that  virtual  storage  trans- 
fers need  not  be handled entirely on a  demand basis. For exam- 
ple, in time-sharing systems with virtual storage, it may be ad- 
vantageous  to immediately initiate the  transfer of a particular 
user’s storage blocks from main to auxiliary storage when- 
ever  that  user is deactivated. This is done,  for  example, in the 
IBM Time-sharing  System/360 (TSSD~O) and RCA TSOS systems. 
These two  systems  also employ piepagikzg, an anticipatory  strat- 
egy which, in general,  involves  transferring  virtual  storage 
blocks into main storage before they  are  actually  demanded. 

In addition  to  the  essential  operations of transferring virtual 
storage blocks between auxiliary and main storage,  virtual  stor- 
age management may entail other  operations aimed at increased 
function or improved performance. For example, in some sys- 
tems,  the  storage management mechanism is generalized  so  that 
programs  and data can  be  introduced  into  a user’s virtual ad- 
dress  space without conventional file I/O operations. In essence, 
this is accomplished by using the same  format  for files 3s is used 
for  virtual  storage blocks. Then, by making swap  table  entries 
point to  the  appropriate file blocks when access is desired,  the 
blocks can be brought  into main storage  on  a demand basis. 
Highly refined mechanisms of this  type  have  been  developed in 
TSSD~O, where  they  are called virtual  access  methods (vAM), and 
in the MULTICS system,  where files are almost  always  treated as 
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virtual storage  segments. As discussed  later, a very limited form 
of VAM is used in CP-67 to establish an  operating  system in the 
address  space of a virtual machine. 

Another  storage management function in multiuser virtual stor- 
age  systems may be  the provision of a mechanism for informa- 
tion sharing. This is accomplished  quite simply. in principle, by 
making the  translation tables for different users point to  the 
same physical storage  areas.  In MULTICS and ~ S s / 3 6 0 ,  sharing 
is effected at  the segment level;  hence, when users  share a 
given segment,  pointers  to  the page table  for  that segment are 
placed at  the appropriate  entry of each  user’s segment table. In  
CP-67, the sharing of read-only portions of an operating  system is 
effected at the page level. Thus each  user  has his own set of 
page tables, but individual page tables of different users may 
have  common  entries. 

Program  performance in virtual storage  environments  has  been 
the  subject of numerous  and often conflicting articles (see Refer- 
ences 8-46). Here we make no attempt  to  treat this subject 
exhaustively, but wish to point out  some of the  factors influenc- 
ing program performance  other than the  obvious  factor of pro- 
gram size  relative  to  the  amount of available main storage. We 
also indicate  certain  techniques  that may improve performance. 

One  factor which has  received  considerable  attention is the re- 
plucernent algorithm, mentioned previously as the mechanism 
determining the  area of  main storage in which to place a newly 
demanded virtual storage block. In  systems with predominantly 
demand-based storage management, the  replacement algorithm 
can  greatly affect the rate at which translation  exceptions  occur 
and,  hence,  system  performance in general.  Intuitively it would 
appear  that,  to minimize the  rate of translation  exceptions,  the 
replacement algorithm should choose  the  storage  area containing 
information that  has  the longest expected time before being re- 
ferred to again. This  notion, essentially a statement of the princi- 
ple of optimulity, is  in fact embodied in many of the  replacement 
algorithms that  have been implemented and/or theoretically in- 
vestigated,  for example: 

First-in-first-out (FIFO), wherein the  storage block that is re- 
placed is the  one first brought into main storage 
Least-recently-used (LRU), wherein the  storage block that is 
replaced is the  one  referenced longest ago 
Working-set (WS) algorithm, wherein the storage block that is 
replaced is any block that  has  not been referenced within 
some specified period” 
Optimal (MINI algorithm, wherein the  storage block that is 
replaced is the  one  that will,  in fact, be referenced  farthest in 
the future 
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The MIN algorithm, though not realizable in practice,  was used 
in experimental work by Belady as a basis  for evaluating other 
algorithms. Actual virtual storage  systems generally employ 
various approximate  forms of the ws and LRU algorithms that 
typically generate 10 to 50 percent  more  translation  exceptions 
than the MIN algorithm.”’ l7 

While the control of main storage by the  replacement algorithm 
is important to performance, it  is generally logically transparent 
to  the application programmer. Thus, more germain from the 
programmer’s view, are  the  factors of programming style  and 
program structure. A central goal of programming for  a virtual 
storage  environment is that of maintaining locality. Locality is 
difficult to specify precisely,  but generally it implies staying 
within a small set of virtual  storage  blocks  for long periods of 
time. Techniques for achieving locality may be roughly divided 
into  those having to  do with procedures  and  those having to  do 
with data, and will be so divided here, though the distinction is 
not  always  clearcut. 

procedures Since  procedures  tend  to  stay  in  one  place in virtual storage 
while data is passed around  from one location to  another, locali- 
ty implies compacting  procedures internally and clustering those 
procedures which are frequently used together.  Compacting is 
done by removing areas of seldom-used code  that  are in line 
with areas of often-used code,  and making each seldom-used 
area  a  separate  routine  that  can  be assigned to  a virtual storage 
space  near  other seldom-used code.  Clustering  the often-used 
areas can be  done on the basis of frequency of use or  on  the ba- 
sis of the  number of transfers  from  one  area  to  another. The in- 
formation needed to perform the clustering may be  gathered at 
little or great  expense,  depending on the  accuracy  desired.  Auto- 
matic techniques  have been developed to perform this  cluster- 
ing, and  improvements  are usually possible through manual or 
automatic  methods.  See Comeau18 and Hatfield and  Gerald.28 

data Given  that  the  amount of data examined by a program is de- 
termined by  the problem to be solved,  the programmer has 
choices left in the  manner of structuring  and  accessing  the data 
he  will use. The access  pattern and storage  pattern should be 
mated,  and when one is fixed, the  other  should  conform to it  as 
much as possible. There is no “best”  storage  structure (e.g., an 
array)  independent of the distribution of data  values  and  access 
patterns. The array  is a reasonable way to store  a  matrix if no 
large fraction of its  elements  has  the  same  value,  but if a matrix 
is 80 percent  zeros, it probably should be  packed,  and if symme- 
tric, only  half need  be  represented.  Where  possible,  data should 
be  stored in the  order in which it is to be used and vice versa. 

Hash-coding has the  advantage  over list processing of localizing 
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drastically  the  storage  traversed  for  the  accessing  process (i.e., no 
intermediate  pointers)  and usually for  the updating process  as 
well. Therefore it is preferred when a small fraction of a total 

i data  area  needs to be examined in a significant period of real 
time (the time it would take  to  fetch all the  data  area). But if 
most of the  data  area, or more specifically most of the virtual 
address  space  that  makes up the  data  area,  must be handled 
during a relatively short period of time,  the  cost of explicitly 
storing redundant  structural information in the  hash-code  method 
must be considered, and the storage  representation  that gen- 
erates  the smallest total storage  area  chosen. 

An aid to increasing data locality is to  consider  the  amount of 
parallelism available in a  process. For  instance,  the  order of 
processlng indices is unimportant when initializing or multiplying 
a matrix,  and  that order may be  chosen which results in the 
fewest  passes  over  a large virtual storage  area. In general, the 
more flexible is the  order of operations  between initialization and 
result, the more possible it is to  increase localization by using 
compact  intermediate  data  areas  for  storing partial results, so as 
to reduce  the  number and scope of accesses  over a data base. 
Parallelism is specifically important in many large data  base 
applications, e.g., sort-merge,  query languages, and matrix manip- 
ulation. See, e.g., Brawn and Gustavson’s’16  on  sort-merge  and 
G ~ e r t i n ’ ~  on  source language array processing. 

