
Dynamic  management  of  free  storage  in  a  time-sharing  oper- 
ating  system  was  studied  empirically by  the  techniques  of  moni- 
toring,  emulation,  and  on-line  experimentation. 

A new  algorithm,  based on observed  usage  patterns of diferent 
block sizes,  was  implemented  and  evaluated.  On-line  experiments 
demonstrated  that  supervisor  time  spent  in  free-storage  manage- 
ment  was  reduced b y  seven  or  eight  to  one. 

Analysis of free-storage algorithms 
by 6. H. Margolin, R. P. Parmelee,  and M. Schatzoff 

Central  to  successful  operation of a computer  system  based 
heavily on  reentrant  (or pure) procedures is reliable and efficient 
dynamic management of free  storage.  Such  systems  must allo- 
cate,  use,  and  release  one  or  more blocks of free  storage  for  each 
task or system  operation, e.g., each I/O task or each  request for 
supervisor  services. For any list-processing system,  such  as AED 
or LISP, efficient management of free  storage is a  fundamental 
problem. The consequence of errors in allocation and release is 
usually total collapse of the  system;  that of mismanagement is 
usually processor inefficiency or under-utilization of the  free- 
storage pool. The  processor inefficiency resulting from a poor 
or ill-chosen management algorithm is usually tolerated,  even 
though it is  high relative to  that of other  system  functions;  under- 
utilization of free  storage is less  tolerable, as “lock-up” can be 
encountered.  This  circumstance  must  be  averted by task  deferral 
or “garbage collection” procedures,  both of which are costly  to 
system  performance. 

To date,  discussions of free-storage management have  treated 
either: ( 1 )  a specific algorithm, which is developed  and  supported 
post-hoc, e.g., on  the basis of a simulation study,  or (2) a general 
algorithm presented  without much information about its param- 

NO. 4 . 1971 FREE-STORAGE ALGORITHMS 283 



eters.  Thus ROSS’, in describing what is perhaps  the  most widely 
applicable and  general  approach  to  free-storage  management, 
indicates  the  nature of the tools  and  techniques  for  very  detailed 
programmer  control of the management algorithm; the question 
of how to  determine which algorithm to  use is not  considered. An 
excellent  review  and  discussion of free-storage management is 
given by Knuth.2  A  recent  paper by Campbell proposes  a  strategy 
based on the solution of the optimal-stopping problem on a Mark- 
ov chain of fixed length,  and  shows  that  this  strategy is superior 
to  the first-fit method  under  certain conditions.3 

The context in which the  present  free-storage management re- 
search  was  conducted is CP-67, a virtual machine control  pro- 
gram, which provides  for  each logged-in user  the  environment 
of a System/360 c ~ m p u t e r . ~  Broadly speaking, our use of CP-67 
can  be viewed as a large general-purpose time-sharing system. 
It was in operation  24  hours a day, with 20  to 40 users logged-in 
during prime shift throughout the observation period. The  user 
load is mainly interactive programming, e.g., editing, compiling, 
loading, and  executing;  however,  batch computing does play an 
important  part in the load on the system. 

The general goal of the  project was to explore  techniques of 
system  analysis, modeling, and redesign. The specific goal was 
not only to  produce  a  free-storage management algorithm that 
would improve  upon  the existing system,  but also to  predict 
certain  aspects of the improvement  and  then  to  validate  and 
further quantify the  improvement resulting from the new algo- 
rithm. The approach  adopted  was  entirely empirical. The initial 
phase of the effort consisted of the monitoring, collecting, and 
reducing of trace  data pertaining to  the allocation and  release of 
blocks of free  storage. The second  phase  consisted of off-line 
development  of,  and  experimentation  with,  various algorithms. 
The algorithm ultimately developed5  depends heavily on  the ob- 
served  statistical  properties of the  data collected in phase  one. 
Final validation and quantification of the  improvement was 
effected through an on-line experiment with the  two algorithms 
competing over  an eight-day period.  This methodological ap- 
proach is general;  free-storage management in the particular 
system is merely one of a class of problems to which it can  be 
applied. 

Background 

free CP-67 has  three  separate pools of free  storage: 
storage The  page space: 4K-byte blocks of the  system’s  address  space, 

made available via the system’s relocation  hardware  on a dynam- 
ic basis. 
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svc linkage  space: 24-byte blocks of storage,  used  by the system 
for call linkages between its internal  routines  and modules. 

Free storage: a  pool of address  space  made up of separate, 
though possibly contiguous,  4  K-byte blocks. It is from  this pool 
that  the  control  program  obtains  storage  for describing and  con- 
trolling all system  tasks.  This pool can  be  extended  (but not re- 
tracted)  at  the  expense of page space. 

Programs  acquire  storage blocks via the  subroutine FREE (and 
return  them  via FRET) in integer multiples of double-words  (8 
bytes).  Each  such block is treated  distinctly; if n double-words 
are acquired, n double-words are returned in whole,  not in part. 
Further,  each such block represents  a specific request. Not only 
does  a  requirement  for  exactly  this block size  exist,  but  when  the 
requirement  has  passed, the block is returned. Thus,  there is 
neither splitting nor recirculating of the  blocks by the  requesting 
routine. 

