Through a nationwide network of interactive terminals in a tele-
pracessing configuration, users perform over twenty major busi-
ness functions by sharing a single large and varied data base.

Emphasized are system design principles of the central complex
whereby terminal message processing and data-base manage-
ment are independently yet cooperatively performed.

Also discussed is system security, which includes user authoriza-
tion and data-base reconstruction and auditing.

A large-scale interactive administrative system
by J. H. Wimbrow

This paper discusses an interactive terminal-oriented telepro-
cessing system for performing many of the administrative opera-
tions of the IBM branch and regional offices. The main impetus
for developing this system was the urgency for a more responsive
customer order entry facility. Increasiqg complexity of systems
available and increasing sales volume Were straining the rela-
tively advanced IBM 1410-based order-entry system in use prior
to 1969. Outside of the company, the strain revealed itself in
slow response of order and delivery-date confirmation and occa-
sional inaccuracies of system configuration. Internally, this
slow reaction time was no less disconcerting.

For these reasons, an advanced administrative system was con-
ceived and built. That system now performs the order-entry oper-
ation (as well as some four-hundred fifty other logical trans-
actions) interactively in real time rather than requiring days or
weeks. Since the process of entering orders initially stimulated
the administrative system development, we first give the follow-
ing functional steps for order entry:

1. Order sent to the processing center

2. Ordered system checked for validity

3. Order expanded into its system components for manufac-
turing

WIMBROW IBM SYST J

4. Delivery data assigned and transmitted to the branch office

5. System component numbers recorded for inventory control

6. Order summarized for both sales and manufacturing manage-
ment control

The earlier order-entry system offered many opportunities for
delay. Original orders and delivery date assignments were trans-
mitted by mail. Further, a significant part of the order processing
cycle was the validity check. Such a check was (and still is)
made because the configuration of a computer system usually
involves a number of system components, many of which are
interdependent and have prerequisites. Validity checks deter-
mine that all prerequisite devices are present on original orders
and that the configurations ordered can be manufactured and can
run. Where the ordering system determines missing prerequi-
sites or other incompatibilities in the original order, the ensuing
manufacture might result in an unrunnable system. In the earlier
ordering system, necessary order revisions further delayed the
already lengthy order processing cycle. Such revisions also con-
tributed to the management and inventory control difficulties of
reconciling the order totals carried by the manufacturing plants
and the on-order backlog carried by the sales division.

Inventory and management control involves three files: (1) open
orders (which is another way of looking at the order-entry pro-
cess); (2) uninstalled inventory (equipment that has been manu-
factured, but has not been installed); and (3) installed inventory.
Further, the installed inventory is the basis for issuing machine
rental invoices to customers. In this process, accounts receivable
debit entries are also created. In the earlier administrative sys-
tem, there occurred occasionally a geographic mismatch be-
tween IBM payment receiving centers and customer paying cen-
ters. Such a mismatch might have occurred with an account that
received invoices for payments that were to be collected in
several geographic locations, but were paid at a central location.
This problem has been eliminated by the planned administrative
system.

In 1964, IBM was embarking on a great new venture in informa-
tion processing systems. The anticipated introduction of the
System/360 would increase almost exponentially the number of
possible configurations available for ordering, and hence, mag-
nify the complexity of the order-entry process. Projections in-
dicated that system complexity coupled with a growing volume
of orders were likely to stretch the existing order-processing
systems almost to the breaking point. Added personnel and
equipment to bolster the existing systems would ultimately have
become inefficient. Such problems stimulated a study group that
in 1965 recommended developing the new administrative system
having the following characteristics:

