
This  guide  to  the  literature  on  microprogramming  is  preceded 
by  an  exposition  intended  for  the  less  knowledgeable  reader. 

Microprogram  control  is  seen  as  a  form of simulation  in  which 
primitive  operations are combined  and  sequenced so as  to imi- 
tate  the  characteristics of a  desired  machine.  Discussed are such 
design  considerations as microword  formats,  performance, writ- 
able  control  stores,  and  the  relationship  between  microprogram- 
ming  and  software  reliability. 

Readings in microprogramming 
by P. M. Davies 

Two decades  ago,  shortly  before  the first commercial U.S. in- 
stallation of a general-purpose digital computer, M. V. Wilkes 
coined the  term “microprogramming” and articulated  the  basic 
principles in an  address  at  the  University of Manchester in En- 
gland. His intent was to offer a more orderly  substitute  for  the 
ad  hoc  process of designing controls in digital computers.  In- 
terest  spread rapidly in computer  development  circles,  but,  ex- 
cept  for a few instances of user-microprogrammed machines de- 
signed a decade or so ago, exploitation of the  technique remained 
generally within the  province of the  hardware designers. Within 
the last  few  years,  however,  greater  understanding of digital com- 
puting processes, combined with manufacturing technologies 
rendering highspeed changeable  controls economically feasible, 
have led to a resurgence of interest in computers  whose  controls 
may be modified during normal use. 

The purpose of this  paper is to offer a guide to  the  literature  on 
microprogramming that  has  developed  over  the  last  twenty  years. 
It is intended  both  for  those  who  have  interest  but limited know- 
ledge of the  subject  and  those  whose knowledge is more  than 
casual. The  paper is divided into  two  parts: an expository  section 
for  the  less knowledgeable reader  and  an  annotated bibliography. 

Many of the articles tacitly assume that  the reader  possesses a 
computer engineering or design background, which puts  some 
readers at a disadvantage. The exposition in this paper is orga- 

16 DAVIES IBM SYST J 



nized as a primer, rather  than  an  exhaustive  dissertation, in an 
attempt  to alleviate this  disadvantage  and to establish  some ini- 
tial perspective. Microprogramming is introduced by considering 
the concept of simulation, the  structure of digital computers,  and 
the need for  control of their binary logic. Specific attention is then 
given to microprogram control  and  to  the  format of control words. 
Cost and  performance are considered  next, followed by discus- 
sions of writable control  stores  and of the relationship between 
microprogramming and  software reliability. 

Simulation and microprogramming 

An  introduction  to microprogramming may best  be made through 
considering the idea of simulation. Suppose  that  there is at  hand 
some system,  say  an IBM 7094, which we will  call a host system. 
This  system has a set of external  attributes  that define it func- 
tionally: an  instruction  set,  storage media (main storage,  disks, 
tapes,  etc.),  interruption  system,  channel configuration, and so on. 
Programs written in this system’s language-7094 machine code 
-can  be directly executed.  Suppose  further  that  there is a pro- 
gram written for  another  system,  an IBM 7040, perhaps, that  we 
desire  to  have  executed on the 7094. A set of 7094 machine code 
programs can be written that will accept 7040 machine code  and, 
executed  on  the 7094, will create  the  same  results  that a 7040 sys- 
tem would if it were executing the 7040 code  directly. The com- 
bination of the 7094 host  system and 7094 programs  can  be  con- 
sidered to  constitute a virtual system,  that  is,  functionally, a 7040 
(time dependencies  excepted, of course).  We can call the 7040 
the target system. 

Thus  a virtual system can be created based on a host system 
whose external  attributes differ from  those of the target  system 
through the agency of programs  that  supplement or transform the 
host’s attributes. The process is generally called simulation of the 
target  system, in this  case the 7040 system,  on  the  host  system. 
In general,  to  create any virtual system, we need only a  host  con- 
taining sufficient facilities for simulation programs to be con- 
structed. The efficiency of the  process  depends upon the degree 
of match between  host and target  system  attributes. 

The  idea of a host  system being used to  create  a  virtual  system 
can be  extended  into  the  internal workings of a  computer. If we 
were to  take the  covers off a 7094 central  processing unit and 
delve  inside,  for  example,  we could separate  its  internals  into 
two segments: functional  and  control. The functional segment 
includes the facilities that hold, route, and transform information, 
while the  control  segment  embraces  the logic that  directs  the 
activities of the functional parts so that, by orderly  sequences of 
internal processes,  the  entire conglomeration creates  the effects 
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defined by the 7094 CPU specifications. The two segments are 
linked by control signals flowing to the functional parts from the 
controls  and by information returning  to  the  controls  that  de- 
scribes  the  status of functional activity and the  environment. 

An imaginary line enclosing all the functional parts  but excluding 
the  controls could now be considered  the  boundary of a  host sys- 
tem at  the hardware level. The external  attributes of this host 
could be  written down (although it might be an arduous  task); 
corresponding  to  each  control signal intersected by the imaginary 
boundary  there is some primitive function in the operational 
parts,  and  the  set of  all such primitives defines the  hardware- 
level language of the host. The control signals are activated so 
that, through the mediating agency of the control logic networks, 
the hardware-level host is used to create  a virtual 7094 CPU. Note 
that if the  host  hardware  remains unmodified but the control logic 
is changed, some virtual CPU other  than a 7094 can be  created. 

In this  example, logic networks,  rather  than simulation programs, 
are used to manipulate the  host to produce a virtual CPU. The im- 
portant point to  note is that  the combination and  sequence of 
control signals applied to  the host  determine  the  attributes of the 
virtual CPU; any  other  adequate  agent,  not  necessarily logic net- 
works, can be used to  generate  the  control signal combinations 
and  sequences without affecting the virtual attributes. If a pro- 
grammable storage  array is used to generate  these  control signals, 
the virtual CPU is said to  be rnicroprogrummed. 

Basic control concepts 

The following paragraphs give a more detailed explanation of 
what is involved in the control of binary logic. 

data-flow The working nucleus of a digital computer  is  the  central  process- 
section ing unit and  its  associated main storage unit. The CPU, as  we  have 

seen, can at least  conceptually be divided into  two  parts. To bring 
our terminology in line with that commonly used,  we will now 
refer  to  the functional segment as  the data-flow section. 