What  can  be  done to procedures  can be done  to  data,  i.e.,  data 
areas used together should be placed near  one  another in virtual 
storage.  Clustering of data  areas can be facilitated if there is a 
level of indirection (a compact  pointer  area) between the  data 
name  and  the lower-level array or  tree  or hash  structures.  This 
permits target data  areas  to be rearranged periodically on  the 
basis of use  without global changes to the  procedure  and  data 
areas used for accessing. An example of a  compact,  indirect in- 
terface is FORTRAN COMMON, which permits rearranging the 
storage  order of an  array list by reordering  the  names in the 
COMMON statement. 

What can be done  to  data  can be done  to  procedures  whenever 
there is freedom to reorder dynamically the  sequence of use of a 
set of procedures.  Whenever  possible,  the  procedures used last 
in the previous phase of a program should be used first during 
the  current phase. This is true  because nearly all replacement 
algorithms tend to  expect  that  storage  blocks used longest ago 
will not  be needed until furthest in the  future.  Therefore, looping 
is the  worst possible way to  repeatedly  traverse a large virtual 
storage  area. For example,  consider  the problem of multiplying 
two large matrices to  produce  a  third, all stored columnwise. No 
matter how the program is written,  at  least  one of the multiplied 
matrices must be  gone  over in the wrong direction  (across  its 
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rows). But if we alternate  the direction of the  paths  across  suc- 
cessive  rows, which can be done  because  the sum Ckaikbkj  is 
independent of the  order of values given to k ,  we  will produce, 
instead of a  loop  over  a large storage  area,  a  sawtooth  that gives 
less page exceptions with  all but  random  replacement algorithms, 
especially as  the available real memory size  approaches  that of 
the  virtual  storage  area  needed  for  the  array. 

In  general, it is possible to  contain  procedure  and data in local 
virtual storage  areas if (1) code is segregated by frequency of 
use  and  communication, (2) the  order of processing data cor- 
responds  to  the  order of storage  and  intermediate data  areas 
containing partial results are used when possible, (3) initiation of 
data is done immediately before  the data is used,  and  then only a 
few  storage  blocks  at  a  time if the  data is to be used serially, 
(4) garbage collection is frequent,  and ( 5 )  returns from long se- 
quences of large jumps  through  virtual  storage  are  made by 
reversing  the  order of the  jumps if the  start of the  sequence has a 
greater probability of being used in the immediate future than 
does  the  end  or  the middle. Little is known yet of the  value of 
saving in a  temporary  array  more  data  than  the  present  pass 
through a data  base  requires on the assumption  that it will be 
relevant  to  the  next  pass.  Also, little information is available 
concerning  under  what  conditions it is better  to  do a large over- 
lay  rather  than shift to a new area of virtual storage, or what 
statistics are needed  for dynamically restructuring  a data base. 
But usually programs  do not require  such  esoteric remedies. 
What  seems  most helpful, aside  from  reordering tools that use 
detailed  examination of program activity,  is to consider the pro- 
gram as a problem-solving process  as  free as possible  from 
(1) preconceived  representations of the  data involved and (2) pre- 
conceived  orderings of the detailed sequences of data  reduction. 

Virtual machines 

overview As  stated in the beginning of this paper, in a virtual machine sys- 
tem,  the  instructions  issued by a program to perform a given 
task may differ from those actually executed by the  hardware. 
Typically in such  a  system,  one  computer, the host  machine, 
provides  functional simulation of one  or  more  other  computers, 
the virtual machines.  Goldberg"3 had distinguished two  classes 
of virtual machine systems: sr(f-virtualizing, where  the virtual 
machines are identical to the  host,  and family-virtumlizing, where 
the virtual machines  are all members of the  same  computer fami- 
ly (e.g., IBM System/360 Models 30  through 65) as  the  host.  In 
either  case,  the virtual machine system  must  provide  functional 
simulation of at least  four  components-  system  control  panel, 
central  processing unit(s), rio system,  and  storage-the  four 



nents of the virtual machine (VM) have  direct  or  identical  coun- 
terparts on the  host  machine,  and  to  the  extent  that  the  architec- 
tures of both the  host  and virtual machines permit  it,  functional 
simulation can be effected by utilizing real components or fea- 
tures of the  host  computer;  otherwise,  a  detailed  step-by-step 
simulation must be performed. The use of components of the 
host  computer  to effect the functional simulation of the virtual 
machine depends primarily on  the  provisions in both the  host’s 
and  the virtual computers’  architectures  to  segregate  and  control 
those  components. For example, if the  instruction  set of the vir- ’ tual machine and the  host  computer are identical,  then many 
(perhaps most) of the instructions  to be executed by the virtual 
machine can be handled directly by the  host  hardware.  This  can 
be the  case only if there is a  means of preventing  the virtual 
machine from directly changing or interrogating its status,  where 
a  status change includes,  for  example,  the initiation of an I/O 
operation. If a mechanism is available for excluding status-relat- 
ed instructions  from  the  instruction  set of a virtual machine, 
then the virtual machine control program can effect the  function- 
al simulation of the virtual machine’s central  processor  without 
recourse to  the detailed  and highly expensive simulation of each 
instruction. 

Though the concept of a  virtual machine does  not  necessarily utility 

imply that  the virtual machine is other  than  a  duplicate of the 
host or  that more than  one  virtual machine is available,  the ad- 
vantages of virtual machines are enhanced in a multiprogram- 
ming environment, permitting different members of a family of 
similar machines to be used. Listed below are some  examples of 
facilities which are only available in such a system,  or available 
at  greater  convenience than in a  more  conventional  system: 

Concurrent running of dissimiliar operating  systems by dif- 
ferent  users. While one virtual machine is used to  develop  and 
test  code  for  the  current  release level of an  operating  system, 
another virtual machine can be using a back-level release of 
the same  system. 
Both system and application programs may  be developed  and 
debugged for machine configurations that are different from 
that of the host machine. Thus a  host  machine with a  modest 
amount of main storage can provide  the  environment  for 
development and test of a system  to  run on a machine with 
a large amount of main storage. 
One virtual machine is totally insulated from the effects of 
software failures occurring in other virtual machines. 
The host machine can aid in the measurement of hardware 
and  software usage by the  various  virtual machines. Specific 
virtual machines built for monitoring can  communicate di- 
rectly with the  host without impacting the machines being 
monitored. 

NO. 2 1972 V I R T U A L  STORAGE A N D  MACHINES 109 



In providing functional simulation of a nonexistant  computer 
system,  a virtual machine system  provides lead time  for soft- 
ware  development  and early checkout of a  hardware  architec- 
ture  and its software implications prior to actual  hardware  con- 
struction. 

implemented One of the earliest virtual machine  systems was CP-40 men- 
virtual tioned previously as an  example of a  system with virtual storage. 

machine CP-40 was  developed in 1965 -66 for  an IBM Systern/360 Model 
systems 40 augmented by special  dynamic  address  translation  hardware. 

A  prototype  for  the CP-67 system  discussed in detail in the fol- 
lowing section, CP-40 allowed concurrent running of as many as 
15 virtual  System/360’s. It should be  noted  that, unlike C,P-67, 
CP-40 did not  support virtual machines that  used  dynamic  ad- 
dress  translation  themselves, i.e., CP-40 was family-virtualizing 
but  not self-virtualizing. Other implemented virtual machine  sys- 
tems include: 

IBM M44/44X, an  experimental  system  that was neither family- 
nor self-virtualizing, but  provided  virtual  machines similar to 
the IBM 7044 from which the M44 was derived 70’x3 

System/360 Model 30 hierarchical control program, a  sys- 
tems  evaluation  tool  supporting  a single virtual System/360g4 
MTS (Michigan Terminal  System), an operating  system  for 
the IBM System/360 Model 67 that  supports multiple virtual 
System/360’~~~’’~ 
HITAC-8400 pfogram  simulator,  a  system  development  and 
debugging aid supporting a single virtual H1TAC-840088’93 

47,61,66 

CP-67s3.55,68 developed in 1967  (currently  an IBM program with 
Class A maintenance), is perhaps  the  most widely used virtual 
machine system  to date and is discussed below. 

