Techniques for using the System/360 Operating System for im-
plementing a large fluid dynamics program are discussed as a
prototype for the solution of other coupled nonlinear partial
differential equations.

Presented also are methods for real-time interaction with the
problem solution.

A graphic analysis program for producing computer animated
motion pictures is outlined.

System aspects of large-problem computation and display
by J. E. Fromm and D. E. Schreiber

Progress of scientists in producing numerical solutions to fluid
dynamics problems by digital computer parallels advancements
in the design and programming of the computers themselves. The
reason fluid dynamics problems continue to absorb the computa-
tional power of available computing systems is that the equations
of fluid dynamics are extraordinarily complex. Further, compari-
tively few solutions for fluid dynamics problems are known.
Therefore, digital computers have been programmed to simulate
the fluid flow, using the equations as models. John von Neumann,
for example, thought that the simulation of global atmospheric
circulation would provide a suitable problem for these machines.
Over the years, many programs have becn written for solving
meteorological problems so that today the U. S. Weather Bureau
routinely produces long-range forecasts. More programs for solv-
ing fluid dynamics problems will continue to be written because
progress in the solution of these problems is expected to con-
tinue to be coupled to advances in computing system capability.
Augmenting advances in computing systems, the vastness of
fluid dynamics problems has motivated a number of scientists
to develop more efficient methods of using the computing poten-
tial available to them. Kolsky,! for example, discusses methods
for improving the logical formulation of large problems and illus-
trates his techniques by the solution of meteorological problem.

This paper discusses several facilities available through the
System/360 Operating System (08/360) that have made easier

No. 1 -+ 1972 PROBLEM COMPUTATION AND DISPLAY

equations
and
simulation

o d(uw) n d(vw) _

and more productive the implementation and running of a pro-
gram for computing the time-dependent equations for viscous
fluid flow. Toward this end, the fluid flow program has been de-
signed to run under versions of 0S/360 that are capable of multi-
tasking operation, i.e. multitasking with a fixed number of tasks
(MFT) or multitasking with a variable number of tasks MvT). The
application has been programmed almost entirely in FORTRAN.
Assembler language is used only where necessary or where
highly desirable features of the operating system are unavailable
through FORTRAN. Program compatibility has allowed us to suc-
cessfully run the application on System/360 Models 50, 65, 67,
91, and 195.

The implemented program computes a stream function by the fol-
lowing time-dependent vorticity equation that has been derived
through Navier-Stokes equations for two dimensional flow:

PPy P
EF‘Fa—yz:‘w 1)

where
¢ is the stream function
and

w is the vorticity.

We also define the two velocity components

where

u is the x component of velocity

and

v is the velocity component in the y direction.

Since a viscous fluid adheres to a wall and has no velocity rela-
tive to the wall, a viscous fluid has internal shearing stresses as-

sociated with it. The effect of such viscosity on vorticity is ex-
pressed by the following equation:

2
ot ax ay Ve)

where

v is the kinematic viscosity.

FROMM AND SCHREIBER IBM SYST J

This set of coupled nonlinear partial differential equations is
solved by computer simulation through the use of finite-differ-
ence techniques. The program simulates the solution in a rec-
tangular space that is spanned by an M-by-N point rectangular
mesh. Values for the stream function and vorticity are computed
at the mesh points. The simulation is performed in the following
manner:?

1. Compute the stream function using Equation 1.

2. Compute the velocity components using Equation 2 and an
optimum time-advance interval, thereby assuring mathemati-
cal stability.

3. Use this interval to advance time.

4. Compute the vorticity at the advanced time using Equation 3.

5. Return to step 1.

Since this kind of program consumes a great deal of computer
time, we discuss our planning of the types and organization of
data in storage that enable the compiled FORTRAN program to
run efficiently. Easy modification of the computational algorithm
is designed into the program by functionally partitioning the com-
putation into subroutines. Also, to aid the scientist working with
the program, the computer is used to perform some routine pro-
gram initializations, simply because in that way fewer human er-
rors occur. Finally, although the output of the program is numeri-
cal, these data can be also given graphic interpretations that
are meaningful to the scientist. A graphic analysis program pro-
vides interactive data reduction and analysis and computer ani-
mated motion pictures.

