
This guide to the literature on microprogramming is preceded
by an exposition intended for the less knowledgeable reader.

Microprogram control is seen as a form of simulation in which
primitive operations are combined and sequenced so as to imi-
tate the characteristics of a desired machine. Discussed are such
design considerations as microword formats, performance, writ-
able control stores, and the relationship between microprogram-
ming and software reliability.

Readings in microprogramming
by P. M. Davies

Two decades ago, shortly before the first commercial U.S. in-
stallation of a general-purpose digital computer, M. V. Wilkes
coined the term “microprogramming” and articulated the basic
principles in an address at the University of Manchester in En-
gland. His intent was to offer a more orderly substitute for the
ad hoc process of designing controls in digital computers. In-
terest spread rapidly in computer development circles, but, ex-
cept for a few instances of user-microprogrammed machines de-
signed a decade or so ago, exploitation of the technique remained
generally within the province of the hardware designers. Within
the last few years, however, greater understanding of digital com-
puting processes, combined with manufacturing technologies
rendering highspeed changeable controls economically feasible,
have led to a resurgence of interest in computers whose controls
may be modified during normal use.

The purpose of this paper is to offer a guide to the literature on
microprogramming that has developed over the last twenty years.
It is intended both for those who have interest but limited know-
ledge of the subject and those whose knowledge is more than
casual. The paper is divided into two parts: an expository section
for the less knowledgeable reader and an annotated bibliography.

Many of the articles tacitly assume that the reader possesses a
computer engineering or design background, which puts some
readers at a disadvantage. The exposition in this paper is orga-

16 DAVIES IBM SYST J

nized as a primer, rather than an exhaustive dissertation, in an
attempt to alleviate this disadvantage and to establish some ini-
tial perspective. Microprogramming is introduced by considering
the concept of simulation, the structure of digital computers, and
the need for control of their binary logic. Specific attention is then
given to microprogram control and to the format of control words.
Cost and performance are considered next, followed by discus-
sions of writable control stores and of the relationship between
microprogramming and software reliability.

Simulation and microprogramming

An introduction to microprogramming may best be made through
considering the idea of simulation. Suppose that there is at hand
some system, say an IBM 7094, which we will call a host system.
This system has a set of external attributes that define it func-
tionally: an instruction set, storage media (main storage, disks,
tapes, etc.), interruption system, channel configuration, and so on.
Programs written in this system’s language-7094 machine code
-can be directly executed. Suppose further that there is a pro-
gram written for another system, an IBM 7040, perhaps, that we
desire to have executed on the 7094. A set of 7094 machine code
programs can be written that will accept 7040 machine code and,
executed on the 7094, will create the same results that a 7040 sys-
tem would if it were executing the 7040 code directly. The com-
bination of the 7094 host system and 7094 programs can be con-
sidered to constitute a virtual system, that is, functionally, a 7040
(time dependencies excepted, of course). We can call the 7040
the target system.

Thus a virtual system can be created based on a host system
whose external attributes differ from those of the target system
through the agency of programs that supplement or transform the
host’s attributes. The process is generally called simulation of the
target system, in this case the 7040 system, on the host system.
In general, to create any virtual system, we need only a host con-
taining sufficient facilities for simulation programs to be con-
structed. The efficiency of the process depends upon the degree
of match between host and target system attributes.

The idea of a host system being used to create a virtual system
can be extended into the internal workings of a computer. If we
were to take the covers off a 7094 central processing unit and
delve inside, for example, we could separate its internals into
two segments: functional and control. The functional segment
includes the facilities that hold, route, and transform information,
while the control segment embraces the logic that directs the
activities of the functional parts so that, by orderly sequences of
internal processes, the entire conglomeration creates the effects

NO. 1 1972 MICROPROGRAMMING READINGS

defined by the 7094 CPU specifications. The two segments are
linked by control signals flowing to the functional parts from the
controls and by information returning to the controls that de-
scribes the status of functional activity and the environment.

An imaginary line enclosing all the functional parts but excluding
the controls could now be considered the boundary of a host sys-
tem at the hardware level. The external attributes of this host
could be written down (although it might be an arduous task);
corresponding to each control signal intersected by the imaginary
boundary there is some primitive function in the operational
parts, and the set of all such primitives defines the hardware-
level language of the host. The control signals are activated so
that, through the mediating agency of the control logic networks,
the hardware-level host is used to create a virtual 7094 CPU. Note
that if the host hardware remains unmodified but the control logic
is changed, some virtual CPU other than a 7094 can be created.

In this example, logic networks, rather than simulation programs,
are used to manipulate the host to produce a virtual CPU. The im-
portant point to note is that the combination and sequence of
control signals applied to the host determine the attributes of the
virtual CPU; any other adequate agent, not necessarily logic net-
works, can be used to generate the control signal combinations
and sequences without affecting the virtual attributes. If a pro-
grammable storage array is used to generate these control signals,
the virtual CPU is said to be rnicroprogrummed.

Basic control concepts

The following paragraphs give a more detailed explanation of
what is involved in the control of binary logic.

data-flow The working nucleus of a digital computer is the central process-
section ing unit and its associated main storage unit. The CPU, as we have

seen, can at least conceptually be divided into two parts. To bring
our terminology in line with that commonly used, we will now
refer to the functional segment as the data-flow section.

The data-flow section is constructed of binary logic circuits. The
detailed characteristics of these circuits may vary from machine
to machine, but the basic building blocks are usually AND’S, OR’s,
and INVERT’S or simple combinations of these functions, such as
NAND’S, NOR’S, and EXCLUSIVE OR’s. Groups of such blocks are
interconnected to form storage elements, data-routing switches,
and data-transformation networks. The storage part of the data-
flow section includes such things as main storage interface regis-
ters, operand and address registers, and registers for recording
temporary information and ancillary conditions (presence or ab-

18 DAVIES IBM SYST J

the appropriate control signal pattern; the pattern itself could
serve as the state identifier. For efficiency, this is normally not
the method used. A typical small-to-medium CPU may have sev-
eral tens or hundreds of control signals, which, with one storage
state recording element per signal, would allow on the order of
2 I o 0 or more different control states to be recorded. Of these, only
some small fraction (say 2'" to 215) represent meaningful com-
binations. Thus a tradeoff is made between the number and or-
ganization of state storage recording elements and the logic net-
works required to transform an encoded state into a set of con-
trol line signals.

