
A probability-based, theoretical model of a multiprogrammed
computing system is suggested for planning future computing
center requirements.

Validation of the planning model is attempted with respect to
the theoretical model and applications to short-range and long-
range planning.

Modeling for computing center planning
by F. Hanssmann, W. Kistler, and H. Schulz

A computing center’s current capacity is based on a prior fore-
cast of what the center’s work load is today. Thus in the planning
phase, projected computing requirements are translated into time
estimates for alternative system configuration under consider-
ation. The time requirements may then be compared with the
system’s capacity in time units. Existing techniques for estimat-
ing time requirements are usually based on the notion of run
times of individual jobs, which comprise the time interval from
start to termination of each job. A uniprogramming system, for
example, has sufficient capacity if the sum of run times for all
jobs does not exceed a realistic operating time for the system
during a given time period. In a multiprogramming environment,
run times are assigned to individual regions, so that total capacity
(region time) is multiplied accordingly. In principle, however,
the technique is the same.

One technique currently used for estimating run times for jobs
is as follows. Based on detailed jobs specifications, the input/
output (do) times for several different categories of do devices
are estimated. Central processing unit time is ignored as being
irrelevant to the estimate. (Throughout this paper, the notions
of do time and CPU time refer to purely productive times, when
these devices are in operation, rather than to elapsed time for
completion of jobs.) All do times are added on a summary sheet
and multiplied by an empirical correction factor of < 1 , which

NO. 3 . 1971 COMPUTING CENTER PLANNING

a current
forecasting
technique

Figure 1 System planning horizons

SI
INSTI

i

GENERAL DETAIL
DESIGN DESIGN

L J I
REQUIREMENTS

SURVEY IMPLEMENTATION

DEVELOPMENTOF APPLICATION

I SITE PREPARATION

I BUDGETING PERIOD

LONG RANGE PLAN

6 5 4 3 2 1

EM
ATlON

reflects the extent of overlap among do processes. The result
is the estimate of run time for each job. This technique may be
generalized for the case of multiprogramming; it then requires
different empirical correction factors.

Weaknesses in this planning technique are evident. Its basis is
purely empirical and is, therefore, tied to an existing specific
system structure. Thus the method fails even for such small
configuration changes as tape speed or the number of regions,
and reliable comparison of system alternatives becomes impos-
sible. Another grave weakness is the impossibility of giving suf-
ficient detailed specifications of jobs such as are required for
estimating time requirements. Figure 1 illustrates planning hori-
zons that a large computer installation has to observe to provide
adequate facilities in a growing business. Ideally, the basic system
structure should be specified three to four years before installa-
tion. Figure 2 indicates the growth in uncertainty of job composi-
tion as one projects current knowledge into the future. Exper-
ience teaches us that curves A and B illustrate the future effect

306 HANSSMANN, KISTLER, AND SCHULZ IBM SYST J

Figure 2 Forecast of work load composition

YEARS +

of estimated work loads based on job specifications whereas the
bulk of the actual work load consists of presently unknown jobs
(curve C).

The planning model discussed in this paper must of necessity be
a relatively crude macromodel so that its predictive value will
be useful approximately five years in advance (as shown by
curves A, B, and C in Figure 2). The model does not require a
detailed description of individual jobs, rather it uses a general
description of work load. Furthermore, the model has a theo-
retical basis that gives it an explanatory nature that has general
validity beyond a specific existing configuration. Of course, such
a theoretical model must be tested within the range of experience
before it can be accepted as the basis for planning.

A brief introduction to the theoretical model and its validation
are necessary background for an understanding of the planning
model. Use of the planning model for short- and long-range
planning exemplify the broad scope of forecasting possibilities.

NO. 3 . 1971 COMPUTING CENTER PLANNING

proached in the real system, and appropriate corrections must be
applied when comparing the two systems.