Data types and storage

Since finite difference techniques are used to solve the entire
set of equations, the program must have data storage for each of
the functions for at least one time step and for all M X N mesh
points. These data are stored in arrays of doubly subscripted,
single-precision, floating-point variables. Single precision vari-
ables are used because six decimal places far exceed the precision
of either the measurements or the experimental apparatus avail-
able. There would seem to be little profit, in terms of the quality
of the computation, to be gained by going to double precision
variables and arithmetic operations.

The computational arrays vary in size from around 1000 to 4000
mesh points. An increase in the number of mesh points provides
higher resolution, which however, increases simulation costs
by requiring the processing of more data points and the use of
smaller time steps to assure mathematical stability. Foran N X N
square mesh, the number of operations per time step is propor-
tional to N2 and the maximum stable time step is proportional to

No. 1 - 1972 PROBLEM COMPUTATION AND DISPLAY

boundary
indicators

storage
allocation
and handling

Figure 1 Storage allocation

STREAM FUNCTION

MXN MXN MXNX4
FLOATING FLOATING LOGICAL

POINT POINT VARIABLES
VARIABLES VARIABLES (BOUNDARY
INDICATORS)

VORTICITY

MXN MXNX4
FLOATING LOGICAL

POINT VARIABLES
VARIABLES (BOUNDARY
INDICATORS)

TEMPORARY WORK AREA

MXN
FLOATING
POINT
VARIABLES

1/N. Thus, for a given simulation, doubling the resolution of the
mesh increases the computation by a factor of 8 (i.e., 4 times as
many computations per time step and 2 times as many steps).?

The finite-difference method is one that treats boundary value
problems. To make the program as general as possible, it is de-
signed to handle boundary specifications for points throughout
the mesh. Boundaries define an obstacle in or on the periphery
of the flow region. To indicate that such a boundary exists and
what type of condition occurs there, arrays of indicators are used.
Since the information carried by these indicators is not quanta-
tive but logical (yes or no), FORTRAN logical variables of length
one are used. Four such indicators are used for each point in
the mesh. This choice of data representation wastes seven-eights
of the main storage occupied, and the data could just as well be
handled on a bit rather than byte basis. The testing of bit indica-
tors from FORTRAN, however, involves a great deal of data ma-
nipulation in FORTRAN to isolate the bit to be tested. One solu-
tion is to use a linkage to and return from an assembler language
function that performs the test and returns a code that FORTRAN
retests. Alternatively, one could modify the FORTRAN compiler
so as to recognize a new data type, LOGICAL*1/8, and insert the
appropriate operation, Test Under Mask Immediate, inline into
the compiled program. These three schemes have been rejected
either because of the large number of instructions to be executed
to obtain the information or because of the loss of 0s/360 com-
patability. By this decision, we choose faster program execution
over efficient utilization of main storage.

In our problem, each of the two variables —stream function and
vorticity —requires one or more data arrays, depending on the
computational algorithm used. As indicated in Figure 1, both the
stream function and the vorticity occupy M X N floating-point,
single precision words of storage. In addition, each variable re-
quires one array of boundary indicators occupying M X N X 4
bytes of storage. The computation also uses a temporary work
area. The required arrays are allocated dynamically at program
execution time with the appropriate arrays and array dimensions
being passed through calls to the computational subroutines.
Thus after a subroutine is coded and debugged, it can be stored
in a library for future use without any concern as to the array size.

Since FORTRAN does not provide for dynamic storage allocation
and since it further requires that array addresses and dimensions
can be passed down only from calling routine to called routine,
a short main program in assembler language is necessary. This
program first makes a FORTRAN -required call to IBCOM# to es-
tablish the FORTRAN SPIE routines. The assembler language pro-
gram then calls the FORTRAN subroutine DATAIN, which reads
data cards that specify the parameters of the computation and

FROMM AND SCHREIBER IBM SYST J

the data array dimensions. DATAIN further computes some con-
stants required by the algorithms, thus performing that compu-
tation only once for the entire execution of the fluid dynamics
program. DATAIN stores the data that it has read and computed
into common areas, and returns to the assembler language main
program. This program then computes the number of bytes of
main storage required for data and indicator arrays and issues a
GETMAIN macroinstruction. Upon return from the supervisor,
the assembler language program computes the addresses required
to partition the allocated storage into the individual arrays and
stores these addresses into a FORTRAN call argument list. The
assembler language program then calls a FORTRAN subroutine
and passes the list to the subroutine. This subroutine is in fact the
FORTRAN main program, which organizes the computational
steps and calls the other subroutines for executing the computa-
tional algorithms.