In conventional hardware controls, the state encoding can be
loosely described as a hierarchical system. At the highest level
are storage elements, or registers, whose contents define major
modes of operation - instruction stream execution, inputloutput
operation, or interruption handling - that change relatively infre-
quently. Next are identifiers for specific operations within the ma-
jor modes, such as the program operation code, for instance,
during instruction-stream execution. Then come identifiers for
successively finer resolution of activities down to the basic cycle.

The link between the target program in main storage and the con-
trol section is provided in the information that flows from the
data-flow section into the next state decision logic. The control
sequence that fetches an instruction into the data-flow section
also switches the operation code into the control section to be-
come part of the state identifier for subsequent execution cycles.

Interpretafion is another word often used in connection with the
simulation process. In the context of controls, it denotes simula-
tion of a target program, instruction by instruction, so that the
effects of a given instruction are completely evaluated before
any further instructions in the target program sequence are con-
sidered. This is consistent with describing as interpretive those
compilers that accept and execute source code statement by
statement. (In fact, the distinction between compilation and sim-
ulation as outlined above lies primarily in the nature of the tsr-
get program.)

In the foregoing discussion, we have assumed that the controls
are built of the same sort of logic circuits as the data-flow section.
What the controls are built of is not important per se; what mat-
ters is the efficiency, economy, usability, maintainability, and so
on, of the virtual machine. These factors reflect the choices made
in the design of the host hardware and control mechanisms. Thus
it is really an empty exercise to debate whether or not a particu-
lar control implementation is intrinsically better or worse than
another; the question is which best achieves the desired attributes
in the resultant system.

NO. 1 * 1972 MICROPROGRAMMING READINGS

Figure 4 Microprogram control section

I I

REGISTER , C ~ ~ ~ 3 ~ L E1 DELCOOGqLNG CONTROL
SIGNALS

NEXT ADDRESS GENERATION " C O N D I T I O N S

Microprogram controls

At this point we can draw a physical distinction between a logic-
network-controlled and a microprogram-controlled unit. In the
former, only logic-circuit storage devices (registers) are used to
record control information; in the latter, a large part of the con-
trol information is stored in some form of regularly organized
memory array, called the control store.

In microprogrammed controls, the current control-store address
identifies the current control state, while the contents of the ad-
dressed array location provide the information required to es-
tablish the proper control signal combination and to choose the
next address. A simplified diagram is shown in Figure 4 of a read-
only microprogram control section, which is quite similar in all
its essentials to the generalized control section in Figure 3.

All control stores must be writable in some manner so that con-
trol information can be introduced. The quest for speed often
leads to the design of arrays that can be loaded only by mechani-
cal or electromechanical means, and these are designated as read-
only to differentiate them from arrays whose contents can be
changed during normal use, as, for instance, main storage arrays.
Where normally writable arrays are used for control, their logical
and operational context may render them also effectively read-
only except under special circumstances.

The question of encoding the state identification vanishes with a
microprogrammed control section. Each control state corre-
sponds to some addressed storage location. The number of
unique control states needed thus defines (for a read-only device)
the minimum number of words of control store that must be pro-
vided.

microwords The output of the control store is a microword. In the following
paragraphs, we discuss what different elements the microword

22 DAVIES IBM SYST J

can contain and some of the considerations involved in choosing
a microword format.

First, the microword must contain sufficient information to es-
tablish the settings of the control lines for each cycle. The sim-
plest technique would be to assign a bit in the microword for
every control line, but this is generally shunned for efficiency
reasons. Only a small fraction of all the possible combinations of
control signals represent meaningful functions. Thus a word con-
taining a bit for every control line would contain many bit com-
binations (code points) that are never used, giving low informa-
tion efficiency. A common procedure is to examine the control
signals for groups that are logically mutually exclusive-that is,
groups in which only one line at a time is activated in meaningful
control states - and to assign such groups to encodedfields in the
microword. Transformational logic is then interposed between
the control word and the control line groups to decode the micro-
word field values and to activate the appropriate line in each
group corresponding to the encoded value. The number of such
encoded data flow control fields in a microword is a rough mea-
sure of the parallelism (number of operations that can be done
concurrently) in the data flow section.

(In some cases, variables external to the microword may be used
to modify the group assignment and decoding of a field.)

A second function that must be accomplished through every
microword is to establish the microprogram address (control
state) that is to succeed the current one. At first glance, it might
seem that simple ways to do this would be either to increment
the current address to point to the next word or to store a suc-
cessor address in each control word and replace the current ad-
dress with its successor during the execution of each control
cycle. Neither of these schemes, however, permits any variation
of the sequence of execution of microprograms, since each word
uniquely defines its successor without reference to any external
conditions that might occur during execution. Since the ability
to vary the sequence of execution (to branch) is essential to any
useful program, means must be included to vary the choice of
next address as a function of previously executed states and of
ancillary conditions.

A common technique is to construct the next address from the
current address by providing fields in the microword that control
modification of the current address as a function of environmental
conditions, data-flow contents, and constants (address fragments)
stored in the microword.

A third useful function of most microwords is control of the ac-
tion of temporary condition-recording registers, which can store

NO. 1 * 1972 MICROPROGRAMMING READINGS 23

information for establishing control store addresses. In engineer-
ing jargon, such registers are often called “stats.”