In its initial implementation,  the FREElFRET algorithm Was  Very 
similar to one  described  by Knuth.2 In brief, each block of free 
storage  is  threaded on a chain ordered by increasing addresses. 
A  request is satisfied by the first exact fit found; if none is found, 
the first larger block is “split.” On  return,  the block is rechained 
and  “melded” with adjacent  free blocks (if any). An unpleasant 
property of this procedure is that  the  depth of search as a result 
of a FREE (or FRET) is a  random  variable  whose  expectation  and 
variance may increase  to  unacceptable levels during periods of 
heavy usage. Depending  upon  the  load,  this  system managed a 
space of from 48  K to 100 K bytes during the period of observa- 
tlon, or from 7 to  14  percent of the  total memory available to  both 
free  storage  and page space. The range of requested  sizes varied 
from  1 to 193 double-words;  the time between  request  and re- 
lease  from milleseconds to hours. The FREE~FRET routine took 
between 2 and 45  percent of total  control  program (CP) time 
during 15-minute periods, with an  average of 14.6 percent. (CP 
time is that  time during which the CPU is in supervisor  state.) 

The essence of the  storage management problem is the desire  to 
minimize simultaneously storage  space  wastage  and  control 
program overhead  time, which are frequently  diametric. One 
might hope to  construct a crude  relationship  that would equate 
x wasted  double-words with y units of wasted  time (given the 
number of active  users  and the size of storage),  but  no  work  has 
been  done on this. 

Since it is unlikely that  one  can  reduce  both  space  and  time in- 
efficiencies simultaneously,  and  since  no  function equating space 
to time existed,  the  project goal set was to develop an algorithm 
to substantially  reduce time inefficiency yet maintain roughly the 
same  space  requirements as  the original algorithm. 
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Data gathering 

motivation The first step  taken in the  study was to  monitor  the  real  demands 
on  the FREE~FRET routine. These  data were crucial for  two rea- 
sons.  First,  the  data might possess striking statistical  properties 
that would suggest a  desirable  algorithm;  they did. Second, initial 
comparisons of any  new algorithm with the original algorithm 
were to  be made off-line to prevent  system  degradation.  One 
standard  approach to this type of comparison  is to simulate  the 
process.  However,  this suffers from  the  need to specify statistical 
models for  the  demands.  Other  researchers  who  have  taken  this 
approach  have  assumed relatively simple models for  the de- 
mands,  such as independence of successive  requests, well- 
behaved  distributions of request  sizes  and  request  durations, or 
independence of request size and  request  duration. It was impor- 
tant  to  determine if these simplifying assumptions  were  appro- 
priate  for  our  free  storage  problem;  they  were not. 

An alternative to simulation is to capture  free  storage  trace  data 
from the running system. The  sequence of varying requests  and 
their  subsequent  releases  can  then  be  used as input to “drive” a 
program that  duplicates  the original algorithm or a specified 
variation of it. We use  the  term  “emulation”  to  refer  to  this  alter- 
native to simulation. 

During  emulation,  measurements  were  made to compare algo- 
rithms. The off-line emulation suggested that  the algorithm ulti- 
mately developed would greatly  improve  upon  the  speed of the 
original algorithm. This was later validated by an on-line eight- 
day  experiment. 

implementation Since  storage management is centralized in the FREE/FRET rou- 
tine, it was  a simple matter  to  trace  each  transaction made. A 
minor change was made in CP-67, which enabled  the  system  op- 
erator  to  cause  the  capture on tape of the following data de- 
scribing each call to FREE/FRET: 

Type of call (FREE or FRET) 
Time of day 
Location of call 
Size of block handled 
Location of block handled 

In addition,  each  occurrence of an  extension of free  storage, Le., 
the acquisition of 4 K  bytes  from page space,  was  recorded. The 
data  capture program used two 4096-byte buffers, and, in the 
interest of minimizing system  slow-down,  made  no  attempt  to 
detect  or  prevent buffer overrun.  Rather,  the  records  were num- 
bered serially, and during subsequent  data  reduction, a check 
was made  for  lost  records. 
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Table 1 Block size request patterns 

Cumulative 
Order  Size  Frequency  frequency  Proportion 

1  4 121 106 121106 0.248 
2 5 106780 227886 0.467 
3 29 75637 303523 0.623 
4  1 54453 357976 0.734 
5 8 54331 4  I2307 0.846 
6 10 19938 432245 0.887 
7  3 18074 4503 19 0.924 
8 9 10018 460337 0.944 
9 18 91 88 469525 0.963 

10 17 4548 474073 0.972 
11  7 2530 476603 0.978 
12 23 1530 478133 0.981 
13 6 1486 479619 0.984 
14 2 1285 480904 0.986 
15 12 979 481883 0.988 
16 21 918 482801 0.990 
17 1 1  657 483458 0.992 
18 104 400 483858 0.993 
19 146 386 484244 0.993 
20 27 3 10 484554 0.994 

71 77 1 487504 1.000 
72 84 1 487505 1 .ooo 
73 98 1 487506 1 .ooo 
74 103 1 487507 1 .ooo 
75 109 1 487408 1 .ooo 
76 112 1 487509 1 .ooo 
77 124 1 4875 10 1 .ooo 
78 193 1 4875 1 1 1.000 

System  slow-down, although discernible,  was within acceptable 
limits. A full reel of data (4800 buffers recording 960,000 calls 
to FREEIFRET) was typically obtained in about 2 hours,  depending 
upon  the level of activity. The only difficulty in acquiring a full 
trace of FREE~FRET calls was  that  those  made during system 
start-up,  before  the  trace program could be  activated,  were  not 
recorded. It was assumed  that  after  the first thirty  minutes of 
emulated system  operation,  this  loss was negligible. 

The raw data  provided a great  deal of relevant information for data reductlon 
designing an efficient free-storage management algorithm. Es- 
sentially, the  data describe  a two-dimensional representation of 
the  demands upon free  storage in terms of storage  space  and  stor- 
age time. The utility of such data derives in large measure  from 
the  marked demand patterns  they  depict  and  the  strong  repro- 
ducibility of these  patterns  from  day  to  day. 

