Dynamic management of free storage in a time-sharing oper-
ating system was studied empirically by the techniques of moni-
toring, emulation, and on-line experimentation.

A new algorithm, based on observed usage patterns of different
block sizes, was implemented and evaluated. On-line experiments
demonstrated that supervisor time spent in free-storage manage-
ment was reduced by seven or eight to one.

Analysis of free-storage algorithms
by B. H. Margolin, R. P. Parmelee, and M. Schatzoff

Central to successful operation of a computer system based
heavily on reentrant (or pure) procedures is reliable and efficient
dynamic management of free storage. Such systems must allo-
cate, use, and release one or more blocks of free storage for each
task or system operation, e.g., each 1/0 task or each request for
supervisor services. For any list-processing system, such as AED
or LISP, efficient management of free storage is a fundamental
problem. The consequence of errors in allocation and release is
usually total collapse of the system; that of mismanagement is
usually processor inefficiency or under-utilization of the free-
storage pool. The processor inefficiency resulting from a poor
or ill-chosen management algorithm is usually tolerated, even
though it is high relative to that of other system functions; under-
utilization of free storage is less tolerable, as “lock-up” can be
encountered. This circumstance must be averted by task deferral
or ““garbage collection” procedures, both of which are costly to
system performance.

To date, discussions of free-storage management have treated
either: (1) a specific algorithm, which is developed and supported
post-hoc, e.g., on the basis of a simulation study, or (2) a general
algorithm presented without much information about its param-

No. 4 - 1971 FREE-STORAGE ALGORITHMS

free
storage

eters. Thus Ross!, in describing what is perhaps the most widely
applicable and general approach to free-storage management,
indicates the nature of the tools and techniques for very detailed
programmer control of the management algorithm; the question
of how to determine which algorithm to use is not considered. An
excellent review and discussion of free-storage management is
given by Knuth.? A recent paper by Campbell proposes a strategy
based on the solution of the optimal-stopping problem on a Mark-
ov chain of fixed length, and shows that this strategy is superior
to the first-fit method under certain conditions.?

The context in which the present free-storage management re-
search was conducted is CP-67, a virtual machine control pro-
gram, which provides for each logged-in user the environment
of a System/360 computer.* Broadly speaking, our use of CP-67
can be viewed as a large general-purpose time-sharing system.
It was in operation 24 hours a day, with 20 to 40 users logged-in
during prime shift throughout the observation period. The user
load is mainly interactive programming, €.g., editing, compiling,
loading, and executing; however, batch computing does play an
important part in the load on the system.

The general goal of the project was to explore techniques of
system analysis, modeling, and redesign. The specific goal was
not only to produce a free-storage management algorithm that
would improve upon the existing system, but also to predict
certain aspects of the improvement and then to validate and
further quantify the improvement resulting from the new algo-
rithm. The approach adopted was entirely empirical. The initial
phase of the effort consisted of the monitoring, collecting, and
reducing of trace data pertaining to the allocation and release of
blocks of free storage. The second phase consisted of off-line
development of, and experimentation with, various algorithms.
The algorithm ultimately developed® depends heavily on the ob-
served statistical properties of the data collected in phase one.
Final validation and quantification of the improvement was
effected through an on-line experiment with the two algorithms
competing over an eight-day period. This methodological ap-
proach is general; free-storage management in the particular
system is merely one of a class of problems to which it can be
applied.

Background

CP-67 has three separate pools of free storage:

The page space: 4K-byte blocks of the system’s address space,
made available via the system’s relocation hardware on a dynam-
ic basis.

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST)

SVC linkage space: 24-byte blocks of storage, used by the system
for call linkages between its internal routines and modules.

Free storage: a pool of address space made up of separate,
though possibly contiguous, 4 K-byte blocks. It is from this pool
that the control program obtains storage for describing and con-
trolling all system tasks. This pool can be extended (but not re-
tracted) at the expense of page space.

Programs acquire storage blocks via the subroutine FREE (and
return them via FRET) in integer multiples of double-words (8
bytes). Each such block is treated distinctly; if n double-words
are acquired, n double-words are returned in whole, not in part.
Further, each such block represents a specific request. Not only
does a requirement for exactly this block size exist, but when the
requirement has passed, the block is returned. Thus, there is
neither splitting nor recirculating of the blocks by the requesting
routine.

In its initial implementation, the FREE/FRET algorithm was very
similar to one described by Knuth.? In brief, each block of free
storage is threaded on a chain ordered by increasing addresses.
A request is satisfied by the first exact fit found; if none is found,
the first larger block is “split.”’ On return, the block is rechained
and “melded” with adjacent free blocks (if any). An unpleasant
property of this procedure is that the depth of search as a result
of a FREE (or FRET) is a random variable whose expectation and
variance may increase to unacceptable levels during periods of
heavy usage. Depending upon the load, this system managed a
space of from 48 K to 100K bytes during the period of observa-
tion, or from 7 to 14 percent of the total memory available to both

free storage and page space. The range of requested sizes varied
from 1 to 193 double-words; the time between request and re-
lease from milleseconds to hours. The FREE/FRET routine took
between 2 and 45 percent of total control program (CP) time
during 15-minute periods, with an average of 14.6 percent. (CP
time is that time during which the CPU is in supervisor state.)