A fourth type of field is commonly provided: a literal, or constant,
field (in the jargon, the “emit” field), which may be used by the
microprogrammer to introduce numerical values into the data-
flow section from the control store (for instance, in updating ad-
dresses), to set the “stat” registers for microroutine linkages,
and to supplement the next-address selection fields.

format So far we have assumed that one microword is executed for each
variations internal CPU time increment (i.e., that there is a one-to-one cor-

respondence between the basic CPU cycle and the control store
cycle). Moreover, we have noted that the simplest control word
organization (not necessarily the most efficient) assigns bits to
control lines on a one-to-one basis. This particular combination
represents one end of a continuous spectrum, at the other end of
which lies the conventional machine instruction. One moves
across this spectrum both by compressing the microword in size
(reducing the number of bits at the expense of more intermediate
decoding logic and more sophisticated hardware functions) and
by expanding it in time (increasing the number of CPU cycles exe-
cuted per control word, trading control words for intermediate
control logic and still more complex hardware functions). Thls
progression moves explicit control information out of the micro-
word and imbeds it instead in logic networks.

Somewhere between the two extremes lies the “miniword,” an
appellation attached to fairly small control word organizations
that generally control multiple rather than single CPU cycles.
Miniwords do not directly activate primitive control signals but
logic-controlled subfunctions instead. Miniwords provide only
a small portion of the range and complexity of normal machine
instructions.

microword Since the data-flow section of a CPU is the “calculating engine”
design that does the useful work, one might expect microword charac-

teristics - the microinstruction set-to be strongly influenced by
data-flow design. This is indeed often the case.

One of the important objectives in processor design is optimiza-
tion of the cost-performance ratio. A processor’s raw speed is
largely determined by the main storage speed and word width
(data bandwidth). (Any buffering schemes used to enhance effec-
tive data storage rates are logically part of the storage system,
although they may reside physically in the processor.) Once a
performance level is established and a main storage is chosen, the
next-level task is to organize the data-flow and controls. Logic
circuit quantity has historically been a major cost-contributing
variable, so data-flow organization has been aimed toward at-

24 DAVIES I R M C Y S T I

taining a best match between hardware host facilities and virtual
attributes to minimize the number of circuits needed. There has
been as much truth as humor in the statement that the microword
is defined by where the logic designer quits.

The balance of power is not all on the side of the data-flow de-
signer, of course. The organization of an efficient processor in-
volves complex trade-offs between control store speed, capacity,
format, decision (addressing) logic, and data-flow facilities under
the constraints of the target instruction set. An intuitive appre-
ciation of this trade-off process may be conveyed by the following
example.

Suppose that one of the operations critical to performance is the
computation of an effective address from its base, index, and dis-
placement components. This computation must take place during
the interval between availability from main storage of an instruc-
tion and the beginning of the next main storage cycle. (This in-
terval depends on the delay from the initiation of a storage cycle
until data becomes available and on the length of the cycle it-
self.) At one extreme, a three-input parallel adder of adequate
speed could be provided in the data-flow section solely to com-
pute addresses, permanently connected between the address
component source registers and the storage address register by
dedicated data switches. This configuration could be controlled
by just one or two bits in a single control word, but would require
substantial logic circuitry. At another extreme, a single one-byte
adder might be provided in the data-flow section that is to be
shared by all operations calling for addition. In this case, the
address components would have to be switched byte by byte
into the adder input registers and the address accumulated in a
series of partial sums. At least five or six control cycles would be
required in the same length of time as a single cycle in the first
case; more data switches would be active and require more bits
in the control word; but very little logic circuitry would have to
be supplied solely for address computation. The best configura-
tion depends upon the specific relationships between control
store speeds and capacities, the logic required, and the costs.

The rapid decrease in logic costs promised by advances in in-
tegrated-circuit manufacturing technology is now definitely loos-
ening logic minimization constraints on data-flow section design
(hence microinstruction set definitions); and interest is increasing
in more generalized organizations that could make a single hard-
ware configuration a reasonable match to several distinctly dif-
ferent virtual machine definitions.

The discussion so far has probably given the impression that
writing microprograms is, as far as logic and information content
is concerned, a nontrivial task. This is very often the case. The

NO. 1 1972 MICROPROGRAMMING READINGS

performance of a processor is dependent upon the number of con-
trol cycles executed per function or instruction, and its cost is a
function of the amount of control store needed. There are bene-
fits to be derived from tight, “clever” microcode, which contrasts
with the case of conventional software where clarity and main-
tainability are generally more important. An intimate knowledge
of data-flow facilities, microinstruction specifications, and ma-
chine timing is prerequisite for writing efficient, tightly packed
microcode.

The mechanical aspects of creating microprograms are less for-
midable. To support the development of System/360 and System/
370 microprograms, a set of design aids called the Control Auto-
mation System has been developed. This system accepts micro-
programs in a special flowchart format and performs diagnostic,
simulation, assembly, and documentation functions. Its principal
outputs are printed flowcharts (control logic diagrams) and a man-
ufacturing interface tape to direct the physical production pro-
cesses.

The bulk of all microprogrammed computers produced so far has
employed read-only control stores. Most microprograms have
been produced for these computers in a development environ-
ment as essentially one-shot operations. While the need for ac-
curacy and efficiency has led to automation of the checking,
verification, and bit-pattern generation tasks by simulators and as-
semblers, there has been no strong impetus to develop compiler-
level microprogramming aids. Assembler-level facilities are a
good match for relatively small staffs of highly skilled people
writing relatively small volumes of microprograms; compilers
are more likely to find economic justification where many people
of diverse skills have continual need to generate and maintain
large quantities of programs. Since the latter environment seems
somewhat remote for microprogramming, microprogram com-
pilation will probably remain a subject of academic interest for
the near future.