Perhaps  the simplest summary of the  data is provided by a  tabula- size 
tion of the  number of requests  for  each block size, as shown in distribution 
Table 1. These  data were  gathered  on  a  particular  day in the ap- 
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Table 2 Cumulative proportions of requests 

Block Days 
sizes 

1 2 3 4 

4 
5 

29 
1 
8 

10 
3 
9 

18 
17 
7 

23 
6 
2 

12 

0.248 
0.467 
0.623 
0.734 
0.846 
0.887 
0.924 
0.944 
0.963 
0.972 
0.978 
0.98 1 
0.984 
0.986 
0.988 

0.258 
0.464 
0.673 
0.744 
0.851 
0.886 
0.9 19 
0.940 
0.953 
0.960 
0.975 
0.977 
0.984 
0.986 
0.987 

0.471 
0.753 
0.782 
0.822 
0.893 
0.907 
0.933 
0.944 
0.949 
0.955 
0.965 
0.966 
0.969 
0.970 
0.972 

0.300 
0.540 
0.650 
0.724 
0.799 
0.836 
0.877 
0.889 
0.902 
0.910 
0.974 
0.975 
0.986 
0.988 
0.989 

proximately 2.5-hour period from 9 a.m. to 11:30 a.m. The re- 
quest  sizes  are  ordered by decreasing frequency of requests, 
and reveal that  a small number of sizes  account for a large propor- 
tion of all requests. Thus, nearly 90  percent of all free  storage 
requests in the 2.5-hour interval  were  accounted  for by the half 
dozen sizes: 4, 5 ,  29, 1, 8, and 10. Addition of the  next  ten most 
frequently requested block sizes would bring this up to 99 per- 
cent.  Table 2, which contains similar data  for  each of four dif- 
ferent  days,  shows  that  there  is a high degree of reproducibility. 
Although these  data  have been sampled from a single installation, 
the  nature of the  system  tasks giving rise to frequently requested 
block sizes suggests that similar phenomena  occur in other CP-67 
installations. For example, blocks of sizes 4 and 5 are associated 
with user-initiated I/O, whereas blocks of size 29 are  associated 
with paging I/O. Thus  an efficient algorithm for CP-67 installations 
in general might be  one  that would service  the  above frequently 
requested sizes very efficiently in time and  space without sacri- 
ficing reasonably efficient handling of the less frequently re- 
quested  sizes. 

demand In addition to  the relative frequencies of requests by block size, 
duration it is important also to know the  storage time requirements of re- 

quests, i.e., how long various block sizes  are used before  they  are 
returned.  This information is presented in Table 3,  which con- 
tains  the  frequency distributions of the  durations  that  each block 
size is retained for  data  taken  on  day 4. 

Most  free-storage  requests  are  short. For example, 94  percent 
of all blocks  requested are returned in less  than five seconds. 
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Figure 1 Cumulative  distributions of numbers of blocks extant  for  selected block sizes 1 

NUMBER OF BLOCKS EXTANT 

tion of the  number of blocks extant  for  that  size is simply obtained 
by a frequency  count of the number of times the  counter was 
equal  to  each of the integers 1, 2, * . a .  For example,  Figure 1 
shows the cumulative  distributions of the numbers  extant  for 
sizes 1, 2, 3,  4, 5 ,  17, and 29. Such  distributions are useful for 
estimating the probabilities that  the  number of blocks extant 
for given sizes will exceed  some specified values. It is interesting 
to  note  that  some  sizes with relatively high frequencies  tend  to 
have only small numbers of requests  extant  at any time;  and,  con- 
versely,  some  sizes with relatively low frequencies  tend  to  have 
moderate  numbers of requests  extant  at  any time. Examples of 
these  phenomena are sizes 29 and 17, respectively. 

blocks While data  such as  that  presented in Figure 1 depict  the variabil- 
extant by ity of the number of blocks extant  for individual sizes,  they  do  not 
size and provide  any information concerning  the  joint variation of the 

time number of blocks  extant  for different sizes.  Such information 
may be  obtained by time-sampling the  counters of the numbers 
extant  for  the  various  sizes.  Table 4 shows a small portion of 
such data, recorded at ten-second  intervals.  Because of the  tran- 
sient  nature of the  system, in addition to information describing 
conditions  at  the  end of the ten-second  intervals, it is desirable 
to know something about  activity during the  intervals. One useful 
indication of such  activity is provided by Table 5 ,  which shows 
the maximum number of blocks extant  for  each of the 14 most 
frequently  requested  sizes during successive  ten-second  inter- 
vals. The data in Table 5 were  generated  from  the  same raw data 
used to  generate  the data in Table 4. The analysis of data such  as 
in Table 5 was central  to determining efficient free-storage man- 
agement  techniques. 
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Emulation studies 

The frequency  distributions  obtained during the data-gathering 
phase  indicated  that simplifying statistical  assumptions,  such as 
exponentially distributed  duration  times for  the storage  requests 
or independence of duration  and size of the  request, would not 
be  tenable. This  aspect of the problem made simulation an un- 
attractive  investigatory  tool;  there would be  no simple way to 
characterize and  then  alter  the  demands  on  free  storage  and still 
be  sure of maintaining a  realistic  study.  Instead, as indicated 
previously,  we  chose to monitor  the  real  demands  upon  free 
storage  and  use  the  recorded  demands as input  to a program 
that emulated and  evaluated  two broad classes of algorithms. (We 
continue to use the  term emulation to refer to  the use of real 
data  from  a running system as input to a program that duplicates 
a subset of the running system  or specified variations of it.) 

algorithm The first  class included the original FREElFRET algorithm and 
variations variations of it,  as follows: 