The essence of the storage management problem is the desire to
minimize simultaneously storage space wastage and control
program overhead time, which are frequently diametric. One
might hope to construct a crude relationship that would equate
x wasted double-words with y units of wasted time (given the
number of active users and the size of storage), but no work has
been done on this.

Since it is unlikely that one can reduce both space and time in-
efficiencies simultaneously, and since no function equating space
to time existed, the project goal set was to develop an algorithm
to substantially reduce time inefficiency yet maintain roughly the
same space requirements as the original algorithm.

No. 4 - 1971 FREE-STORAGE ALGORITHMS

storage
management

time versus
storage
space

motivation

implementation

Data gathering

The first step taken in the study was to monitor the real demands
on the FREE/FRET routine. These data were crucial for two rea-
sons. First, the data might possess striking statistical properties
that would suggest a desirable algorithm; they did. Second, initial
comparisons of any new algorithm with the original algorithm
were to be made off-line to prevent system degradation. One
standard approach to this type of comparison is to simulate the
process. However, this suffers from the need to specify statistical
models for the demands. Other researchers who have taken this
approach have assumed relatively simple models for the de-
mands, such as independence of successive requests, well-
behaved distributions of request sizes and request durations, or
independence of request size and request duration. It was impor-
tant to determine if these simplifying assumptions were appro-
priate for our free storage problem; they were not.

An alternative to simulation is to capture free storage trace data
from the running system. The sequence of varying requests and
their subsequent releases can then be used as input to “drive” a
program that duplicates the original algorithm or a specified
variation of it. We use the term ‘“emulation” to refer to this alter-
native to simulation.

During emulation, measurements were made to compare algo-
rithms. The off-line emulation suggested that the algorithm ulti-
mately developed would greatly improve upon the speed of the
original algorithm. This was later validated by an on-line eight-
day experiment.

Since storage management is centralized in the FREE/FRET rou-
tine, it was a simple matter to trace each transaction made. A
minor change was made in CP-67, which enabled the system op-
erator to cause the capture on tape of the following data de-
scribing each call to FREE/FRET:

Type of call (FREE or FRET)
Time of day

Location of call

Size of block handled
Location of block handied

In addition, each occurrence of an extension of free storage, i.e.,
the acquisition of 4K bytes from page space, was recorded. The
data capture program used two 4096-byte buffers, and, in the
interest of minimizing system slow-down, made no attempt to
detect or prevent buffer overrun. Rather, the records were num-
bered serially, and during subsequent data reduction, a check
was made for lost records.

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

Block size request patterns

Cumulative
Size Frequency frequency Proportion

4 121106 121106 0.248
5 106780 227886 0.467
29 75637 303523 0.623
1 54453 357976 0.734
8 54331 412307 0.846
10 19938 432245 0.887
3 18074 450319 0.924
9 10018 460337 0.944
18 9188 469525 0.963
17 4548 474073 0.972
2530 476603 0.978

1530 478133 0.981

1486 479619 0.984

1285 480904 0.986

979 481883 0.988

918 482801 0.990

657 483458 0.992

400 483858 0.993

386 484244 0.993

310 484554 0.994

ORI NN W=

487504 1.000
487505 1.000
487506 1.000
487507 1.000
487408 1.000
487509 1.000
487510 1.000
487511 1.000

System slow-down, although discernible, was within acceptable
limits. A full reel of data (4800 buffers recording 960,000 calls
to FREE/FRET) was typically obtained in about 2 hours, depending
upon the level of activity. The only difficulty in acquiring a full
trace of FREE/FRET calls was that those made during system
start-up, before the trace program could be activated, were not
recorded. It was assumed that after the first thirty minutes of
emulated system operation, this loss was negligible.

The raw data provided a great deal of relevant information for
designing an efficient free-storage management algorithm. Es-
sentially, the data describe a two-dimensional representation of
the demands upon free storage in terms of storage space and stor-
age time. The utility of such data derives in large measure from
the marked demand patterns they depict and the strong repro-
ducibility of these patterns from day to day.

Perhaps the simplest summary of the data is provided by a tabula-
tion of the number of requests for each block size, as shown in

Table 1. These data were gathered on a particular day in the ap-

NOo. 4 - 1971 FREE-STORAGE ALGORITHMS

data reduction

size
distribution

demand
duration

Table 2 Cumulative proportions of requests

Block
sizes

proximately 2.5-hour period from 9 a.m. to 11:30 a.m. The re-
quest sizes are ordered by decreasing frequency of requests,
and reveal that a small number of sizes account for a large propor-
tion of all requests. Thus, nearly 90 percent of all free storage
requests in the 2.5-hour interval were accounted for by the half
dozen sizes: 4, 5, 29, 1, 8, and 10. Addition of the next ten most
frequently requested block sizes would bring this up to 99 per-
cent. Table 2, which contains similar data for each of four dif-
ferent days, shows that there is a high degree of reproducibility.
Although these data have been sampled from a single installation,
the nature of the system tasks giving rise to frequently requested
block sizes suggests that similar phenomena occur in other Cp-67
installations. For example, blocks of sizes 4 and 5 are associated
with user-initiated 1/0, whereas blocks of size 29 are associated
with paging 1/0. Thus an efficient algorithm for CP-67 installations
in general might be one that would service the above frequently
requested sizes very efficiently in time and space without sacri-
ficing reasonably efficient handling of the less frequently re-
quested sizes.

