
A probability-based,  theoretical  model of a  multiprogrammed 
computing  system  is  suggested  for  planning  future  computing 
center  requirements. 

Validation of the  planning  model  is  attempted  with  respect  to 
the  theoretical  model  and  applications  to  short-range  and  long- 
range  planning. 

Modeling  for  computing  center  planning 
by F. Hanssmann, W. Kistler, and H. Schulz 

A computing center’s current  capacity is based on a prior  fore- 
cast of what  the  center’s work load is today. Thus in the planning 
phase,  projected computing requirements  are  translated  into time 
estimates  for  alternative  system configuration under  consider- 
ation. The time requirements may then be compared with the 
system’s  capacity in time units. Existing techniques  for  estimat- 
ing time  requirements are usually based on  the notion of run 
times of individual jobs, which comprise the time interval from 
start  to termination of each  job. A uniprogramming system,  for 
example, has sufficient capacity if the  sum of run times  for all 
jobs does not exceed  a realistic operating  time  for  the  system 
during a given time period. In  a multiprogramming environment, 
run times are assigned to individual regions, so that  total  capacity 
(region time) is multiplied accordingly. In principle, however, 
the  technique is the  same. 

One technique  currently used for estimating run times for  jobs 
is as follows. Based on detailed jobs specifications, the  input/ 
output (do) times  for  several different categories of do devices 
are estimated.  Central  processing unit time is ignored as being 
irrelevant  to the estimate.  (Throughout  this  paper,  the  notions 
of do time  and CPU time refer to purely productive  times, when 
these  devices are in operation,  rather  than  to  elapsed  time  for 
completion of jobs.) All do times are added on a summary sheet 
and multiplied by an empirical correction  factor of < 1 ,  which 
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Figure 1 System planning horizons 
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reflects the  extent of overlap among do processes. The result 
is the estimate of run time for  each  job.  This  technique may be 
generalized for  the  case of multiprogramming; it then  requires 
different empirical correction  factors. 

Weaknesses in this planning technique are evident. Its basis is 
purely empirical and  is,  therefore, tied to  an existing specific 
system  structure. Thus  the method fails even  for  such small 
configuration changes as  tape  speed  or  the  number of regions, 
and reliable comparison of system  alternatives  becomes impos- 
sible. Another  grave  weakness is the impossibility of giving suf- 
ficient detailed specifications of jobs  such as are  required  for 
estimating time requirements.  Figure 1 illustrates planning hori- 
zons  that  a large computer installation has to  observe  to provide 
adequate facilities in a growing business. Ideally,  the  basic  system 
structure should be specified three  to  four  years  before installa- 
tion. Figure 2 indicates  the  growth in uncertainty of job composi- 
tion as  one projects  current knowledge into  the  future.  Exper- 
ience  teaches  us  that  curves A and B illustrate  the  future effect 
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Figure 2 Forecast of work load composition 

YEARS + 

of estimated work loads based on job specifications whereas  the 
bulk of the actual work load consists of presently unknown jobs 
(curve C). 

The planning model discussed in this  paper  must of necessity  be 
a relatively crude  macromodel so that  its  predictive value will 
be useful approximately five years in advance (as shown by 
curves A, B, and C in Figure 2). The model does  not  require  a 
detailed description of individual jobs,  rather it uses a general 
description of work load. Furthermore,  the model has  a  theo- 
retical  basis  that gives it an explanatory  nature  that  has  general 
validity beyond a specific existing configuration. Of course,  such 
a  theoretical model must  be  tested within the range of experience 
before it can be accepted as  the basis for planning. 

A brief introduction to the  theoretical model and its validation 
are necessary  background for an  understanding of the planning 
model. Use of the planning model for  short- and long-range 
planning exemplify the  broad  scope of forecasting possibilities. 
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proached in the  real  system,  and  appropriate  corrections  must be 
applied when comparing the  two  systems. 