Program design

The array handling and allocation features thus implemented
have permitted easy experimentation with array size to deter-
mine their effect on results of a simulation. These features also
permit experimentation with different computational algorithms,
some of which—such as Fourier methods —may place restric-
tions on the dimensions of data arrays. The combination of ease
of boundary specification provided by the indicator arrays and
of data array specification through the input data stream have
permitted quick setup of the program to simulate different
problems.

The indicator arrays, which remain fixed during a computation,
are set up only once—just prior to entering the computational
loop—by a subroutine called GEOIN. The subroutine GEOIN
reads data records that specify the end points and conditions on
the boundaries, and sets the appropriate indicators and functional
values as specified in the boundary description. Boundaries are
linear and are restricted to the horizontal, vertical, or diagonal
with respect to the mesh. The simulated angle of a diagonal
boundary need not be 45 degrees. It is possible to specify in the
input read by DATAIN the ratio of delta x to delta y of the mesh,
thereby changing the simulated angle of a diagonal boundary by
either compressing or stretching the mesh. All diagonal bounda-
ries, however, in a given simulation must be at the same angle.

A single simulation may take several thousand time steps and
consume several hours of System/360 Model 91 Central Pro-
cessing Unit (CPU) time. Running in a job shop environment with
other tasks executing concurrently, the simulation program may

NOo. 1 + 1972 PROBLEM COMPUTATION AND DISPLAY

program
setup

program
execution

Figure 2 Simulation program
execution

PROGRAM
RESIDENT
IN CPU

DATAIN
GEOIN

rd

FIRST
DATA SET

SECOND
DATA SET
(SIMULATION
RESULTS)

HISTORY
TAPE

stay in the system for several tens of hours to complete a compu-
tation. In such an environment, this type of program can have a
lower cost to run than the normal batch jobs provided that it runs
at the lowest system priority, taking up only otherwise unused
CPU cycles. In such a case, the real cost to run the program is the
cost of main storage occupied and of allocated devices —such as
tape drives—that cannot be shared with other tasks. Since we
make production runs in this manner, the simulation program is
designed to resist data loss in the event of system failure and to be
easily restartable —preferably without human intervention other
than rereading the job into the system.

The basis of the restart capability of the program is that of writing
out all the data arrays on tape every few time steps as shown in
Figure 2. These arrays are written into a sequential data set,
and thus also constitutes a time history of the simulation. The
first volume of tape associated with a given computation contains
the following two data sets: (1) the data records read by DATAIN
and GEOIN, and (2) the results of the simulation. When a compu-
tation is restarted, the simulation program reads the first data set
to establish the program state that existed when the computation
began. The program then scans down the second data set until
it finds one of the following: end of file, 1/O error in that data set,
or a simulated time greater than that specified on a second input
source to the program. Having satisfied one of these three condi-
tions, the program reads the data arrays from the tape, thus re-
establishing the program as it was.

The feature of entering a computational restart time facilitates
program experimentation. If a new algorithm is being tested, one
may use a prior computation as a starting point for further ex-
perimentation and comparison. The runs required to develop and
debug the new technique begin at the same advanced time in such
a simulation. When a new program is perfected, it can be used to
continue the simulation, thus providing a good comparison be-
tween a new and an old technique.