In addition to the relative frequencies of requests by block size,
it is important also to know the storage time requirements of re-
quests, i.e., how long various block sizes are used before they are
returned. This information is presented in Table 3, which con-
tains the frequency distributions of the durations that each block
size is retained for data taken on day 4.

Most free-storage requests are short. For example, 94 percent
of all blocks requested are returned in less than five seconds.

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

Table 3 Frequency of requests by size and duration

Proportion
less than
0<Ss 5<10 10<30 30<60 60+ 5 seconds

Duration in seconds

0 0 21 0.000
617 194 0.431
5 0.450

0 0.545
17 0.629
2 0.769
0.814
0.832
0.850
0.904
0.911
0.916
0.917
0.920
0.938
0.949
0.954
0.962
0.963
0.964
0.964
0.994
0.997

51

255
138
915
4543
209
902438
258
1032
4138
29028
28884
25065 0.997
43029 1.000

367419 1767 0.940

Ot = O OO O WO
COOOOONVOOOANOOW

Note:
Any sizes not shown, and for which there are more than five observations, had all blocks returned in less
than five seconds.

For many sizes, the requests are almost exclusively short. For
example, sizes included in the ranges 1-2, 6-9, 11-15, 18-29,
32, 34-48, 50-63, 66-98, 103, and 109-129 are primarily
short-term requests, as evidenced in Table 3. Only one block
size gives rise to predominantly long occupancies—sixty five.
The remaining block sizes, such as 3, 4, 5, 10, 16, 17, 31, and 146,
which account for about two-thirds of all calls, are mixtures of
long- and short-duration requests.

The interest in identifying long-duration block sizes derives from
the potential profit in recognizing and servicing such requests in
a separate area of free storage. This would reduce the fragmenta-
tion in main free storage and improve chances of returning empty
pages to the control program during slack periods. This strategy
was not pursued in the work reported here.

A third aspect of free-storage utilization is the distribution of the
number of each block size extant. More explicitly, think of incre-
menting a counter whenever a particular size is requested and de-
crementing it whenever that size is returned. Then the distribu-

No. 4 - 1971 FREE-STORAGE ALGORITHMS

distribution
of blocks
extant

blocks
extant by
size and
time

Figure 1 Cumulative distributions of numbers of blocks extant for selected block sizes

/

=
=]
=]

PROPORTION

e
~
o

~

7
| | 1
60 100 150 200

NUMBER OF BLOCKS EXTANT

tion of the number of blocks extant for that size is simply obtained
by a frequency count of the number of times the counter was
equal to each of the integers 1, 2, - - -. For example, Figure 1
shows the cumulative distributions of the numbers extant for
sizes 1, 2, 3, 4, 5, 17, and 29. Such distributions are useful for
estimating the probabilities that the number of blocks extant
for given sizes will exceed some specified values. It is interesting
to note that some sizes with relatively high frequencies tend to
have only small numbers of requests extant at any time; and, con-
versely, some sizes with relatively low frequencies tend to have
moderate numbers of requests extant at any time. Examples of
these phenomena are sizes 29 and 17, respectively.

While data such as that presented in Figure 1 depict the variabil-
ity of the number of blocks extant for individual sizes, they do not
provide any information concerning the joint variation of the
number of blocks extant for different sizes. Such information
may be obtained by time-sampling the counters of the numbers
extant for the various sizes. Table 4 shows a small portion of
such data, recorded at ten-second intervals. Because of the tran-
sient nature of the system, in addition to information describing
conditions at the end of the ten-second intervals, it is desirable
to know something about activity during the intervals. One useful
indication of such activity is provided by Table 5, which shows
the maximum number of blocks extant for each of the 14 most
frequently requested sizes during successive ten-second inter-
vals. The data in Table 5 were generated from the same raw data
used to generate the data in Table 4. The analysis of data such as
in Table 5 was central to determining efficient free-storage man-
agement techniques.

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

Table 4 Number of blocks extant by size at 10-second intervals

“
5
[

541 542

Time in ten-second intervals

547 548 549 550

551 552 553

556 557

O OO~ N R W~

146

12 11

1 1
32 31
123 122
93 93
0

oo

NWO—OOWWOONIWWOoORrONODO—O

NV O~ OOWWOO—HWWRWOOND

Nel
(95
\O
(3]
O
(%]

o —

BN —

N -
A WO OOWWOONNWWOONOS—~OO
A WO = OO WWOONVWWOONN—~=—=O

A WO — OO WWOO =N WWOONNO~—O

NV O R OQWWOOWAWWRODORD = —O

111 11 11
0 o 1 1
26 26 33 28
120 115 117 116
92 94 85 86
0 | 1
0 1 0

NWOOOOWWOODAWWOONNDOO
NWOODOOWWOONHBWWOONN—O
A WOOOLVWNOODWNNWOOWNO—
ALWOOOVWNOOWANWODONOO—=O

TOTALS 359 357 356 360 364 359 344 346 337 333

13 12 11

1 1 0
32 36 32
124 131 109
88 97 89
0
1

WW— OO VWWROWUNW—=OAND — =~
N WOOOOWWOOWUMWWOOARANOND

NWOOODOWWODONMNWWOOWNO =

NWOOOOWWOORARNWWO=WNO—

o0
A=/

N —
A WO OOOCWWWORR,WWOORD—OO

11
1
40
115
88
0

1

A WOODOOWWOOWNWWOOWDO

12
0
37
113
92

A WOOOOWW—OWNWWOoOoWL——WwWwo

335 362 358 345 351

D
<

AW —, OO OWA~OWULNMWWOONIO O ——

O
[V]