Consider first some relationships within the simplified theoretical
system. By the preceding assumptions, the processes in the sys-
tem are determined within the limits of stochastic variation. In
fact, the processes could be simulated by taking samples of pro-
cessing times and I/O times, thereby fully determining the mean
productivity of the CPU. (This quantity plays a key role in our
planning calculations.) A busy period a for the CPU terminates if
the CPU is unable to find another region for which I/O operations
have been completed. The busy period is followed by a waiting
period w. Using these definitions, we now define the mean pro-
ductivity p of the CPU as

p+=

Note that only mean values of the variables enter the mean
productivity definition. Gaver computed mean productivity
without recourse to simulation by the complex application of
probability theory. He presented his results for different types
of probability distributions of compute times and I/O times per
segment.

-
a

a f w

If we designate the mean values of the CPU and I/O time per
segment by random variables G and p, respectively, we may de-
fine mean computing intensity as the ratio of the CPU time per
segment to the I/O time per segment

Computing intensity is not a normalized ratio, and it may exceed
the value of 1 .O. Assuming exponential probability distributions,
CPU productivity depends only on the configuration parameters
r and k and the mean computing intensity as follows:

P = s(Xlr , k) (1)

Gaver’s research does not yield the function g in explicit form.
We obtained it by recursive computation. For the case of expo-
nential distributions, Figure 4 exhibits several productivity
curves based on tables published by Gaver. Not surprisingly,
productivity increases monotonically with computing intensity
as well as with the number of storage regions. Given Equation 1,
we may easily write the mean productivity per region

as well as the mean channel productivity

q= 5
NO. 3 . 1971 COMPUTING CENTER PLANNING

mean CPU
productivity

mean
computing
intensity

mean
productivity
per region

309

Figure 4 Theoretical productivity curves

I
I r=10,

”” r = 5 ; k A 5
/-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x- -

corrected Since in practice the work load buffer is not infinite, nonavail-
mean CPU ability of work causes idle time for the regions. (This idle time

productivity should not be confused with that caused by nonavailability of the
CPU.) For this reason, the nominal number of regions r in the
theoretical model should be replaced by the mean effective num-
ber of regions i,. Furthermore, realistic I/O processes may re-
quire several channels rather than one, and these may be de-
pendent on each other or interfere with each other. If we wish
to describe the much more complex reality by an equivalent
single-channel model, we must increase the true I/O times by a
suitable correction factor y. Consequently, we must replace the
mean computing intensity h of the theoretical model by the effec-
tive computing intensity yh. We thus obtain the following version
of the corrected mean productivity model:

P = g (yhl r,, k) (2)

Our planning technique is based upon the corrected mean CPU
productivity model. For validation of this model, as well as
estimation of the two correction factors, we must proceed
empirically.

Model validation

Data for validation of the model were obtained by measurement
and observation of the existing System/360 Model 65 for one
16-hour period. To obtain confidence in the model, it is necessary
to observe wide excursions of the variables concerned. For this
reason, we measured or estimated the computing intensity,

310 HANSSMANN, KISTLER, AND SCHULZ IBM SYST J

effective number of regions, and CPU productivity for relatively
short time segments. The following direct measurements were
made:

Measurements of region occupancy based on start and stop

Types of jobs
CPU productivity (including system tasks) by time segments

times by program step

CPU time by program step

Additionally, we estimated or computed do times of the various
categories of I/O devices (grouped by channel and based on data
volume per step) since I/O related quantities were not directly
measurable.

These measurements and estimates were used to perform three
computations for time blocks of varying length:

Allocated portions of CPU and I/O times by program segments
(Inaccuracies were caused by the fact that program segments

CPU time of system tasks by subtracting estimated CPU time I I cross the boundaries of time blocks.)
~

I
I/O time of system tasks

Some results of the direct measurements of CPU productivity and
storage-region occupancy are shown in Figure 5. Table 1 pre-
sents a preliminary averaging of the data in Figure 5 . The model
showed that CPU productivity was not very high. We also cal-
culated an average storage region occupancy of 2.6 (out of four
storage regions excluding storage occupied by system tasks).
Since in our experimental configuration the number of channels
exceeded four, the validity test of the model is, therefore, based
on the assumption k 2 Y.