Graphics analysis

History tapes have additional uses besides providing a restart
capability in that they constitute self-contained machine-readable
archives of computations suitable for later processing by data
reduction and analysis programs. A program has been written to
perform some of this analysis interactively through an 1BM 2250
display console. Interactivity has the same value to a simulation
(numerical experiment) as it does to a physical experiment. In
both cases, the experimenter has some a priori knowledge of what
he is looking for. However, the precise techniques and param-
eters that yield most clearly the sought-for information are un-

FROMM AND SCHREIBER IBM SYST J

Figure 3 Stream function contour map

TIME 8.4687 DELTA T 0.015625
REYNOLDS NO 8000, PSI ITERATIONS 12

1L

PS1 MINIMUM -3.5672 MAXIMUM 3.0586 PLOTTING INTERVAL 0.299%

GPTION SELECTED SELECT AN DPTION
1) CONTOUR 1) Psl 5) WINDOW
2) WINDOW 2) OMEGA b) PARMS
3) VAR3 1) FRAMES
4) VAR4 RETURN

known. Cut and try, the usual approach to experimental inter-
action, is facilitated if it can be completed in one run on the
computer. Further, the ability to provide graphic interpretations
of the data make the analysis even more fruitful. Our graphic
analysis program produces contour maps* of up to four different

data arrays. Provided through the program via the 2250 display
console are the following functions:

* Interactively controlling the data to be contour mapped

* Presenting the region of the array to be plotted

¢ Plotting parameters

* Reading a history tape and printing the set of data arrays for
a given simulated time

The presentation of the computational results in the form of con-
tour maps gives quantitative insight into the problems being
studied. As illustrated in Figure 3, a contour map of the stream
function shows the fluid flow structure. At any point, the tangent
to a contour of the stream function is parallel to the velocity vec-
tor. If a steady flow is being simulated, a particle initially on a
stream function contour continues to travel along that contour.
The fluid flows that we are simulating are generally not steady,
however, and this interpretation cannot be made. Additional in-
formation provided by a stream function contour map is the rela-
tive velocity of the flow. A region with closely spaced stream
function contours has a higher velocity than one containing fewer
contours.

- 1972 PROBLEM COMPUTATION AND DISPLAY

interaction
data
reduction

The interpretation of vorticity contour maps, an example of
which is shown in Figure 4, is more complicated. A gradient in
the vorticity, revealed by the presence of contours, indicates a
nonlinear velocity profile along a line orthogonal to the contours.
Vorticity contour maps give insight into the interaction of the
flow with the boundaries. Computer animated motion pictures
of vorticity contour maps discussed later in this paper, increase
our insight into these processes.

The run-time interactive graphic facility illustrated in Figure 5
is implemented by running two separate jobs that share three
separate data sets located on direct-access devices. One job is
the simulation program, which writes the resuits of the computa-
tion into one of the direct-access data sets every simulated time
step. The other job is the graphic analysis program, which runs
at a higher priority than the simulation and reads the computa-
tion data set periodically to determine if its contents have
changed. If an update has occurred, the graphic analysis program
produces a contour map of the updated data set. At the discre-
tion of the 2250 display console operator, interaction with the
graphic analysis program immediately produces the desired dis-
play. The other two data sets are used to exchange data between
both jobs. The second data set roughly corresponds to the data
records read by DATAIN, and the third data set corresponds to
the records read by GEOIN.

Before an access is made to any of these data sets, the program
desiring to access it enqueues it through the use of the 0S/360 ENQ
macroinstruction. After the program is through using the data
set it similarly dequeues (DEQ) that resource. The ENQ and DEQ
macroinstructions are issued from assembler language subrou-
tines. The objective in implementing ENQ/DEQ in this manner is
the efficient use of storage and graphic devices. Since both jobs
run independently of each other, they can be started and termi-
nated separately. Thus the scientist can monitor the computation
for some time then terminate the graphic analysis program with-
out terminating the computation, and return at a later time to
resume his observations. During the time that the graphic analy-
sis program is not running, the cPu, main storage, and the
2250 are available to other users.

Initially, we postulated that interactive graphic analysis would
have value during run time as well as during later analysis be-
cause of the capability of monitoring a computation from the 2250
display console while the computation was actually taking place
and because of the desirability of modifying parameters of the
computation interactively during the run. This capability was
designed into the data structures in peripheral storage and also
into the programs, but it was never implemented. Operational
experience has shown us that for currently available computers