CP-67 

CP-67 is a  multiuser virtual machine system  for  the IBM Sys- 
ten/360 Model 67 that provides functional simulation of the Sys- 
tem/360 family of  computers, including the Model 67 itself. Fur- 
ther,  depending on the  programs (and operating  systems) 
running within the virtual System/360’s, CP-67 can provide an 
interactive time-sharing environment.  Its  responsiveness-  a  term 
used loosely  here - is determined by many factors, including the 
system  operating in the virtual  machine, the dispatching algo- 
rithms in CP-67, and  the  demands of other  users.  Although re- 
sponsiveness is of importance to  the acceptability of CP-67 in 
various  environments (e.g.  high throughput,  interactive), it  is not 
central  to  its definition as  a virtual machine system. The emphasis 
here will be on that definition and  its  interrelationships  to virtual 
storage. The reader  interested in CP-67 performance should see 
References 74,  76,  77,  79,  and 84. 
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To convey  a more concrete understanding of how CP-67 oper- 
ates, a brief discussion of CP-67’s simulation of each of the com- 
ponents of a  System/360 is given in the  succeeding  paragraphs. 
Following these  are discussions of the  manner in which CP-67 
supports virtual machines with address  translation  hardware  and 
some of the problems arising from the lack of address  translation 
hardware  on  the I/O channels. The section  concludes with a dis- 
cussion of some of the exploitations of virtual storage  that are 
within the  framework of a virtual machine  system. 

For each virtual machine requested by a  user, CP-67 maintains a 
set of tables containing the  description  and  status of these com- 
ponents.  Where  appropriate,  these  tables  correlate  hardware 
components of the  host Model 67 with components of the vir- 
tual System/360. Thus,  for example,  a  keyboard  device  such as 
an IBM 2741 communications terminal is correlated with the  sys- 
tem control panel and  operator’s  console of each virtual ma- 
chine. 

CP-67 associates with each virtual machine a keyboard  device 
(either  remote  or locally attached)  and maps onto  this  device  the 
major portion of the  functions available on the  system  control 
panel. Thus  the RESET button on the  System/360 panel becomes 
the  typed  character  sequence “RESET”, which causes CP-67 to initi- 
ate  a  detailed  step-by-step simulation that  resets  the  appropriate 
status  data in the tables describing the  virtual  System/360. In 
the  same  fashion, CP-67 simulates other  features of the  system 
control panel. 

In  addition  to the various  control-panel  functions, CP-67 also 
maps onto  the keyboard  device of each virtual machine a virtual 
printer-keyboard IBM 1052-7. As the 1052-7 is an IlO device to a 
System/360, its support by CP-67 is covered  under  the  discussion 
on the I/O system. 

The distinction in System/360  between problem and supervisor 
state  enables CP-67 to  execute most of a virtual machine’s in- 
structions  directly. When the  central  processing unit (CPU) is in 
problem state,  any  attempt  to  execute  an  instruction  that 
changes or interrogates the  state of the  system,  i.e.,  a privileged 
instruction,  causes  a program interruption. Thus by executing 
virtual machine instructions only while in the problem state, CP- 
67 is ensured of regaining control  whenever  a privileged instruc- 
tion is encountered. When such an event  occurs, CP-67 simulates 
the appropriate functional effect of the privileged instruction as 
follows. From  a  table  describing  the virtual CPU, its status is 
determined - specifically, whether it is in problem or supervisor 
state. If the virtual machine is in problem state, CP-67 must simu- 
late  a program interruption  to  the virtual machine. This entails 
storing the virtual machine’s CPU status in the virtual machine 
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program old PSW (Program Status Word) location,  fetching  the 
virtual machine’s program new PSW, and updating appropriately 
the  data in CP-67’s table  for  the virtual CPU. If, on the  other 
hand, the virtual machine is in supervisor state, CP-67 must  de- 
code  the  instruction  and perform a simulation of that instruction. 
For example, on a virtual machine’s SSK (Set  Storage  Key) in- 
struction, CP-67 must  determine  the key value and block address, 
and  then, if the corresponding page is  in main storage,  set  its key 
to  the value specified. If the page is not in main storage, CP-67 
must  store  the key value in the  appropriate  swap  table  entry.  In 
either  case, CP-67 must update  appropriately the tables (and 
hardware)  to reflect the  change in the  virtual machine’s status 
before it can resume running the virtual machine. 

110 system As we have  mentioned, CP-67 maintains in tables a description of 
the rlo structure of each virtual machine. These tables indicate 
not only the  existence of each r/o element but also the  status of 
the element (e.g., busy or free)  and the real  hardware  component 
to which it corresponds. Thus when a virtual machine issues a 
SIO (Start rlo) instruction, CP-67 must first determine  that the I/O 
address is  valid  in the virtual machine’s rlo structure  and  that 
the elements  composing the virtual I/O path  (channel,  control 
unit,  device) are free. CP-67 must  then  mark the virtual path busy 
and build an  equivalent I/O task  for  the real hardware. At its 
simplest  level, a virtual machine’s s10 to an IBM 23 14 direct  ac- 
cess  storage  device  at I/O address  190 could result in CP-67 issu- 
ing an SIO to  a real 2314 at  address 332. The real path  may, of 
course,  be busy (as when an rlo task  for  another virtual machine 
is utilizing the required channel),  and if so, the  taskmust  be de- 
ferred until the  real  path becomes free. Then CP-67 can issue  an 
SIO instruction  and  proceed with the  instructions following the 
virtual machine’s SIO. When the I ~ O  task is completed  (intermp- 
tion), CP-67 must reflect this fact in the  tables describing the vir- 
tual machinek I/O structure; in particular, it must  indicate  that 
the previously busy virtual path  has  become  free and that  an in- 
terruption is pending. Then, when the virtual CPU becomes  en- 
abled for  the  interruption, CP-67 must  simulate  the effects of the 
interruption, including the updating of the virtual machine’s chan- 
nel status  word. 

The procedure just described is followed in cases  where  direct 
counterparts  exist  for  the  elements of the virtual machine’s rlo 
structure.  Where no direct  counterparts  are  available, CP-67 
must effect detailed simulation of the  data flow through the vir- 
tual machine rlo structure. Two examples are: 

Unit  record  devices. Though available on the  host machine 
(and  attachable  to  the virtual machine), unit record  devices 
such as printers  and  card  readers are most efficiently utilized 



using a disk to buffer the flow  of data  between many virtual 
machines and the individual real devices. 
Operator’s console. CP-67 maps the 1052-7 printer-keyboard 
onto  the same  keyboard  device used to simulate  the  system 
control panel. This  entails simulating the  data flow between  a 
virtual machine and  a  1052-7 using a  transmission control 
unit and  communications terminal (e.g., an IBM 2703  and 
2741). This simulation is complicated by the  fact  that  not 
only must  a range of different terminals be  supported, but  a 
terminal must serve  the  two dissimilar functions of virtual 
machine I/O and  system  control panel simulation. 

It is often  convenient to add a virtual r/o device  for which there 
I is no exact  equivalent.  An  example of such a device is a “mini- 

disk” - a logical subset of a direct  access  storage  device  such  as  a 

it has  fewer than 203 cylinders. By partitioning a  203-cylinder 
23 14. That is,  a minidisk may be in every way a 23 14,  except  that 

23 14  into  several smaller equivalents,  operational  economy is 
obtained. 