NO 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

validity
checking

inventory
control

advanced
administrative
system

conversational
continuity

adminlistrative
system
application

Operate interactively with administrative personnel
Interconnect branch and regional offices, headquarters, and
plants (320 geographic locations having a total of about 1500
terminals)

e Operate conveniently and easily

¢ Respond to orders and queries in personal-time scale

The system design phase was begun by surveying the exis-
tent systems that most nearly approximated the requirements of
administrative support for the IBM branch office organization.
The closest counterpart was the SABRE airline reservation sys-
tem.! Developed in the late 1950s and early 1960s, SABRE taught
us much about designing and implementing large-scale, terminal-
oriented, interactive systems. Airline reservation systems are
used primarily for seat sales and inventory control, wherein the
inventory is large, complex, time critical, and widely distrib-
uted. Airline reservation systems demonstrate the feasibility of
operating on a nationwide scale with a network consisting of
hundreds of terminals interacting with a central complex by using
the techniques of message queuing and conversational continuity.

Conversational continuity is a technique by which a user may
give one item of information to the system now and several min-
utes later enter a second item. The system associates the two
items without dedicating itself to any one terminal during a mes-
sage transmission. The terminals in both the reservation and ad-
ministrative system appear to the user as though he were carry-
ing on a continuous and exclusive conversation with the system,
when in fact, there are hundreds of users carrying on simulta-
neous conversations. The airline reservation systems required
specially tailored input/output terminals because standard inter-
active terminals did not exist when those operations began.
Similarly, Central Processing Units (CPUSs) had to be tailored to
handle high volumes of teleprocessing input and large data bases.
The administrative system, however, uses System/360, which is
designed to accommodate high rates of teleprocessing activity
and a large data base in standard system configurations.

To achieve the prime objectives of faster, more accurate order
processing and the related internal operations of inventory con-
trol and accounts receivable, a certain system capability is re-
quired. That system, however, could handle a greater data pro-
cessing load than was initially planned, and the number of trans-
actions was incrementally increased until there are now about
three-hundred fifty. Indicative of the branch office operations
that the administrative system performs are the following appli-
cations:

¢ Order entry
¢ Delivery scheduling
e Territory assignment

WIMBROW IBM SYST J

Payroll

Commission accounting
Configuration validation

Accounts receivable cash application
Customer master record

Installed machines inventory

Billing

Customer student enrollment
System user training (CAD

Comparative studies were made between the interactive and
batch modes of input/output and processing. Although batch or-
der processing offered a lower cost per transaction, this saving
was offset by longer response time and by higher user error rates
and training costs. For user training, we drew upon the corporate
research and development experience in computer assisted in-
struction. The system is designed to train and be operated by
about 5,000 administrative users in the branch offices throughout
the company. Classroom training of each user in only a few skills
would entail an unacceptably large education program. By de-
veloping training courses for terminal instruction and by training
the users at the terminals through which they enter and receive
information, a substantial saving in training cost is achieved.
There is also a significant improvement in user accutracy. Com-
puter assisted instruction techniques also fit the overall logic of
each of the applications because they are tree-structured as the
training courses are.

The 1BM 2260 provides a terminal that further lends itself to tree-
structure logic and a conversational mode. This alphanumeric
terminal enables the system to be designed using the concept of
the system’s asking the user a specific question and giving him
all valid responses. By depressing one key, the user selects the
desired response. On the basis of human-factors considerations,
this method is believed to be more efficient from the user’s stand-
point.

Another key factor that influenced system design was the Sys-
tem/360 Operating System (0S/360). Whereas the airlines reser-
vations systems had found it necessary to develop their own
operating systems, standard operating systems are a regular pro-
gramming component of System/360. Although 05/360 and its
options were expected to operate the administrative system, the
release date of the required multitasking option was scheduled
after the administrative system was to become operational. For
this reason, it was necessary initially to have all real-time pro-
grams interface the real-time operating system (RTOS) developed
by 1BM for the National Aeronautics and Space Administration.
When the multitasking (MVT) options became available in 0S/360,
a conversion was made from RTOS to 08$/360 and the admin-

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

standard
user
terminal

standard
operating
system

system
configuration

application
programming

istrative system has run entirely on a standard 0S/360 with-
out modification since that time. Thus the projected system,
termed the Advanced Administrative System, embodies the tech-
nologies and contributions of: (1) airline reservation systems;
(2) a teleprocessing and large-storage oriented computer (using
standard hardware); (3) alphanumeric display terminals; (4) com-
puter assisted instruction; and (5) the standard operating system,
05/360.