The data-flow section is constructed of binary logic circuits. The 
detailed  characteristics of these circuits may vary from machine 
to  machine,  but  the  basic building blocks are usually AND’S, OR’s, 
and INVERT’S or simple combinations of these  functions,  such as 
NAND’S, NOR’S, and EXCLUSIVE OR’s. Groups of such blocks are 
interconnected  to form storage  elements,  data-routing  switches, 
and  data-transformation  networks. The storage  part of the  data- 
flow section includes such things as main storage  interface regis- 
ters,  operand  and  address  registers, and registers  for recording 
temporary information and ancillary conditions  (presence or ab- 
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the  appropriate  control signal pattern;  the  pattern itself could 
serve as the  state identifier. For efficiency, this is normally not 
the method used. A typical small-to-medium CPU may have  sev- 
eral tens or hundreds of control signals, which, with one  storage 
state recording element  per signal, would allow on  the  order of 
2 I o 0  or more different control  states to be recorded. Of these, only 
some small fraction (say 2'" to 215) represent meaningful com- 
binations. Thus a tradeoff is made  between  the  number  and or- 
ganization of state  storage recording elements  and  the logic net- 
works required to transform  an  encoded state into a set of con- 
trol line signals. 

In  conventional  hardware  controls,  the  state encoding can be 
loosely described  as a hierarchical  system. At the highest level 
are storage  elements, or registers,  whose  contents define major 
modes of operation - instruction  stream  execution,  inputloutput 
operation, or interruption handling - that  change relatively infre- 
quently. Next  are identifiers for specific operations within the ma- 
jor modes, such  as  the program operation  code,  for  instance, 
during instruction-stream  execution.  Then  come identifiers for 
successively finer resolution of activities down  to  the  basic cycle. 

The link between the target program in  main storage and the  con- 
trol section is provided in the information that flows from the 
data-flow section into  the  next  state decision logic. The control 
sequence  that  fetches  an  instruction  into  the data-flow section 
also  switches  the  operation  code  into  the  control  section  to be- 
come  part of the  state identifier for  subsequent  execution cycles. 

Interpretafion is another  word  often used in connection with the 
simulation process. In  the  context of controls, it denotes simula- 
tion of a target program, instruction by instruction, so that  the 
effects of a given instruction  are completely evaluated  before 
any further  instructions in the  target program sequence  are  con- 
sidered.  This is consistent with describing as  interpretive  those 
compilers that  accept  and  execute  source  code  statement by 
statement. (In  fact,  the  distinction  between compilation and sim- 
ulation as outlined above lies primarily in the  nature of the tsr- 
get program.) 

In  the foregoing discussion,  we  have  assumed  that  the  controls 
are built of the same  sort of logic circuits  as  the data-flow section. 
What  the  controls are built of is  not  important  per se; what mat- 
ters is the efficiency, economy, usability, maintainability, and so 
on, of the virtual machine. These  factors reflect the  choices made 
in the design of the  host  hardware and control mechanisms. Thus 
it  is really an empty  exercise  to  debate  whether or not a particu- 
lar  control implementation is intrinsically better  or worse  than 
another;  the  question is which best  achieves  the  desired  attributes 
in the resultant  system. 
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Figure 4 Microprogram control section 
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Microprogram controls 

At this point we can  draw  a physical distinction between a logic- 
network-controlled and a microprogram-controlled unit. In the 
former, only logic-circuit storage devices (registers) are used to 
record control information; in the  latter,  a large part of the con- 
trol information is stored in some form of regularly organized 
memory array, called the control store. 

In microprogrammed controls,  the  current  control-store  address 
identifies the  current control state, while the  contents of the  ad- 
dressed  array location provide  the information required to es- 
tablish the  proper  control signal combination and to  choose  the 
next  address. A simplified diagram is shown in Figure 4 of a read- 
only microprogram control  section, which is quite similar in  all 
its essentials to the generalized control  section in Figure 3.  

All control stores must be writable in some manner so that con- 
trol information can  be introduced. The quest  for speed often 
leads to  the design of arrays  that  can  be loaded only  by mechani- 
cal or electromechanical means, and these  are designated as read- 
only to differentiate them from arrays whose contents  can be 
changed during normal use,  as,  for  instance, main storage arrays. 
Where normally writable arrays  are used for  control, their logical 
and operational context may render  them  also effectively read- 
only except  under special circumstances. 

The question of encoding the  state identification vanishes with a 
microprogrammed control section. Each control state  corre- 
sponds to some addressed storage location. The number of 
unique control  states needed thus defines (for a read-only device) 
the minimum number of words of control store  that must be pro- 
vided. 

microwords The output of the control store is a microword. In the following 
paragraphs, we discuss what different elements the microword 
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can contain and some of the  considerations involved in choosing 
a microword format. 

First,  the microword must contain sufficient information to  es- 
tablish the settings of the  control lines for  each  cycle.  The sim- 
plest technique would be to assign a bit in the microword for 
every  control line, but  this is generally shunned  for efficiency 
reasons.  Only  a small fraction of all the  possible combinations of 
control signals represent meaningful functions. Thus a word con- 
taining a bit for  every  control line would contain many bit com- 
binations (code points) that  are  never  used, giving low informa- 
tion efficiency. A common procedure is to  examine  the  control 
signals for  groups  that  are logically mutually exclusive-that  is, 
groups in which only one line at a time is activated in meaningful 
control  states - and to assign such  groups  to  encodedfields in the 
microword. Transformational logic is then  interposed  between 
the  control word and the control line groups  to  decode the micro- 
word field values and to  activate  the  appropriate line in each 
group corresponding to the  encoded value. The number of such 
encoded  data flow control fields  in a microword is a rough mea- 
sure of the parallelism (number of operations  that can be  done 
concurrently) in the  data flow section. 

(In some cases, variables external  to  the microword may be used 
to modify the group assignment and decoding of a field.) 

A second  function  that  must  be accomplished through  every 
microword is to  establish  the microprogram address  (control 
state)  that is to succeed  the  current  one. At first glance, it might 
seem that simple ways to  do this would be either  to  increment 
the  current  address  to point to  the next word or  to store  a suc- 
cessor  address in each  control word and replace  the  current ad- 
dress with its  successor during the  execution of each  control 
cycle.  Neither of these  schemes,  however,  permits any variation 
of the  sequence of execution of microprograms, since  each word 
uniquely defines its  successor  without  reference  to any external 
conditions  that might occur during execution.  Since  the ability 
to vary  the  sequence of execution  (to branch) is essential  to  any 
useful program,  means must be included to  vary  the  choice of 
next  address  as  a  function of previously executed  states  and of 
ancillary conditions. 

A common technique is to  construct the  next  address  from  the 
current  address by providing fields in the microword that  control 
modification of the  current  address  as  a  function of environmental 
conditions, data-flow contents,  and  constants  (address fragments) 
stored in the microword. 

A third useful function of most microwords is control of the  ac- 
tion of temporary condition-recording registers, which can  store 
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information for establishing control  store  addresses. In engineer- 
ing jargon,  such  registers  are  often called “stats.” 