N —
AW =, O WROOWARWWOORD O ——

A WOOO R WARAOCODRARUNMAEAWODWN =

Table 5 Maximum number of blocks extant during 10-second intervals for 14 most frequently requested sizes

“
5
)

541 542 543 544 545

Time in ten-second intervals

547 548 549 550 551 552 553 554

N 00NN R WD =

13 14

1 1
36 37
126 125
95 97

13 13 13

1 2 2

34 37 35

125 126 125

9 96 97
1

3
2
1

13 13 14
1 1 2
33 30 37
124 123 120
94 95 89
2

2

2

1

18

0

15 15 15
2 3 2
35 44 39
126 135 133
93 99 97
1

2

3

2

19

0

27

4

13
2
40
136
94

FREE-STORAGE ALGORITHMS

algorithm
variations

pre-allocation

Emulation studies

The frequency distributions obtained during the data-gathering
phase indicated that simplifying statistical assumptions, such as
exponentially distributed duration times for the storage requests
or independence of duration and size of the request, would not
be tenable. This aspect of the problem made simulation an un-
attractive investigatory tool; there would be no simple way to
characterize and then alter the demands on free storage and still
be sure of maintaining a realistic study. Instead, as indicated
previously, we chose to monitor the real demands upon free
storage and use the recorded demands as input to a program
that emulated and evaluated two broad classes of algorithms. (We
continue to use the term emulation to refer to the use of real
data from a running system as input to a program that duplicates
a subset of the running system or specified variations of it.)

The first class included the original FREE/FRET algorithm and
variations of it, as follows:

¢ Specification of a constant to be used as a rounding-up factor
in satisfying FREE calls, as opposed to exactly fitting the re-
quest (the constant equal to zero). This differs somewhat from
rounding up storage requests to, say, the nearest multiple of a
given quantum of storage, so as to reduce the number of dif-
ferent sizes requested. (We will comment on this latter idea
later.)
Elimination of melding or permission to meld across page
boundaries on extended pages.
Specification of the number of pages to be allocated to FREE
storage at system start-up time.

The second class of algorithms studied by emulation was one in
which areas of free storage are pre-allocated for particular sizes.
Sizes that are not pre-allocated are handled by a version of the
original algorithm, as are pre-allocated sizes that overflow their
assigned areas. The advantage of pre-allocation is that the hand-
ful of sizes that account for the vast majority of all free-storage
requests can be handled quickly without a list search. One need
only maintain a separate single-chained list of available blocks
(a push-down stack) for each pre-allocated size. A request for a
pre-allocated size is satisfied by the top element in the appropri-
ate list. If none is available, it is serviced from the regular free-
storage chain servicing nonallocated sizes. When a block from a
pre-allocated area is no longer needed, it is returned to the top of
the appropriate pre-allocation chain. Thus, by handling the top 5
or 10 sizes in separate chains, 90 to 95 percent of all requests are
serviced in one step each.

One purpose of the emulator was to provide some indication of
the trade-offs between time and space for these two classes of

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

algorithms. The space needed by a particular algorithm may be
computed exactly for a given stream of input data. The transla-
tion from emulation time to real time, however, is quite compli-
cated, since the emulator was written in FORTRAN, whereas any
actual algorithm would be written in System/360 assembler
language. Fortunately, the magnitude of the differences in list
search lengths (depths) for the two classes of algorithms obviated
the need for precise timing comparisons.

After every block of 2000 transactions (FREE’s plus FRET’s), the
emulation program provided the following data:

* Frequency distribution, mean, and standard deviation of
depth of FREE search by size and for all sizes combined
Frequency distribution, mean, and standard deviation of
depth of FRET search by size and for all sizes combined
Meld counts, number of unsuccessful melds, number of top
only melds, number of bottom only melds, number of both
top and bottom melds, and number of melds across page
boundaries
Frequency distribution of blocks in use, by size
Number of double-words in use
Frequency distribution of available blocks, by size, together
with mean and standard deviation

¢ Number of available blocks

¢ Percentage utilization of available space

It should be noted that in computing the means and standard
deviations of depth of search, both FREE’s and FRET’s of a size
in a pre-allocated area were considered equivalent to a search
of depth one. Thus, in terms of depth of search for FREE (or
FRET), the optimally efficient algorithm would have an average
search depth of one.

For algorithms of the second class, data taken on a typical day
were used to provide specification of the pre-allocated sizes and
of the number of double-words to be allocated for these sizes.
Thus, when five sizes were to be pre-allocated, the top five
most frequently requested sizes were determined from the fre-
quency distribution by size (e.g., Table 1); then, the number of
blocks to be allocated by size was determined as a specified
percentage point, say the 50-percent point, of the cumulative
distribution of the number extant by size. For example, in Figure
1, the 50-percent points of the distribution of block sizes 3 and 5
are 27 and 57, respectively. (This prespecification of sizes and
percentages plus the entirely static nature of the algorithms of
this class appeared to be the major drawback of the pre-allocation
scheme.)