Other design considerations

cost In order to achieve the required speeds at reasonable cost, tech-
benefits nological constraints have generally dictated that control stores

be writable only by mechanical or electromechanical means (of-
ten involving a factory-only process). The principal benefit of
such stores is the increased number of functions (compared with
logic network controls) obtainable for a given cost. Costs of logic
controls increase in roughly linear proportion to functional cap-
ability, but once the physical installation of a control store is ac-
counted for, the incremental cost of adding functions up to the
maximum capacity of the store is small. A plot of cost versus

26 DAVIES IBM SYST J

function for microprogrammed control thus approximates a series
of step functions, each step representing the addition of a module
of storage, and lies beneath the cost line of logic for significant
ranges of function. The cost differential has encouraged inclusion
of multiple instruction set controls (emulators) and extensive
checking, retry, diagnostic, and verification procedures. Eco-
nomically feasible control store capacities have been far from
generous, however, and have still constrained the number of func-
tions a particular machine can include. Advances in manufac-
turing technologies are now making it economically reasonable
to include useful quantities of high-speed control store the con-
tents of which can be rapidly changed in an operational environ-
ment. Such storage, loaded by replacement or overlay methods
from inexpensive permanent microprogram residence devices,
can greatly expand the effective control capacity and largely
remove the capacity constraints, hence manufacturer’s cost
constraints, on the instruction repertoire with which a machine
can be equipped.

During program execution in a conventional digital computer, performance
the CPU communicates across an interface to the main storage
unit, fetching instructions and data and storing results. If we as-
sume that the CPU is fast enough to always use every storage
cycle available to it (main storage is never waiting for the CPU),
then we see that data are transferred across the interface at the
maximum rate possible, utilizing the maximum available data
bandwidth.

The fact that a machine is running at maximum storage data band-
width does not necessarily imply that a particular programmed
task is being executed at the maximum rate that could be achieved
given the freedom to vary the organization and representation of
the statement of the task (the program) and its associated data.
The formats and sequences of communications across the storage
interface are functions of the instruction sequence and must con-
form to the architectural rules of the target instruction set. There
are at least two ways in which the storage bandwidth information
efficiency may be decreased from its possible optimum: when a
program is not optimally constructed for a given architecture,
and when the architecture itself permits only an inefficient state-
ment of the algorithm being executed. We will not consider the
first source of inefficiency here but will concentrate upon the
second.

Let us take as an example a segment of code whose purpose is to
multiply two numerical strings of the same number and size of
element pairs. Given an instruction set with a typical scalar-
oriented, operation-code, memory-address, register-address for-
mat, we see that each element pair requires at least the following
program steps to be executed:

NO. 1 * 1972 MICROPROGRAMMING READINGS

1. Load memory to register.
2. Multiply memory to register.
3. Store registers to memory.
4. Update indexes and close loop.

For every element pair in the strings, at least four instructions
(and possibly more, depending on the data characteristics and the
power of the index manipulation and loop-closing branch instruc-
tions) must be fetched across the memory interface, in addition
to the two data fetches and one result store.

Compare this with an instruction set that contains provisions for
initializing data descriptors and repetitively executing operators
over described strings of data. To start the program segment
would require several initializing steps:

1. Load string 1 starting address, increment, and extent.
2. Loat string 2 starting address, increment, and extent.
3. Load result starting address, increment, and extent.
4. Define end and branch conditions.

This could then be followed by one step:

5. Execute operator (multiply).

This sequence would produce exactly the same effect as the first
example. However, once the initializing fetches are accomplished
only source and result data transfers are required across the me-
mory interface, regardless of the extent of the strings. The infor-
mation efficiency with which the available memory bandwidth is
utilized is increased by the elimination of the repetitive instruc-
tion fetches per string element shown in the first example. Once
initialization is complete, microroutines can accomplish all the
necessary updating and testing of string addresses without fur-
ther reference to main storage, assuming of course that sufficient
storage and transformational logic is made available to the micro-
programmer in the CPU data-flow section, and that the additional
internal functions can be accomplished in the available time.

The foregoing paragraphs illustrate one of the principal situations
in which microprogramming can be utilized to enhance CPU per-
formance: where information efficiency, or density, across the
memory interface can be increased by revising instruction and
data format definitions to substitute microprogrammed functions
for logically redundant storage cycles. (Note that logic networks
could also be used to control the added functions.)

An extension of this principle occurs in special cases where in-
formation normally resident in the instruction stream can be re-
moved and instead implied in special-purpose microroutines. An
example of such a special case might be the previous example of a
string multiply restricted to fixed-length strings with fixed-size
elements. The increment and extent parameters could be stored

28 DAVIES IBM SYST 3

in the microroutines as local constants, eliminating the need for
transfer of this information in the initializing sequence.

A secondary benefit may accrue when specially designed instruc-
tions permit a more compact program representation that re-
quires less memory space than its conventional instruction equiv-
alent.

An implicit theme in a number of technical discussions of dy-
namically changeable controls has been that users will leap at
the opportunity to tailor machines to their particular require-
ments by writing tailored microroutines. Industry experience in-
dicates, however, that this is a naive assumption. Developments
in computing hardware have been paralleled by developments in
software language processors and operating systems (with strong
user impetus) that are designed to remove the users’ problem
statement and operational interfaces as far as possible from the
machine level. The tendency to adopt higher-level interfaces
has a basis in programming cost considerations. There is a rough
correspondence between the power and sophistication of system-
provided services and the language level employed. As machine
language is approached, a programmer must do more and more
for himself; thus he must exercise greater detailed programming
skills while running the risk of reduced overall productivity.
Since the machine code level has proved thoroughly distasteful
to most users, it is hardly reasonable to expect user enthusiasm
to manifest itself at the microcode level, which is yet more com-
plex and intricate.

The exposures of users programming at the microcode level are
not limited to the possibility of incurring higher direct coding
costs. A family of machines that is compatible at the machine
instruction and architectural levels will almost certainly not be
alike at the data-flow and control levels. Consideration must be
given to the loss of compatibility that may be incurred when an
installation is made dependent upon special microroutines. Such
features may render it impossible to use standard operating sys-
tems, language processors, and the like; it may be either pro-
hibitively expensive or impossible to duplicate the features on
other models within the family; and nonobvious side effects may
have unexpected ramifications in areas remote from those di-
rectly affected by the features.