A fourth  type of  field is commonly provided: a literal, or  constant, 
field  (in the  jargon,  the  “emit” field), which may be used by the 
microprogrammer to  introduce numerical values into the data- 
flow section from the  control  store  (for  instance, in updating ad- 
dresses),  to  set  the  “stat” registers  for  microroutine linkages, 
and to supplement the next-address  selection fields. 

format So far we  have  assumed that  one microword is executed  for  each 
variations internal CPU time increment (i.e., that  there is a one-to-one  cor- 

respondence  between  the  basic CPU cycle  and  the  control  store 
cycle). Moreover, we have  noted  that  the  simplest  control word 
organization (not  necessarily  the  most efficient) assigns bits to 
control lines on  a  one-to-one basis. This  particular combination 
represents  one  end of a  continuous  spectrum, at  the  other end of 
which lies the  conventional machine instruction. One moves 
across  this  spectrum  both by compressing the microword in size 
(reducing the  number of bits at  the  expense of more  intermediate 
decoding logic and  more  sophisticated  hardware  functions)  and 
by expanding it in time (increasing the  number of CPU cycles exe- 
cuted  per  control  word, trading control  words  for  intermediate 
control logic and still more complex hardware functions). Thls 
progression moves explicit control information out of the micro- 
word and imbeds it instead in logic networks. 

Somewhere  between  the  two  extremes lies the  “miniword,” an 
appellation attached  to fairly small control word organizations 
that generally control multiple rather  than single CPU cycles. 
Miniwords do  not directly activate primitive control signals but 
logic-controlled subfunctions  instead. Miniwords provide only 
a small portion of the range and complexity of normal machine 
instructions. 

microword Since the data-flow section of a CPU is the “calculating engine” 
design that  does the useful work, one might expect microword charac- 

teristics - the microinstruction set-to  be strongly influenced by 
data-flow design. This is indeed often the case. 

One of the  important  objectives in processor design is optimiza- 
tion of the cost-performance  ratio.  A  processor’s raw speed is 
largely determined by the main storage  speed  and word width 
(data bandwidth). (Any buffering schemes used to  enhance effec- 
tive data storage  rates are logically part of the  storage  system, 
although they may reside physically in the  processor.)  Once a 
performance level is established and a main storage is chosen,  the 
next-level task is to  organize  the data-flow and  controls. Logic 
circuit quantity  has historically been a major cost-contributing 
variable, so data-flow organization has been aimed toward  at- 
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taining a  best match between  hardware  host facilities and virtual 
attributes to minimize the number of circuits needed. There has 
been as much truth as humor in the  statement  that  the microword 
is defined by where  the logic designer quits. 

The balance of power is not all on the  side of the data-flow de- 
signer, of course. The organization of an efficient processor in- 
volves complex trade-offs between  control  store  speed,  capacity, 
format, decision (addressing) logic, and data-flow facilities under 
the  constraints of the target  instruction  set. An intuitive appre- 
ciation of this trade-off process may be conveyed by the following 
example. 

Suppose  that  one of the operations critical to  performance is the 
computation of an effective address from its base,  index,  and dis- 
placement  components.  This  computation  must  take place during 
the interval between availability from main storage of an  instruc- 
tion and  the beginning of the next main storage  cycle.  (This in- 
terval  depends on the  delay from the initiation of a storage  cycle 
until data becomes available and on the length of the  cycle it- 
self.) At  one  extreme,  a  three-input parallel adder of adequate 
speed could be  provided in the data-flow section solely to com- 
pute  addresses,  permanently  connected between the  address 
component  source  registers  and the storage  address  register by 
dedicated data switches.  This configuration could be controlled 
by just  one or two bits in a single control  word,  but would require 
substantial logic circuitry. At another  extreme, a single one-byte 
adder might be  provided in the data-flow section  that is to  be 
shared by all operations calling for addition. In this case,  the 
address  components would have  to be switched  byte by byte 
into  the  adder input registers  and  the  address  accumulated in a 
series of partial sums. At least five or six control  cycles would be 
required in the  same length of time as a single cycle in the  first 
case; more data  switches would be  active  and  require more bits 
in the  control  word;  but  very little logic circuitry would have  to 
be supplied solely for  address  computation. The best configura- 
tion depends upon the specific relationships between control 
store  speeds and capacities,  the logic required,  and  the  costs. 

The rapid decrease in logic costs promised by advances in in- 
tegrated-circuit manufacturing technology is now definitely loos- 
ening logic minimization constraints on data-flow section design 
(hence microinstruction set definitions); and  interest is increasing 
in more generalized organizations  that could make a single hard- 
ware configuration a reasonable match to  several distinctly dif- 
ferent virtual machine definitions. 

The discussion so far has  probably given the impression that 
writing microprograms is,  as far as logic and information content 
is concerned,  a nontrivial task.  This is very  often the case. The 

NO. 1 1972 MICROPROGRAMMING  READINGS 



performance of a processor is dependent  upon  the  number of con- 
trol cycles executed  per  function  or  instruction,  and  its  cost is a 
function of the  amount of control  store needed. There  are bene- 
fits to  be  derived  from tight, “clever”  microcode, which contrasts 
with the  case of conventional  software  where clarity and main- 
tainability are generally more  important.  An  intimate knowledge 
of data-flow facilities, microinstruction specifications, and ma- 
chine timing is prerequisite  for writing efficient, tightly packed 
microcode. 

The mechanical aspects of creating microprograms are  less  for- 
midable. To support  the  development of System/360  and  System/ 
370 microprograms, a set of design aids called the  Control  Auto- 
mation System  has been developed.  This  system  accepts micro- 
programs in a special flowchart format and performs diagnostic, 
simulation, assembly, and documentation  functions. Its principal 
outputs  are printed flowcharts (control logic diagrams) and  a man- 
ufacturing interface  tape  to  direct  the  physical  production  pro- 
cesses. 

The bulk of  all microprogrammed computers  produced so far  has 
employed read-only control  stores.  Most microprograms have 
been  produced  for  these  computers in a development environ- 
ment as essentially one-shot  operations. While the need for  ac- 
curacy and efficiency has led to  automation of the  checking, 
verification, and bit-pattern generation tasks by simulators  and as- 
semblers,  there  has been no  strong  impetus  to  develop compiler- 
level microprogramming aids. Assembler-level facilities are a 
good match  for relatively small staffs of highly skilled people 
writing relatively small volumes of microprograms; compilers 
are more likely to find economic justification where many people 
of diverse skills have  continual need to  generate  and maintain 
large  quantities of programs.  Since the  latter  environment  seems 
somewhat  remote  for microprogramming, microprogram com- 
pilation will probably remain a  subject of academic  interest  for 
the  near  future. 

