
Techniques for using the System1360 Operating System  for im- 
plementing  a large fluid  dynamics  program are discussed as a 
prototype for the  solution of other coupled norzlinear partial 
differential equations. 

Presented also are methods for real-time interaction with the 
problem solution. 

A graphic analysis  program for producing  computer  animated 
motion  pictures is outlined. 

System  aspects of large-problem computation and display 
by J. E. Fromm and D. E. Schreiber 

Progress of scientists in producing numerical solutions to fluid 
dynamics problems by digital computer parallels advancements 
in the design and programming of the  computers themselves. The 
reason fluid dynamics problems continue  to  absorb the computa- 
tional power of available computing systems is that  the  equations 
of fluid dynamics are extraordinarily complex. Further, compari- 
tively few solutions for fluid dynamics problems are known. 
Therefore, digital computers  have  been programmed to simulate 
the fluid  flow, using the  equations as models. John von Neumann, 
for  example,  thought  that  the simulation of global atmospheric 
circulation would provide  a  suitable problem for  these machines. 
Over  the years,  many  programs  have bezn written for solving 
meteorological problems so that today the U. S. Weather Bureau 
routinely produces long-range forecasts.  More programs for solv- 
ing  fluid dynamics problems will continue to be written because 
progress in the solution of these problems is expected to con- 
tinue to be coupled to  advances in computing system capability. 
Augmenting advances in computing systems,  the  vastness of 
fluid dynamics  problems  has motivated a number of scientists 
to develop more efficient methods of using the computing poten- 
tial available  to them. Kolsky,' for example,  discusses  methods 
for improving the logical formulation of large problems and illus- 
trates his techniques by the solution of meteorological problem. 

This  paper  discusses  several facilities available through  the 
System/360  Operating  System ( 0 ~ 1 3 6 0 )  that  have made easier 
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and  more  productive the implementation and running of a pro- 
gram for computing the  time-dependent  equations  for viscous 
fluid  flow. Toward  this  end,  the fluid  flow program has  been de- 
signed to  run  under  versions of os1360 that  are capable of multi- 
tasking operation, i.e. multitasking with a fixed number of tasks 
(MFT) or multitasking with a variable number of tasks (MVT). The 
application has  been programmed almost entirely in FORTRAN. 
Assembler language is used only where  necessary or where 
highly desirable  features of the  operating  system are unavailable 
through FORTRAN. Program compatibility has allowed us to suc- 
cessfully run  the application on System/360  Models 50, 65,  67, 
91,  and 195. 

equations The implemented program computes a stream  function by the fol- 
and lowing time-dependent  vorticity  equation  that  has been derived 

simulation through  Navier-Stokes  equations  for  two dimensional flow: 

where 

JI is the stream  function 

and 

o is the vorticity. 

We  also define the  two velocity components 

a rlt 

and 

where 

u is the x component of velocity 

and 

u is the velocity component in the y direction. 

Since  a  viscous fluid adheres  to a wall and  has  no velocity rela- 
tive to  the wall, a viscous fluid has  internal shearing stresses as- 
sociated with it. The effect of such viscosity on  vorticity is ex- 
pressed by the following equation: 

at ax 
- ,  - 

where 

v is the  kinematic viscosity. 
I 

42 FROMM AND SCHREIBER IBM SYST J I 



This  set of coupled nonlinear partial differential equations is 
solved by computer simulation through  the  use of finite-differ- 
ence  techniques. The program simulates the solution in a rec- 
tangular  space  that is spanned by an  M-by-N point rectangular 
mesh. Values  for  the  stream  function  and vorticity are computed 
at  the mesh points. The simulation is performed in the following 
manner? 

1. Compute  the  stream function using Equation 1. 
2. Compute  the velocity components using Equation 2 and an 

optimum time-advance  interval,  thereby assuring mathemati- 
cal stability. 

3 .  Use this interval to  advance time. 
4. Compute  the vorticity at  the  advanced time using Equation 3 .  
5. Return  to  step 1 .  