Specification of a constant  to  be used  as a rounding-up factor 
in satisfying FREE calls, as opposed to exactly fitting the  re- 
quest  (the  constant  equal  to zero). This differs somewhat  from 
rounding up  storage  requests to, say,  the  nearest multiple of a 
given quantum of storage, so as  to  reduce  the  number of dif- 
ferent  sizes  requested. (We will comment  on  this  latter  idea 
later.) 
Elimination of  melding or permission to meld across page 
boundaries on extended pages. 
Specification of the  number of pages to  be allocated to FREE 
storage  at  system  start-up time. 

pre-allocation The second  class of algorithms studied by emulation  was  one in 
which areas of free  storage are pre-allocated for  particular sizes. 
Sizes that  are  not pre-allocated are handled by a version of the 
original algorithm, as  are pre-allocated sizes  that overflow their 
assigned areas. The advantage of pre-allocation is that  the hand- 
ful of sizes  that  account  for the vast majority of all free-storage 
requests  can  be handled quickly without a list  search. One need 
only maintain a separate single-chained list of available blocks 
(a push-down stack)  for  each  pre-allocated size. A request  for a 
pre-allocated  size is satisfied by the top  element in the  appropri- 
ate  list. If none is available, it is serviced  from  the regular free- 
storage chain servicing nonallocated  sizes.  When a block from a 
pre-allocated area is no longer needed, it is returned to  the top of 
the  appropriate pre-allocation chain. Thus, by handling the  top 5 
or 10 sizes in separate  chains, 90 to 95 percent of all requests  are 
serviced in one  step  each. 

One  purpose of the  emulator was to provide  some indication of 
the trade-offs between  time  and  space for  these  two  classes of 
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algorithms. The space  needed by a particular algorithm may be 
computed  exactly  for a given stream of input  data. The transla- 
tion from emulation time to real time, however, is quite compli- 
cated,  since  the  emulator was written in FORTRAN, whereas  any 
actual algorithm would be  written in System/360  assembler 
language. Fortunately,  the magnitude of the  differences in list 
search lengths (depths)  for  the  two  classes of algorithms obviated 
the  need  for  precise timing comparisons. 

After  every block of 2000 transactions (FREE’S plus FRET’S), the data 
emulation program provided the following data: reduction 

Frequency  distribution,  mean,  and  standard  deviation of 
depth of FREE search by size  and  for all sizes combined 
Frequency  distribution,  mean,  and  standard  deviation of 
depth of FRET search by size  and  for all sizes combined 
Meld counts,  number of unsuccessful  melds,  number of top 
only melds, number of bottom only melds, number of both 
top  and  bottom melds, and  number of melds across page 
boundaries 
Frequency  distribution of blocks in use, by size 
Number of double-words in use 
Frequency  distribution of available blocks, by size,  together 

Number of available  blocks 
Percentage utilization of available space 

It should be  noted  that in computing the means  and  standard 
deviations of depth of search,  both FREE’S and FRET’S of a size 
in a pre-allocated area  were  considered  equivalent to a  search 
of depth  one.  Thus, in terms of depth of search  for FREE (or 
FRET), the optimally efficient algorithm would have  an  average 
search  depth of one. 

For algorithms of the second  class,  data  taken  on a typical  day 
were used to provide specification of the  pre-allocated  sizes  and 
of the number of double-words to be allocated  for  these sizes. 
Thus, when five sizes  were to  be pre-allocated,  the  top five 
most  frequently  requested  sizes  were  determined  from  the  fre- 
quency  distribution by size (e.g., Table 1); then,  the  number of 
blocks to  be  allocated by size  was  determined  as  a specified 
percentage  point,  say  the  50-percent  point, of the  cumulative 
distribution of the  number  extant  by  size. For example, in Figure 
1, the 50-percent  points of the distribution of block sizes  3  and 5 
are 27 and 57, respectively.  (This prespecification of sizes  and 
percentages plus the entirely  static  nature of the algorithms of 
this  class  appeared to  be  the major drawback of the pre-allocation 
scheme.) 

The results of only  one set of emulation experiments are re- emulation 
ported. Five different algorithms were  involved,  one from the results 

with mean and standard  deviation 
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Table 6 Average   depths  of FREE a n d  FRET searches  during  blocks 3601 - 3 8 0 0 ,   a n d  
number of p a g e s   u s e d   a f t e r  3800 blocks 

D aY 

Algorithms 1 2  3 4 5 

19.14 
A 13.45 

12 
1.23 

B 1.04 
12 

1.18 
C 1.04 

12 
1.01 

D 1 .oo 
12 

1.01 
1 .oo E 

12 

24.61 
2  1.23 
12 
4.95 
4.12 

12 
2.87 
2.47 

13 
1.34 
1.26 

14 
1.24 
1.18 

14 

31.64 
22.21 
15 
9.88 
7.76 

15 
8.6 1 
3.98 

16 
2.48 
2.25 

17 
1.38 
1.27 

16 

27.35 
20.92 
12 
4.44 
3.35 

13 
3.42 
2.19 

15 
1.10 
I .04 

15 
1.05 
1.04 

15 

48.28 
40.69 
17 
13.53 
10.36 
17 
5.02 
3.90 

18 
2.63 
1.74 

18 
2.64 
1.47 

18 

Sizes allocated according to distribution of numbers of blocks extant observed on Day 1 