Other design considerations 

cost In  order  to achieve  the required speeds  at  reasonable  cost, tech- 
benefits nological constraints  have generally dictated  that  control  stores 

be  writable only by mechanical or electromechanical  means (of- 
ten involving a  factory-only  process). The principal benefit of 
such  stores is the  increased  number of functions  (compared with 
logic network  controls)  obtainable  for a given cost. Costs of logic 
controls  increase in roughly linear  proportion to functional  cap- 
ability, but  once  the physical installation of a control  store is ac- 
counted  for,  the  incremental  cost of adding functions up to  the 
maximum capacity of the  store is small. A plot of cost  versus 
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function for microprogrammed control  thus  approximates a series 
of step  functions,  each  step  representing the addition of a module 
of storage,  and lies beneath  the  cost line of logic for significant 
ranges of function. The cost differential has  encouraged inclusion 
of multiple instruction  set  controls  (emulators)  and  extensive 
checking, retry, diagnostic, and verification procedures.  Eco- 
nomically feasible  control  store  capacities  have been far from 
generous,  however, and have still constrained  the  number of func- 
tions a  particular machine can include. Advances in manufac- 
turing technologies are now  making it economically reasonable 
to include useful quantities of high-speed control  store  the  con- 
tents of which can be rapidly changed in an operational  environ- 
ment. Such  storage, loaded by replacement  or overlay methods 
from inexpensive  permanent microprogram residence  devices, 
can greatly expand  the effective control  capacity  and largely 
remove  the  capacity  constraints,  hence manufacturer’s cost 
constraints, on the  instruction  repertoire with which a machine 
can be  equipped. 

During program execution in a conventional digital computer, performance 
the CPU communicates  across  an  interface  to  the main storage 
unit, fetching instructions  and  data  and storing results. If we  as- 
sume that  the CPU is fast enough to always use  every  storage 
cycle available to it (main storage is never waiting for  the CPU), 
then we see  that data  are transferred  across the interface  at the 
maximum rate  possible, utilizing the maximum available data 
bandwidth. 

The fact  that a machine is running at maximum storage data band- 
width does  not  necessarily imply that  a  particular programmed 
task is being executed at  the maximum rate  that could be achieved 
given the  freedom to vary  the organization and representation of 
the  statement of the  task  (the program) and its associated  data. 
The formats and sequences of communications across  the  storage 
interface are functions of the  instruction  sequence  and must con- 
form to  the  architectural rules of the  target  instruction  set. There 
are  at least two ways in which the  storage  bandwidth information 
efficiency may be decreased  from  its possible optimum: when a 
program is not optimally constructed  for  a given architecture, 
and when the  architecture itself permits only an inefficient state- 
ment of the algorithm being executed. We will not  consider  the 
first source of  inefficiency here  but will concentrate upon the 
second. 

Let us take  as an example  a segment of code  whose  purpose is to 
multiply two numerical strings of the  same  number and size of 
element pairs. Given an instruction  set with a typical scalar- 
oriented,  operation-code,  memory-address,  register-address for- 
mat, we  see  that  each element pair requires  at  least  the following 
program steps to be  executed: 
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1.  Load memory to register. 
2. Multiply memory to  register. 
3. Store  registers to memory. 
4. Update  indexes  and  close loop. 

For every  element pair in the strings,  at  least  four  instructions 
(and possibly more,  depending on the  data  characteristics  and  the 
power of the  index manipulation and loop-closing branch  instruc- 
tions) must  be  fetched  across  the memory interface, in addition 
to  the two data fetches  and  one result store. 

Compare this with an  instruction  set  that  contains provisions for 
initializing data descriptors and repetitively executing operators 
over  described strings of data. To start  the program segment 
would require  several initializing steps: 

1. Load string 1 starting  address,  increment, and extent. 
2. Loat string 2 starting  address,  increment,  and  extent. 
3.  Load  result  starting  address,  increment,  and  extent. 
4. Define end and branch conditions. 

This could then  be followed by one step: 

5.  Execute  operator (multiply). 

This  sequence would produce  exactly  the  same effect as  the first 
example. However,  once  the initializing fetches are accomplished 
only source  and  result  data  transfers  are required across  the me- 
mory interface,  regardless of the  extent of the strings. The infor- 
mation efficiency with which the available memory bandwidth is 
utilized is increased by the elimination of the  repetitive  instruc- 
tion  fetches  per  string  element shown in the first example. Once 
initialization is complete,  microroutines can accomplish all the 
necessary updating and  testing of string  addresses  without  fur- 
ther  reference to main storage, assuming of course  that sufficient 
storage and transformational logic is made available to  the micro- 
programmer in the CPU data-flow section,  and  that  the additional 
internal  functions  can  be accomplished in the available time. 

The foregoing paragraphs  illustrate one of the principal situations 
in which microprogramming can  be utilized to  enhance CPU per- 
formance:  where information efficiency, or density,  across the 
memory interface  can  be  increased by revising instruction and 
data format definitions to substitute microprogrammed functions 
for logically redundant  storage cycles. (Note  that logic networks 
could also  be used to  control  the  added  functions.) 

An  extension of this principle occurs in special cases  where in- 
formation normally resident in the instruction  stream can be  re- 
moved and instead implied in special-purpose microroutines. An 
example of such a special case might be  the  previous  example of a 
string multiply restricted to fixed-length strings with fixed-size 
elements. The increment  and  extent  parameters could be stored 
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in the microroutines as local constants, eliminating the need for 
transfer of this information in the initializing sequence. 

A secondary benefit may accrue when specially designed instruc- 
tions permit a more compact program representation  that re- 
quires less memory space  than its conventional  instruction equiv- 
alent. 

An implicit theme in a number of technical discussions of dy- 
namically changeable controls  has been that  users will leap  at 
the  opportunity to tailor machines to their particular require- 
ments by writing tailored microroutines. Industry  experience in- 
dicates,  however,  that this is a naive assumption.  Developments 
in computing hardware  have  been paralleled by developments in 
software language processors and operating  systems (with strong 
user impetus) that are designed to  remove  the  users’ problem 
statement  and  operational  interfaces  as  far  as  possible from the 
machine level. The tendency  to  adopt higher-level interfaces 
has a basis in programming cost  considerations. There is a rough 
correspondence between the  power  and  sophistication of system- 
provided services and the language level employed. As machine 
language is approached,  a programmer must  do more and more 
for himself; thus he must exercise  greater detailed programming 
skills while running the risk of reduced  overall  productivity. 
Since the machine code level has proved thoroughly distasteful 
to most users, it is hardly reasonable to expect  user  enthusiasm 
to manifest itself at  the microcode level, which is yet more com- 
plex and intricate. 

The exposures of users programming at  the microcode level are 
not limited to  the possibility of incurring higher direct coding 
costs. A family of machines that is compatible at  the machine 
instruction and  architectural levels will almost  certainly  not be 
alike at  the data-flow and  control levels. Consideration  must  be 
given to  the loss of compatibility that may be incurred when an 
installation is made dependent upon special microroutines. Such 
features may render it impossible to  use  standard  operating  sys- 
tems, language processors,  and  the  like; it may  be either pro- 
hibitively expensive or impossible to  duplicate  the  features on 
other models within the family; and nonobvious side effects may 
have  unexpected ramifications in areas  remote from those di- 
rectly affected by the  features. 