Consider first some relationships within the simplified theoretical 
system. By the preceding assumptions,  the  processes in the  sys- 
tem are determined within the limits of stochastic variation. In 
fact,  the  processes could be simulated by taking samples of pro- 
cessing times and I/O times,  thereby fully determining the mean 
productivity of the CPU. (This  quantity plays a key role in our 
planning calculations.) A busy  period a for  the CPU terminates if 
the CPU is unable to find another region for which I/O operations 
have  been  completed. The busy period is followed by a waiting 
period  w. Using these definitions, we now define the mean pro- 
ductivity p of the CPU as 

p+= 

Note  that only mean values of the variables enter  the mean 
productivity definition. Gaver computed mean productivity 
without recourse  to simulation by the complex application of 
probability theory. He presented his results  for  different  types 
of probability distributions of compute  times  and I/O times per 
segment. 

- 
a 

a f w  

If we  designate  the mean values of the CPU and I/O time per 
segment by random variables G and p, respectively, we  may de- 
fine mean  computing  intensity as  the ratio of the CPU time per 
segment to  the I/O time per  segment 

Computing intensity is not  a normalized ratio, and it may exceed 
the  value of 1 .O. Assuming exponential probability distributions, 
CPU productivity depends only on the configuration parameters 
r and k and the mean computing intensity as follows: 

P = s(Xlr ,  k )  (1) 

Gaver’s  research  does  not yield the  function g in explicit form. 
We obtained it by recursive  computation. For  the  case of expo- 
nential distributions,  Figure 4 exhibits several productivity 
curves based on  tables published by Gaver.  Not surprisingly, 
productivity increases monotonically with computing intensity 
as well as with the  number of storage regions. Given  Equation 1, 
we  may easily write  the mean productivity per region 

as well as the mean channel productivity 

q= 5 
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Figure 4 Theoretical  productivity curves 
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corrected Since in practice the work load buffer is not infinite, nonavail- 
mean CPU ability of work causes idle time  for  the regions. (This idle time 

productivity should not  be confused with that  caused by nonavailability of the 
CPU.) For this  reason,  the nominal number of regions r in the 
theoretical model should be  replaced by the mean effective num- 
ber of regions i,. Furthermore,  realistic I/O processes may re- 
quire  several  channels  rather  than  one,  and  these may be de- 
pendent  on  each  other or interfere with each  other. If we wish 
to  describe  the much more complex reality by an equivalent 
single-channel model, we must  increase the  true I/O times by a 
suitable  correction  factor y. Consequently,  we  must  replace  the 
mean computing  intensity h of the theoretical model by the effec- 
tive  computing  intensity yh. We  thus  obtain  the following version 
of the  corrected mean productivity model: 

P = g (yhl r,, k )  (2) 

Our planning technique is based  upon  the  corrected mean CPU 
productivity model. For validation of this model, as well as 
estimation of the  two  correction  factors,  we  must  proceed 
empirically. 

Model validation 

Data for validation of the model were  obtained by measurement 
and  observation of the existing System/360 Model 65 for  one 
16-hour period. To obtain confidence in the model, it is necessary 
to  observe wide excursions of the variables  concerned. For this 
reason,  we  measured  or  estimated  the  computing  intensity, 
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effective number of regions, and CPU productivity  for relatively 
short  time  segments. The following direct  measurements  were 
made: 

Measurements of region occupancy  based  on  start  and  stop 

Types of jobs 
CPU productivity (including system  tasks) by time segments 

times  by program step 

CPU time by program step 

Additionally,  we  estimated or computed do times of the various 
categories of I/O devices (grouped by channel  and  based on data 
volume per  step)  since I/O related  quantities  were  not  directly 
measurable. 

These measurements  and  estimates  were used to perform three 
computations  for time blocks of varying length: 

Allocated  portions of CPU and I/O times by program segments 
(Inaccuracies  were  caused  by the fact  that program segments 

CPU time of system  tasks by subtracting  estimated CPU time I I cross  the  boundaries of time blocks.) 
~ 

I 
I/O time of system  tasks 

Some  results of the  direct  measurements of CPU productivity  and 
storage-region occupancy are shown in Figure 5.  Table 1 pre- 
sents a preliminary averaging of the  data in Figure 5 .  The model 
showed  that CPU productivity was not  very high. We  also cal- 
culated  an  average  storage region occupancy of 2.6 (out of four 
storage regions excluding storage  occupied by system  tasks). 
Since in our  experimental configuration the  number of channels 
exceeded  four,  the validity test of the model is, therefore,  based 
on  the  assumption k 2 Y. 