On the other hand, it is reasonable to expect manufacturers to
seek ways of providing users the performance and efficiency
increases that are made technically and economically feasible
by large effective control store capacities. We have seen that, for
algorithms whose expression in conventional machine instruc-
tions entails logically redundant storage cycles, performance in-
creases can be obtained by creating new machine instructions

NO. 1 . 1972 MICROPROGRAMMING READINGS

that permit higher information efficiencies across the memory in-
terface. It appears that many common programmed functions
fall into this category. Examples include the table searches and
manipulations typical of many operating system and language
translation tasks, and computations upon string, vector, and array
structured data. However, there is presently little experimental
data that can be used to precisely identify such functions and to
quantify their frequency of execution.

It is intuitively evident that what comprises an optimal instruc-
tion set is an intimate function of the logic and data character-
istics of a given program. From an overall system point of view,
an instruction set should be judged on efficiency in automating
program generation, debugging, and maintenance processes, as
well as on execution-time efficiency. In light of the almost infi-
nite variations of programs that exist, it appears a nearly impos-
sible task to choose a small library of instructions - say 200,500,
or even 2000 instructions -for fixed installation on all of a given
computer model with the goal of approximating an “optimal” set
for a reasonable percentage of all environments. An instruction
set of greater flexibility and power than conventional scalar- and
register-oriented sets could certainly be provided in the future
as a fixed base. But it may prove worth while to also make pro-
vision for dynamic optimization of the repertoire as a function
of its local program and system environment.

If optimization facilities were to be incorporated into a system,
it would be equally important to include a way to measure opera-
tions in representative system environments so that optimization
choices could be based upon reasonable quantitive estimates,
rather than conjecture and trial and error.

In the architectural design of such optimization facilities, at least
three questions should be answered: What repertoire parameters
should be variable? What should be measured in order that in-
telligent choices of parameter settings can be made? By what
mechanisms should parameter settings and the associated con-
trols be changed? To properly answer these questions, an under-
standing is required of language, program, and data structures
and processes, as well as a knowledge of the potentials and limits
of the physical host facilities.

It is fairly clear that, whatever the optimization methods might
be, they should not require that users actually microprogram,
nor even understand microprogramming. Implementation should
be through disciplined and well-controlled combinations of archi-
tecture, language processor, and operating system services, with
the user’s interface as straightforward and as far from the de-
tailed microcode level as possible, and with compatibility main-

An area that seems to be currently somewhat neglected is the
relationship of architecture to software reliability. A program,
like hardware, fails when it produces unexpected or incorrect
results. Hardware is generally well checked at the functional
level, and most current architectures establish some rules of
validity for individual machine instructions. These are enforced
by hardware checking, so that failures through the machine-code
level are relatively well screened. Rules of validity for program
representations above the machine-code level are rudimentary,
however, and failures due to faulty program structure are usually
detectable only through their side effects (unless checking rou-
tines are explicitly coded).

Consider as a simple example an architecture that defines some
particular operation code as an entry code and establishes the
rule that this be the only valid target of branch operations for
program control transfers. This rule could be hardware-enforced
by a few microinstructions, giving a simple but powerful check
on the connectives constructed during execution. The author is
of the opinion that extension of architectural discipline to pro-
gram structure, implemented and checked by microprogrammed
controls, may be one of the more rewarding uses of expanded
control store capacity.

Summary

The part of a digital computer that performs the useful work is
made up of these elements:

Storage facilities
Routing and switching facilities
Data transformation facilities

They are connected together in data-flow sections. A data-flow
section can be considered a hardware host for simulating a target
machine. The simulating agent is the control section. The task
of the control section is to generate sequences of signal patterns
that direct the data-flow activities to create the effects described
by some target machine specification.

One particular class of control mechanisms uses regularly or-
ganized storage arrays to contain a large part of the control in-
formation. Machines employing such control mechanisms are
said to be microprogrammed. Specific control section and data-
flow designs evolve from considering architecture, technology,
performance, and cost interrelationships. Microinstruction for-
mats can range across a spectrum from a one-to-one correspon-
dence between control gates and bits in the microword to “mini”
formats that approximate conventional machine instruction
forms.

NO. 1 . 1972 MICROPROGRAMMING READINGS

0 Stored logic and dynamically changeable control-examples of early user-
microprogrammed machines followed by the evolution toward the “firmware”
concept

0 Language-oriented systems - selections that illustrate possible higher-level
architectures and organizations

0 Related architecture and programming topics-leads into topical areas that
may strongly influence future exploitation of the potential of micropro-
grammed systems.

~ The readings have been chosen as a guide to the literature rather than as an ex-
i haustive listing. Many of the articles contain good bibliographies for those with

special interests.

The articles listed below are chosen to establish a technical base and perspective
for the nonexpert reader. They provide self-contained coverage for one who de-
sires a working knowledge for a minimum investment of time, and are also a good basic
starting-point for more extensive investigation. exposition

1. S . G. Tucker, “Microprogram control for System/360,” IBM Systems Jour-
nal 6 , No. 4, 222-241 (1967).

This is a readable and complete description of read-only storage as a direct
substitute for logic network controls in digital computers. It requires of the
reader only a general familiarity with computer internal organization. Tucker
reviews the origins of the technique, develops an abstracted example, and
covers the essentials: microword organization, branching, timing, language,
and design aids. Comments on purposes and limitations are included. The ma-
terial is written with a solidly System/360 point of view, but this does not de-
tract from the article’s value as a thorough technical primer. Definitely re-
commended as core reading.

2. R. F. Rosin, “Contemporary concepts of microprogramming and emulation,”
Computing Surveys 1, No. 4, 197-212 (December 1969).

The early section illustrates control principles on an obscurely presented
fictitious machine, but from the sixth page on, this article develops into an
excellent discussion of current state-of-the-art with thought-provoking reflec-
tions on microprogramming. Rosin is concerned more with what micropro-
gramming is good for and how it may be exploited than with how micropro-
gramming works. He achieves an unusually even perspective. Also definitely
recommended as core reading, either by itself or in conjunction with Tucker’s
exposition.