On  the  other hand, it is reasonable  to  expect  manufacturers  to 
seek ways of providing users  the  performance  and efficiency 
increases  that  are made technically and economically feasible 
by large effective control  store  capacities.  We  have  seen  that,  for 
algorithms whose expression in conventional machine instruc- 
tions entails logically redundant  storage  cycles,  performance in- 
creases  can  be  obtained by creating new machine instructions 
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that permit higher information efficiencies across  the memory in- 
terface. It appears  that many common programmed functions 
fall into this category. Examples include the  table  searches  and 
manipulations typical of many operating  system  and language 
translation  tasks,  and  computations  upon  string,  vector,  and  array 
structured  data.  However,  there is presently little experimental 
data  that can be used to precisely identify such  functions  and  to 
quantify their  frequency of execution. 

It is intuitively evident  that  what comprises an optimal instruc- 
tion set is an intimate  function of the logic and data character- 
istics of a given program. From  an  overall  system  point of view, 
an  instruction set should be  judged on efficiency in automating 
program generation, debugging, and maintenance  processes,  as 
well as  on  execution-time efficiency. In light of the almost infi- 
nite  variations of programs that  exist, it appears a nearly impos- 
sible task  to  choose a small library of instructions - say 200,500, 
or even 2000 instructions  -for fixed installation on all of a given 
computer model with the goal of approximating an  “optimal”  set 
for a reasonable  percentage of all environments.  An  instruction 
set of greater flexibility and  power  than  conventional  scalar-  and 
register-oriented  sets could certainly be provided in the  future 
as  a fixed base. But it may prove worth while to  also make pro- 
vision for  dynamic optimization of the  repertoire  as a function 
of its local program and system  environment. 

If optimization facilities were  to be incorporated  into a system, 
it would be equally important  to include a way to  measure  opera- 
tions in representative  system  environments so that optimization 
choices could be based upon reasonable  quantitive  estimates, 
rather  than  conjecture  and trial and  error. 

In  the architectural design of such optimization facilities, at least 
three  questions should be answered:  What  repertoire  parameters 
should be  variable?  What should be measured in order  that in- 
telligent choices of parameter settings can be  made? By what 
mechanisms should parameter settings and the  associated con- 
trols be changed? To properly  answer  these  questions,  an  under- 
standing is required of language, program, and  data  structures 
and processes, as well as a knowledge of the  potentials  and limits 
of the physical host facilities. 

It is fairly clear  that,  whatever  the optimization methods might 
be,  they should not  require  that  users actually microprogram, 
nor  even  understand microprogramming. Implementation should 
be through disciplined and well-controlled combinations of archi- 
tecture, language processor,  and  operating  system  services, with 
the user’s interface as straightforward  and  as  far from the de- 
tailed microcode level as possible, and with compatibility main- 



An area  that seems to  be  currently  somewhat neglected is the 
relationship of architecture  to  software reliability. A program, 
like hardware, fails when it produces  unexpected or incorrect 
results.  Hardware is generally well checked at  the functional 
level, and  most  current  architectures establish some rules of 
validity for individual machine instructions. These  are enforced 
by hardware checking, so that failures through the machine-code 
level are relatively well screened. Rules of validity for program 
representations  above the machine-code level are rudimentary, 
however,  and failures due  to faulty program structure  are usually 
detectable only through  their  side effects (unless checking rou- 
tines are explicitly coded). 

Consider  as a simple example an architecture  that defines some 
particular  operation  code as an  entry  code  and  establishes  the 
rule that this be the only valid target of branch  operations for 
program control  transfers.  This rule could be hardware-enforced 
by a  few  microinstructions, giving a simple but powerful check 
on the  connectives  constructed during execution. The  author is 
of the opinion that  extension of architectural discipline to pro- 
gram structure, implemented and  checked by microprogrammed 
controls, may  be one of the  more rewarding uses of expanded 
control  store  capacity. 

Summary 

The part of a digital computer  that performs the useful work is 
made up of these  elements: 

Storage facilities 
Routing and switching facilities 
Data transformation facilities 

They  are  connected  together in data-flow sections. A data-flow 
section  can  be  considered a hardware  host  for simulating a target 
machine. The simulating agent is the  control  section. The task 
of  the  control  section is to  generate  sequences of signal patterns 
that  direct  the data-flow activities to  create  the effects described 
by some  target machine specification. 

One particular  class of control mechanisms uses regularly or- 
ganized storage  arrays to contain a large part of the  control in- 
formation. Machines employing such  control mechanisms are 
said to  be microprogrammed. Specific control  section  and  data- 
flow designs evolve from considering architecture, technology, 
performance, and cost  interrelationships.  Microinstruction  for- 
mats  can range across a spectrum from a  one-to-one  correspon- 
dence  between  control  gates and bits in the microword to “mini” 
formats  that  approximate  conventional machine instruction 
forms. 
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0 Stored logic and dynamically  changeable control-examples of early  user- 
microprogrammed  machines followed by the evolution  toward the “firmware” 
concept 

0 Language-oriented systems - selections that illustrate  possible higher-level 
architectures  and organizations 

0 Related architecture  and programming topics-leads into  topical areas  that 
may strongly influence future exploitation of the potential of micropro- 
grammed systems. 

~ The readings have been chosen  as a guide  to  the  literature  rather than as  an ex- 
i haustive listing. Many of the articles  contain  good  bibliographies for  those with 

special interests. 

The articles  listed below are  chosen  to establish  a  technical base  and  perspective 
for  the  nonexpert  reader.  They provide  self-contained coverage  for  one who  de- 
sires a  working  knowledge for a minimum investment of time, and  are  also a good basic 
starting-point for more extensive investigation. exposition 

1. S .  G. Tucker, “Microprogram  control for System/360,” IBM Systems  Jour- 
nal 6 ,  No. 4,  222-241 (1967). 

This is a readable and complete  description of read-only storage  as a direct 
substitute  for logic network  controls in digital computers.  It requires of the 
reader only  a  general familiarity with computer internal  organization. Tucker 
reviews  the origins of the  technique, develops  an  abstracted example, and 
covers  the essentials:  microword  organization,  branching, timing, language, 
and  design aids.  Comments on purposes  and limitations are included. The ma- 
terial is written with a solidly System/360 point of view,  but  this does not  de- 
tract from the article’s value  as  a  thorough  technical  primer.  Definitely  re- 
commended as  core reading. 

2. R. F. Rosin,  “Contemporary  concepts of microprogramming and emulation,” 
Computing  Surveys 1, No. 4,  197-212  (December 1969). 