Since this kind of program consumes  a  great  deal of computer 
time, we discuss  our planning of the types  and organization of 
data in storage  that  enable  the compiled FORTRAN program to 
run efficiently. Easy modification of the  computational algorithm 
is designed into  the program by functionally partitioning the com- 
putation  into  subroutines.  Also,  to aid the  scientist working with 
the  program,  the  computer is used to perform some  routine pro- 
gram initializations, simply because in that way fewer  human  er- 
rors  occur.  Finally, although the output of the program is numeri- 
cal,  these  data can be also given graphic interpretations  that 
are meaningful to  the scientist. A graphic analysis program pro- 
vides interactive  data  reduction  and  analysis  and  computer ani- 
mated motion pictures. 

Data  types and storage 

Since finite difference techniques  are used to solve the  entire 
set of equations, the program must have  data  storage  for  each of 
the  functions  for  at  least  one time step  and  for all M X N mesh 
points. These  data  are  stored in arrays of doubly subscripted, 
single-precision, floating-point variables. Single precision vari- 
ables are used  because six decimal places far exceed  the precision 
of either  the  measurements or  the experimental  apparatus avail- 
able. There would seem  to be little profit, in terms of the quality 
of the  computation,  to be gained by going to double precision 
variables and  arithmetic  operations. 

The computational  arrays  vary in size from around 1000 to 4000 
mesh points. An increase in the  number of mesh points  provides 
higher resolution, which however,  increases simulation costs 
by requiring the  processing of more  data  points  and the  use of 
smaller time steps  to  assure mathematical stability. For an  N X N 
square  mesh,  the  number of operations  per  time  step is propor- 
tional to  N2 and the maximum stable time step is proportional to 

NO. 1 . 1972 PROBLEM COMPUTATION  AND  DISPLAY 43 



boundary 
indicators 

storage 
allocation 

and handling 

Figure 1 Storage  allocation 

VORTICITY 

FLOATING 

VARIABLES 

TEMPORARY r FLOATING 
POINT 

VARIABLES 

ORK AREA 

1/N.  Thus,  for a given simulation, doubling the resolution of the 
mesh increases the computatior. by a  factor of 8 (i.e., 4 times as 
many  computations  per  time  step  and 2 times as many  step^).^ 

The finite-difference method is one  that  treats  boundary value 
problems. To make  the program as general as possible, it is de- 
signed to handle  boundary specifications for  points  throughout 
the mesh. Boundaries define an  obstacle in or  on  the periphery 
of the flow region. To indicate  that  such  a  boundary  exists  and 
what  type of condition occurs  there,  arrays of indicators are used. 
Since  the information carried by these indicators is not  quanta- 
tive  but logical (yes or no), FORTRAN logical variables of length 
one  are used. Four such  indicators are used  for  each point in 
the mesh. This  choice of data  representation  wastes seven-eights 
of the main storage  occupied,  and  the  data could just  as well be 
handled on a bit rather  than  byte  basis. The testing of bit indica- 
tors from FORTRAN,  however, involves a great  deal of data ma- 
nipulation in FORTRAN to isolate  the bit to  be tested. One solu- 
tion is to use a linkage to and  return from an assembler language 
function  that  performs the  test  and  returns a code  that FORTRAN 
retests.  Alternatively,  one could modify the FORTRAN compiler 
so as  to recognize a new data type, LOGICAL*I/S, and insert  the 
appropriate  operation, Test  Under Mask  Immediate, inline into 
the compiled program. These three  schemes  have been rejected 
either  because of the large number of instructions  to  be  executed 
to  obtain  the information or  because of the  loss of Os/360 com- 
patability. By this  decision,  we  choose  faster program execution 
over efficient utilization of main storage. 

In  our problem,  each of the two variables - stream  function  and 
vorticity-requires  one or more data  arrays,  depending  on  the 
computational algorithm used. As indicated in Figure 1 , both  the 
stream  function  and  the  vorticity  occupy M X N floating-point, 
single precision  words of storage. In addition,  each variable re- 
quires one array of boundary  indicators occupying M X N X 4 
bytes of storage. The computation  also  uses  a  temporary work 
area. The required  arrays are allocated dynamically at program 
execution time with the  appropriate  arrays  and  array dimensions 
being passed  through calls to  the computational  subroutines. 
Thus after  a  subroutine is coded  and debugged, it can  be  stored 
in a library for  future  use  without  any  concern  as  to  the  array  size. 