CP-67 employs the  dynamic  address  translation  hardware on the storage 
Model 67  to establish  and maintain a virtual address  space  for 
each virtual machine. In  the tables  that CP-67 uses  to  describe  a 
virtual CPU, there is a  set of segment,  page,  and  swap tables 
describing an address  space of up to 16 million bytes. To start 
running a virtual machine, CP-67 loads a control  register with 
the  address of the segment table  associated with the virtual 
machine. Next  the PSW is set  to problem state, address-transla- 
tion or “relocate”  mode, and enabled for all interruptions;  fur- 
ther,  the PSW contains the virtual machine’s PSW key and in- 
struction  counter. The Model 67 is now “running” the virtual 
machine’s CPU and will do so until an  interruption is received. 
As  an  example, on a translation  exception  interruption, CP-67 
must determine  that  the  virtual  address is  in the  address  span of 
the virtual machine’s storage. If it  is outside  the  span, CP-67 
must present an addressing  exception  interruption  to the virtual 
machine. Otherwise, it must make a page frame available (a 
function of the page replacement algorithm), find  in the  swap 
table the location on auxiliary store of the image of the  needed 
page, bring this page image into main storage,  and  set its storage 
keys to  the values specified by the  swap  table. Only when these 
actions are complete  can CP-67 resume running the virtual ma- 
chine. 

Though not central to its definition as a virtual machine system, 
the page replacement algorithm of CP-67 has a profound effect on 
system utilization and responsi~eness .~~ Using  storage  refer- 
ence  bits  set automatically by  the  hardware,  this algorithm tends 
to  keep in  main storage virtual machine pages that  have  recently 
been used. If enough pages for a virtual machine are in  main 
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storage, CP-67 can  execute  the virtual machine’s instruction  se- 
quences  for  substantial  periods of time without incurring page 
exceptions. Further, if enough pages for  each of several virtual 
machines  can  reside in main storage,  then  those  machines can be 
multiprogrammed efficiently. It  is an objective of the CP-67 dis- 
patching algorithm to run only virtual machines with a  reason- 
able  chance of having the required pages in, or brought  into,  the 
available main storage. Thus  the dispatching algorithm must  be 
complementary  to  the page replacement algorithm, which has 
the function of preserving in storage  the required pages of each 
dispatchable virtual machine. 

In addition to system utilization being a  goal,  responsiveness is a 
goal and is often  a  crucial  aspect of performance. The central 
philosophy is to  ensure  that  short  jobs  are not inordinately de- 
layed by long jobs. This gives rise in CP-67 to a dispatching algo- 
rithm with both time-slicing (i.e.,  each virtual machine is run a 
certain length of time,  then  set  aside until others  have had a 
turn) and multi-queue dispatching (i.e., on the  occurrence of 
some  event,  the virtual machine is placed in a high-priority queue 
and allowed to be dispatched  ahead of other virtual machines). 

address To support  the  development of code  for  the Model 67 itself,  there 
translation is a need for virtual Model 67’s  (V67). Except  for  the simula- 

hardware tion of several additional instructions  and a new PSW format,  the 
logic for handling the V67’s CPU is the  same  as  that  for handling 
any  System/360 CPU, and is of little interest  here.  More  interest- 
ing is the functional simulation of the DAT hardware. Before 
discussing V67’s on CP-67, let us review briefly the  operation of a 
Model 67. To run in relocate  mode,  the  control program in the 
Model 67 must among other things load Control  Register 0 (the 
segment table  register) with the  address of a segment table. It 
can then load a PSW indicating that  address  translation is active. 
Each  address  translation involves a search of associative  storage 
registers maintained by the DAT hardware, and relies on seg- 
ment and page tables if this search fails. To support  a V67, CP-67 
utilizes the  host  Model 67’s DAT hardware to simulate the transla- 
tion hardware of the V67. The tables of the control program in 
the V67 indicating how its virtual  addresses  are  to be translated 
into  “real  addresses” must be combined with CP-67’s tables in- 
dicating how the V67’s “real addresses”  are  to be mapped onto 
the main storage of the host Model 67. In CP-67, the combined 
tables are called shadow segment and page tables.  Shadow  tables 
can  be  illustrated by the following example. 

CP-67’s map might indicate  that page 6 of a virtual machine’s 
storage is at page 100 of the  host Model 67’s storage  (see  Figure 
2, point A). If the virtual machine is a V67 in relocate  mode, it 
has  a  map relating virtual addresses  to  real  addresses which 



Figure 2 Use of shadow  tables to support a  virtual Model 67 
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V67, any virtual address in page 16 is to be converted to  one in 
page 6 of its storage  (Figure 2, point B). To effect the functional 
simulation of the V67’s map of virtual addresses  to  its  “real” 
storage, CP-67 must build a  shadow  table  that maps virtual page 
16 to real page 100 (Figure 2, point C). Then, when running a 
V67 in nonrelocate  mode, CP-67 uses  the normal page tables, 
and when the V67 enters  relocate  mode, CP-67 uses  the  shadow 
tables. It is in this fashion  that CP-67 maintains a functional simu- 
lation of sufficient fidelity such  that both CP-67 itself and TSS/360 
can be run in a V67. 

As mentioned in the  discussion on the rlo system, a virtual ma- 
chine’s start I/O instruction to a nonsimulated device  results in 
CP-67 constructing an I/O task  equivalent  to  that  demanded by 
the virtual machine. A major technical factor is that  the virtual 
machine’s channel program is defined in the virtual storage of 
that virtual machine. That is, all addresses in the  channel com- 
mand words (ccw’s) that  comprise  the  channel program are vir- 
tual addresses. The I/O structure on the Model 67 is such  that 
I/O tasks are not subject to dynamic  address  translation, i.e., the 
channels deal with real, not virtual, addresses. In constructing 
an equivalent  channel program, CP-67 obtains a copy of the vir- 
tual machine’s channel program and builds in its working storage 
a translated equivalent of the program. This  process involves the 
following operations: 
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1. For each virtual data  address,  a real address  must  be ob- 
, tained. AI1 pages of virtual storage involved in the I/O opera- 

tion must be determined,  and  any pages that are missing must 
be brought into main storage. Further, all pages involved in 
the rlo operation must be locked in storage until the rlo opera- 
tion is completed. 

2. Channel  commands  that  indicate data  areas  crossing page 
boundaries  must be translated  into multiple data-chained 
commands.  This is necessary  because, in general,  contiguous 
virtual pages are not  contiguous in real storage. 

One consequence of the translation of channel  programs is that, 
because  a virtual machine’s entire  channel program is fetched  at 
the  start rlo instruction  time, CP-67’s support of virtual machines 
is at variance with standard  System/360  channel  architecture, 
wherein channel command words are fetched only when needed. 
Thus, modifications made to  the channel command words in a 
virtual machine’s address  space  after a start I/O instruction has 
been issued  can  have no effect on  the rlo operation.  In practical 
use of CP-67, this variance has not  been a major problem.  Fur- 
ther, no such  variance  occurs in the  case of simulated devices, 
e.g., card  readers. Here CP-67’s simulation of the  data flow 
through  the virtual machine’s I/O structure  permits conformity 
with the channel  architecture. 

Another  consequence of channel program translation is that 
some  devices  are  not, in general, available to virtual  machines 
under CP-67. For example,  the  data  transfer  rate of an IBM 2301 
drum unit is too  great relative to  the storage  speed of a  Model 67 
to permit data chaining (except  at a record gap). Thus,  these drum 
units can be used by a virtual machine only if it can be  assured 
that no data  areas will span page boundaries. A final consequence 
of channel program translation is that  the page replacement al- 
gorithm must  be  able  to recognize and  pass  over  locked pages in 
main storage. 