I 

Measurements  for individual program segments (in the  sense of 
the  Gaver theory) could not be obtained  because  a program step 
is normally much longer than a segment. Therefore, in place of 
the CPU time per  segment,  we  consider the CPU time  per  step 
divided by  the  number of I/O processes. This quantity x could be 
estimated from the histogram of the  random variable x as  a 
function of absolute  frequency in Figure 6. Here we see  that x is 
approximately exponentially distributed.  Figure 7 exhibits the 
results of a similar test on a logarithmic scale.  Comparing  the 
straight line with the  spread of experimental  points, we conclude 
that the assumption of exponential  distributions (straight line on 
the logarithmic scale) is approximately satisfied. 

I 
L We are mainly interested in relationships among productivity, 

computing intensity,  and effective number of regions. In  order  to 
generate a larger number of points for  comparisons of empirical 
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Figure 5 Detail from direct measurements 
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Table 1 Results of direct measurement 

Direct  measurement Time  (hours) 

CPU active 
CPU wait 
Other 
Total 

3.3434 
7.3366 
6.1846 

16.8646 

Indirect  measurement  Computed results 

Productivity 
(of regions 1 to 4) 

Productivity 
(including system tasks) 

Average regions  occupied 
(in a total of 4) 

25.6% 

3 1 . 3 %  

2.6% 

and theoretical  relationships,  we  start by dividing the measure- 
ment period into 30-minute blocks. Each block is further  sub- 
divided into  “homogeneous” blocks. (We call a time block homo- 
geneous if the  number of occupied regions does  not  vary within 
the block.) Part of the list of homogeneous blocks is shown in 
Table 2. The number of occupied regions per block is exclusive 
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Figure 6 Histogram of CPU time  intervals per step 
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Figure 7 Test for  exponential  distribution 
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by the  inaccuracies in allocating program steps  to  adjacent time 
blocks. 

Recall that we treat  the  system  tasks as an additional storage re- 
gion and  that  (as shown in Figure 8) a single region is responsible 
for about 7.5 percent of productivity. If our concept is correct, 
then  the mean horizontal  distance of the empirical points in Fig- 
ure 10 from the line passing through the origin with siope of one 
should be about 7.5 percent. Two additional parallel lines are 
drawn  at  distances of 7.5 and 15 percent. The line in the  center 
corresponds well to  a regression line, and it appears  that  the hori- 
zontal  distance hardly ever  exceeds 15 percent. Thus,  the treat- 
ment of the  system  tasks as an additional region fits  well into  the 
total  picture of the model. 

Thus we may say  that  the  theoretical model (after  correcting  the 
computing intensity) yields an  approximation of the  actual pro- 
cesses. Before the  corrected model may be used as  the basis 
for planning, however, it  may be  desirable to  test  the model for 
longer time intervals, such as on a monthly basis,  because plan- 
ning decisions are usually based on monthly (or even  annual) 
work loads. Accordingly, we should be interested in the mean 
productivity over  these longer time intervals. If measurements 
for longer time intervals are made, we expect  that  the  dispersion 
of the  observations  about  the mean value of productivity will be 
considerably  reduced. The property of reduced  variance is  highly 
desirable  for planning purposes. 

Aside from applications to planning, further  development and 
refinement of the model itself are of interest  because  the  degree 
of correspondence between reality and model can  be improved. 
The fact  that  the  correlation  factor  for I/O times is almost  four 
indicates  that  certain  parts of the phenomenon are unexplained. 
Of course, this is not  necessarily  bad.  In  fact,  the  strength of 
cybernetic models rests in the  fact  that  a relatively simple model 
structure is combined with a  “variety  generator.”  This means 
that  the unexplained part of the phenomenon causing this high 
variety is summed up by certain  correction  factors  and  their 
probability distributions. The strength of cybernetic model build- 
ing rests on this  approach.2 