Since FORTRAN does  not  provide  for  dynamic  storage allocation 
and  since it further  requires  that  array  addresses  and dimensions 
can be passed  down only from calling routine  to called routine, 
a short main program in assembler language is necessary.  This 
program first makes a FORTRAN-required call to IBCOM# to es- 
tablish the FORTRAN SPIE routines. The assembler language pro- 
gram then calls the FORTRAN subroutine DATAIN , which  reads 
data  cards  that specify the parameters of the computation and 
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the  data  array dimensions. DATAIN further  computes  some con- 
stants required by the algorithms, thus performing that  compu- 
tation only once  for  the  entire  execution of the fluid dynamics 
program. DATAIN stores  the  data  that  it has read  and  computed 
into common areas,  and  returns  to  the  assembler language main 
program. This program then  computes the number of bytes of 
main storage required for  data  and indicator  arrays and issues a 
GETMAIN macroinstruction.  Upon  return from the  supervisor, 
the  assembler language program computes the addresses  required 
to partition the allocated storage  into  the individual arrays  and 
stores  these  addresses  into a FORTRAN call argument list. The 
assembler language program then calls a FORTRAN subroutine 
and  passes  the list to  the  subroutine.  This  subroutine is in fact  the 
FORTRAN main program, which organizes the computational 
steps  and calls the  other  subroutines  for  executing  the  computa- 
tional algorithms. 

Program design 

The  array handling and allocation features  thus implemented 
have  permitted  easy  experimentation with array  size to deter- 
mine their effect on  results of a simulation. These features also 
permit experimentation with different computational algorithms, 
some of which- such  as  Fourier  methods  -may place restric- 
tions on  the dimensions of data  arrays. The combination of ease 
of boundary specification provided by the  indicator  arrays and 
of data  array specification through  the  input data stream  have 
permitted quick setup of the program to simulate different 
problems. 

The indicator  arrays, which remain fixed during a computation, 
are  set  up only once-just  prior  to  entering  the  computational 
loop-by  a  subroutine called GEOIN. The subroutine GEOIN 
reads data records  that specify the  end  points  and conditions on 
the  boundaries,  and  sets  the  appropriate  indicators  and functional 
values as specified in the boundary  description.  Boundaries are 
linear and are restricted to  the horizontal,  vertical, or diagonal 
with respect  to  the mesh. The simulated angle of a diagonal 
boundary need not  be 45 degrees. It is possible to specify in the 
input read  by DATAIN the  ratio of delta x to  delta y of the mesh, 
thereby changing the simulated angle of a diagonal boundary by 
either compressing or stretching  the mesh. All diagonal bounda- 
ries,  however, in a given simulation must  be at  the same angle. 

A single simulation may take  several  thousand time steps  and 
consume  several  hours of System/360  Model 91 Central  Pro- 
cessing Unit (CPU) time. Running in a job shop  environment with 
other  tasks executing concurrently,  the simulation program may 
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Figure 2 Simulation  program 
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stay in the  system  for  several  tens of hours to complete a compu- 
tation. In such an environment,  this  type of program can have a 
lower  cost  to  run  than  the normal batch jobs provided  that it runs 
at  the lowest  system priority, taking up only otherwise  unused 
CPU cycles. In such  a  case, the real  cost  to  run  the program is the 
cost of main storage  occupied  and of allocated  devices - such as 
tape  drives-  that  cannot  be  shared with other  tasks.  Since  we 
make production  runs in this  manner,  the simulation program is 
designed to  resist  data loss in the  event of system  failure  and  to  be 
easily restartable  -preferably  without human intervention  other 
than rereading the  job into  the  system. 

The basis of the  restart capability of the program is that of writing 
out all the  data  arrays  on  tape every  few  time  steps as shown in 
Figure 2. These arrays are written into  a  sequential data  set, 
and thus  also  constitutes a time history of the simulation. The 
first volume of tape  associated with a given computation  contains 
the following two  data  sets: (1) the  data records  read by DATAIN 
and GEOIN, and (2) the  results of the simulation. When a compu- 
tation is restarted,  the simulation program reads the first data set 
to establish  the program state  that  existed when the computation 
began. The program then  scans  down  the  second  data  set until 
it  finds one of the following: end of file, I /o  error in that  data set, 
or a simulated time greater  than  that specified on a second input 
source  to the program. Having satisfied one of these  three condi- 
tions,  the program reads  the data  arrays from the  tape,  thus  re- 
establishing the program as it was. 