The  early section  illustrates  control  principles on  an obscurely presented 
fictitious  machine, but  from  the sixth  page on, this  article develops  into  an 
excellent  discussion of current state-of-the-art with thought-provoking reflec- 
tions on microprogramming.  Rosin is concerned more with what  micropro- 
gramming is good for  and how  it may be exploited than with how micropro- 
gramming works. He achieves an unusually  even  perspective.  Also definitely 
recommended as  core reading, either by itself or in conjunction with Tucker’s 
exposition. 

3. M. J. Flynn and D. MacLaren, “Microprogramming  revisited,” ACM 22nd 
National  Conference  Proceedings, 457 -464 (1967). 

Packing a lot of ideas into a small space,  Flynn and MacLaren  develop  the 
basic  principles of stored  control, dismiss  previous  read-only and stored-logic 
implementations as restrictive and uninteresting, direct their attention  to dy- 
namically alterable storage  for machine  control  and consider its  technological, 
architectural, organizational,  programming, and usage  implications. The pa- 
per reflects the authors’ preoccupation  with  technical possibilities. I t  is re- 
commended as a review of possible  variations in computer organization for 
readers  who are willing to go elsewhere for pragmatic and utilitarian  con- 
siderations. Taken with Tucker and  Rosin  it rounds  out a core selection for 
the  more hurried reader. 

4.  M. V. Wilkes, “The  growth of interest in microprogramming:  a literature sur- 
vey,” Computing Surveys 1, No. 3, 139- 145 (September 1969). 
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Wilkes offers a pleasantly  written and informative survey of the  standard 
body of microprogramming  literature,  tracing  the  world-wide  expansion of 
interest  over the  last  two decades. Although  the reader may occasionally 
wish that  there were more in the way of critical comment, this is an excellent 
compilation of topics, articles, and  authors. 

5.  S. S. Husson, Microprogramming  principles  and  practice, Prentice-Hall, 
New York (1970). 

For  facts  and references,  this  hard-cover book is a rich source.  Nearly two- 
thirds of the book is devoted  to describing in fine detail the microprogram- 
ming aspects of the  IBM  System/360 Models 40 and 50, the RCA Spectra 
70/45,  and  the Honeywell H4200. A  good  index and an extensive bibliog- 
raphy, arranged both chronologically and alphabetically by author,  are ap- 
pended. The  expository material in the first third is comprehensive, including 
interesting sections  on control automation,  comparative  performance, special 
applications, and technology,  but it is sometimes flawed by an uncritical  ad- 
vocacy of microprogramming. Not a particularly easy  introductory  text  for 
readers without some prior grasp of computer internal  operation and vocabu- 
lary,  but an  excellent  engineering-oriented  reference  volume. 

historical These  papers  trace  the early  evolution of microprogramming  ideas.  Since 
trace microprogramming  developed primarily as an alternative method of control 

design,  most of the articles have a  strong  engineering orientation.  It is inter- 
esting to note  that  awareness  existed  from  the  start  that programmed  controls 
could  greatly  facilitate architectural and  organizational  innovation,  although 
for technological  and  pragmatic  reasons  few  practical advances have  yet 
been  made in these  areas. 

6. M. V. Wilkes, “The  best way to design an  automatic calculating  machine,” 
Manchester  University  Computer  Inaugural  Conference, p. 16 (195 1). 

I Wilkes is generally  credited with first coining the  term “microprogramming” 

the possibility of building writable as well as fixed control stores,  he  foresaw 
some of the problems  a  proliferation of “private  order  codes” might produce. 

7.  M. V. Wilkes  and J .  B. Stringer,  “Microprogramming and  the design of the 
control  circuits in an electronic digital computer,” Proceedings of the  Cam- 
bridge  Phil.  Soc., 230-238 (1953). 

The principles of microprogrammed  control are reiterated and illustrated by 
a proposed  design using a pair of fixed diode matrices, with particular atten- 
tion  given to microprogram  branching facilities. 

8. M. V. Wilkes, W. Renwick, and D. J. Wheeler, “The design of the  control 
unit of an electronic digital computer,” Proceedings of IEE 105, 12 1 - 128 
(1958). 

This is a discourse on the logical and engineering design aspects of matrix 
implementations of control stores, of interest primarily for its snapshot of 
the engineering  state-of-the-art  a decade  and a half ago. 

9.  H. T. Glantz, “A note on  microprogramming,” Journal of the  Association 
for  Computing  Machinery 3, No. 1, 77-84 (1956). 

A nicely written  consideration of the  advantages and  drawbacks of design- 
ing a computer  to allow the interspersion of hand-tailored  microprogrammed 
instructions with standard  code.  The  hardware parts are now obsolete, but 
he raises questions of pragmatics that  are still quite  pertinent. 



10. R. J. Mercer, “Microprogramming,” Journal of the  Association for  Corn 
puting Machinery 4, No. 2, 157 - 17 1 (1957). 

The  concept is explored of a set of matrices, each preprogrammed for  some 
particular  function, as a substitute  for the  conventional  arithmetic and logic 
unit in a digital computer. Definitely dated, although the basic  idea is worth 
noting by those who are seriously  concerned with utilizing highly integrated 
circuit  technologies. 

1 1. A. Grasselli,  “The design of program-modifiable microprogrammed  control 
units,” IEEE  Transactions  on Electronic Computers EC-11, No. 3, 336-339 
(1 962). 

Faced with the economic  and  technological  barriers of a decade ago in the 
way of achieving  a  sufficiently fast writable  control store,  Grasselli  devises 
an  interesting  solution that employs an intermediate,  changeable  “pathfinder” 
memory to  store strings of addresses  that  sequence  accesses  to a fixed, high- 
speed control store.  Worth noting, as is Mercer’s article, by those involved 
with highly integrated  circuit  technologies. 

12. G. B. Gerace, “Microprogrammed  control for computing systems,” IEEE 
Transactions  on Electronic Computers EC-12, No. 5 ,  733-747  (1963). 

Detailed  considerations of elaborations and expansions of Wilkes’ basic ma- 
trix  principles in the  context of large, high-speed computers, based  upon  the 
author’s  work with the CEP machine constructed  at Pisa.  Laboriously  pre- 
sented and very difficult to read. 

13. E. D. Conroy, “Microprogramming,” Preprint ACM  16th  National  Con- 

14. R. M.  Meade,  “A discussion of machine-interpreted  macro-instructions,” 

15. E. D. Conroy and R. M.  Meade, “A microinstruction system,” Preprint, 

ference (1961). 

Preprint, ACM 16th National  Conference (1961). 

ACM  16th  National  Conference (1961). 

These  three papers  outline briefly the IBM 7950 instruction system, which 
makes three levels - macro, standard machine set, and  microinstructions - 
directly  available to the  programmer. 

16. L. J. Boland,  “Analysis of read-only  memory for control,” MEE  Thesis, 
Syracuse  University  (June 1963). 

A development of the general  control process in a digital machine is followed 
by detailed logical and timing analyses of read-only  control stores as  sub- 
stitutes  for logic networks. Academically  lengthy. 