In this paper we present the administrative system design prin-
ciples. Whereas system configuration and application program-
ming details may be modified on the basis of experience and
through continuing system studies, the basic principles discussed
here have proved to be both sound and constant.

Consider the field terminal network (shown in Figure 1) and the
central computer complex (shown in Figure 2) to constitute the
overall system hardware configuration. The input/output com-
ponents of the field terminal network are the approximately fif-
teen hundred 1BM 2260 display terminals and IBM 1053 printers
located in some three-hundred twenty branch offices, plants, and
headquarters. Data are transmitted between these 1/O devices
and nine geographically distributed 1BM System/360 Model 30
computers over low-speed telephone lines. These computers
perform data concentration and retransmit data from the field
to the central complex in White Plains, New York over high-
speed telephone lines. The system is designed to respond to
ninety-five percent of inputs in five seconds, and accommodate up
to one and one-half million inputs per twelve-hour day (an aver-
age of fifty inputs per second). Programming for message pro-
cessing and data management are the key topics to be discussed
later in this paper. To give perspective to the overall system, Fig-
ure 2 shows the programming design reflected in the configura-
tion of the central complex. We call this the “front-to-back” de-
sign. The front is shown consisting of three System/360 Model
65J computers that are used for message processing; the back is
a Model 85K that performs data-management operations. As-
sociated with both the front and the back system components
are the required peripheral storage.

The spare processors shown in Figure 2 normally do off-line
work. In the case of emergency, the spares are switched in auto-
matically during a brief service interruption. The system uses an
uninterruptable power supply to protect it from momentary
power loss or to permit an orderly system shutdown in case of
an extended power failure.

To give further perspective, Figure 3 illustrates the overall or-
ganization of the programming for the advanced administrative
system. From a programming point of view, this paper empha-

WIMBROW IBM SYST J

Figure 1 Geographically distributed field terminal network

1500 LOW-SPEED NINE LINE HIGH-SPEED
TERMINALS TELEPHONE LINES CONCENTRATORS TELEPHONE LINES

TO CENTRAL
~* CONTROL

4.8 K BAUD SYSTEM/360 50 K BAUD

-
MODEL 30

Figure 2 Administrative system control complex

FRONT END BACK END

|

|

|

|
SYSTEM/360 '
MODEL 65J |
MESSAGE \
PROCESSOR |
|

|

1

|

|

1

SYSTEM/360

HIGH-SPEED g MESSAGE Mog% A85K
TELEPHONE LINES PROCESSOR —¢ MANSAEAENT
PROCESSOR

|
|
:
|
|
1

| SPARE DATA
L3 MANAGEMENT
PROCESSOR

MESSAGE
PROCESSOR

|
i

|

MESSAGE —
PROCESSOR

I
I
!
i
|
I
|
I
|
i
|
I
I
]
|
I
1
I
I
i

sizes the control programming—especially message processing
—and data management programming. These programs operate
on individual applications programs, which are assumed program-
ming units in our discussion. Therefore, we briefly summarize
the programming organization here. In discussing design consid-