The results of only one set of emulation experiments are re-
ported. Five different algorithms were involved, one from the

No. 4 - 1971 FREE-STORAGE ALGORITHMS

data
reduction

emulation
results

293

Table 6 Average depths of FREE and FRET searches during blocks 3601 —3800, and
number of pages used after 3800 blocks

Day
Algorithms 1 2 3 4

19.14 24.61 31.64 27.35
A 13.45 21.23 22.21 20.92
12 12 15 12

1.23 4.95 9.88 4.44
1.04 4.12 7.76 3.35
12 12 15 13

1.18 2.87 8.61 3.42
1.04 2.47 3.98 2.19
12 13 16 15

1.01 1.34 2.48 1.10
1.00 1.26 2.25 1.04
12 14 17 15

1.01 1.24 1.38 1.05
1.00 1.18 1.27 1.04
12 14 16 15

Sizes allocated according to distribution of numbers of blocks extant observed on Day 1.

Algorithms

A—Control

B —50% points for top 5 sizes

C—95% points for top 5 sizes

D —95% points for top 15 sizes

E—95% points for top 15 sizes, with grouping

first class and four from the second. The algorithm chosen from
the first class was the exact replica of the original algorithm of
CcP-67 and was labeled CONTROL. Algorithms 2 and 3 pre-
allocated at the 50-percent and 95-percent levels, respectively,

for the five most frequently requested sizes. Algorithm 4 pre-
allocated at the 95-percent level for the top 15 sizes, whereas
algorithm 5 partitioned these 15 sizes into subgroups by rounding
up certain of the request sizes. These pre-allocated sizes and
percentiles were determined from one day’s tape of data, labeled
Day 1. The five algorithms were then run against Day 1 and four
other day’s tapes, labeled Day 2 through Day 5. The responses
measured were the average depth of search for the FREE and the
FRET subroutines in consecutive intervals of 200 blocks, plus
the number of pages used in the free-storage area. Table 6 de-
picts the results of the twenty-five emulation experiments. For
purposes of comparison, the responses were recorded for blocks
3601-3800 on each tape, since the shortest available tape (ter-
minated by a system malfunction) contained only 3800 blocks.
Measurements at this point should be free of any transient start-
up effects and should provide a sizeable sample for comparisons.

The results of the experiments indicate that increasing the extent
of the pre-allocation for each size results in a marked reduction
in depth of search for both FREE and FRET, at an initially small
cost in the number of pages used in the free-storage area. For

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

example, results for algorithm 5 indicate that average search
depths can be reduced by a factor of twenty-to-one at the cost
of only 2 or 3 additional pages. These observations led to the
design of a new algorithm, which has been implemented in CP-67
and is described later in this paper.

Dynamic chains and pooling studies

The major drawback to the fixed allocation algorithms discussed
is their dependence on static pre-allocation. Each time the system
starts up, a chain of the exact same number of blocks is set up
for each of the sizes to be pre-allocated. A realistic determination
of the number of blocks needed in each chain requires a sizeable
amount of data concerning the current state or degree of system
usage. These algorithms cannot adjust dynamically to altered
profiles of the installation’s daily requests for storage nor, for
that matter, to another installation’s profile.

To eliminate the need for static pre-allocation in the algorithms
of the second class, and thereby to make them more flexible,
these algorithms were altered so that the chains servicing the
specially treated request sizes would grow dynamically as the
need for each particular size increased. The special sizes would
never overflow their chains since the chains would increase in
length without limitation to accommodate new requests. For ex-
ample, sizes 4, 5, 8, 10, and 29 might be selected for special
handling; these sizes would then be serviced with five separate
growing chains. The remaining sizes would be treated in accor-
dance with the original Cp-6¢7 algorithm.

This new hybrid class of algorithms, the third class, has the prop-
erty that at any time, T, the chain for a specially treated size is
as long as the maximum number of blocks of that size that have
been extant up to time 7 since the most recent system start-up.
This feature could ultimately cause a sizeable waste of storage
space, which is the main trade-off in removing the static chain-
length limitation. If this waste occurs after the days’ peak of
activity, it poses less of a problem, since time can be afforded for
“garbage collection.” The garbage collection procedures in the
literature tend to be costly, since they require much time-
consuming bookkeeping and checking of addresses. This aspect
was not investigated; no specific garbage collection techniques
other than that in the original CP-67 algorithm are discussed in
this paper.

The concept of allocation of storage space is easily quantified.
Let f,(¢) denote the number of blocks of size n extant at time ¢,
let S represent the set of request sizes to be handled dynamically
in their own separate chains, and let r = Q be the time of the most

No. 4 - 1971 FREE-STORAGE ALGORITHMS

dynamic
chain
growth

space
allocation

recent system start-up. The allocation of space at time T, T > 0,
by the special chains is:

ATy =3 n - max f,(1) ()

nes

where max f, (1) is the largest number of blocks of size n extant
0=t=T

from the last system start-up, ¢ = 0, to the present time, t = T.

The waste of space at 7 due to the special chains is the allocation
at 7 minus the need at T, namely,

W (T) = En{[g;gfn(t)] —fu(T)}

nes

=3 n-max [£,(1) = £,(T)] 2

ne€s

If one were to try to serve every size with its own chain, the
waste of space would increase greatly. Much of this waste would
be due to those sizes that rarely have a single block extant. If
any of these sizes has appeared since the last start-up, then its
chain has at least one block available, frequently unused.

The method chosen to combat the space waste caused by the
special chains is to create nonoverlapping subpools, or disjoint
subsets, among the request sizes contained in S and slated for
special handling.