17. M. W. Allen, T. Pearcey, J. P.  Penny, G. A.  Rose, and J.  G.  Sanderson, implementation 
“CIRRUS,  an economical  multiprogram  control,” IEEE  Transacfions  on and 
Electronic Computers EC-12, No. 5 ,  663  -671  (1963). application 

Designed and built in Australia,  the CIRRUS machine is an early (1959) 
example of general-purpose  fixed-microprogram  organization  and of the in- 
ternational interest in microprogrammed  techniques (see also Gerace). 

18. I .  T. Hawryszkiewyxz, “Microprogrammed  control in problem-oriented 
languages,” IEEE  Transactions  on Electronic Computers EC-16, No. 5 ,  
652-658  (1967). 

The  CIRRUS system is adapted  for analog system simulation by micropro- 
gramming functional  equivalents of analog processes. Although  a large part 
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of this DaDer is devoted  to discussing  details of analog Drocesses, it is worth 

easily  changeable  controls. 

19. P. Fagg, J. L. Brown, J. A.  Hipp, D. T.  Doody, J. W. Fairclough, and J .  E. 
Greene,  “IBM  System/360 engineering,” AFIPS  Conference  Proceedings 
26,205-231 (1964). 

An overall  summary of the  System/360 CPU organizations and technology, 
of interest for its  mention of the read-only store  systems used in the different 
models. 

20. D. L. Schnabel, “The design of processor  controls using a read-only  storage,” 
Technical  Report TROO. 13 18, IBM  Systems  Development Division, Pough- 
keepsie, New  York  (August 1965). 

A fairly detailed  explanation of the  IBM  System/360 Model 50 control 
word  organization  and  functions. Quite readable if one is interested in digging 
into  the specifics of read-only  control  design, and a good follow-on to Tuck- 
er’s article. 

21. B. R. S. Buckingham, W. C.  Carter, W. R. Crawford,  and G .  A. Nowell, “The 
control  automation system,” 6th Annual Symposium on Switching  Circuit 
Theory and Logical  Design (October 1965). 

A  description of the  general flow and  user language facilities of the original 
microprogramming  automation system supporting System/360 development. 

22. W. C.  McGee  and  H. E. Petersen, “Microprogram  control for  the experi- 
mental  sciences,” AFIPS  Conference  Proceedings,  Fall  Joint  Computer 
Conference 27, Part 1, 77-91 (1965). 

Good general discourse upon  microprogrammed  control  unit  concepts. The 
2841 storage  control unit is cited as an example  and a film-scanning control 
unit  design is described in some detail. The application  details are very diffi- 
cult to  wade through,  but the idea is a  nice  illustration of the flexibility of 
microprogrammed  control outside  the central  processing  unit. 

23. G.  A.  Rose, “ ‘Intergraphic,’ a microprogrammed  graphical-interface  com- 
puter,” IEEE  Transactions on Electronic  Computers EC-16, No.  6,  773- 
784  (December 1967). 

A  fairly  general-purpose  microprogrammed “front-end’’ computer is pro- 
posed as  the interface  controller  between  a System/360 Model 50 with large 
capacity  storage  and  a group of video  terminals. An example of the  diverse 
applications  potential of microprogrammed digital machinery, but  the  paper 
is strongly  video-oriented and  not particularly easy  to  read. 

24. H. J .  White  and E. K. C.  Yu,  “Use of read-only  memory in Illiac IV,” AFIPS 
Conference  Proceedings,  Spring  Joint  Computer  Conference 36, 197 -205 
(1970). 

An  outline of the method  employed to control each  quadrant of the Illiac, 
written  from a hardware-engineering point of view. 

25. C. R. Campbell and D. A. Neilson, “Microprogramming the  Spectra  70/35,” 
Datamation 12, No.  9,  64-67  (September 1966). 

An outline of the internal  organization and microprogram  controls (a mini- 
instruction format is used) of the  70/35 is given. The ability to  execute micro- 
programming steps obtained from main memory is noted. 
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I 26. N. Bartow and  R.  McGuire,  “System/360 Model 85 Microdiagnostics,” 
AFIPS  Conference  Proceedings,  Spring  Joint  Computer  Conference 36, 
191-197 (1970). 

An illustration of ancillary uses  for microprograms other than  for  normal ma- 
chine  code  stream interpretation. 

I 27. S. G .  Tucker, “Emulation of large systems,” Communications of the ACM 
8, No. 12, 753-761  (December 1965). 

Tucker offers a definition of emulation,  comments on design choices, and de- 
scribes  packages  developed for  the  IBM  System/360 Model 65  as a host 
machine. 

28. M. A.  McCormack, T.   T.  Schansman,  and K.  K. Womack, “1401 compati- 
bility feature on the  IBM  System/360 Model  30,” Communications of the 
ACM 8, No. 12, 773-776  (December 1965). 

An  outline of the  1401  compatibility feature, which allows the Model  30 to 
directly  interpret the 140  1  instruction repertoire  under microprogram  control. 

29. R. I .  Benjamin, “The  Spectra  70/45 emulator for  the  RCA 301,” Comrnuni- 
cations of the ACM 8, No. 12, 748-752  (December 1965). 

The  concept of emulation is discussed, highlights of the  301  and  70/45 hard- 
ware are  noted, and the emulation process is described. 

30. G .  R. Allred, “System/370 integrated  emulation  under OS and  DOS,” 
AFIPS  Conference  Proceedings, Spring Joint  Computer  Conference 38, 
163-168 (1971). 

A  summary of emulator  history is offered followed by a  discussion of the de- 
velopment and special features of System/370 emulators,  which can  run  as 
problem  programs in a multiprogramming environment. 

31. H. M. Semarne and R.  E. Porter,  “A  stored logic computer,” Datamation dynamically 
7, No. 5 ,  33 -36  (May 1961). changeable 

32. W. C.  McGee,  “The  TRW-133  Computer,” Dafamation 10, No. 2, 27-29 control 
(February 1964). 

These two  papers discuss the  organization and logical characteristics of es- 
sentially the  same machine. The  stored logic concept is essentially that of 
“mini-programming”; the basic  machine language comprises a set of rela- 
tively  primitive operations  that  are combined in short  sequences  to  interpret 
conventional  instructions.  Only one memory is employed. 

33. L. Beck and  F. Keeler, “The  C-8401  Data  Processor,” Datamation 10, No. 
2,33-35  (February 1964). 

The  C-8401 is controlled by an  instruction  memory,  writable under  operator 
control,  containing  routines that  interpret conventional  instructions stored in 
main memory. Compare  the internal  organization, in which arithmetic and 
logical functions are wired to certain exchange registers, with Mercer’s mul- 
tiple T-matrix  proposal. The control word‘s basic  function is to  choose  the 
appropriate “exchange  register” transfer  paths. 