3. M. J. Flynn and D. MacLaren, “Microprogramming revisited,” ACM 22nd
National Conference Proceedings, 457 -464 (1967).

Packing a lot of ideas into a small space, Flynn and MacLaren develop the
basic principles of stored control, dismiss previous read-only and stored-logic
implementations as restrictive and uninteresting, direct their attention to dy-
namically alterable storage for machine control and consider its technological,
architectural, organizational, programming, and usage implications. The pa-
per reflects the authors’ preoccupation with technical possibilities. I t is re-
commended as a review of possible variations in computer organization for
readers who are willing to go elsewhere for pragmatic and utilitarian con-
siderations. Taken with Tucker and Rosin it rounds out a core selection for
the more hurried reader.

4. M. V. Wilkes, “The growth of interest in microprogramming: a literature sur-
vey,” Computing Surveys 1, No. 3, 139- 145 (September 1969).

NO. 1 . 1972 MICROPROGRAMMING READINGS 33

Wilkes offers a pleasantly written and informative survey of the standard
body of microprogramming literature, tracing the world-wide expansion of
interest over the last two decades. Although the reader may occasionally
wish that there were more in the way of critical comment, this is an excellent
compilation of topics, articles, and authors.

5. S. S. Husson, Microprogramming principles and practice, Prentice-Hall,
New York (1970).

For facts and references, this hard-cover book is a rich source. Nearly two-
thirds of the book is devoted to describing in fine detail the microprogram-
ming aspects of the IBM System/360 Models 40 and 50, the RCA Spectra
70/45, and the Honeywell H4200. A good index and an extensive bibliog-
raphy, arranged both chronologically and alphabetically by author, are ap-
pended. The expository material in the first third is comprehensive, including
interesting sections on control automation, comparative performance, special
applications, and technology, but it is sometimes flawed by an uncritical ad-
vocacy of microprogramming. Not a particularly easy introductory text for
readers without some prior grasp of computer internal operation and vocabu-
lary, but an excellent engineering-oriented reference volume.

historical These papers trace the early evolution of microprogramming ideas. Since
trace microprogramming developed primarily as an alternative method of control

design, most of the articles have a strong engineering orientation. It is inter-
esting to note that awareness existed from the start that programmed controls
could greatly facilitate architectural and organizational innovation, although
for technological and pragmatic reasons few practical advances have yet
been made in these areas.

6. M. V. Wilkes, “The best way to design an automatic calculating machine,”
Manchester University Computer Inaugural Conference, p. 16 (195 1).

I Wilkes is generally credited with first coining the term “microprogramming”

the possibility of building writable as well as fixed control stores, he foresaw
some of the problems a proliferation of “private order codes” might produce.

7. M. V. Wilkes and J . B. Stringer, “Microprogramming and the design of the
control circuits in an electronic digital computer,” Proceedings of the Cam-
bridge Phil. Soc., 230-238 (1953).

The principles of microprogrammed control are reiterated and illustrated by
a proposed design using a pair of fixed diode matrices, with particular atten-
tion given to microprogram branching facilities.

8. M. V. Wilkes, W. Renwick, and D. J. Wheeler, “The design of the control
unit of an electronic digital computer,” Proceedings of IEE 105, 12 1 - 128
(1958).

This is a discourse on the logical and engineering design aspects of matrix
implementations of control stores, of interest primarily for its snapshot of
the engineering state-of-the-art a decade and a half ago.

9. H. T. Glantz, “A note on microprogramming,” Journal of the Association
for Computing Machinery 3, No. 1, 77-84 (1956).

A nicely written consideration of the advantages and drawbacks of design-
ing a computer to allow the interspersion of hand-tailored microprogrammed
instructions with standard code. The hardware parts are now obsolete, but
he raises questions of pragmatics that are still quite pertinent.

10. R. J. Mercer, “Microprogramming,” Journal of the Association for Corn
puting Machinery 4, No. 2, 157 - 17 1 (1957).

The concept is explored of a set of matrices, each preprogrammed for some
particular function, as a substitute for the conventional arithmetic and logic
unit in a digital computer. Definitely dated, although the basic idea is worth
noting by those who are seriously concerned with utilizing highly integrated
circuit technologies.

1 1. A. Grasselli, “The design of program-modifiable microprogrammed control
units,” IEEE Transactions on Electronic Computers EC-11, No. 3, 336-339
(1 962).

Faced with the economic and technological barriers of a decade ago in the
way of achieving a sufficiently fast writable control store, Grasselli devises
an interesting solution that employs an intermediate, changeable “pathfinder”
memory to store strings of addresses that sequence accesses to a fixed, high-
speed control store. Worth noting, as is Mercer’s article, by those involved
with highly integrated circuit technologies.

12. G. B. Gerace, “Microprogrammed control for computing systems,” IEEE
Transactions on Electronic Computers EC-12, No. 5 , 733-747 (1963).

Detailed considerations of elaborations and expansions of Wilkes’ basic ma-
trix principles in the context of large, high-speed computers, based upon the
author’s work with the CEP machine constructed at Pisa. Laboriously pre-
sented and very difficult to read.

13. E. D. Conroy, “Microprogramming,” Preprint ACM 16th National Con-

14. R. M. Meade, “A discussion of machine-interpreted macro-instructions,”

15. E. D. Conroy and R. M. Meade, “A microinstruction system,” Preprint,

ference (1961).

Preprint, ACM 16th National Conference (1961).

ACM 16th National Conference (1961).

These three papers outline briefly the IBM 7950 instruction system, which
makes three levels - macro, standard machine set, and microinstructions -
directly available to the programmer.

16. L. J. Boland, “Analysis of read-only memory for control,” MEE Thesis,
Syracuse University (June 1963).

A development of the general control process in a digital machine is followed
by detailed logical and timing analyses of read-only control stores as sub-
stitutes for logic networks. Academically lengthy.

17. M. W. Allen, T. Pearcey, J. P. Penny, G. A. Rose, and J. G. Sanderson, implementation
“CIRRUS, an economical multiprogram control,” IEEE Transacfions on and
Electronic Computers EC-12, No. 5 , 663 -671 (1963). application

Designed and built in Australia, the CIRRUS machine is an early (1959)
example of general-purpose fixed-microprogram organization and of the in-
ternational interest in microprogrammed techniques (see also Gerace).