The  feature of entering  a  computational  restart time facilitates 
program experimentation. If a new algorithm is being tested,  one 
may use a prior  computation as a  starting point for  further  ex- 
perimentation  and  comparison. The runs required to  develop  and 
debug  the new technique begin at the  same  advanced time in such 
a simulation. When a new program is perfected, it can be used to 
continue  the simulation, thus providing a good comparison be- 
tween  a new and  an old technique. 

Graphics analysis 

History  tapes  have additional uses besides providing a  restart 
capability in that they constitute self-contained machine-readable 
archives of computations  suitable for  later processing by data 
reduction  and  analysis programs. A program has been written to 
perform some of this analysis interactively through an IBM 2250 
display console.  Interactivity  has the same value to a simulation 
(numerical experiment)  as it does to a physical experiment. In 
both  cases,  the  experimenter has some  a priori knowledge of what 
he is looking for.  However,  the  precise  techniques  and param- 
eters  that yield most clearly the sought-for information are un- 
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The interpretation of vorticity  contour  maps, an example of 
which is shown in Figure 4, is more complicated. A  gradient in 
the vorticity, revealed by the presence of contours, indicates a 
nonlinear velocity profile along a line orthogonal to  the  contours. 
Vorticity  contour maps give insight into the interaction of the 
flow with the boundaries. Computer animated motion pictures 
of vorticity contour maps discussed  later in this paper,  increase 
our insight into  these  processes. 

The run-time interactive  graphic facility illustrated in Figure 5 
is implemented by running two  separate  jobs  that  share  three 
separate  data  sets located on  direct-access devices. One  job is 
the simulation program, which writes the results of the  computa- 
tion into  one of the direct-access  data  sets  every simulated time 
step. The other  job is the  graphic  analysis program, which runs 
at a higher priority than the simulation and  reads the computa- 
tion data  set periodically to determine if its contents  have 
changed. If an  update  has  occurred,  the  graphic  analysis program 
produces a contour map of the  updated  data  set. At the  discre- 
tion of the 2250 display console  operator,  interaction with the 
graphic analysis program immediately produces  the  desired dis- 
play. The other  two  data  sets  are used to exchange  data between 
both  jobs. The second data  set roughly corresponds to  the  data 
records  read by DATAIN, and the third data  set  corresponds  to 
the  records  read by GEOIN. 

Before an  access is made to  any of these  data  sets,  the program 
desiring to  access it enqueues it through the use of the OW360 ENQ 
macroinstruction.  After  the program is through using the  data 
set it similarly dequeues (DEQ) that  resource. The ENQ and DEQ 
macroinstructions  are  issued from assembler language subrou- 
tines. The objective in implementing EWQlDEQ in this  manner is 
the efficient use of storage  and  graphic  devices.  Since  both jobs 
run independently of each  other, they can be  started and termi- 
nated separately. Thus  the scientist  can monitor the computation 
for  some  time  then  terminate  the  graphic analysis program with- 
out terminating the  computation,  and  return at a  later time to 
resume his observations.  During  the  time  that  the  graphic analy- 
sis program is not running, the CPU, main storage, and the 
2250 are available to  other  users. 

interaction Initially,  we  postulated  that  interactive graphic analysis would 
data have  value during run time as well as during later analysis be- 

reduction cause of the capability of monitoring a computation from the 2250 
display console while the  computation  was actually taking place 
and  because of the desirability of modifying parameters of the 
computation interactively during the run. This capability was 
designed into  the data  structures in peripheral  storage and also 
into the programs,  but it was  never implemented. Operational 
experience  has shown us that  for  currently available computers 
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During long production  runs,  the  progress of the  computation is 
sporadic  because of the  contention of the fluid  flow simulation 
with other  concurrently running programs for  the CPU. The ex- 
perimenter is  unwilling to  wait five minutes until the  data for  the 
next plot are computed.  Interaction  to  correct data  or program- 
ming errors during the  start of a run is meaningful, but the chance 
is small that  interaction is required  after a run is well underway. 
Opportunities to run an application diminish quickly, however, 
as requirements  for its running increase. Programming an applica- 
tion that  requires  several  hundred-thousand  bytes of  main storage 
and one  or two  tape  drives  to  run  on  System/360  Model 91 with 
two-million bytes of main storage is not  severe.  However, when 
one adds  one-hundred  thousand  bytes of storage  required  for  the 
interactive capability, a 2250, and  the physical presence of the 
scientist  to the  other  requirements,  the  rewards of interaction 
are not  worth the increased difficulty. Future generations of 
higher-speed computers may improve  the marginal utility of on- 
line interaction. 