FROMM AND SCHREIBER IBM SYST J

Figure 4 Vorticity contour map

TINME 8.4687 - A 0.9015625
REYNOLDS NO 8600, PST ITERATIONS 12

s

OMEGA MINIMUM ~5.7272 MAXIMUM 56.2387 PLOTTING INTERVAL 19.0

OPTI0N SELECTED SELECT AN OPTION

1) CONTOUR 1) PS1 5) WINDOW

2) OMEGA 2) OMEGA o) PARMS
3) VAR 1) FRAMES
4) VAR4 R

Figure 5 Interactive graphic simulation monitor and control

GRAPHICAL SIMULATION

FIRST
ANALYSIS -] PROGRAM DATA SET
2960 PROGRAM
PARAMETERS

DISPLAY DATAIN
CONSOLE

SECOND
GEOIN DATA SET

W (SIMULATION
SIMULATION RESULTS)
o _RESULTS __4

DIRECT .
ACCESS

HISTORY
STORAGE TAPE

PRIORITY

START TERMINATE ~ START TERMINATE START TERMINATE
1 | 1 —_ 1 |

T 1 = 1 s 1

GRAPHICAL ANALYSIS PROGRAM

START TERMINATE
| |
r 1
SIMULATION PROGRAM

such a facility is not required. The technique would use an indi-
cator as the first data item in the records in peripheral storage.
The indicator would be set to a specified value by either the
graphics or the simulation program, depending on which program
had performed the latest update of the data set. Each routine
would have to read and test the indicator before rewriting the
data set.

1972 PROBLEM COMPUTATION AND DISPLAY

computer
animation

During long production runs, the progress of the computation is
sporadic because of the contention of the fluid flow simulation
with other concurrently running programs for the CPU. The ex-
perimenter is unwilling to wait five minutes until the data for the
next plot are computed. Interaction to correct data or program-
ming errors during the start of a run is meaningful, but the chance
is small that interaction is required after a run is well underway.
Opportunities to run an application diminish quickly, however,
as requirements for its running increase. Programming an applica-
tion that requires several hundred-thousand bytes of main storage
and one or two tape drives to run on System/360 Model 91 with
two-million bytes of main storage is not severe. However, when
one adds one-hundred thousand bytes of storage required for the
interactive capability, a 2250, and the physical presence of the
scientist to the other requirements, the rewards of interaction
are not worth the increased difficulty. Future generations of
higher-speed computers may improve the marginal utility of on-
line interaction.

Given a sequence of photographs that progressively vary only
slightly from one another, the natural impulsive desire is to make
a motion picture. We photograph the sequence of contour maps
of simulations directly from the screen of the 2250. The photo-
graphy is performed under program control, and the number of
frames of film exposed from a single plot can be specified inter-
actively from the 2250 display console.?

Films of these simulations are most useful because they display
a voluminous amount of information in a short time in an easily
recognized and studied format. A single simulation may compute
107 numbers, the meaning of which the viewer sees and recog-
nizes in one or two minutes when they are presented in the form
of a motion picture. Obviously, this is a tremendously powerful
medium of communication between the computer and the user.
After a film is produced, one can study the results of a simula-
tion at a very low cost. Understanding a simulation usually re-
quires multiple viewings of the graphic output. Motion picture
playbacks are ideally suited to multiple viewing because they are
less prone to failure than computers, easier to schedule, and can
be operated by amateurs. A collateral use for graphic analysis
films is the presentation of computational results to both the lay-
man and the scientist. Although the scientist gains more from
computer animations, the layman feels thoroughly competent to
comment critically on any subject presented to him through the
medium of motion pictures. Presentation of the same data
through the vehicle of equations and numbers terrifies him into
silence.

Animation of the stream function display shows the location of
circulations of the fluid by the presence of families of closed con-

FROMM AND SCHREIBER IBM SYST J

tours. Contours beginning and ending on the boundaries show
either the path of flow through the simulation (if the boundary
condition simulates fluid flowing into and out of the simulated
region) or the line of no flow (if the boundary is a rigid wall).
Through the vehicle of animation, contour maps of vorticity come
to life. The mathematical construct of vorticity is generated at
the boundary by the shearing that takes place between a rigid
wall and the flowing fluid. After it is created, vorticity travels by
convection in the flow and spreads via diffusion mediated by vis-
cosity. Using animation, one sees vorticity created, convected,
and eventually dissipated in the fluid. One also observes vor-
ticies coupling and influencing each other’s motion through the
simulated region, and then coalescing into a single vortex. Fur-
ther, since vorticity is convected by the flow, its motions in low-
viscosity simulations closely parallel those of tracer particles.
One can obtain a good idea of the motion of parts of the fluid by
following the motions of a single vortex from the time it detaches
from the wall where it was generated until dissipation or co-
alescence causes its identity to disappear.