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

front-to-
back design

Organization of administrative system programming

ADMINISTRATIVE
SYSTEM PROGRAMMING

[
i |

SYSTEMS APPLICATION
PROGRAMMING PROGRAMMING

T
| L 1

DATA CONTROL TEST
TELEPROCESSING MANAGEMENT PROGRAMMING SYSTEM

9
_ __APPLICATIONS |
(20) i

DELIVERY TERRITORY
SCHEDULING ASSIGNMENT PAYROLL

SYSTEM
ORDERING

ACTIONS
(5000)

erations earlier in this paper, an indicative listing is given of the
administrative system applications. Figure 3 shows that there is
an expanding capability of about twenty such basic applications.
Many applications have several distinct phases or transactions.
Therefore, a further subdivision of the applications are the ap-
proximately four-hundred fifty transactions indicated in Figure
3. For example, the order entry application consists of a system
order program, a system alteration program, and several other
order entry transactions. Similarly, the other applications may
comnsist of several distinct transactions. These programs are fur-
ther expanded into some five thousand possible action programs
with which the user interacts at the terminal —for example a list-
ing of possible colors available for a particular system being or-
dered. The action is the basic programming building block of the
program organization. '

Analysis based on data collected early in the study phase indi-
cated that more than one Central Processing Unit (CPU) would be
required by the administrative system. When this requirement

WIMBROW iIBM SYST J

had been determined, it was apparent that a technique would
have to be developed to prevent two or more terminals serviced
by different cpUs from attempting to update the same record at
the same time without losing any of the updates. A number of
potential solutions were evaluated.

One possibility was to divide the actions among the CPUs based
on which files the CpPUs accessed. Thus there would be no need
to update the same file from different cpUs. Balancing the pro-
cessing load under this type of operation would be difficuit. A
second possible solution was to set up a control mechanism to
prevent one CPU from reading a record while any other CPU was
updating the same record. This would have required elaborate
processing logic.

The approach adopted avoids the complexities inherent in either
of these two solutions. The resultant front-to-back technique on
which the advanced administrative system is based allows a
reasonably simple control along with the ability to balance the
processing load among the CPUs by dividing the work into mes-
sage processing and data management. The design also provides
for ready expansion as the load on the system grows. Message
processors are added up to a practical limit of four, and this
growth does not alter the basic architecture of the system. The
work load of the message processors is balanced empirically by
measuring their input loads each day and then switching the tele-
phone lines each succeeding day to accommodate the measured
loads.

By the front-to-back technique, the processing load is divided so
that the inputs from all terminals and outputs to all terminals for
all actions are handled by one or more message processors (front
end). All file requests are developed by a message processor and
become inputs from the front end to the data management proces-
sor (back end). Formatted data drawn from the files by a data
management processor become responses to the requests of the
message processor. Much of these same data in turn become the
output of the message processor to the remote terminals. Thus,
the message processors are connected to the telephone lines and
process all messages from the terminals, and the data manage-
ment processor handles all activity with the files. We now dis-
cuss the front-to-back design in terms of simplified models of the
two basic processors —one message processor and the data man-
agement system.

Message processor

Consider the programming of the message processor of the ad-
vanced administrative system beginning with Figure 4, which

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

268

Figure 4 Message processor architecture

FIELD TERMINAL
WORKING AREA
STORAGE

SYSTEM/360 OPERATING SYSTEM

INITIALIZER

FRONT END

DATA
MANAGEMENT CHANNEL
T A

0 DAT.

MANAGEMENT
TELEPROCESSING ngggls\ggR SYSTEM

MONITOR 0 1 INTERFACE

PROGRAM
FETCH

ACTION PROGRAM

ACTION
PROGRAM
STORAGE

EE
0%
n m o > gg
z
2
EL3

represents primarily main storage as allocated in the front-end
System/360 Model 65J. (Figure 4 through Figure 6 have been
simplified to highlight the flow of control and information.) The
simplified system has six 2260 display terminals designated by the
letters A, B, C, D, E, and F. Associated with each terminal is a
peripheral storage area called terminal working area storage,
which contains one record (A to F) for each terminal. If we added
a seventh terminal G, we must add a record G to the terminal
working area storage. The second peripheral storage contains
the action programs for processing input messages from the ter-
minals. Main storage is divided into areas for the operating sys-
tem, initializer, teleprocessing monitor, and so forth as indicated
in Figure 4.