To  summarize,  the lack of address  translation  hardware on rlo 
channels  necessitates a software  translation of channel pro- 
grams. This translation may have  considerable impact on system 
performance and may impose minor rlo programming or  hard- 
ware  restrictions. Preferred  virtual  machines, a  technique dis- 
cussed by Par~nelee,’~ permits  the elimination of channel pro- 
gram translation,  hence,  the  achievement of substantial perfor- 
mance  improvements  and  the relaxation of restrictions. 

virtual One interesting exploitation of virtual storage by CP-67 is seen in 
storage its ability to establish a program (or  data) in an address  space 

exploitation without  actual I/O or paging operations.  In  particular,  the initial 
program load (IPL) function, which on a  System/360 is used to 
cause  a  sequence of rlo operations followed by CPU execution of 
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the input data, has been  enhanced in CP-67 in the following man- 
ner. In addition to  supporting  the  standard  System/360 initial 
program load function, CP-67 permits the  permanent assignment 
on backing store of the page images of an  operating  system  at  a 
point late in the program loading process.  On being requested  to 
initially load such a system, e.g., to “IPL OS”, CP-67 needs only to 
establish in the virtual machine’s swap  tables  appropriate  entries 
indikating the permanently assigned area on backing store.  Thus 
the virtual address  space  for  an  entire  operating  system can be 
established without the  expense of rlo simulation. Furthermore, 
during subsequent use of the  operating  system, only those por- 
tions of the  system  that are actually used will be paged-in. From 
the user’s point of view, a  particular  advantage of this feature of 
CP-67, which is called “named  system IPL”, is that it  is unneces- 
sary  to  repeat  the  system initialization dialogue each  time  a  sys- 
tem  is run. In effect, the  user can create  a  frozen  “checkpoint” 
of the  system  that  can  be quickly and cheaply re-established. 

A  further  exploitation of virtual storage is the  sharing  among 
several virtual machines of read-only pages of storage. This is 
effected by CP-67 on initially loading the program of a named 
system, which initializes a virtual machine’s address  space.  As 
part of this initialization, CP-67 establishes in the virtual ma- 
chine’s page tables  pointers  to common or shared page frames of 
the  host machine’s main storage. 

To conclude this discussion of virtual machines, it must  be em- 
phasized that CP-67, in providing virtual System/360’s,  makes 
very  direct and simple use of the  address  translation  hardware of 
the host Model 67.  The more  elaborate  forms of virtual storage, 
e.g., general virtual access  methods and segment sharing, being 
outside  the definition of System/360,  are  not  supported.  That is, 
a virtual machine system,  and in particular CP-67, provides the 
basic resources of the computer  hardware,  but  does  not  other- 
wise support  or effect high-level user  functions. 

Summary 

In this  paper, we have  discussed some of the salient  aspects of 
virtual storage  systems.  Further, in the  discussions of virtual 
machines and CP-67, we have illustrated an implementation of a 
virtual storage  system  as well as  the generalization of the virtual 
storage  concept  to virtual machines. Although a virtual machine 
system  does not within its strictly defined limits admit to  the 
more complex uses of virtual storage, it does  serve to illustrate 
the major problems confronted by many virtual storage  systems. 
The utility of the virtual storage and machine concepts is well- 
established, and in the  future,  the application and  extension of 
these  concepts is certain to increase. 
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and  System/360 Model 67. 

The following articles are studies of program behavior  and memory  management 
strategies. 

8. A. V. Aho,  P.  J.  Denning,  and J .  D. Ullman,  “Principles of optimal page 



tains succinct definitions of  virtual  memory  and paging concepts.  Shows  that 
the optimal paging policy is a demand policy when the  cost C (n )  of placing 
n pages in memory satisfies C(n)  1 nC(1). Defines as k-optimul a page  re- 
placement algorithm A(k)  which minimizes page faults for a program whose 
reference string is generated by a kth-order  Markov  process.  Shows how to 
implement A(O), and shows  that  the  LRU and  working-set  algorithms approx- 
imate A(0)  when the probability that a given page will be referenced  varies 
slowly  with time. 

9.  A. Batson, S.-M. Ju,  and  D.  C.  Wood,  “Measurements of segment  size,” 
Second ACM  Symposium on Operating System Principles, Princeton Uni- 
versity,  25-29  (October  20-22, 1969). Presents segment  size  distributions 
measured  on a  Burroughs  B5500 under normal “production conditions” at a 
university.  As ALGOL was the predominant  programming language, and  as 
ALGOL program  blocks and  data  array rows are  represented  as distinct 
segments  on  the  B5500,  segments  tended to  be small, with about  60  percent 
containing  fewer than  40  words. 

10. M. H. J. Baylis, D. G. Fletcher,  and  D. J. Howarth, “Paging studies  made 
on  the  I.C.T.  ATLAS  computer,” IFIP Proceedings of the 1968 Congress 
2, 83 1 - 837 ( I  968). Describes  performance  measurements of several paging 
algorithms, storage  access  patterns of 300 jobs, and a simulation study 
showing the effects of varying  page  size. The paging algorithm measure- 
ments  showed that the  replacement policy, which is actually  used  on the 
ATLAS,  and which assumes a strictly  cyclic page usage pattern,  produces 
about  the  same  number of page swaps  as  an  LRU policy, and  about one-half 
as many swaps as a  purely  random  policy. The simulation  studies  showed 
that, for all programs considered, substantial advantages could be gained by 
using smaller  pages,  provided system  overheads could be  reduced. Page size 
on the  ATLAS is 5 12, 48-bit words. 

1  1. L. A.  Belady, “A  study of replacement  algorithms for a virtual-storage com- 
puter,” IBM  Systems  Journal 5,  No. 2, 78- 101 (1966).  Develops optimal 
replacement algorithm MIN  as a  basis for evaluation of random, FIFO, 
ATLAS,  and several  variantslapproximations to  LRU.  Concludes  from 
simulation experiments based  on two problem programs  that  LRU-type al- 
gorithms  have best overall  performance.  Nonoptimal  algorithms in general 
caused  two  to  three times as many page  faults as the  MIN algorithm. 

12. L.  A. Belady  and C.  J. Kuehner,  “Dynamic space-sharing in computer sys- 
tems,” Communications of the ACM 12, No. 5 ,  282-288 (May  1969). De- 
fines a storage cost function,  program lifetime function,  storage value  func- 
tion,  and  value per unit cost function to show  formally hqw program  behav- 
ior, processor efficiency, space allocation,  and hardware  factors  are inter- 
related in multiprogramming systems. 

13. L. A.  Belady. R. A. Nelson, and G.  S. Shedler,  “An anomaly in space-time 
characterstics of certain  programs running in a paging machine,” Cammrrrzi- 
cations ($the  ACM 12, No. 6, 349-353  (June 1969). Shows how increasing 
memory availability may in certain cases increuse the  number of page  ex- 
ceptions a program  incurs. Considers FIFO replacement primarily. Cf. 
Mattson,  et al. (1970). 

14. D. P. Bovet and  G.  Estrin,  “A dynamic  memory  allocation  algorithm,” 
IEEE Transactions on Computers C-19, No. 5 ,  403  -41 1 (May 1970). Dis- 
cusses memory  management in multiprocessing environments, explicitly 
excluding  “time-shared systems in which  the  effects of time quanta associ- 
ated with multiplexing-independent processes completely swamp  out  the 
effects of interaction factors within a given  program.” Proposes a  replace- 
ment policy for a system with variable-length  segments  based  on a graph 
model of program  behavior in which branching  probabilities  and cycle fac- 
tors  are known. 