Each subpool is served by a single chain, where the blocks in the
chain are as large as the largest request size in the subpool. Thus,
if the requested sizes forming subpool p, p=1, 2, - - -, s, are
denoted by (n . ”pk,,)’ with

pr>
n,=max-n,,r=12,-- -k,

then the chain for the pth subpool consists of blocks of size n,,.

The allocation of space for the pth subpool at time 7 is:
Icp

A,(T) =n, -max 3 f, (1) (3)

The total allocation of space by the sizes in the pth subpool,
when each is handled separately by its own chain, is:

kp
2 M xS, () “@

No simple relationship such as an inequality exists between
Equations 3 and 4, but a judicious choice of subpools should ef-
fect a reduction in space allocated, and hence, in space wasted.

The key question is how to determine the subpools so as to re-
duce the wastage reflected in Equation 3. Minimizing the wastage

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

for any one body of data is not practical because of the stochas-
tic nature of the problem from day to day, and the desire to
avoid unwarranted simplifying assumptions about the pertinent
stochastic variables [f, (¢)]. Rather, the approach used was again
empirical.

One single tape of data was used to study the subpooling question
with the intention not of finding a near-optimal subpooling ar-
rangement, but rather of finding some simple rule of thumb that
might generally be used to construct the subpools.

If there are no a priori restrictions on the number of subpools,
or on any other aspect of the subpools, then the number of pos-
sible subpool arrangements is enormous. For a total of N sizes,
the number of distinct subpool arrangements into M subpools
can be shown to be:

M (—1)H .\(M>/M' M (1)i 1)
1 YM—j N[== — A—u'_‘_—_.‘

) Y p> S =

many of which would be nonsensical in the problem at hand.

The total number of possible subpooling arrangements is Equa-
tion 5 summed over M, namely

N A 1
JHUM = j)!

(=13

M=1 j=1

(6)

Thus, for N = 10, the number of distinct subpool arrangements
is 115,975. By the time N = 25, the number of arrangements is
4.64 X 108, Clearly, in the case under discussion, N is greater
than 50 and, hence, an investigation of all subpools for even one
day’s tape is impossible.

One restriction that seems reasonable and decreases the number
of distinct subpool arrangements considerably is to have sub-
pools consist of consecutive sizes only. This is equivalent to the
general procedure of rounding up request sizes. Again, for a total
of N sizes, there are now 2¥~! distinct subpool arrangements that
obey the requirement of “‘consecutiveness’ or consistent ‘“round-
ing up” of sizes.

The study of all 2¥-! arrangements is still an enormous under-
taking, and so the empirical investigation was simplified further
by checking possible subpooling arrangements among ten con-
secutive sizes at a time. Thus, for sizes 1,2, 3, - - -, 10, the 2° =
512 possible consecutive subpools were constructed. Then the
number of doublewords that would have been needed by each
subpooling arrangement to accommodate the day’s tape was
computed. This procedure was repeated for sizes 10, 11,- - -, 19,
for sizes 19, 20, - - -, 28, etc.

NO. 4 - 1971 FREE-STORAGE ALGORITHMS

comparisons
of subpool
arrangements

computation
of space
allocation

Some comments are in order on how the computation of the
total usage of space was carried out for the 512 possibilities for
each set of ten consecutive sizes. Each subpool arrangement of
ten ordered sizes satisfying the requirement of consecutiveness
can be represented by an ordered string of nine zeros and ones.
The first number will be a one if the smallest and next smallest
sizes in the set of ten sizes are to be pooled together, and a zero
otherwise. The kth number will be a one if the kth and & + 1st
sizes in the set of ten are to be pooled together, and a zero other-
wise. Thus, for example, one of the 512 subpool arrangements of
the sizes 1, 2, - - -, 10 satisfying the requirements of consecutive-
ness is:

1,2-3,4,5,6-7-8,9-10, @)

where sizes connected by a dash are to be pooled together. There
are six subpools in this arrangement: sizes 1, 4, and 5 are not
pooled with any other size; sizes 2 and 3 are pooled together;
sizes 6, 7, and 8 are pooled together; and sizes 9 and 10 are
pooled together. In terms of rounding up, size 2 is rounded up to
3; sizes 6 and 7 are rounded up to 8; and size 9 is rounded up to
10. The vector of zeros and ones representing this subpool ar-
rangement of the ten sizes is:

0100011 0 1,

and the allocation of space up to time 7 is:

[1 - maxf ()] + {3 - max [f,(r) + (1)]}
+[4- rg;gﬂ(f)] +[5- (l)ggfs(t)]
+ {8 - max [f. (1) + () + fo ()]}

+ {10 - max [f, () +£,,(0]}

For the evaluation of space requirements, it is desirable to order
the 512 arrangements to be checked so that in moving from the
ith to the i+ 1st arrangement, there is either a single joining of
two subpools at the ith stage into one subpool at the i + 1st stage,
or a single division of one subpool at the ith stage into two sub-
pools at the i + 1st stage. This minimizes the amount of computa-
tion needed to evaluate the allocation for each of the 512 arrange-
ments. For example, if one had evaluated the allocation for the
arrangement in Equation 7 and wanted the allocation for the
arrangement:

1,2-3,4,5,6-7-8-9-10 (010001 11 1),
namely,
[1-max f, ()] + {3 -max [f,(¢) +f,(1)]} + [4-max f,(1)]
+ [5-max f,(1)] + {10 - max [f,(#) + £, (1)
+f(1) +£,(0) +£,,(0)]}