The graphic routines so far described permit us to display and
study the theoretical constructs of stream function and vorticity.
Such displays are certainly of value in studying the simulation.
Proof of the simulation technique, however, lies in comparison
with experiment. An experimental technique widely used for
studying flow structure is that of tracers such as dye, smoke, or
metalic particles that are convected by the flow. The experi-
menter observes flow structure as patterns revealed by the tracer
or by following the motions of individual tracer particles.

We have implemented an analogous facility within our graphic
program that permits the scientist to interactively define up to
ten particle lists. Each list is unique in that associated with it
there is a set of characteristics that direct the computation to be
performed on that list. For example, a list can be defined that
simulates the action of a dye or smoke injector by specifying the
location of the source of injected particles with respect to the
computational mesh. A graphic display of a run using a source
list is shown in Figure 6. Another kind of list can be defined that
consists of a straight line of M particles at time T. As simulated
time passes, the particles making up the line are convected by the
flow, and the line is generally deformed into a curve. After suf-
ficiently long simulated time, the curve breaks up into the individ-
ual particles. A graphic display resulting from a run using a line
of particles is shown in Figure 7.

The particle display facility permits the production of motion
pictures similar to those produced by photographing a tracer
experiment. Since they are massless and occupy no space, com-
putational tracer particles have an advantage over experimental

NO. 1 - 1972 PROBLEM COMPUTATION AND DISPLAY

particle
displays

Figure 6 Display computed using particies from a source

DELTA T 0.015e25

REYIOLDS 10 8000, PST ITERATIONS 12

OPTION SELECTED SELECT AN OPTION

1) PART .PL 1) SPECIFY 5) FRAMES
2) MODIFY 2) MODIFY

3) WINDOW
4} RESTART

ones in that their presence does not influence the experiment.
Particles thus provide a tool that permits detailed comparisons of
simulations with experiments.

The particle plot data storage shown in Figure 8 consists of two
parts: (1) a FORTRAN labeled common area that contains the
data that define and direct the processing of the ten individual
particle lists, and (2) the x and y velocity component arrays and
particle position data. Note that two configurations A and B of
velocity-position data storage are shown, depending whether
scratch 1/o storage is required. For particle plotting, the system
uses either the no-scratch-1/o storage configuration (A) or the
scratch-1/0 storage configuration (B) plus the FORTRAN labeled
common area. (Particle list computing and contouring are mu-
tually exclusive operations. Therefore, the same area of main
storage is used for both particle plot data list computing and con-
touring data by the process of storage overlaying.)

Since the number of particles in a given list is dynamic, the pro-
gram checks storage allocation for the particle lists every time
step to determine which of the two conditions— A or B—is the
active one. Thus, if all particle position data is contained in main
storage, we have condition A. On the other hand, if the storage
required for the entire set of particle lists exceeds the available
storage we have condition B. With scratch 1/0, the program splits
the particle position data area into two parts. The first part is

FROMM AND SCHREIBER IBM SYST J

Figure 7 Display computed using a line of particles

TIME 2.4375 DELTA T ©.03125
REYNOLDS NO 8006. PS1 ITERATIGHNS 12

Polasin [

OPTION SELECTED SELECT AN 0OPTION
1) PART.PL 1) SPECIFY 5) FRAMES
2) WINDOW 2) MODIFY
3) WINDOW
4) RESTART RETURN

Figure 8 Particle plot data storage

A. PARTICLE VELOCITY B. PARTICLE VELOCITY
AND POSITION DATA POSITION DATA
USING NO SCRATCH /0 USING SCRATCH 1/0 DEFINITIONS)

x VELOCITY xVELOCITY 1

y VELOCITY y VELOCITY

T
|
|

TRANSIENT PARTICLE

LIST COMPUTATION AREA

PARTICLE
POSITION DATA

PARTICLE
POSITION DATA

x COORDINATES y COORDINATES x COORDINATES y COORDINATES

used as a transient computation area for the longer particle lists
which are stored on scratch 1/0. During each time step the par-
ticle lists so stored are read, updated, and stored back onto
scratch 1/0. The other particle position data reside in main stor-
age and are processed there. If particle position data lists con-

No. 1 - 1972 PROBLEM COMPUTATION AND DISPLAY

tinue to grow and finally exceed the storage available, the longest
of these lists is added to those already on scratch 1/o. In this man-
ner, the program frees the scientist from concern for the storage
requirements of the particle plot computation. All that need con-
cern him is that he is obtaining the picture of the simulation that
he requires.