Nevertheless, it seems worthwhile to ask whether  the  degree of 
explanation afforded by our planning model could not  be in- 
creased with moderate effort. The fact  that effective r/o times are 
substantially greater than actual I/O times might be explained in 
various ways. Recall that  the  theoretical model views the  pro- 
cesses in each region of main storage as a chain of alternating 
I/O phases and compute  phases with intervening wait times. Also 
a key simplifying assumption of the  theoretical model is that  each 
I/O phase  that  intervenes  between  two  compute  phases  requires 
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only  a  single channel. As soon  as  the  single-channel  operation 
has  been  completed,  the region is ready  for  computing. In reality, 
several  channel  operations may be  required in succession  or in 
parallel. This  means  that  queueing  for  channels  occurs  more 
frequently  than  the  theoretical model  allows,  even if the  number 
of channels  exceeds  the  number of  regions. Thus  the single I/O 
phase  between  two  compute  phases in the  theoretical  model is 
replaced  by  a  chain of input/output  phases  with  intervening 
queuing  for  channels. 

If we  insist  on a  single-channel  model,  the  chain of I/O phases 
and  queuing  times  must  be  reinterpreted as  the single r/o phase 
of an  equivalent  one-channel model. I t  is now  clear  that this 
artificial I/O time of the  single-channel  model is substantially 
greater  than  the  sum of the  actual  productive I/O times.  This  may 
well explain the large  correction  factor of almost  four. 

These  considerations  thus  point  the  way  to refining the  model. 
First, it is necessary  to  observe  the  number of channels  actually 
used  during  an I/O phase  that  intervenes  between  two  compute 
phases  and  to  study  the  probability  distribution of the  numbers of 
channels.  Since  channels  are  normally  assigned  to  categories of 
I/O devices in a  noninterchangeable  manner,  assignments would 
have  to  be  made by  category  of  channel. 

Simulation  based  on a  refined  planning  model  would proceed  as 
follows. For  each I/O phase,  take a sample of the  channels  used 
by category.  Each  selected  channel  is  supplemented  with a 
sample of channel  time. The simulation  then  proceeds  to imple- 
ment  the  program  and  determine  the  intervening  queuing  times. 
Productivity  curves  similar  to  those of the theoretical  model 
could  be  constructed by  simulation.  Correspondence  with  reality 
can  then  be  tested. Refining the  model  this  way  may  be  sub- 
stantially  more  detailed  than  the  theoretical  model,  but  sub- 
stantially  less  detailed  than  a  simulation of actual  computer  pro- 
grams.  Refinement  can  also  improve  bottle-neck  problems  that 
may  exist  among  the  channels  and  that  cannot  be  handled by the 
theoretical  model. 

The  existence of actual  bottle-necks, in this  sense,  may  be an- 
other  explanation  for long  queuing  times  for  channels  and  the 
resulting  extension  of I/O phases.  Implementation of these  ideas 
of more refined  model construction  must  be  the  subject of further 
research. 

d 

, 
some To maintain  the validity of the  basic  model  structure of Equation 

practical 2, it  is  necessary  to  detect significant changes of parameter  values 
cenriderations (especially y )  by continuous  measurement  and  control.  Recent 1 

developments in hardware  and  software  monitors  reduce  the 
required  experimental  work  load as  compared  to  the  present 
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The number of channels k in the  system is known, the effective 
number of regions 7 can be found by console  inquires or by an 
accounting  routine. A hardware  or  software monitor may be 
used for  direct  measurement of CPU busy time, CPU wait time, 
and  channel  busy times during the period of observation.  Mean 
productivity p is estimated by the  ratio of CPU busy time to the 
sum of busy time and wait time. Mean computing intensity 
may be estimated  to  a sufficient degree of approximation by the 
ratio of CPU busy time to  the sum of channel  busy times. (Rigor- 
ously speaking, this constitutes something of a departure from 
Gaver’s definition of h, which results in a slightly different cor- 
rection  factor y). At this stage,  the  correction  factor y may be 
determined by solving Equation 2. 

A breakdown of total do time  (channel time) by type of do device 
(tape,  disk,  drum) is most helpful when changes in peripheral 
equipment are contemplated.  This  breakdown may be  obtained 
by measurement,  such as the  output of the  System  Management 
Facilities (SMF) of os/360. 