A - Control 
Algorithms 

B - 50% points for top 5 sizes 
C-95% points for top 5 sizes 
D-95% points for top 15 sizes 
E-95%points for top 15 sizes, with grouping 

first class  and  four  from the second. The algorithm chosen from 
the first  class  was the  exact  replica of the original algorithm of 
CP-67 and was labeled CONTROL. Algorithms 2 and 3 pre- 
allocated at  the 50-percent  and  95-percent  levels,  respectively, 
for  the five most  frequently  requested  sizes. Algorithm 4 pre- 
allocated  at the 95-percent level for  the  top 15 sizes,  whereas 
algorithm 5 partitioned  these 15 sizes  into  subgroups by rounding 
up  certain of the request  sizes. These pre-allocated  sizes  and 
percentiles  were  determined  from  one  day’s  tape of data, labeled 
Day 1. The five algorithms were  then  run  against Day 1 and  four 
other day’s tapes, labeled Day 2 through Day 5. The responses 
measured  were  the  average  depth of search for  the FREE and  the 
FRET subroutines  in  consecutive  intervals of 200 blocks, plus 
the number of pages used in the  free-storage  area. Table 6 de- 
picts  the  results of the twenty-five emulation experiments. For 
purposes of comparison,  the  responses  were  recorded  for  blocks 
3601 -3800 on each  tape,  since  the  shortest available tape  (ter- 
minated by a  system malfunction) contained only 3800 blocks. 
Measurements at this point should be free of any  transient  start- 
up effects and should provide a sizeable sample for  comparisons. 

The results of the  experiments  indicate  that increasing the  extent 
of the pre-allocation for  each size results in a marked  reduction 
in  depth of search  for  both FREE and FRET, at an initially small 
cost in the number of pages used in the  free-storage  area. For 

294 MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J 



example,  results  for algorithm 5 indicate  that  average  search 
depths  can be reduced by a  factor of twenty-to-one at  the  cost 
of only 2 or 3 additional pages. These observations led to  the 
design of a new algorithm, which has  been implemented in CP-67 
and  is  described  later in this  paper. 

Dynamic chains  and pooling studies 

The major  drawback to  the fixed allocation algorithms discussed 
is their  dependence  on  static pre-allocation. Each time the system 
starts  up, a chain of the  exact  same  number of blocks is set  up 
for  each of the  sizes to  be pre-allocated. A realistic  determination 
of the  number of blocks  needed in each  chain  requires  a sizeable 
amount of data  concerning the  current  state or degree of system 
usage. These algorithms cannot  adjust dynamically to  altered 
profiles of the installation’s daily requests for storage  nor,  for 
that  matter,  to  another installation’s profile. 

To eliminate the need  for  static pre-allocation in the algorithms 
of the second  class,  and  thereby to make them  more flexible, 
these algorithms were  altered so that  the  chains servicing the 
specially treated  request  sizes would grow dynamically as  the 
need  for  each  particular  size  increased. The special sizes would 
never overflow their chains since  the  chains would increase in 
length without limitation to  accommodate new requests. For ex- 
ample,  sizes 4, 5 ,  8, 10, and 29 might be  selected  for special 
handling; these  sizes would then  be  serviced with five separate 
growing chains. The remaining sizes would be  treated in accor- 
dance with the original CP-67 algorithm. 

This  new hybrid class of algorithms,  the  third  class,  has  the  prop- 
erty that  at any  time, T ,  the chain for a specially treated size is 
as long as the maximum number of blocks of that size that have 
been  extant up to time T since  the  most  recent  system  start-up. 
This  feature could ultimately cause a sizeable waste of storage 
space, which is the main trade-off in removing the static chain- 
length limitation. If this  waste  occurs  after  the  days’  peak of 
activity, it poses  less of a  problem,  since  time  can be afforded for 
“garbage collection.” The garbage collection procedures in the 
literature  tend to be  costly,  since  they  require much time- 
consuming bookkeeping and checking of addresses.  This  aspect 
was not  investigated; no specific garbage collection techniques 
other  than  that in the original CP-67 algorithm are discussed in 
this  paper. 

The concept of allocation of storage  space is easily quantified. 
Let f,(t) denote  the  number of blocks of size n extant  at time t ,  
let S represent  the  set of request  sizes  to  be handled dynamically 
in their own separate  chains,  and  let t = 0 be  the time of the most 
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recent system start-up. The allocation of space at time T ,  T > 0, 
by the special chains is: 

where maxf, (t) is  the largest number of blocks of size n extant 

from the last  system  start-up, t = 0, to  the  present time, t = T .  
O 5 E T  

The waste of space  at T due  to  the special chains is the allocation 
at T minus the need at T ,  namely, 

If one  were  to  try  to  serve  every size with its own chain,  the 
waste of space would increase greatly. Much of this  waste would 
be  due  to  those  sizes  that  rarely  have  a single block extant. If 
any of these  sizes  has  appeared  since  the  last  start-up,  then its 
chain has at least  one block available, frequently  unused. 

The method  chosen  to  combat  the  space  waste  caused by the 
special chains is to  create nonoverlapping subpools, or disjoint 
subsets,  among  the  request  sizes  contained in S and  slated  for 
special handling. 

Each  subpool is served by a single chain,  where  the blocks in the 
chain are  as large as  the largest request size in the subpool. Thus, 
if the requested  sizes forming subpool p ,  p = 1, 2, . . e ,  s, are 
denoted by (n,,, . .., npkp),  with 

n,=rnax.n,,, r =  1 ,  2, * ., k,,, 

then  the chain for  the  pth subpool consists of blocks of size nP. 

The allocation of space  for  the  pth  subpool  at  time T is: 
k n 

The total allocation of space by the  sizes in the  pth  subpool, 
when each is handled separately by its own chain,  is: 

No simple relationship  such as an inequality exists  between 
Equations 3 and 4, but a judicious  choice of subpools should ef- 
fect a reduction in space  allocated,  and  hence, in space  wasted. 