Key to the message processor operation are the storage areas
labeled “‘entry blocks.” These working spaces are used for en-
tering messages from the terminals, processing the information,
and transmitting responses back to the terminals. The message
processor in Figure 4 has six terminals, but entry blocks for serv-
ing only three terminals at a time. Thus the system must process
messages rapidly so that it can process input messages from each
terminal without causing a noticeable delay. Messages awaiting
service queue up in the teleprocessing monitor. The application
action program area in main storage holds several action pro-
grams that have been brought in from the action program pe-
ripheral storage as required by the input message.

WIMBROW IBM SYST J

Figure 5 Front-end message processing

TERMINAL
WORKING AREA
STORAGE

TERMINAL C

FRONT END
D,
~a) MANAGEMENT

TERMINAL

WORKING

TELEPROCESSING | AREA
MONITOR

DATA
MANAGEMENT

MESSAGE PROGRAM

FETCH
DATA RECORD

ACTION PROGRAM 22

ACTION
PROGRAM
STORAGE

Figure 6 Output message

TERMINAL C
OUTPUT MESSAGE

FRONT END
DATA
MANAGEMENT

OUTPUT MESSAGE
TELEPROCESSING LU, W, X (23)
MONITOR

Consider now control and data flow initiated by an input message
as shown in Figure 5. The entry block contains an input area and
a terminal working area. The terminal working area consists of
the display retention area, (which is the area where the action
program stores the output message) and transaction continuity
data (UUU,VV). Action programs perform all the logical opera-
tions necessary to service the user at the terminal. This may in-
volve such a simple operation as asking the user the color of the
machine he is ordering and accepting his reply. Similar to the out-
put message is the data management message, which is, however,
directed toward the data management system (back end). The
data record is data returned from the data base.

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

Let us now follow a message through the system. Assume that
terminal C is in the middle of a transaction and has been asked a
question by the system. Such a question is represented in Figure
5: What color machine do you want? Enter X for red, Y for white,
and Z for blue. The user keys in X.

The teleprocessing (TP) monitor receives the input message,
which consists of the name of the terminal C and the input mes-
sage X. The TP monitor queues the message C-X in an input buf-
fer then determines the availability of one of the three entry
blocks (0, 1, 2 in the simplified system). If an entry block is avail-
able the input message is stored there. If none of them are avail-
able the TP monitor holds that input message in its input queue.
If the input queue becomes saturated with input messages the
TP monitor stops polling the terminals. Thus the system may run
out of time, but it cannot run out of storage space. The system is,
however, designed to a five-second response time specification.

The TP monitor in our particular example, determines that entry
block 1 is available. The TP monitor moves the name of the ter-
minal C and the input message X into the input area of the entry
block.

The TP monitor gives control to another systems program, called
Front End Data Management (FEDM), which is signaled by the
TP monitor that there is a new input message in entry block 1. The
FEDM checks the input area of entry block 1 and finds that the
message originates at terminal C. Since there is one record in
terminal working area storage for each terminal, the FEDM reads
record C from the terminal working area, and stores that record
in the terminal working area of entry block 1. Figure 5 shows that
terminal record C contains UUU and VV, which are the continu-
ity of answers to previous questions in this machine order ac-
tion. The answer to the current question to be added is X. Ter-
minal working area record C contains a 22, which is the number
of the program that is used to process the current input. We ex-
plain later how the action program number (22 in our example)
appears in terminal record C.

Program FETCH —an 08/360 capability —reads a copy of program
22 into the action program area of main storage if it is not there.
If action program 22 is already in main storage, FETCH gives
control directly to 22. (All action programs are re-entrant.)