Short-range system planning 

We now describe  the use of the fully validated model for  near- 
term planning of about  one  year.  First we need the following 
hours-per-month work load estimates  for  each  system  alternative 
under  consideration: 

~l productive CPU time 
u sum of productive do times 

B ’ ,  maximum operating time of system 

From  these  quantities, we may deduce  the following estimate of 
mean computing intensity: 

x = -  

Obviously,  the given work load can be  accommodated by the 
system if and only if the minimum CPU productivity  can be ex- 
pressed  as 

- Ll 

U 

Similarly, the  required minimum I/O productivity  per  channel is 
given by 

By contrast,  the maximum obtainable  productivity of the con- 
figuration in question is obtained from the  corrected mean CPU 
productivity given by Equation 2 
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Table 5 Maximal system throughput 

System Hardware 
alternative CPU r re k 110 cost udu h p TIT, 

0 360-65 6 5 5 A 1 A,, P,, 1 
System 

Rather  than minimize system  cost  for a given work  load, as in 
Table 4, we now choose  to maximize system  throughput  for a 
given ceiling of hardware  cost.  System  throughput is defined as 
follows. Let W designate  the  system  elapsed time required  to 
process  the work load with parameters u and 21. Throughput T is 
defined relative to the  reference  system  (subscript  zero) by 

To 
the  Gaver productivity p is related  to W by 

P = W  
U 

so that 

Note  that computation of the  throughput  ratio  requires only the 
knowledge of the mix constant X, the CPU factor uo/u, and  the 
configuration parameters. No absolute  measures of work load 
enter  Equation 3. The new planning sheet  for  determination of 
the  throughput - maximal system (for a given ceiling of hardware 
cost) is shown  as  Table 5. Error bands of parameters are treated 
in accordance with the methodology of decision making under 
~ncertainty.~ 

For purposes of illustration, a throughput  comparison of four 
systems is given in Table 6. For simplicity, it has been assumed 
that all systems  have an identical I/O configuration and  job mix 
so that x varies  inversely with the CPU factor. 

Our methodology requires  frequent  evaluation of the  Gaver 
function  as given in Equation 2, wherein complex recursive  tech- 
niques are used to  arrive  at numerical values of the mean pro- 
ductivity p .  G. Diruf4 showed  that  the nonexplicit Gaver func- 
tion of Equation 1 is identical to  the following analytical rela- 
tionship, provided that CPU and I/O times per segment are c 
nentially distributed: 
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I System 

CPU factor (u,/u) 
k 
!l 
h 
P 
TI  To  

1 .oo 
6.00 
6.00 
0.79 
0.79 
1 .OO 

4.00 - 

I 1 .oo - 
10.00 12.00 
0.20 0.20 
0.45 0.5 1 
2.28 2.58 

I I 

n 
where b, = n a,  

i = l  

f o r l l i s r - k  

f o r r - k < i 5 r  
and u1 = 

A2 

6.00 
11.00 
12.00 
0.13 
0.35 
2.62 

Future research 



are:  they are tied to an existing system  structure;  necessary 
detail on individual jobs is not available on a long-range basis; d 
and  the  types of jobs  are subject  to  considerable  uncertainty. To 
improve this situation, we suggest a planning technique  for many I 
system  alternatives.  In  addition, this technique should require 
only relatively general information about  the work load at  the 
planning horizon. The basis for  the model is a probability-based 
macromodel of multiprogramming by Gaver. 

Since  system  productivity (CPU utilization) is of central  interest, 
our planning model has  been  conceived to forecast  productivity 
and throughput  for  numerous  system  alternatives.  Certain  correc- 
tions and  further  developments of the  theoretical model are 
required to validate the model for planning applications.  An ini- 
tial test of validity and modifications of the planning model de- 
scribed are based on experiments using Svstem/3hO Model 65. 

I 

casting of demand for  data  processing  services. A productivity 
model is supplemented by simulation models of the buffering ef- 
fect of multiprocessing. Modeling of supervisory  overhead  awaits 
further  research. 
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