I

Measurements for individual program segments (in the sense of
the Gaver theory) could not be obtained because a program step
is normally much longer than a segment. Therefore, in place of
the CPU time per segment, we consider the CPU time per step
divided by the number of I/O processes. This quantity x could be
estimated from the histogram of the random variable x as a
function of absolute frequency in Figure 6. Here we see that x is
approximately exponentially distributed. Figure 7 exhibits the
results of a similar test on a logarithmic scale. Comparing the
straight line with the spread of experimental points, we conclude
that the assumption of exponential distributions (straight line on
the logarithmic scale) is approximately satisfied.

I
L We are mainly interested in relationships among productivity,

computing intensity, and effective number of regions. In order to
generate a larger number of points for comparisons of empirical

NO. 3 . 1971 COMPUTING CENTER PLANNING 3 1 1 I

Figure 5 Detail from direct measurements

l- 1

n

0 i
z
0

8

B
t,

Y
W

0 4 -

3 - -
2 -

‘I I
I I I
900 AM 1000 AM

TIME

Table 1 Results of direct measurement

Direct measurement Time (hours)

CPU active
CPU wait
Other
Total

3.3434
7.3366
6.1846

16.8646

Indirect measurement Computed results

Productivity
(of regions 1 to 4)

Productivity
(including system tasks)

Average regions occupied
(in a total of 4)

25.6%

3 1 . 3 %

2.6%

and theoretical relationships, we start by dividing the measure-
ment period into 30-minute blocks. Each block is further sub-
divided into “homogeneous” blocks. (We call a time block homo-
geneous if the number of occupied regions does not vary within
the block.) Part of the list of homogeneous blocks is shown in
Table 2. The number of occupied regions per block is exclusive

3 12 HANSSMANN, KISTLER, AND SCHULZ IBM SYST J

Figure 6 Histogram of CPU time intervals per step

> I
0 -
2 100 z
:: 90

3 s: 80-

-

-
I-

4

70 -

60 -

50 -

40 -

30 -

20 -

10 -

0-
0

Figure 7 Test for exponential distribution

0

I l l r r I l 1 0 o l l l l l l
10 20 30

by the inaccuracies in allocating program steps to adjacent time
blocks.

Recall that we treat the system tasks as an additional storage re-
gion and that (as shown in Figure 8) a single region is responsible
for about 7.5 percent of productivity. If our concept is correct,
then the mean horizontal distance of the empirical points in Fig-
ure 10 from the line passing through the origin with siope of one
should be about 7.5 percent. Two additional parallel lines are
drawn at distances of 7.5 and 15 percent. The line in the center
corresponds well to a regression line, and it appears that the hori-
zontal distance hardly ever exceeds 15 percent. Thus, the treat-
ment of the system tasks as an additional region fits well into the
total picture of the model.

Thus we may say that the theoretical model (after correcting the
computing intensity) yields an approximation of the actual pro-
cesses. Before the corrected model may be used as the basis
for planning, however, it may be desirable to test the model for
longer time intervals, such as on a monthly basis, because plan-
ning decisions are usually based on monthly (or even annual)
work loads. Accordingly, we should be interested in the mean
productivity over these longer time intervals. If measurements
for longer time intervals are made, we expect that the dispersion
of the observations about the mean value of productivity will be
considerably reduced. The property of reduced variance is highly
desirable for planning purposes.