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

then one would have stored from the computation of Equation 8
all but the last term of Equation 9, which would require ob-
taining

max [f,(0) +£,(0) +£,(0) +£,(1) +£,,(0)]

One way to systematically run through all the possible 512 vec-
tors of zeros and ones, i.e., through all subpool arrangements, so
that at each stage either a single 0 is changed to a 1 or vice versa,
is known in switching theory as the Gray code.® A program was
written to follow the Gray code through the 512 possible arrange-
ments, compute the storage space allocation for each, and then
reorder the vectors of zeros and ones in terms of increasing space
allocation. The output consisted of ten columns and 512 rows for
each set of ten sizes studied, the first nine columns being the code
for the specific subpool arrangement evaluated and the tenth
column containing the corresponding storage allocation. Thus,
the first row had the smallest requirements, the second row the
next smallest, and so on. Table 7 contains a portion of the output
for sizes 10, - - -, 19. Looking at this output, if the jth column
contained a relatively large number of zeros toward the top of
the output, this suggested that the jth and j + 1st sizes should not
be pooled together; similarly a large number of ones toward the
top of the jth column of the output suggested that the jth and
j + 1st sizes should be pooled together. Based on this computa-
tion and subsequent analyses, a simple rule of thumb for subpool
construction was postulated.

The general idea of rounding up the size of a storage request is
not new. It has, for example, been studied via simulation by Ran-
dell.” He investigated the special case of rounding up request
sizes to the nearest multiple of a given quantum of space, e.g., to
the nearest power of 2. His conclusion was that rounding up in
general is not desirable in that it offers no gain in storage utili-
zation.

The proposed rule for subpool construction by rounding up re-
quests requires sampled data on the number extant for each size
over a reasonable and representative period of time, data similar
to that in Table 5. Each size that typically has a large number ex-
tant will be called a mode of the distribution of the number ex-
tant. The proposed rule of rounding then is to round a given size
up to the nearest mode. This is called ““modal roundup.” In Table
S, the modes are sizes 4, 5, 3, 17, 10, and 1 in decreasing order of
the number extant.

This rule contains a negative statement in that rounding up modes
is to be avoided. Intuitively this seems reasonable; if a size with
a large number of requests typically extant is rounded up, wast-
age will, in all likelihood, increase.

No. 4 - 1971 FREE-STORAGE ALGORITHMS

rounding up
of request
sizes

Table 7 Storage utilization for different subpool arrangements

Sizes

15 16

—
—
—
[\°)
_—
w
—_—
[N
b
~]
—
Q0
o
o

1389
1389
1389
1391
1391
1391
1391
1393
1393
1394
1394
1395
1395
1395
1395
1395
1395
1397
1397
1397
1397
1398
1398
1398
1398
1399
1399
1399
1399
1399
1401
1401
1401
1402
1404
1404
1405
1406
1406
1406
1406
1406
1407

PHZMZTOZ>BE >

0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
1
0
0
0
1
0
0
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
0
0
1
0

= N Y R N R R N R R N S S R N = Rl N~ N N e = =)
[Y - S I R s B = L I Y N S N R R = R = =R)
e e e e e e e e e O e e O D O s O e e e e e s O e
R R =N = T Yy S Ny I e Y N e S,
=== T e Yy . . Y = b= RNl I = S
I = J U G Gy GGGy G G 0y Ay Gy UG SN S UG U I N
===y Y =R =R = R RN R R R N NN R RN S S =N NS o R Nl e =R o R R el e e i)

OO, OO OO~ OOOO m m = O ok o e o e e e e e e e e bt e e e e

1483 (no pooling)

If one holds to the modal round-up rule, then one can see the
unattractiveness of rounding up to the nearest multiple of a given
quantum Q as reported by Randell. One will almost surely round
up many modes in the process, thereby increasing the storage
waste.

Beyond what is implied by modal round-up, there appears to be
no generality that can be stated about rounding up request sizes

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

except, perhaps, that there appears to be some insensitivity of
storage usage to the rounding up of many of the rarely occurring
smaller sizes.

Finally, it should be noted that the gains in space allocation by
good subpooling over no subpooling are nowhere as dramatic
as the gains in time by special chaining of certain sizes over no
special treatment of any sizes.

On-line experimentation

The next step in this investigation was the ultimate validation of
the emulation findings concerning dynamic chains and subpooling
for the most frequently observed sizes. This was an on-line ex-
periment comparing the original free-storage algorithm’s per-
formance with the performance of an algorithm of the third class,
with dynamically growing chains for certain subpooled sizes.

The specific new algorithm chosen for the experiment provided
special service for the 13 sizes most frequently used in our sys-
tem. These sizes were 1, 2, 3,4,5,6,7,8,9, 10, 17, 18, and 29;
they accounted for approximately 98 percent of all the calls to
free storage. The subpooling employed for the thirteen sizes was:
1,2-3,4,5,6-7-8,9-10, 17-18, 29. This arrangement satis-
fies the modal round-up rule by not rounding up the modes in
Table 4, with the exception that 17°s were rounded up to 18. The
desirability of this exception is readily apparent from Table 7,
which clearly shows that 17’s and 18’s are grouped together in
most of the better arrangements.