The data in common that describe the particle position and con-
trol particle processing are created, maintained, and updated by
a combination of routines. Interactive routines permit the scien-
tist to define and modify the description of the particle lists and
to direct their processing. If necessary, a storage allocation rou-
tine updates the storage allocation data of the particle lists. The
computational routines, which update the particle positions each
time step, refer to the appropriate data list stored in common to
perform the computation and produce the desired display. Up-
dating the particle positions requires the x and y velocity data for
every time step of the simulation. These data are prepared prior
to the running of the graphic analysis program and are read, as
needed, by the graphic analysis program.

The particle plot may be animated simularly to the contour maps
as shown by the source and line particle plots in Figures 6 and 7.
An appreciable amount of real time is required to reach middle or
late simulation times in the production of a movie. Therefore, the
particle plot portion of the graphic analysis program imposes the
same recovery conditions as the actual simulation. This protec-
tion is provided by writing the state of the particle plot computa-
tion into a sequential data set every time step. In the event of a
program restart or of the scientist interactively asking to begin
the particle plot from the beginning, this data set is read by the
graphic analysis routine. When the end of this data set is encoun-
tered, the program restores itself to the state described in the last
complete record, positions the velocity tape to the proper simu-
lated time, and then resumes the computation of the plot. Once
again, this all occurs without the direct intervention of the scien-
tist. His only concern is the display on the console. This feature
prevents a system failure that occurs three-fourths of the way
through the production of a movie from forcing a restart from
the beginning.

Concluding remarks

In designing and implementing programs for simulating the
Navier-Stokes equations of incompressible viscous flow and for
displaying the simulation results, the following features of the
System/360 Operating System are particularly useful:

% FORTRAN variable-dimensioned arrays
& FORTRAN data set sequence numbers

FROMM AND SCHREIBER IBM SYST J

Assembler language in combination with FORTRAN
Execution-time storage allocation

Low-priority program execution in a multiprogramming en-
vironment

Multi-data set volumes and multi-volume data sets
Multiprogram sharing of data sets resident in direct-access
storage

The resulting application program structure uses FORTRAN capa-
bilities efficiently and provides a simple restart procedure. These
capabilities permit ease of changing the system being simulated
and/or the algorithms being used while making possible efficient
computer operation. The restart capability also provides protec-
tion against computer failure.

An interactive graphic analysis program permits the scientist to
study both the theoretical constructs of the simulation and the
results as they would be seen by an experimenter. Programs have
been designed to use the 1BM 2250 both as interactive graphic
device and as a film recorder.

The programming and storage structuring techniques discussed
here are intended to suggest ways by which many other systems
of nonlinear partial differential equations may be more effectively
simulated and analyzed graphically.

REFERENCES

1. H. G. Kolsky, “Problem formulation using APL,” IBM Systems Journal 8,
No. 3, 204-219 (1969).

2. J. E. Fromm, ‘“Numerical solution of two-dimensional stall in fluid diffusers,”
Symposium on high speed in computing fluid dynamics, Physics of fluids, sup-
plement 11, 11-113 (1969).

3. J. E. Fromm, “Numerical method for computing nonlinear, time dependent,
buoyant circulation of air in rooms,” IBM Journal of Research and Develop-
ment, 15, No. 3, 186-196 (May 1971).

. G. Cottafava and G. LeMoli, “Automatic contour map,” Communications
of the ACM, 12, No. 7, 386-391 (July 1969).

. D. E. Schreiber, “Computer control of a camera for motion picture generation
from an IBM 2250, IBM Research Note, RJ 666 (February 1970) may be
obtained from the IBM Research Center, Yorktown Heights, New York
10598.

PROBLEM COMPUTATION AND DISPLAY

55