34. E. 0. Boutwell, Jr., “The  PB  440  Computer,” Datamation 10, No. 2, 30-32 
(February 1964). 

Another variation  on the “mini-program’’ concept.  Primitives can  be exe- 
cuted  either from  control  memory or from main store. 
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35. L. D. Amdahl,  “Microprogramming  and stored logic,” Datamation 10, No. 2, 

36. R. H. Hill, “Stored logic programming  and  applications,” Datamution 10, 
24-26 (February 1964). 

No. 2,  36-39 (February 1964). 

These two  articles are introduction  and  summary,  respectively, for  the pa- 
pers on  the TRW- 133,  C-8401, and PB-440. In  spite of their  vintage,  they 
are still good  reading (Hill’s, particularly) for  anyone speculating on  the role 
of writable  control store in a general-purpose  commercial  marketplace. 

37. A. Opler,  “Fourth-generation software,” Datamation 13, No. 1,22-24 (Jan- 
uary 1967). 

In this  article, Opler  speculates  on  the possible nature of “fourth generation” 
computers  and coins the  term “firmware.” He gives a quick but comprehen- 
sive review of the ways in which changeable  microprograms-“firmware” 
-could  be used to  enhance  the performance of software, although he doesn’t 
assess what  level of demand (hence investment in firmware) he expects  for 
brand-new  fourth-generation  functions. The responsibility for generating firm- 
ware is clearly  placed at  the manufacturer’s  level for all but application  pro- 
grams, and  the complexity of microprogramming is recognized in the contem- 
plation of a “new  generation of specialists.” 

38. R. W. Cook and M. J. Flynn, “System  design of a dynamic  microprocessor,” 
IEEE  Trunsactions on Electronic  Computers C-19, No. 3,  213  -222 (March 
1970). 

Positing a fast read-write  micromemory, the  authors  propose  an organization 
for a  “dynamic  micro-processor’’ employing a  three-level  memory  hierarchy 
and having no  formal  instruction  repertoire above  the “micro” level. Exam- 
ples are given of microroutines that  interpret higher-level functions.  Long on 
technical  enthusiasm. Of interest  as  an example of an  organization  uncon- 
strained by optimization toward a conventional  machine  instruction  set. 

39. C .  V. Ramamoorthy  and M.  Tsuchiya, “A study of user-microprogrammable 
computers,” AFIPS  Conference  Proceedings,  Spring  Joint  Computer  Con- 
ference 36, 165-181  (1970). 

This long, often superficial survey of many ways in which writable  control 
store might be exploited is followed by a mathematical model purporting to 
describe the parameters of a memory  hierarchy that minimizes average access 
time to  any information block within some  given  total cost.  The thesis that 
users,  rather than  manufacturers, will utilize writable  controls is posited  but 
not  supported.  Short on perspective. 

language 40. J .  P. Anderson, “A computer  for  direct execution of algorithmic languages,” 
oriented AFIPS  Conference  Proceedings,  Fall  Joint  Computer  Conference 18, 184- 
systems 193  (1961). 

Anderson gives  a brief review of the  structure of ALGOL and then develops 
the block design of a  stack-oriented  machine that could  directly execute 
ALGOL-like programs.  Although  implementation  means are not discussed, 
the  system diagram he  develops could be  the  base  for a  microprogrammed 
machine. 

41. J.  E. Meggitt, “A character  computer for high-level language interpretation,” 
IBM  Systems Journul 3, No. 1,  68-78  (1964). 

A fairly complete  description of a proposed  microprogrammed, character- 
oriented  machine that could  interpretively execute programs stored in forms 
similar to  the proposed form of Mullery and  Schauer. 
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I 42. A. J .  Melbourne  and J. M. Pugmire, “A small computer  for the direct pro- 
cessing of FORTRAN  statements,” Comoutinp  Journal. No. 8. 24-27 

The proposed design of a small microprogrammed  machine is described that 
accepts  FORTRAN  from a keyboard, translates statement by statement  to 
a FORTRAN-resembling internal representation,  executes completed  pro- 
grams, and provides debugging facilities, all under  control of microprogram 
routines. Some  rather general  comparisons with a similarly sized  commer- 
cially available  machine are included. 

43. T. R. Bashkow, A Kronfeld, and  A.  Sasson, “System  design of a FOR- 
TRAN machine,” IEEE  Transactions on Electronic  Computers EC-16, 
NO.  4,485-499  (August 1967). 

A  machine is described to  process a FORTRAN  subset in a load and  an  exe- 
cute phase. While the description is not explicitly for a microprogrammed 
system, the  clear flow design could easily be  the skeleton for a  micropro- 
grammed  implementation. 

44. H. Weber,  “A microprogrammed  implementation of EULER on IBM Sys- 
tem/360 Model 30,” Communications of the ACM 10, No. 9, 549 -558 (Sep- 
tember 1967). 

The introduction  gives  a  good  outline of the  process of decomposing source 
language into intermediate text, which is then translated into  some machine- 
executable form. The body of the paper  describes  some of the  attributes of 
the EULER language (similar  to ALGOL), an EULER processing system 
written  both in System/360 Model  30  microcode  and System/360 machine 
code,  and some  details of Model 30 internal  organization  and  microcode 
structure. An  interesting  experimental demonstration of the facility of directly 
interpreting  functions more complex  than  conventional  machine code. 

45. L.  L.  Constantine, “Integral  hardwarelsoftware  design,” Modern Data Sys- related 
stems (April  1968  through February 1969). topics 

This  series of nine  articles offers an interesting and leisurely  review of prob- 
lems that should be tackled in designing a complete  system, both hardware 
and programming, rather than  a hardware configuration with subsequent 
programming  support as is generally the case. Of particular interest  are com- 
ments on program structure,  hardware  architecture,  and software  reliability. 
Although  not all  of Constantine’s  conclusions are  above  controversy, the 
series is a good perspective-broadener, especially for nonprogrammers. 

46. J .  Green, “Microprogramming,  emulators,  and programming languages,” 
Communications of the ACM 9, No.  3,  230-232  (March 1966). 

A brief but  excellent treatment of the relationships  between language syntax, 
semantics, interpreters, and automata, followed by a short panel discussion. 
Well worth a careful  reading for  those only passingly familiar with the terms. 

47. H. W. Lawson, Jr., “Programming-language-oriented  instruction streams,” 
IEEE  Transactions  on  Electronic  Computers C-17, No. 5 476-485 (May 
1968). 

A  good  primer on instruction  stream structure,  interpretation,  and  execution, 
with several  examples of intermediate language forms.  Not a how-to-do-it 
microprogramming  article,  but it definitely should be  on  the reading list of 
nonprogramming  people  concerned with extension of machine architecture 
by “firmware.” 
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