15. B. S. Brawn  and F. G. Gustavson,  “Program behavior in a paging environ- 
ment,” AFIPS Conference  Proceedings, Fall Joint  Computer  Conference 
33, 1019-1032 (1968). Presents run  times  under paging of “casually  writ- 
ten”  and corresponding virtual memory-oriented  programs for  three dissimi- 
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lar “real” problems. The  three problems  involved (1) inverting  a 100 X 100 
matrix, (2) performing  a large data-correlation  calculation, and (3)  sorting  a 
large data  set.  Results indicated “that, if reasonable programming  techniques 
are  employed,  the  automatic paging facility compares reasonably well (even 
favorably in some instances) with programmer-controlled methods.”  Fur- 
ther. that  “the basicallv external consideration of orogramming stvle  can  be 

I of replacement  algorithms.” 
16. B. S. Brawn, F. G. Gustavson, and E. S. Mankin, “Sorting in a paging envi- 

ronment,” Communications qf the A C M  13, No. 8,483-494  (August 1970). 
Discusses  the performance of various  sorting  programs in virtual memory, 
again showing the  importance of intelligent program/data organization [see 
Brawn and  Gustavson  (1968)l.  Presents specific experimental results in 
which 100,000-word data  sets  were arranged in virtual  memory and sorted 
in several ways with varying  real core sizes. When data and  programs  were 
“properly” organized, performance  was  “comparable  to  that achieved by 
conventional methods . . . even when run in a  very limited core  space envi- 
ronment.” Rules of thumb for  proper  program/data organization are given. 

17. E. G. Coffman and L. C.  Varian,  “Further experimental data on the behav- 
ior of programs in a paging environment,” Communications of the A C M  11, 
No.  7,  47  1-474 (July 1968). Presents tracelsimulation results showing be- 
havior  under paging of a SNOBOL compiler, a program for computing 
Fourier  transforms, a WATFOR compiler, and a differential equation solv- 
er. Effects on paging rates  and page  residence  times of page size,  core size, 
and paging algorithm are indicated. Conclusions: “(1) with the possible ex- 
ception of carefully  designed  programs, page turning . . . appears  excessive 
in light of current or proposed paging system designs; (2) a least-recently- 
used page replacement algorithm yields a  Performance within about 30 to 
40 percent of that of the optimum page replacement sequence” (i.e.,  the 
Belady MIN algorithm);  “and  (3) for page  residence confined primarily to 
small areas within the page size, performance is improved  substantially 
more by increasing the number of pages held in core than by increasing the 
page  size.” 

18. L. W. Comeau,  “A  study of the effect of user program  optimization in a pag- 
ing system,” A C M  Symposium  on  Operating  System  Principles, Gatlinburg, 
Tennessee,  (October 1-4, 1967). Discusses  the effects of deck-ordering of 
routines in the  CMS nucleus for  CP-40  on  the paging performance of an 
assembler  and a FORTRAN compiler. In  experiments with the  assembler, 
page transfers numbered  approximately 6500,  4200, 2400, and 1200 when 
alphabetic, random, programmer-devised  (intuition), and programmer-revised 
(trace-assisted) orderings,  respectively,  were  employed. It was  concluded 
that  “user optimization is not  only easily achieved, but absolutely  necessary 
for  frequent operation in a paging environment.” 

19. F. J.  Corbato, A Paging  Experiment  with  the M U L T I C S  System, Massa- 
chusetts  Institute of Technology Project  MAC  Memorandum MAC-”384 
(July 8, 1968). Describes  the paging algorithm used in MULTICS  and pre- 
sents  results of experiments showing the effects of varying a parameter 
which, at  one  extreme, yields a F IFO algorithm and,  at  the  other,  LRU. 
Concludes  that efficient performance is obtained  with  a parameter setting 
corresponding to a particularly  simple case of the algorithm, viz., when a 
single “used bit” determines  whether a page is to be replaced. 

20. P. J. Denning, “The working set model for program behavior,” Commrrnica- 
lions of the A C M  11, No. 5 ,  323-333  (May 1968). Attempts  to  make  the 
concept of “memory  demand”  more precise by defining the working set 
W ( t , T )  of  a program at time t as  the  set of pages  referenced  during the time 
interval ( t -T , t ) .  Discusses  the problem of determininglestimating a program’s 
working set  and  the  use of the working set as a basis for a paging policy. 

21. P. J .  Denning,  “Thrashing: Its  causes and prevention,” AFIPS Conference 
Proceedings,  Fall  Joint  Comprrter Conference 33, 915-922 (1968).  Shows 
how inefficiencies in multiprogramming systems  due  to thrashing,  i.e.,  ex- 
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these  traces, page request  sequences  for page  sizes of 1024 to 16,384 bytes 
were obtained. These  sequences were processed by programs simulating sev- 
eral  single-user  page  replacement  algorithms. It was observed  that,  for a given 
program and real memory  size and  for  replacement algorithms in use today, 
halving the page  size  often  resulted in more  than twice as many page excep- 
tions, hence, actually  more paging I/O operations.  Furthermore, it was 
shown that  address  sequences  are possible that can cause  three  or  four times 
as many exceptions when the page  size is halved. 

30. H.  Hellerman,  “Complementary  replacement- A  meta  scheduling princi- 
ple,” Second ACM  Symposium  on Operating System Principles, Princeton 
University, 43-46  (October  20-22, 1969). Notes  that  computer  resource 
scheduling typically involves  applications of two  types of rules: admission 
and replacement. Introduces a  notation for expressing  admission  rules  and 
defines a procedure - the  complementary  replacement  meta  principle -for 
deriving  a  replacement  rule from a given  admission  rule. Asserts  that a vari- 
ety of known schedulers  are  encompassed by this  formalism, giving MIN 
and LRU replacement  algorithms as examples. 

3 1. R. M. Jones,  “Factors affecting the efficiency of a virtual memory,” IEEE 
Trunsactions on Computers C-18, No. 1 1, 1004- 1008 (November 1969). 
Describes paging algorithms for the  U. S. Seventh Army tested during de- 
velopment of the  Tactical  Operating  System  for  the CDC 3300, a machine 
which offers relocation hardware permitting  partial  page  allocation in units 
of a quarter page. It was found  that  an algorithm that  proceeded in round- 
robin  fashion  through virtual memory, selecting the first available  page for 
replacement,  gave  better  performance  than  one which  cycled through physi- 
cul memory-a result which presumably  reflects some bias in the way pages 
were  allocated.  A  least-frequently-used (LFU) policy gave  better perfor- 
mance  than either of the round-robin  algorithms, while the best performance 
was obtained by replacing  pages belonging to programs lowest  in  the sched- 
uling queue. 

32.  M.  Joseph,  “An analysis of paging and program  behaviour,” Computer Jour- 
nal 13, No. I ,  48 -54  (February 1970). Discusses  the  dependence of paging 
behavior  on  page  size,  available  memory, and paging algorithm. Presents 
simulation results, based on program traces showing: (1) the  percentage of 
accesses  to  the nth  last-used  page, as a  function of n; (2) page exception 
rates versus number of available  pages for various  page sizes; (3) exception 
rates  versus page  size for various  memory sizes; (4) amount of storage refer- 
enced versus time for  two page sizes; ( 5 )  space-time  integrals versus page 
size for different  programs and paging algorithms;  and (6) program-halt 
counts versus  page  size for different paging algorithms,  including, in particu- 
lar,  algorithms in which adjacent pages  were  prepaged. 

33. B. W. Kernighan, “Optimal segmentation  points  for  programs,” Second 
ACM ~ympo-sium on Operating System Principles, Princeton  University, 
47-52  (October  20-22, 1969). Describes a  method of partitioning a pro- 
gram so as  to minimize the  number of page  transitions.  Envisions  programs 
as directed  graphs  whose  nodes  are indivisible groups of instructions,  data 
areas,  etc.  “The  nodes  are  assumed  to have  a  given  ordering  which may not 
be changed . . . nodes  on any page  must be contiguous, sa the only degree 
of freedom is in selecting ‘break points’ between  the pages.” Node sizes and 
transition  probabilities are  assumed  to  be given. Cf.  Hatfield and  Gerald 
(1971). 