Aside from applications to planning, further development and
refinement of the model itself are of interest because the degree
of correspondence between reality and model can be improved.
The fact that the correlation factor for I/O times is almost four
indicates that certain parts of the phenomenon are unexplained.
Of course, this is not necessarily bad. In fact, the strength of
cybernetic models rests in the fact that a relatively simple model
structure is combined with a “variety generator.” This means
that the unexplained part of the phenomenon causing this high
variety is summed up by certain correction factors and their
probability distributions. The strength of cybernetic model build-
ing rests on this approach.2

Nevertheless, it seems worthwhile to ask whether the degree of
explanation afforded by our planning model could not be in-
creased with moderate effort. The fact that effective r/o times are
substantially greater than actual I/O times might be explained in
various ways. Recall that the theoretical model views the pro-
cesses in each region of main storage as a chain of alternating
I/O phases and compute phases with intervening wait times. Also
a key simplifying assumption of the theoretical model is that each
I/O phase that intervenes between two compute phases requires

NO. 3 . 1971 COMPUTING C E N T E R PLANNING

only a single channel. As soon as the single-channel operation
has been completed, the region is ready for computing. In reality,
several channel operations may be required in succession or in
parallel. This means that queueing for channels occurs more
frequently than the theoretical model allows, even if the number
of channels exceeds the number of regions. Thus the single I/O
phase between two compute phases in the theoretical model is
replaced by a chain of input/output phases with intervening
queuing for channels.

If we insist on a single-channel model, the chain of I/O phases
and queuing times must be reinterpreted as the single r/o phase
of an equivalent one-channel model. I t is now clear that this
artificial I/O time of the single-channel model is substantially
greater than the sum of the actual productive I/O times. This may
well explain the large correction factor of almost four.

These considerations thus point the way to refining the model.
First, it is necessary to observe the number of channels actually
used during an I/O phase that intervenes between two compute
phases and to study the probability distribution of the numbers of
channels. Since channels are normally assigned to categories of
I/O devices in a noninterchangeable manner, assignments would
have to be made by category of channel.

Simulation based on a refined planning model would proceed as
follows. For each I/O phase, take a sample of the channels used
by category. Each selected channel is supplemented with a
sample of channel time. The simulation then proceeds to imple-
ment the program and determine the intervening queuing times.
Productivity curves similar to those of the theoretical model
could be constructed by simulation. Correspondence with reality
can then be tested. Refining the model this way may be sub-
stantially more detailed than the theoretical model, but sub-
stantially less detailed than a simulation of actual computer pro-
grams. Refinement can also improve bottle-neck problems that
may exist among the channels and that cannot be handled by the
theoretical model.

The existence of actual bottle-necks, in this sense, may be an-
other explanation for long queuing times for channels and the
resulting extension of I/O phases. Implementation of these ideas
of more refined model construction must be the subject of further
research.

d

,
some To maintain the validity of the basic model structure of Equation

practical 2, it is necessary to detect significant changes of parameter values
cenriderations (especially y) by continuous measurement and control. Recent 1

developments in hardware and software monitors reduce the
required experimental work load as compared to the present

3 18 HANSSMANN, KISTLER, AND SCHULZ IBM SYST J

The number of channels k in the system is known, the effective
number of regions 7 can be found by console inquires or by an
accounting routine. A hardware or software monitor may be
used for direct measurement of CPU busy time, CPU wait time,
and channel busy times during the period of observation. Mean
productivity p is estimated by the ratio of CPU busy time to the
sum of busy time and wait time. Mean computing intensity
may be estimated to a sufficient degree of approximation by the
ratio of CPU busy time to the sum of channel busy times. (Rigor-
ously speaking, this constitutes something of a departure from
Gaver’s definition of h, which results in a slightly different cor-
rection factor y). At this stage, the correction factor y may be
determined by solving Equation 2.

A breakdown of total do time (channel time) by type of do device
(tape, disk, drum) is most helpful when changes in peripheral
equipment are contemplated. This breakdown may be obtained
by measurement, such as the output of the System Management
Facilities (SMF) of os/360.