Action programs always do at least two things: (1) they transmit
a message back to the terminal (C in the example), and (2) they
name the program that is to handle the operator response to the
message that is transmitted and displayed. (By the second step,
program 22 appears in the terminal working area record C; it was
put there by the process just described during the previous ques-

WIMBROW IBM SYST J

Figure 7 Data management system

SYSTEM/360 OPERATING SYSTEM

CHANNEL TO DATA MANAGEMENT INITIALIZER
MESSAGE
PROCESSOR

DATA
4—————1 MANAGEMENT MACRO— MACRO— MACRO— MACRO—
INTERFACE PROCESSING | PROCESSING | PROCESSING PROCESSING
AREA

0S/36G
ACCESS
METHODS

MA; Dé}AM T
NA EN
CONTROL 1/0 BUFFERS

BLOCKS

DATA MANAGEMENT CONTROL PROGRAMS

DATA FILE JOURNAL

tion-response interchange.) The message transmitted to the ter-
minal is typically a question, and the action program named
handles the operator response. In our example, action program
22 determines whether X is a valid response, which it is, and
moves X into the main storage terminal working area for termi-
nal C. In this way, valid responses are accumulated and the order
is built up.

Having thus saved the response, program 22 may issue a re-
quest to the data management system by a data management
request. The reason for the data management request in this ex-
ample is to obtain the skeleton (format) of the output message,
which is not a part of the action program. More extensive uses
of the data base are discussed later in this paper. Control now
transfers from the action program to another program designated
as. the message processor interface in Figure 4. That interface
copies the data management request into its own buffer and re-
turns control to the action program. The message processor con-
tinues processing terminal inputs and outputs independently of
the data management system.

The data management processor is the collective name for the
system programs of the data management system (which also
includes the data base to be discussed later in this paper). Fig-
ure 4 shows the message processor interface and Figure 7 shows
the data management interface and both figures show the inter-
connecting channel. The message processor interface establishes
communications through the channel to its counterpart in the data

NOo. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

data
management
processor

management processor. The transfer of a data management re-
quest from the message processor interface to the data manage-
ment interface initiates the retrieval of the record that action
program 22 has requested. Action program 22 places itself in a
wait state until the arrival of the requested record. The data man-
agement processor {which is discussed in more detail in the next
section) resolves the indexing and blocking conventions used in
the data base, and retrieves the requested record. The data man-
agement processor passes the record to the message processor
via the channel and the interface monitors. The message proces-
sor stores the data record in the entry block that terminal C is
currently using.

The action program 22 uses the display message skeleton trans-
mitted from the data base to build the message to be transmitted
back to the terminal C. The message to be transmitted is built in
a display retention area of the terminal working area. This area
is a part of the entry block, but is not specifically shown. Ac-
tion program 22 now readies an output message for terminal C
either asking a new question or transmitting a response to a pre-
vious question. By the rule previously given, program 22 must
know the name of the program that will process responses to the
message that is to be transmitted to terminal C. In the conversa-
tional mode, the user’s reply cannot be one to a question that is
not displayed; the design of the administrative system assures
the user that all relevant questions pertaining to each application
are displayed and answered. Thus we see in Figure 6 that action
program 22 names action program 23 to process the user’s an-
swer to the current output message. When the output message

for terminal C has been stored and the next program has been
named, control returns to the TP monitor of the message pro-
Cessor.

The entry block contains the information just discussed —the
output message and the name of the next program. The TP moni-
tor reads that output information from the display retention area
of the entry block and stores that information in the TP monitor
output buffer. The TP monitor determines the terminal to which
the output message is addressed because the output message is
always transmitted to the same terminal that the input message
came from. In the example, the output message is transmitted to
terminal C.

Control is given to the FEDM as soon as the TP monitor has the
output message in its own buffer. The FEDM now updates record
C in terminal working area storage so that, in addition to UUU
and VV, it also contains X, Record C in terminal working area
storage also contains the name of the next program that will be
used by terminal C, plus the message that has just been sent to
terminal C in case retransmission is required.