computer Given a sequence of photographs  that progressively vary only 
animation slightly from one  another,  the  natural impulsive desire is to make 

a motion picture. We  photograph  the  sequence of contour maps 
of simulations directly from  the  screen of the 2250. The photo- 
graphy is performed under program control, and the number of 
frames of  film exposed from a single plot can  be specified inter- 
actively from the 2250 display c ~ n s o l e . ~  

Films of these simulations are most useful because  they display 
a voluminous amount of information in a short  time in an easily 
recognized and studied format.  A single simulation may compute 
1 0 7  numbers,  the meaning of which the viewer sees  and recog- 
nizes in one  or  two minutes when  they are presented in the form 
of a motion picture.  Obviously, this is a tremendously powerful 
medium of communication between the computer  and  the  user. 
After a film is produced,  one can study  the  results of a simula- 
tion at a very low cost.  Understanding a simulation usually re- 
quires multiple viewings of the  graphic  output.  Motion  picture 
playbacks are ideally suited  to multiple viewing because  they are 
less  prone  to  failure  than  computers,  easier  to  schedule, and can 
be  operated by amateurs.  A  collateral  use  for  graphic analysis 
films is the  presentation of computational  results  to  both the lay- 
man and  the  scientist. Although the scientist gains more from 
computer  animations, the layman  feels thoroughly competent  to 
comment critically on  any  subject  presented to him through the 
medium of motion pictures.  Presentation of the same  data 
through the vehicle of equations  and  numbers terrifies him into 
silence. 

Animation of the  stream  function display shows the location of 
circulations of the fluid by the presence of families of closed  con- 
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tours.  Contours beginning and ending on the  boundaries  show 
either  the  path of flow through the simulation (if the boundary 
condition simulates fluid  flowing into and out of the simulated 
region) or  the line of no flow  (if the  boundary is a rigid  wall). 
Through  the vehicle of animation,  contour maps of vorticity come 
to life. The mathematical construct of vorticity is generated at 
the boundary by the  shearing  that  takes  place  between  a rigid 
wall and the flowing  fluid. After it  is created, vorticity travels by 
convection in the flow and  spreads via diffusion mediated by vis- 
cosity. Using animation,  one  sees vorticity created,  convected, 
and eventually  dissipated in the fluid. One  also  observes vor- 
ticies coupling and influencing each  other’s motion through the 
simulated region, and then coalescing into  a single vortex.  Fur- 
ther,  since vorticity is convected by the flow, its motions in low- 
viscosity simulations closely parallel those of tracer particles. 
One can obtain  a good idea of the motion of parts of the fluid  by 
following the motions of a single vortex from the time it detaches 
from the wall where it was generated until dissipation or co- 
alescence  causes its identity to  disappear. 

The graphic  routines so far  described permit us to display and 
study the theoretical constructs of stream  function  and  vorticity. 
Such displays are  certainly of value in studying the simulation. 
Proof of the simulation technique,  however, lies in comparison 
with experiment.  An  experimental  technique widely used for 
studying flow structure is that of tracers  such  as  dye,  smoke,  or 
metalic particles that are convected by the flow. The experi- 
menter  observes flow structure  as  patterns  revealed by the  tracer 
or by following the motions of individual tracer particles. 

We  have implemented an analogous facility within our  graphic 
program that permits the  scientist  to interactively define up  to 
ten  particle lists. Each list is unique in that  associated with it 
there is a set of characteristics that direct  the  computation to be 
performed on that list. For example, a list can  be defined that 
simulates  the action of a  dye  or  smoke injector by specifying the 
location of the  source of injected particles with respect  to  the 
computational mesh. A graphic display of a run using a source 
list is shown in Figure 6. Another kind of list can be defined that 
consists of a straight line of M particles  at time T .  As simulated 
time passes,  the  particles making up the line are  convected by the 
flow, and the line is generally deformed into a curve.  After suf- 
ficiently long simulated time,  the  curve  breaks  up  into the individ- 
ual particles. A graphic display resulting from a run using a line 
of particles is shown in Figure 7. 