34. W. F. King, Analysis oj’ Paging Algorithms, IBM  Thomas J. Watson Re- 
search Center  Report  RC-3288,  Yorktown  Heights,  New York (March 
17, 1971). Models  a  program reference string as a sequence of independent, 
identically  distributed  random  variables  and obtains  expressions  for  the ex- 
pected page fault rate F for the  LRU  and F IFO algorithms and  for  the  A(0) 
algorithm of Aho,  et al. (1971). Finds  that F(F1FO) 2 F(LRU) 1 F(A(0)) 
for several  distributions. 

35. C .  J. Kuehner  and B. Randell, “Demand paging in perspective,” AFIPS 
Conference  Proceedings, Fall Joint  Computer  Conference 33, 101 1 - 1018 
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method, dynamic loading, and  protection. See  also  Lett  and Konigsford 
(1968). 

64.. T. Kilburn, D. B. G. Edwards,  M. J. Lanigan,  and F. H.  Sumner, “One-level 
storage  system,” IRE Transactions EC-11, No. 2, 223-235 (April  1962). 
A key paper describing  the  overall architecture of the Ferranti  ATLAS  and, 
in particular,  its  dynamic  memory  allocation  mechanism. 

65.  A. S. Lett and W. L. Konigsford, “TSS/360: A  time-shared  operating sys- 
tem,” A F I P S  Conference  Proceedings, Fall Joint  Computer  Conference 33, 
Part I, 15 -28 (1968). Describes  TSS/360  control  system organization, user 
services,  and  task  structure, noting several design  changes that  have been 
made  to improve  performance.  Includes discussions of the  TSS dynamic- 
loading and  segment-sharing  mechanisms, and of its  page-oriented data 
management  facilities. See  also  Johnson  and  Martinson (1969). 

66.  A. B. Lindquist, R.  R.  Seeber, and L. W. Comeau,  “A time-sharing system 
using an  associative  memory,” Proceedings  ofthe IEEE 54, No. 12, 1774- 
1779 (December 1966). Describes  the  IBM  System/360 Model 40 virtual 
machine system discussed also by Adair,  et al.  (1966), and by Hoernes and 
Hellerman  (1968). Emphasis is on the  associative memory feature used for 
dynamic address translation and  for page replacement operations. 

67. F. B. MacKenzie,  “Automated  secondary  storage management,” Durama- 
tion 11, No. 1 1, 24-28  (November 1965). Describes  the dynamic  memory 
allocation  mechanism of the Burroughs B5500, reporting  running  times  of 
several jobs (compilations, matrix operations) with varying core sizes  and 
both single- and dual-processor configurations. 

68.  R.  A.  Meyer and L. H. Seawright, “A virtual machine  time-sharing system,” 
I B M  Systems  Journal9, No. 3 ,  199-218 (1970). Describes  theCP-67/CMS 
system, outlining features  and applications. 

69. G .  Oppenheimer and N .  Weizer,  “Resource management for a medium 
scale time-sharing system,” Communications of the A C M  11, No. 5 ,  3 13 - 
322 (May 1968). Describes  the  RCA  Spectra  70/46  Time-sharing Operating 
System  (TSOS), particularly  the task scheduling and paging algorithms. 
Notes simulation  results leading to final design  decisions. 

70.  D.  Sayre, O n  Virtual  Systems, IBM Thomas J. Watson  Research  Center, 
Yorktown  Heights,  New  York (April  15,  1966).  An  early paper emphasizing 
the multiprogramming aspects of virtual machines.  Results are  shown  for 
multiprogramming with the  IBM M44/44X  system. 

7 1. D. Sayre, “Adding computers virtually,” Computing  Report 111, No. 2, I2 - 
15 (March 1967). A more colloquial presentation of the material in Sayre 
(1 966). 

72.  A.  L.  Vareha, R. M. Rutledge,  and M .  M. Gold, “Strategies for structuring 

Operating  System  Principles, Princeton University,  54-59  (October  20-22, 
1969). Discusses memory-management  strategies used on  the Carnegie- 
Mellon TSS/360  system with LCS  [see  Fikes,  et al. (1968)l. A central 
problem with this  configuration  has  been  deciding  what  programs  should 
execute from  high-speed  memory (HSM), and  what ones should execute 
from LCS. Initially,  only shared system  pages were allowed to run in HSM 
(and these were  swapped to  LCS when more  HSM  space  was needed), 
while private user pages  were  run in LCS  and  swapped  to disk.  A more re- 
cent policy calls for “executing the  entire  system from LCS  and using the 
high-speed  memory for only the paging tables, the  system work areas, and 
the  resident  supervisor.” Ultimately  a  mechanism is desired for dynamically 
determining the  appropriate memory level for a  page,  according to its actual 
activity. It is noted that implementing  such  a  mechanism may be impractical 
without  additional  data-gathering  hardware. 

73. N.  Weizer and G .  Oooenheimer. “Virtual  memnrv  management in a nae- 

Conference 34, 249 -256 (1969). Discusses  hardware~andsoftware  aspects 
of virtual memory  management in TSOS, giving justifications  for important 
design decisions, e.g., the partitioning of virtual  memory to  concurrently 
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of   the  ACM P-69, 20 1 - 2  16 ( I  969).  Describes performance measurements 
of TSOS (RCA  Spectra  70/46) based on controlled load tests in which a 
master program  generated and  ran pseudo-programs  and  simulated user in- 
teractions. Shows  response time as a function of number of tasks, CPU utili- 
zation, and  drum utilization, and  shows how thrashing is avoided by a sched- 
uling algorithm utilizing the working-set  principle. 

81.  D. P. Gaver  and  G. S. Shedler,  “Approximate models for multiprogramming 
computer  systems,” IEEE Computer  Society  Conference, Boston,  Massa- 
chusetts, 135 - 136 (September 22 -24, 197 1). Describes a  multiprogramming 
system model  based on a continuous  state app,roximation,  namely, one- 
dimensional diffusion (Fokker-Plank equation) with two reflecting barrier?,. A 
simple explicit  formula for CPU utilization is derived which compares favor- 
ably with more involved  semi-Markov  results. 

82. S. J.  Morganstein, S. Winograd, and R. Herman, “SIM/61: A  simulation 
measurement tool for a  time-shared, demand paging operating  system,’’ 
ACM  SlCOPS  Workshop  on  System  Performunce  Evaluat ion,  Harvard 
University,  142- 172  (April 5 -7,  I97 1). Describes a  program for simulating 
the  steady-state performance of the RCA  Spectra/70 Virtual Machine  Oper- 
ating System. Using  statistical  models of task paging behavior, compute 
times, etc.,  the program  predicts response times, overhead  percentages, page 
rates,  etc.  for  alternate  system configurations  and  decision  algorithms.  Re- 
sults  were  found to  be highly sensitive  to changes in load-characterizing  pa- 
rameters;  hence  “the  authors  are extremely  skeptical of quantifying  results of 
predictive  runs (where precise  information about  the load characteristics is 
impossible to obtain)  without qualifying them with a nominal 15 percent 
margin for error.” 

83. R. W. O’Neill, “Experience using a time-shared  multiprogramming  system 
with dynamic  address relocation hardware,” A F l P S  Conference  Proceed- 
ings,  Spring  Joint  Computer  Conference 30,611-62 1 (1967). Describes  the 
experimental IBM  M44/44X  system, reporting  performance measurements 
taken  to establish dependence of core requirements on page  size and running 
time on  core size (parachor  curve). Also discussed  are effects of multipro- 
gramming and time-sharing on  performance. 