WIMBROW IBM SYST J

A single terminal action has now been completed. The adminis-
trative system has been designed so that the previously discussed
action generally requires less that five seconds, including TP de-
lays, data management request delays, and queuing delays. The
entry block previously used by terminal C is available for another
message from any terminal that is transmitting a message to the
administrative system. When the user at terminal C replies to the
question in the previous output message, there is only one chance
in three that the new response will use the same entry block be-
cause responses are assigned to the next of the three entry blocks
available in the simplified system. More efficient use is made of
system resources by the available assignment of entry blocks than
would be attained if an entry block were dedicated to a single
terminal until all of its transactions had been completed. This is
true even though the terminal working area storage must be re-
accessed to read terminal C data into another entry block. For
the next action program 23 is called and the previously described
steps are repeated until the entire transaction is finished. All ac-
tion programs —about five thousand —have been designed to fit
exactly the pattern described.

In the initial design of the advanced administrative system, all
actions were dispatched as separate tasks under 08/360. Measure-
ments made on that configuration during actual operations indi-
cated that an excessive amount of CPU time was being consumed
by task switching and resource management. An improved task
dispatching design was conceived and was implemented in the
system being discussed in this paper. The basis for the more effi-
cient dispatching technique is the fact that all action programs
function in exactly the same way under the system control pro-
grams. Therefore, the action programs are incorporated as sub-
routines of a single master task under 05/360.

This dispatching technique saves a large number of the task
switches that were required in the earlier system design. Mea-
surements indicate that CpPU time for each action is reduced by
more than fifty percent. Of equal significance is the fact no re-
programming of actions was required to make possible this pro-
gramming redesign.

Data management

The data management system is the back end of the front-to-back
administrative system, and consists logically of a control program
(data management processor) and a data base. The data manage-
ment processor has been discussed as it relates to the message
processor. We now discuss the data management processor and
the data base as they relate to each other.

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

processor

As shown in Figure 7, the data management processor is archi-
tecturally similar to the real-time message processor. Comparing
the message processor in Figure 4 with the data management
system in Figure 7, there are points of similarity and difference.
The initializers, of course, perform similar functions. The macro-
processing areas are analogous to the entry blocks of the message
processor because the overall functions of processing input mes-
sages or data requests and transmitting responses are similar in
both cases. There are more macroprocessing areas than entry
blocks because the typical action program in the message pro-
cessor initiates six requests to data management. Some input
messages, of course, make far greater demands than that.

The function of the data management processor is similar to that
of the message processor. The data management processor re-
ceives its inputs from the message processor and responds to
them on a one-input, one-output basis. In the case of data man-
agement, its input (from the message processor) is termed a data
management request, and the output is in the form of a specific
service. Such a service may be the delivery of a record or the
notification that a record has been stored. All data management
control programs are re-entrant, and they reside in data-manage-
ment main storage at all times. The data management processor
has no counterpart of the terminal working area storage for con-
versational purposes, nor are there any action programs in pe-
ripheral storage. Any information corresponding to these storage
locations is in main storage at all times. The data management
processor basically consists of the logical programs that drive
the data base system, which is discussed in the next section.

The 0s/360 access methods are used for the actual physical re-
trieval and reading and writing in the data base, but the data man-
agement control programs perform all the logic. These data man-
agement programs logically correspond to the application pro-
grams of the message processor, that is, the data management
programs process the input messages to the data management
system, Input messages to the data management system are put
by the data management interface monitor in an available macro-
processing area, and control is given to a data management pro-
gram to service each input message. Normally, such an input is a
request for data from the data base. The data management pro-
gram uses the information contained in a request —the input mes-
sage stored in the macroprocessing area—to retrieve indexes
from the data base that are used to locate individual data records
in the data base.

Before discussing the advanced administrative system data base,
we first give an indication of its physical size in terms of the fol-
lowing statistics:

e More than 20 million data records

WIMBROW IBM SYST J

Table 1 Installed machine file

Record key String key Group key
(serial (system (customer Date of
number) number) number) Description manufacture Color

1234 A9421 27123.00 2401 XX/XX/XX Blue
tape
unit

2345 27123.00 CPU

3456 27123.00 Card
reader

0112 27123.00 -
0479 27123.00 -
4823 27123.00 -
7894 27123.00 -
3168 87941.00

Approximately 27 million index records

More than 2.5 billion bytes of data

Approximately 0.5 billion bytes of indexes

Indexes and data are stored on approximately 150 IBM 2316
disk packs on 1BM 2314 disk storage devices

The data base is logically structured into individual records,
strings, groups, and files.