18. I . T. Hawryszkiewyxz, “Microprogrammed control in problem-oriented
languages,” IEEE Transactions on Electronic Computers EC-16, No. 5 ,
652-658 (1967).

The CIRRUS system is adapted for analog system simulation by micropro-
gramming functional equivalents of analog processes. Although a large part

NO. 1 * 1972 MICROPROGRAMMING READINGS 35

of this DaDer is devoted to discussing details of analog Drocesses, it is worth

easily changeable controls.

19. P. Fagg, J. L. Brown, J. A. Hipp, D. T. Doody, J. W. Fairclough, and J . E.
Greene, “IBM System/360 engineering,” AFIPS Conference Proceedings
26,205-231 (1964).

An overall summary of the System/360 CPU organizations and technology,
of interest for its mention of the read-only store systems used in the different
models.

20. D. L. Schnabel, “The design of processor controls using a read-only storage,”
Technical Report TROO. 13 18, IBM Systems Development Division, Pough-
keepsie, New York (August 1965).

A fairly detailed explanation of the IBM System/360 Model 50 control
word organization and functions. Quite readable if one is interested in digging
into the specifics of read-only control design, and a good follow-on to Tuck-
er’s article.

21. B. R. S. Buckingham, W. C. Carter, W. R. Crawford, and G . A. Nowell, “The
control automation system,” 6th Annual Symposium on Switching Circuit
Theory and Logical Design (October 1965).

A description of the general flow and user language facilities of the original
microprogramming automation system supporting System/360 development.

22. W. C. McGee and H. E. Petersen, “Microprogram control for the experi-
mental sciences,” AFIPS Conference Proceedings, Fall Joint Computer
Conference 27, Part 1, 77-91 (1965).

Good general discourse upon microprogrammed control unit concepts. The
2841 storage control unit is cited as an example and a film-scanning control
unit design is described in some detail. The application details are very diffi-
cult to wade through, but the idea is a nice illustration of the flexibility of
microprogrammed control outside the central processing unit.

23. G. A. Rose, “ ‘Intergraphic,’ a microprogrammed graphical-interface com-
puter,” IEEE Transactions on Electronic Computers EC-16, No. 6, 773-
784 (December 1967).

A fairly general-purpose microprogrammed “front-end’’ computer is pro-
posed as the interface controller between a System/360 Model 50 with large
capacity storage and a group of video terminals. An example of the diverse
applications potential of microprogrammed digital machinery, but the paper
is strongly video-oriented and not particularly easy to read.

24. H. J . White and E. K. C. Yu, “Use of read-only memory in Illiac IV,” AFIPS
Conference Proceedings, Spring Joint Computer Conference 36, 197 -205
(1970).

An outline of the method employed to control each quadrant of the Illiac,
written from a hardware-engineering point of view.

25. C. R. Campbell and D. A. Neilson, “Microprogramming the Spectra 70/35,”
Datamation 12, No. 9, 64-67 (September 1966).

An outline of the internal organization and microprogram controls (a mini-
instruction format is used) of the 70/35 is given. The ability to execute micro-
programming steps obtained from main memory is noted.

36 DAVIES IBM SYST J

I 26. N. Bartow and R. McGuire, “System/360 Model 85 Microdiagnostics,”
AFIPS Conference Proceedings, Spring Joint Computer Conference 36,
191-197 (1970).

An illustration of ancillary uses for microprograms other than for normal ma-
chine code stream interpretation.

I 27. S. G . Tucker, “Emulation of large systems,” Communications of the ACM
8, No. 12, 753-761 (December 1965).

Tucker offers a definition of emulation, comments on design choices, and de-
scribes packages developed for the IBM System/360 Model 65 as a host
machine.

28. M. A. McCormack, T. T. Schansman, and K. K. Womack, “1401 compati-
bility feature on the IBM System/360 Model 30,” Communications of the
ACM 8, No. 12, 773-776 (December 1965).

An outline of the 1401 compatibility feature, which allows the Model 30 to
directly interpret the 140 1 instruction repertoire under microprogram control.

29. R. I . Benjamin, “The Spectra 70/45 emulator for the RCA 301,” Comrnuni-
cations of the ACM 8, No. 12, 748-752 (December 1965).

The concept of emulation is discussed, highlights of the 301 and 70/45 hard-
ware are noted, and the emulation process is described.

30. G . R. Allred, “System/370 integrated emulation under OS and DOS,”
AFIPS Conference Proceedings, Spring Joint Computer Conference 38,
163-168 (1971).

A summary of emulator history is offered followed by a discussion of the de-
velopment and special features of System/370 emulators, which can run as
problem programs in a multiprogramming environment.

31. H. M. Semarne and R. E. Porter, “A stored logic computer,” Datamation dynamically
7, No. 5 , 33 -36 (May 1961). changeable

32. W. C. McGee, “The TRW-133 Computer,” Dafamation 10, No. 2, 27-29 control
(February 1964).

These two papers discuss the organization and logical characteristics of es-
sentially the same machine. The stored logic concept is essentially that of
“mini-programming”; the basic machine language comprises a set of rela-
tively primitive operations that are combined in short sequences to interpret
conventional instructions. Only one memory is employed.

33. L. Beck and F. Keeler, “The C-8401 Data Processor,” Datamation 10, No.
2,33-35 (February 1964).

The C-8401 is controlled by an instruction memory, writable under operator
control, containing routines that interpret conventional instructions stored in
main memory. Compare the internal organization, in which arithmetic and
logical functions are wired to certain exchange registers, with Mercer’s mul-
tiple T-matrix proposal. The control word‘s basic function is to choose the
appropriate “exchange register” transfer paths.

34. E. 0. Boutwell, Jr., “The PB 440 Computer,” Datamation 10, No. 2, 30-32
(February 1964).

Another variation on the “mini-program’’ concept. Primitives can be exe-
cuted either from control memory or from main store.