The key question is how to determine  the  subpools so as  to re- 
duce  the  wastage reflected in Equation 3.  Minimizing the wastage 
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for  any  one body of data is not practical because of the stochas- 
tic nature of the problem from  day  to  day,  and  the  desire to 
avoid unwarranted simplifying assumptions  about  the  pertinent 
stochastic  variables [f , ( t )] .  Rather,  the  approach used was again 
empirical. 

One single tape of data was used to  study the subpooling question 
with the  intention  not of finding a near-optimal subpooling ar- 
rangement,  but  rather of finding some simple rule of thumb that 
might generally be  used  to  construct  the  subpools. 

If there  are no a priori restrictions on the  number of subpools, 
or on any  other  aspect of the  subpools,  then  the  number of pos- 
sible subpool  arrangements is enormous. For a total of N sizes, 
the  number of distinct subpool arrangements  into M subpools 
can be  shown  to be: 

many of which would be  nonsensical in the problem at  hand. 

The total  number of possible subpooling arrangements is Equa- 
tion 5 summed over M ,  namely 

Thus,  for N = 10, the number of distinct  subpool  arrangements 
is 115,975. By the  time N = 25, the number of arrangements is 
4.64 X 10l8. Clearly, in the  case  under  discussion, N is greater 
than 50 and,  hence,  an investigation of  all subpools  for  even  one 
day's  tape is impossible. 

One restriction  that  seems  reasonable  and  decreases  the  number 
of distinct subpool arrangements  considerably is to have  sub- 
pools consist of consecutive  sizes only. This is equivalent  to the 
general procedure of rounding up  request  sizes. Again, for  a  total 
of N sizes,  there  are now 2+l distinct  subpool  arrangements  that 
obey  the  requirement of "consecutiveness" or consistent "round- 
ing  up" of sizes. 

The study of all 2%"' arrangements is still an  enormous  under- 
taking, and so the empirical investigation was simplified further 
by checking possible subpooling arrangements among ten con- 
secutive  sizes  at  a time. Thus,  for sizes 1, 2, 3, . . ., 10, the 2 9  = 
5 12 possible  consecutive  subpools  were  constructed.  Then  the 
number of doublewords  that would have  been  needed by each 
subpooling arrangement  to  accommodate  the day's tape was 
computed.  This  procedure  was  repeated  for  sizes 10, 1 1 ,  . . *,  19, 
for  sizes 19, 20, . . ., 28, etc. 
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computation Some comments  are in order on how the computation of the 
of space total usage of space was carried  out for  the 5 12 possibilities for 

allocation each set of ten consecutive sizes. Each subpool arrangement of 
ten  ordered sizes satisfying the requirement of consecutiveness 
can  be  represented by an ordered string of nine zeros  and ones. 
The first number will be  a  one if the smallest and next smallest 
sizes in the  set of ten sizes are  to  be pooled together,  and  a  zero 
otherwise. The kth number will be  a  one if the kth and k + 1st 
sizes in the  set of ten are  to be pooled together,  and  a  zero other- 
wise. Thus, for example, one of the 5 12 subpool arrangements of 
the  sizes 1 ,2 ,  . a ,  10 satisfying the  requirements of consecutive- 
ness is: 

1, 2-3,  4, 5 ,  6-7-8,  9-10, (7) 

where sizes  connected by a  dash  are  to  be pooled together. There 
are six subpools in this arrangement: sizes 1, 4, and 5 are not 
pooled with any other  size;  sizes  2 and 3 are pooled together; 
sizes  6, 7, and 8 are pooled together;  and  sizes 9 and 10 are 
pooled together. In terms of rounding up, size 2 is rounded up to 
3 ;  sizes 6 and 7 are rounded up to  8; and  size 9 is  rounded up to 
10. The vector of zeros and ones  representing this subpool  ar- 
rangement of the  ten sizes is: 

0 1 0 0 0 1 1 0 1 ,  

and  the allocation of space up to time t is: 

For  the evaluation of space  requirements,  it is desirable to  order 
the 512  arrangements to be  checked so that in  moving from the 
ith to  the  i + 1 st  arrangement,  there  is  either  a single joining of 
two  subpools at  the  ith  stage  into  one subpool at  the i + 1 st  stage, 
or  a single division of one subpool at the  ith  stage  into  two sub- 
pools at  the i + 1 st stage. This minimizes the amount of computa- 
tion needed to evaluate  the allocation for  each of the 5 12 arrange- 
ments. For example, if one had evaluated the allocation for  the 
arrangement in Equation  7 and wanted the allocation for  the 
arrangement: 

1,2-3,4,5,6-7-8-9-10 (0 1 0 0 0 1 1 1 l ) ,  

namely, 

[1 * m a x f i ( t ) l  + (3  -max V ; ( t )  +f,( t ) l> + [4-maxf4(t)1 
(9) + [5-maxf5(t)]  + (10.max v6(t) + f 7 ( t )  

+f&> + f g W  +f,,(t)I) 
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then one would have  stored from the  computation of Equation 8 
all but the last  term of Equation 9, which would require ob- 
taining 

max U60) +f,(t) +f,(t) +&(t )  +f,O(f)l 

One way to systematically  run through all the  possible 5 12 vec- 
tors of zeros and ones, i.e., through all subpool  arrangements, so 
that  at  each stage  either  a single 0 is changed to a 1 or vice versa, 
is known in switching theory  as the  Gray code.6 A program was 
written to follow the  Gray code  through  the 5 12 possible arrange- 
ments,  compute  the  storage  space allocation for  each,  and  then 
reorder  the  vectors of zeros  and  ones in terms of increasing space 
allocation. The  output consisted of ten columns and 5 12 rows for 
each  set of ten  sizes  studied, the first nine columns being the  code 
for  the specific subpool  arrangement  evaluated  and the  tenth 
column containing  the  corresponding  storage allocation. Thus, 
the first row had the smallest requirements, the second row the 
next  smallest,  and so on. Table 7 contains a portion of the  output 
for  sizes 10, . a ,  19. Looking at this  output, if the j th column 
contained a relatively large number of zeros  toward the  top of 
the  output, this suggested that thejth and j + 1st  sizes should not 
be pooled together; similarly a large number of ones  toward the 
top of the j th column of the  output suggested that  the j th and 
j + 1st  sizes should be pooled together. Based on this  computa- 
tion and  subsequent  analyses, a simple rule of thumb  for  subpool 
construction was postulated. 