Since those sizes not assigned to subpools by the new algorithm
are handled according to the rules governing the original algo-
rithm, the latter algorithm can be obtained as a special case by
not specifying any sizes for subpool handling. The ease of chang-
ing algorithms by parameter settings thus facilitates comparative
evaluation via designed experiments carried out in an operational
environment, An experiment of this nature was conducted
shortly after incorporation of the new algorithm. At 5:00 a.m.
each morning during a two-week period, a CP-67 system contain-
ing either the new or old FREE-FRET algorithm was loaded accord-
ing to a specified schedule and allowed to run for 24 hours. If a
system abnormal termination occurred during the day, the same
system would be reloaded. The experiment was designed to con-
sist only of eight days, namely Monday through Thursday of each
week. The reason for this was twofold. First, weekend data was
excluded due to low system usage during such periods. Further-
more, in order to have a statistically balanced experiment with
respect to sequencing of algorithms within a week, and day by
day comparisons between weeks, an even number of days in

No. 4 - 1971 FREE-STORAGE ALGORITHMS

the
experiment

experimental
results

Table 8 Experimental design

Monday Tuesday Wednesday Thursday

old new new old
new old old new

Table 9 Experimental results

CP time per call (microseconds)

Monday Tuesday Wednesday Thursday

Week 1
FREE 325 50 45 426
FRET 221 38 34 287

Week 2
FREE 37 346 313 45
FRET 27 236 217 33

Note: [talicized numbers correspond to the new algorithm.

each week was required. The design of the experiment is shown
in Table 8.

This design provides protection against possible linear or quad-
ratic time trends in usage during the course of the experiment,
and allows comparisons between algorithms, among days of the
week, and between weeks. During the experimental period, data
on forty different variables were recorded at five-minute intervals
by means of a software monitoring program. These included cu-
mulative counts of FREE and FRET calls broken down by subpool
class, free-storage occupancy statistics, and accumulated super-
visor time spent in FREE and FRET.

These measurements were provided specifically to compare the
two FREE/FRET algorithms. Additionally, data normally col-
lected on the system for measurement and analysis of system
performance were recorded during the experimental period.
These data included counts of various types of paging and 1/0
activity, numbers of active and inactive users, and subdivisions
of CPU time into several different states.

The principal results of the experiment are summarized in Table
9, which shows the average supervisor time per FREE and per
FRET call during each day of the experiment. The data are pre-
sented according to the layout of Table 8, with results corre-
sponding to the new algorithm italicized for ease of comparison.
It is readily apparent that the average CP time per call to FREE or
FRET is reduced by a factor of 7 or 8 to 1 by the new algorithm.

MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

Table 10 Estimated CP time per I/O (milliseconds)*

VS{O Page 11O Spool 11O

Old 9.7 3.0 5.7
New 7.9 2.0 4.6

Abstracted from Table 11, Reference 8

Table 11 Average throughputs during test period*

Percentage of problem state time
Percentage of CP state time
VSIO per sec

VMIO per sec

SPOOL 1/O per sec

PAGE 1/O per sec

*Taken from Table 12, Reference 8

These differences are so large that formal statistical analyses and
tests of significance are scarcely required to verify the conclu-
sions.

Finally, the question of how the new FREE-FRET algorithm affects
overall system performance naturally arises. A simple answer
to this question, provided by direct system measurement during
the experiment, is that CP time spent in FREE/FRET has been re-
duced from an average of 14.6 percent of total CP time to an aver-
age of 2.4 percent. A more extensive answer to the question may
be gleaned from Tables 10 and 11, which have been abstracted
from a paper by Bard.? Table 10 shows the reductions in CP time
for various types of 1/0 operations, as estimated by fitted regres-
sion models, while Table 11 shows how throughput rates have
been increased by the introduction of the new algorithm. As a
result of the study, the improved algorithm was incorporated into
CP-67. The salient feature of the study was the demonstration that
significant improvement in system performance can be effected
by designing resource allocation algorithms to take advantage of
observed demand and utilization patterns.

ACKNOWLEDGEMENT

The authors gratefully acknowledge R. Adair, J. Ravin, and
J. Seymour for their suggestions and assistance in this research.
In particular, J. Ravin wrote the data reduction and emulation
programs and carries the major burden of the detailed validation
of the emulation and the sample data used to drive it, and J. Sey-
mour designed and programmed the FREE-FRET algorithm in-

NO. 4 - 1971 FREE-STORAGE ALGORITHMS

corporated in CP, together with the software measurements
required in the on-line experiment.

REFERENCES

1. D. T. Ross, “The AED free storage package,” Communications of the ACM
10, No. 8, 181-192 (August 1967).
2. D. E. Knuth, “Dynamic storage allocation,” The Art of Computer Program-
ming 1, Addison-Wesley, Reading, Massachusetts (1968).
. J. A. Campbell, “A note on an optimal-fit method for dynamic allocation of
storage,” The Computer Journal 14, No. 1, 7-9 (February 1971).
. R. A. Meyer and L. H. Seawright, “A virtual machine time-sharing system,”
IBM Systems Journal 9, No. 3, 199218 (1970).
. This algorithm was incorporated into CP-67, version 3.
. W. S. Humphrey, Jr. Switching Circuits with Computer Applications, McGraw
Hill, New York, 109 (1958).
. B. Randell, “A note on storage fragmentation and program segmentation,”
Communications of the ACM 12, No. 7, 365~372 (July 1969).
. Y. Bard, “Performance criteria and measurement for a time-sharing system,”
IBM Systems Journal 10, No. 3, 193~216 (1971).

304 MARGOLIN, PARMELEE, AND SCHATZOFF IBM SYST J