84. R. P. Parmelee, Preferred  Virtual  Machines  for  CP-67, IBM  Corporation, 
Cambridge Scientific Center,  Report  No.  G320-2068  (to  appear).  Discusses 
experimental  studies in which CP-67 was modified to give preferential treat- 
ment to a virtual machine  running OS having multiprogramming with a  vari- 
able  number of tasks. Specifically, all pages of the OS machine were locked 
in memory, and all pages except page zero  were assigned real  addresses 
identical to their virtual addresses.  Thus paging and  channel  program trans- 
lation were eliminated,  and  dynamic  channel  program modification became 
possible. As a result, execution stretchout was  reduced by 65 percent and 
overhead by 63  percent in benchmark tests in which a single OS machidt 
processed a  commercial job  stream. 

85. G. S. Shedler and S. C.  Yang, “Simulation of a model of paging system 
performance,” IBM  Systems  Journal 10, No.  2, 1 13 - 128  (197 1). Describes 
the simulation of a  probabilistic  model of a  multiprogrammed  single-proces- 
sor  system with a fixed number of tasks operating under  demand paging. 
Assumes  that  the running  times of tasks between  page exceptions  and  other 
CPU service times are exponentially distributed,  whereas paging service 
times  are  constant.  Presents means and variances of CPU and paging sys- 
tem utilization, and of various overhead  service times,  obtained by straight- 
forward sampling, by the method of antithetic  variables, by the method of 
stratification, and by a method  combining antithetic variables and stratifica- 
tion. Observes  that variances can generally be  reduced by using the method 
of antithetic variables,  although not necessarily in all response variables. 
Further variance reductions may be  obtained by combining antithetics with 
stratification. 

86. J. L. Smith,  “Multiprogramming under a  page on demand strategy,” Com- 
munications  of  the  ACM 10, No. 10, 636-646  (October 1967). Analyzes a 
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probabilistic model of a  multiprogramming system with demand paging, ob- 
taining performance estimates  for  user programs  typical of those arising in 
an  interactive time-sharing environment.  Concludes  that  “a  conservative 
outlook . . . must be maintained” for  such a system, although with sufficient 
high-speed  memory  “it does  seem  that  there is some  advantage  (dependent 
on  system  overhead)  to  be gained from multiprogramming.” 

87. V. L. Wallace and D. L. Mason,  “Degree of multiprogramming in page-on- 
demand systems,” Communicutions of the ACM 12, No. 6, 305 -308  (June 
1969). Describes a  simple Markov model of a  multiprogrammed  time- 
sharing system using page-demand statistics  that imply a burst of page de- 
mands at  the beginning of each  job.  Shows  CPU utilization as a function of 
the degree of multiprogramming, the  average  number of page demands  per 
job, the average execution  time per  job, and the  average page fetch time dur- 
ing burst paging. Shows how the optimum  degree of multiprogramming is 
determined, given the relationship  between the  average  number of page 
demands  per  job  and  the  degree of multiprogramming.  A  linear  relationship 
is treated. 

Here included are  other articles  related to virtual memory and machines. related 

88. K. Fuchi,  H.  Tanaka,  Y.  Manago, and T. Yuba, “A program simulator by 
partial  interpretation,” Second  ACM  Symposium on Operuting  System Prin- 
ciples, Princeton University,  97- 104 (October  20-22, 1969). Describes a 
program for  the  HITAC-8400, a  machine  very much like the  RCA  Spectra 
70/45, by which a single virtual HITAC-8400 is simulated. As in CP-67  and 
other virtual machine  control  programs, nonprivileged virtual CPU instruc- 
tions  are  executed directly by the  hardware, and privileged instructions are 
interpreted by software. 

89. K. Fuchel and S. Heller,  “Considerations in the design of a multiple com- 
puter  system with extended  core  storage,” Communications  ofthe  ACM 11 ,  
No.  5,  334-340 (May  1968). Discusses  the  (proposed) usage of a one 
million-word ECS  for a dual CDC 6600  system  at Brookhaven  National 
Laboratory.  Presents analytic performance  estimates. 

90.  E.  Gelenbe,  “Optimum choice of page  sizes in a virtual memory with a 
hardware  executive and a rapid-access  secondary  storage medium,” ACM 
SIGOPS Workshop on Svstem  Performance  Evaluation, Harvard Univer- 
sity, 321 -336 (April 5-7,  1971). Determines,  for a system with multiple 
page sizes, the set of sizes minimizing the  expected  amount of storage needed 
for page tables. The smallest page size is assumed to be fixed at a  value such 
that  the  cost of storage wasted because of internal  fragmentation is negligi- 
ble compared  to  that used for page  tables. Results  are obtained for uniform 
and exponential  segment-sized  distributions. 

9 1. R. P. Goldberg, Virtual  Muchine  Systems, Massachusetts  Institute of Tech- 
nology Lincoln Laboratory  Report MS-2687 (September 4, 1969). Hard- 
ware  characteristics  are categorized for a virtual machine system.  The 
notion of “sensitive”  instructions is introduced to  provide integrity of the 
supervisor  state. Implementation of a virtual CP-67 under CP-67 is then dis- 
cussed  and  shown  to be feasible. With some  restrictions,  CP-67  as a virtual 
machine system running  on  a  IBM System/360 Model 65 is also shown to 
be practicable. 

92. R. P.  Goldberg,  “Hardware requirements for virtual machine systems,” 
Proceedings .f the  4th  Hawaii  Conference on Systems  Sciewe, University 
of Hawaii,  449-451  (January 12- 14,  1971).  Defines a virtual machine in 
terms of minimal criteria: ( I )  the method of execution of nonprivileged in- 
structions in supervisor  and problem state must be roughly  equivalent for a 
large subset of the instruction repertoire; (2) a method of protecting the su- 
pervisor from the  active virtual  machine  must be available; and  (3) a method 
automatically signaling the  supervisor when  a  virtual  machine attempts  to 
execute a sensitive  instruction  must be available. On this  basis, it is shown 
that  certain machines are suitable for a virtual machine system, while others 
cannot  serve this purpose. 

material 
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93. R. P. Goldberg, “Virtual  machines:  Semantics  and  examples.” IEEE Com- 
puter  Society  Conference, Boston, Massachusetts, 141 - 142  (September 
22-24, 1971).  Defines  a virtual machine as a  “duplicate of a  real  existing 
machine, in which  a  nontrivial subset of the virtual machine’s instructions 
execute directly on the host  machine in native mode.”  Compares this defini- 
tion with the notions of “extended”  and  “emulated” machines, virtual mem- 
ory, and virtual machine  time-sharing systems.  Outlines  certain  types of vir- 
tual machine architectures  and gives  examples of these  types. 

94. D. D. Keefe,  “Hierarchical  control  programs for  systems  evaluation,” IBM 
Systems  Journal 7, No. 2, 123 - I33 ( 1  968). 

95. J. S. Liptay,  “Structural  aspects of the  System/360 Model 85, Part 11, The 
cache,” IBM  Systems  Journal 7, No. 1, I5 -2 1 (1  968).  Discusses the organi- 
zation of the high-speed buffer, or  cache,  used on the IBM  System/360 
Model 85 and the  studies by which its parameters  were  selected. 

96. S. E. Madnick, “Time-sharing systems: Virtual  machine concept vs.  con- 
vedtiorial approach,” Modern  Data 2, No. 3,  34-36  (March 1969). A dis- 
course on time-sharing systems belonging to  two  categories:  conventional 
and virtlial machines. Features of both are  discussed, with the following 
guidslines  given. Conventional time-sharing systems: (1) computer utility, 
providing  basic  functions to  many  users; (2)  pool of resources;  and (3) effi- 
ciency.  Virtual-machine  time-sharing systems: (1)  modular development; 
(2) medium-scale  time-sharing systems; (3) development of systems pro- 
grams;  and (4) program  evaluation and  measurement. 

IBM SYST J 130 PARMELEE  ET  At 