The general  idea of rounding up the size of a  storage  request is 
not new. It has,  for  example, been studied  via simulation by Ran- 
dell., He investigated the special  case of rounding up request 
sizes  to the  nearest multiple of a given quantum of space, e.g., to 
the  nearest  power of 2. His  conclusion was that rounding up in 
general is not  desirable in that it offers no gain in storage utili- 
zation. 

The proposed rule for  subpool  construction by rounding up  re- 
quests  requires sampled data  on  the number  extant  for  each  size 
over  a  reasonable  and  representative period of time, data similar 
to  that in Table 5. Each  size  that typically has a large number ex- 
tant will be called a mode of the distribution of the  number  ex- 
tant. The proposed rule of rounding then is to round a given size 
up to  the  nearest mode. This is called “modal roundup.” In  Table 
5 ,  the modes are sizes 4,5,3, 17, 10, and  1 in decreasing  order of 
the  number  extant. 

This rule contains a negative statement in that rounding up  modes 
is to  be avoided. Intuitively  this  seems  reasonable; if a size with 
a large number of requests typically extant is rounded  up, wast- 
age will,  in all likelihood, increase. 

O 5 E T  
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Table 7 Storage  utilization for different subpool arrangements 

Sizes Usage 

11 12 13 14  15 16 17 18 19 

0 0 0 1 1 1 1 1 0 1 3 8 9  
0 1  1 0 1  1 1  1 0 1 3 8 9  
1 0 0 1 1 1 1 1 0 1 3 8 9  
0 0 0 1 1 0 0 1 0 1 3 9 1  
0 1  1 1  I 1  1 1 0 1 3 9 1  
0 1 0  1 1  1 1   1 0 1 3 9 1  
1 0 0 1 1 0 0 1 0 1 3 9 1  

A O 1 1 I I 1 0 1 0 1 3 9 3  
R O I O I I O O 1 O 1 3 9 3  
R 0 0 1 1 1 O O l O 1 3 9 4  
A l O 1 1 1 O O l O 1 3 9 4  
N O O O 1 1 O 1 1 O 1 3 9 5  
G O O O 1 1 1 O I O 1 3 9 5  
E O 0 1 1 1 1 1 1 0 1 3 9 5  
M l O l I I 1 1 1 0 1 3 9 5  
E l O O l I l O l O 1 3 9 5  
N I O O 1 1 O 1 1 O 1 3 9 5  
T O O O O I l l I O 1 3 9 7  
S O 1 0 1 1 1 0 1 0 1 3 9 7  

0 1 0  I 1  0 1 1  0 1 3 9 7  
1 0 0 0 1 1 1 1 0 1 3 9 7  
0 0 1 1 1 0 1 1 0 1 3 9 8  
0 0 1 0 1 1 1 1 0 1 3 9 8  
1 0 1 0 1  1 1  1 0 1 3 9 8  
I O  1 1  1 0  1 1 0 1 3 9 8  
0 0 0 1 0 1 1 1 0 1 3 9 9  
0 0 1 1  1 1  0 1 0 1 3 9 9  
0 1 0 0 1 1 1 1 0 1 3 9 9  
1 0 1  1 1  1 0 1 0 1 3 9 9  
1 0 0  1 0  1 1  I 0 1 3 9 9  
0 0  1 1  0 1 1  1 0 1 4 0 1  
0 1 0  1 0  1 I I 0 1 4 0 1  
1 0 1 1 0 1 1 1 0 1 4 0 1  
0 1 1 1 1 0 0 1 0 1 4 0 2  
0 0 0 1 0 0 0 1 0 1 4 0 4  
1 0 0 1 0 0 0 1 0 1 4 0 4  
0 0 0 1 0 1 1 0 1 1 4 0 5  
1 0 0 1 0 1 1 0 1 1 4 0 6  
0 0 1 1 0 0 0 1 0 1 4 0 6  
0 1 1  1 1  0 1 1 0 1 4 0 6  
0 I O  I O  0 0 1 0 1 4 0 6  
I O  1 1  0 0 0 I 0 1 4 0 6  
0 0 0 1 0 1 0 1 0 1 4 0 7  

0 0 0 0 0 0 0 0 0 1483 (no pooling) 

If one holds to  the modal round-up  rule,  then  one  can  see  the 
unattractiveness of rounding up to  the nearest multiple of a given 
quantum Q as reported by Randell. One will almost  surely  round 
up many modes in the  process,  thereby increasing the storage 
waste. 

Beyond what is implied by modal round-up,  there  appears to  be 
no generality that  can  be  stated  about  rounding  up  request  sizes 
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except,  perhaps,  that  there  appears  to be some insensitivity of 
storage usage to  the rounding up of many of the rarely  occurring 
smaller sizes. 

Finally,  it should be noted  that  the gains in space allocation by 
good subpooling over no subpooling are  nowhere as dramatic 
as  the gains in time by special chaining of certain  sizes  over no 
special treatment of any  sizes. 