Short-range system planning

We now describe the use of the fully validated model for near-
term planning of about one year. First we need the following
hours-per-month work load estimates for each system alternative
under consideration:

~l productive CPU time
u sum of productive do times

B ’ , maximum operating time of system

From these quantities, we may deduce the following estimate of
mean computing intensity:

x = -

Obviously, the given work load can be accommodated by the
system if and only if the minimum CPU productivity can be ex-
pressed as

- Ll

U

Similarly, the required minimum I/O productivity per channel is
given by

By contrast, the maximum obtainable productivity of the con-
figuration in question is obtained from the corrected mean CPU
productivity given by Equation 2

NO. 3 ’ 1971 COMPUTING CENTER PLANNING 3 19

Table 5 Maximal system throughput

System Hardware
alternative CPU r re k 110 cost udu h p TIT,

0 360-65 6 5 5 A 1 A,, P,, 1
System

Rather than minimize system cost for a given work load, as in
Table 4, we now choose to maximize system throughput for a
given ceiling of hardware cost. System throughput is defined as
follows. Let W designate the system elapsed time required to
process the work load with parameters u and 21. Throughput T is
defined relative to the reference system (subscript zero) by

To
the Gaver productivity p is related to W by

P = W
U

so that

Note that computation of the throughput ratio requires only the
knowledge of the mix constant X, the CPU factor uo/u, and the
configuration parameters. No absolute measures of work load
enter Equation 3. The new planning sheet for determination of
the throughput - maximal system (for a given ceiling of hardware
cost) is shown as Table 5. Error bands of parameters are treated
in accordance with the methodology of decision making under
~ncertainty.~

For purposes of illustration, a throughput comparison of four
systems is given in Table 6. For simplicity, it has been assumed
that all systems have an identical I/O configuration and job mix
so that x varies inversely with the CPU factor.

Our methodology requires frequent evaluation of the Gaver
function as given in Equation 2, wherein complex recursive tech-
niques are used to arrive at numerical values of the mean pro-
ductivity p . G. Diruf4 showed that the nonexplicit Gaver func-
tion of Equation 1 is identical to the following analytical rela-
tionship, provided that CPU and I/O times per segment are c
nentially distributed:

322 HANSSMANN, KISTLER, AND SCHULZ IBM

:xpo-

sYsr J I

I System

CPU factor (u,/u)
k
!l
h
P
TI To

1 .oo
6.00
6.00
0.79
0.79
1 .OO

4.00 -

I 1 .oo -
10.00 12.00
0.20 0.20
0.45 0.5 1
2.28 2.58

I I

n
where b, = n a,

i = l

f o r l l i s r - k

f o r r - k < i 5 r
and u1 =

A2

6.00
11.00
12.00
0.13
0.35
2.62

Future research

are: they are tied to an existing system structure; necessary
detail on individual jobs is not available on a long-range basis; d
and the types of jobs are subject to considerable uncertainty. To
improve this situation, we suggest a planning technique for many I
system alternatives. In addition, this technique should require
only relatively general information about the work load at the
planning horizon. The basis for the model is a probability-based
macromodel of multiprogramming by Gaver.

Since system productivity (CPU utilization) is of central interest,
our planning model has been conceived to forecast productivity
and throughput for numerous system alternatives. Certain correc-
tions and further developments of the theoretical model are
required to validate the model for planning applications. An ini-
tial test of validity and modifications of the planning model de-
scribed are based on experiments using Svstem/3hO Model 65.

I

casting of demand for data processing services. A productivity
model is supplemented by simulation models of the buffering ef-
fect of multiprocessing. Modeling of supervisory overhead awaits
further research.

CITED REFERENCES AND FOOTNOTE
1. D. P. Gaver, “Probability models for multiprogramming computer systems,”

Journal of the ACM 14, No. 3, 423 -438 (1967).
2. S. Beer, Decision and Control, John Wiley and Sons, New York, New York

(1966).
3. F. Hanssmann, Operutions Research Techniques for Capital Investment,

John Wiley and Sons, New York, New York (1968).
4. G. Diruf, A TwwStuge Macro-Model for Multiprocessing. (This unpublished

Ph.D. thesis bases on work done at the University of Munich may be obtained
as an IBM reoort from IBM Germanv. Roehlineen. Gerrnnnv \

324 HANSSMANN. KIST1 ER. A N D S r H l I l 7 IBM SYST J I