NO. 1 * 1972 MICROPROGRAMMING READINGS 37

35. L. D. Amdahl, “Microprogramming and stored logic,” Datamation 10, No. 2,

36. R. H. Hill, “Stored logic programming and applications,” Datamution 10,
24-26 (February 1964).

No. 2, 36-39 (February 1964).

These two articles are introduction and summary, respectively, for the pa-
pers on the TRW- 133, C-8401, and PB-440. In spite of their vintage, they
are still good reading (Hill’s, particularly) for anyone speculating on the role
of writable control store in a general-purpose commercial marketplace.

37. A. Opler, “Fourth-generation software,” Datamation 13, No. 1,22-24 (Jan-
uary 1967).

In this article, Opler speculates on the possible nature of “fourth generation”
computers and coins the term “firmware.” He gives a quick but comprehen-
sive review of the ways in which changeable microprograms-“firmware”
-could be used to enhance the performance of software, although he doesn’t
assess what level of demand (hence investment in firmware) he expects for
brand-new fourth-generation functions. The responsibility for generating firm-
ware is clearly placed at the manufacturer’s level for all but application pro-
grams, and the complexity of microprogramming is recognized in the contem-
plation of a “new generation of specialists.”

38. R. W. Cook and M. J. Flynn, “System design of a dynamic microprocessor,”
IEEE Trunsactions on Electronic Computers C-19, No. 3, 213 -222 (March
1970).

Positing a fast read-write micromemory, the authors propose an organization
for a “dynamic micro-processor’’ employing a three-level memory hierarchy
and having no formal instruction repertoire above the “micro” level. Exam-
ples are given of microroutines that interpret higher-level functions. Long on
technical enthusiasm. Of interest as an example of an organization uncon-
strained by optimization toward a conventional machine instruction set.

39. C . V. Ramamoorthy and M. Tsuchiya, “A study of user-microprogrammable
computers,” AFIPS Conference Proceedings, Spring Joint Computer Con-
ference 36, 165-181 (1970).

This long, often superficial survey of many ways in which writable control
store might be exploited is followed by a mathematical model purporting to
describe the parameters of a memory hierarchy that minimizes average access
time to any information block within some given total cost. The thesis that
users, rather than manufacturers, will utilize writable controls is posited but
not supported. Short on perspective.

language 40. J . P. Anderson, “A computer for direct execution of algorithmic languages,”
oriented AFIPS Conference Proceedings, Fall Joint Computer Conference 18, 184-
systems 193 (1961).

Anderson gives a brief review of the structure of ALGOL and then develops
the block design of a stack-oriented machine that could directly execute
ALGOL-like programs. Although implementation means are not discussed,
the system diagram he develops could be the base for a microprogrammed
machine.

41. J. E. Meggitt, “A character computer for high-level language interpretation,”
IBM Systems Journul 3, No. 1, 68-78 (1964).

A fairly complete description of a proposed microprogrammed, character-
oriented machine that could interpretively execute programs stored in forms
similar to the proposed form of Mullery and Schauer.

38 DAVIES IBM SYST J

I 42. A. J . Melbourne and J. M. Pugmire, “A small computer for the direct pro-
cessing of FORTRAN statements,” Comoutinp Journal. No. 8. 24-27

The proposed design of a small microprogrammed machine is described that
accepts FORTRAN from a keyboard, translates statement by statement to
a FORTRAN-resembling internal representation, executes completed pro-
grams, and provides debugging facilities, all under control of microprogram
routines. Some rather general comparisons with a similarly sized commer-
cially available machine are included.

43. T. R. Bashkow, A Kronfeld, and A. Sasson, “System design of a FOR-
TRAN machine,” IEEE Transactions on Electronic Computers EC-16,
NO. 4,485-499 (August 1967).

A machine is described to process a FORTRAN subset in a load and an exe-
cute phase. While the description is not explicitly for a microprogrammed
system, the clear flow design could easily be the skeleton for a micropro-
grammed implementation.

44. H. Weber, “A microprogrammed implementation of EULER on IBM Sys-
tem/360 Model 30,” Communications of the ACM 10, No. 9, 549 -558 (Sep-
tember 1967).

The introduction gives a good outline of the process of decomposing source
language into intermediate text, which is then translated into some machine-
executable form. The body of the paper describes some of the attributes of
the EULER language (similar to ALGOL), an EULER processing system
written both in System/360 Model 30 microcode and System/360 machine
code, and some details of Model 30 internal organization and microcode
structure. An interesting experimental demonstration of the facility of directly
interpreting functions more complex than conventional machine code.

45. L. L. Constantine, “Integral hardwarelsoftware design,” Modern Data Sys- related
stems (April 1968 through February 1969). topics

This series of nine articles offers an interesting and leisurely review of prob-
lems that should be tackled in designing a complete system, both hardware
and programming, rather than a hardware configuration with subsequent
programming support as is generally the case. Of particular interest are com-
ments on program structure, hardware architecture, and software reliability.
Although not all of Constantine’s conclusions are above controversy, the
series is a good perspective-broadener, especially for nonprogrammers.

46. J . Green, “Microprogramming, emulators, and programming languages,”
Communications of the ACM 9, No. 3, 230-232 (March 1966).

A brief but excellent treatment of the relationships between language syntax,
semantics, interpreters, and automata, followed by a short panel discussion.
Well worth a careful reading for those only passingly familiar with the terms.

47. H. W. Lawson, Jr., “Programming-language-oriented instruction streams,”
IEEE Transactions on Electronic Computers C-17, No. 5 476-485 (May
1968).

A good primer on instruction stream structure, interpretation, and execution,
with several examples of intermediate language forms. Not a how-to-do-it
microprogramming article, but it definitely should be on the reading list of
nonprogramming people concerned with extension of machine architecture
by “firmware.”

f

NO. 1 * 1972 MICROPROGRAMMING READINGS 39

40 DAVIES