On-line experimentation 

The next  step in this investigation was  the  ultimate validation of 
the emulation findings concerning  dynamic  chains  and subpooling 
for  the  most  frequently  observed  sizes.  This was an on-line ex- 
periment comparing the original free-storage algorithm’s per- 
formance with the performance of an algorithm of the third class, 
with dynamically growing chains  for  certain  subpooled  sizes. 

The specific new algorithm chosen  for  the  experiment  provided 
special service  for the 13 sizes  most  frequently  used in our  sys- 
tem. These sizes  were 1, 2, 3 , 4 , 5 , 6 , 7 , 8 , 9 ,  10, 17, 18, and 29; 
they  accounted for approximately 98 percent of all the calls to 
free  storage. The subpooling employed  for the thirteen  sizes was: 
1 ,  2-3,   4,  5 ,  6 - 7 - 8 ,  9-10,  17-18,29. This arrangement  satis- 
fies the modal round-up rule by  not rounding up the  modes in 
Table 4, with the  exception that 17’s were  rounded up to 18. The 
desirability of this  exception is readily apparent from Table 7, 
which clearly shows that 17’s and 18’s are grouped  together in 
most of the  better  arrangements. 

Since  those  sizes  not assigned to subpools by the new algorithm 
are handled according  to  the  rules governing the original algo- 
rithm, the  latter algorithm can be obtained as a special case by 
not specifying any  sizes  for  subpool handling. The ease of chang- 
ing algorithms by  parameter  settings  thus  facilitates  comparative 
evaluation  via designed experiments  carried out in an operational 
environment. An experiment of this  nature  was  conducted 
shortly  after  incorporation of the new algorithm. At 5:OO a.m. 
each morning during a two-week period,  a CP-67 system  contain- 
ing either  the  new  or old FREE-FRET algorithm was loaded  accord- 
ing to a specified schedule  and allowed to run  for 24 hours. If a 
system  abnormal  termination  occurred during the  day,  the  same 
system would be  reloaded. The experiment was designed to con- 
sist only of eight days, namely Monday  through  Thursday of each 
week. The reason  for  this  was twofold. First, weekend data was 
excluded due  to low system usage during such periods. Further- 
more, in order to have  a  statistically  balanced  experiment with 
respect  to sequencing of algorithms within a week,  and  day by 
day comparisons  between  weeks, an even  number of days in 
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Table  8 Experimental  design 

Monduy Tuesday  Wednesday  Thursday 

Week 1 old new new old 
Week 2 new old old new 

Table  9 Experimental results 

C P  time  per  call  (microseconds) 

Monday  Tuesduy  Wednesday  Tiwrsduy 

Week I 
FREE 325 so 45 426 
FRET 22 1 38 34 287 

Week 2 
FREE 37 346 3 1 3  4s 
FRET 27 236 217 33 

Note: Italicized numbers  correspond to the new algorithm 

each week was required. The design of the experiment is shown 
in Table 8. 

This design provides  protection  against  possible  linear  or  quad- 
ratic time trends in usage during the  course of the  experiment, 
and allows comparisons  between  algorithms, among days of the 
week,  and  between weeks. During  the  experimental  period,  data 
on  forty different variables were  recorded at five-minute intervals 
by means of a  software monitoring program. These included cu- 
mulative counts of FREE and FRET calls broken down by subpool 
class,  free-storage  occupancy  statistics,  and  accumulated  super- 
visor time spent in FREE and FRET. 

These measurements were provided specifically to  compare  the 
two FREE~FRET algorithms. Additionally,  data normally col- 
lected on  the  system for  measurement  and  analysis of system 
performance  were  recorded during the  experimental period. 
These  data included counts of various  types of paging and I/O 
activity,  numbers of active  and  inactive  users,  and subdivisions 
of CPU time  into  several different states. 

experimental The principal results of the  experiment are summarized in Table 
results 9, which shows  the  average  supervisor  time  per FREE and  per 

FRET call during each  day of the experiment. The data  are pre- 
sented  according  to  the  layout of Table 8, with results  corre- 
sponding to  the new algorithm italicized for  ease of comparison. 
It is readily apparent  that  the  average CP time per call to FREE or 
FRET is reduced by a factor of 7 or 8 to 1 by the new algorithm. 
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I Table 10 Estimated CP time per 1/0 (milliseconds)* 

Old 9.7 3.0 5.7 
New 7.9 2.0 4.6 

Abstracted  from  Table 1 I ,  Reference 8 

Table 1 1  Average throughputs during test period* 

Percentage of problem state time 19.8 22.0 
Percentage of CP state time 21.3 18.1 
VSIO per sec 11.7 12.4 
VMIO per sec 8.5 8.5 
SPOOL I/O per sec 1.1 1.2 
PAGE I/O per sec 6.7 7.0 

*Taken  from  Table 12. Reference 8 

These differences are so large that formal statistical  analyses  and 
tests of significance are scarcely required to verify the conclu- 
sions. 

Finally, the question of how the new FREE-FRET algorithm affects 
overall  system  performance naturally arises.  A simple answer 
to  this  question, provided by direct  system  measurement during 
the  experiment, is that C P  time spent in FREE~FRET has  been re- 
duced  from  an  average of 14.6 percent of total C P  time  to an aver- 

be gleaned from Tables 10 and 11, which have been abstracted 
from a paper  by Bard.s Table 10 shows  the  reductions in CP time 
for  various  types of I/O operations,  as  estimated by fitted regres- 
sion models, while Table 11 shows how throughput  rates  have 
been  increased by the  introduction of the new algorithm. As a 
result of the  study,  the improved algorithm was  incorporated  into I 
significant improvement in system  performance  can be effected 
by designing resource allocation algorithms to take  advantage of 
observed  demand  and utilization patterns. I 
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