The particle display facility permits the  production of motion 
pictures similar to  those  produced by photographing a  tracer 
experiment.  Since  they are massless and occupy no space, com- 
putational tracer  particles  have  an  advantage  over experimental 
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Figure 7 Display computed using a  line of particles 

Figure 8 Particle  plot data storage 
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used as a transient  computation  area for the longer particle lists 
which are  stored  on  scratch do. During  each time step  the  par- 
ticle lists so stored  are  read,  updated,  and  stored back onto 
scratch do. The  other particle position data  reside in  main stor- 
age and are processed  there. If particle position data  lists  con- 
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tinue to grow and finally exceed  the  storage available, the longest 
of these lists is added  to  those already on scratch do. In  this man- 
ner,  the program frees  the  scientist from concern  for  the  storage 
requirements of the particle plot computation. All that need con- 
cern him  is that he is obtaining the  picture of the simulation that 
he requires. 

The data in common that  describe  the particle position and  con- 
trol  particle  processing are  created,  maintained,  and  updated by 
a combination of routines. Interactive  routines permit the scien- 
tist  to define and modify the description of the  particle lists and 
to  direct their processing. If necessary,  a  storage allocation rou- 
tine  updates  the  storage allocation data of the particle lists. The 
computational  routines, which update the particle positions  each 
time step,  refer to  the appropriate  data list stored in common to 
perform the  computation and produce the desired display. Up- 
dating the particle positions requires  the x and y velocity data  for 
every time step of the simulation. These  data  are prepared  prior 
to  the running of the  graphic analysis program and are  read,  as 
needed, by the  graphic analysis program. 

The particle plot may be animated simularly to the  contour maps 
as shown by the  source  and line particle plots in Figures 6 and 7. 
An  appreciable  amount of real time is required to  reach middle or 
late simulation times in the  production of a movie. Therefore,  the 
particle  plot  portion of the  graphic analysis program imposes  the 
same  recovery  conditions  as the actual simulation. This  protec- 
tion is provided by writing the  state of the particle  plot  computa- 
tion into  a  sequential data  set every time step. In  the  event of a 
program restart or of the  scientist  interactively asking to begin 
the  particle plot from the beginning, this  data  set is read by the 
graphic analysis routine. When the  end of this  data  set is encoun- 
tered,  the program restores itself to  the  state  described in the  last 
complete  record,  positions the velocity tape  to  the  proper simu- 
lated  time,  and  then  resumes  the  computation of the plot. Once 
again, this all occurs  without  the  direct  intervention of the scien- 
tist. His only concern is the display on  the  console.  This  feature 
prevents  a  system  failure that  occurs  three-fourths of the way 
through  the  production of a movie 'from forcing a restart from 
the beginning. 

Concluding remarks 

In designing and implementing programs for simulating the 
Navier-Stokes  equations of incompressible viscous flow and  for 
displaying the simulation results,  the following features of the 
System/360  Operating  System  are particularly useful: 

FORTRAN variable-dimensioned arrays 
FORTRAN data  set  sequence  numbers 



Assembler language in combination with FORTRAN 
Execution-time  storage allocation 
Low-priority program execution in a multiprogramming en- 

Multi-data  set volumes and multi-volume data  sets 
Multiprogram sharing of data  sets  resident in direct-access 

vironment 

storage 

The resulting application program structure  uses FORTRAN capa- 
bilities efficiently and provides a simple restart  procedure. These 
capabilities permit ease of changing the  system being simulated 
and/or  the algorithms being used while making possible efficient 
computer  operation. The restart capability also provides  protec- 
tion against computer failure. 

An interactive  graphic analysis program permits  the  scientist  to 
study  both  the  theoretical  constructs of the simulation and the 
results as they would be  seen by an experimenter.  Programs  have 
been designed to use the IBM 2250 both as  interactive graphic 
device  and  as  a film recorder. 

The programming and  storage  structuring  techniques  discussed 
here are intended to suggest ways by which many other  systems 
of nonlinear partial differential equations may be more  effectively 
simulated and analyzed graphically. 
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