A record is a series of logically related data fields pertaining to a
given item. In Table 1, consider the example of a record for a
specific IBM 2401 tape unit that is installed with a specific custo-
mer. The record contains all necessary information concerning
that particular machine, i.e., description, date of manufacture,
serial number, system number (number of the configuration of
which the unit is a part), color, etc. All fields of that record are
stored contiguously in the data base and are available for retrieval
as a unit. All such records related to installed machines are physi-
cally located in the same file as the example record just cited.
Thus we call the example file in Table 1 the installed machine
file. The length of an individual record may vary widely from
file to file. When, however, format and length have been estab-
lished for a particular type of record, all records of that type con-
form to the standard. Each record has a unique key (called record
key) that distinguishes it from all other records of the same type.
In the installed machine file, the serial number is the record key
—1234 in the example of the 2401 tape unit.

Strings are collections of logically associated records in a file.
Referring again to the 2401 tape unit in Table 1, it is convenient

NO. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

to associate that unit with associated control units and other pe-
ripheral equipment used with the cpU, which together make up
the computer configuration installed in a customer’s location.
Such a relationship is indicated by each of the individual machine
records having the same system number, which is specified as the
string key in the table. Thus, system number (or string key)
A9421 consists of a tape unit (1234), CPU (2345), and card reader
(3456).

Similarly, groups are associations of strings. Continuing to build
on the example of the tape unit and system number, it is further
convenient to relate all machines (record key) of all systems
(string key) belonging to a specific customer (group key). Table 1
is a case in which the customer having group number 27123.00
has more than one system, wherein each system is made up of
several machines. Relating all machines of all systems of a given
customer constitutes a group relationship. In this manner, we can
retrieve all individual machines for all systems for that customer.
If the customer has several systems, that fact is specified by the
system number (string key), and each component machine is
specified by its serial humber (record key).

Files, the highest level in the data-base hierarchy, are collections
of identical types of records, which may also be associated by
strings and groups. The example of the 2401 in Table 1, is a record
in the installed machine file, wherein all records of installed ma-
chines have the same format and length, as mentioned before,
and are considered as a single file.

The complete data base consists of approximately two hundred
such files, all of which are organized as described above. A file
may have up to three keys (record, string, and group). It is not
necessary, however, to have three separate keys for all files. If
a file does not logically break down into three levels of associa-
tion, it may have only two levels of association, as in the accounts
receivable file. Here, there is an individual record for every in-
voice issued. All invoice records are of the same length, and for-
mat, and they are identified uniquely by the invoice number, i.e.,
the record key. Since it is convenient to associate all of the in-
voices for a specific customer, a customer number is used as the
string key. (There is no group key in the accounts receivable
file because there is no need for a higher association.) Other files
may have only a single-level key, i.e., the record key. Such a file
is the one that specifies the production schedule for each indi-
vidual type of machine manufactured. Since that schedule is not
related to any higher association, a single key (record) suffices
to identify the file.

All data records are written using the basic direct access method
(BDAM), using the sequence of record key within string key, with-

WIMBROW IBM SYST J

in group key. As these records are written initially, BDAM sup-
plies a feedback of the relative block number at which each re-
cord has been written. In Table 1, the machine whose serial
number is 0479 is the fifth relative record in the BDAM data set. If
BDAM is asked to retrieve the fifth relative record in this data set,
it acquires the record that is identified as record key 0479.

The data management system must capture the fact that the re-
cord identified as 0479 is the fifth relative record and store that
information. Storage for relative-address information is an index
file, which itself is a series of small records. Thus, when a mes-
sage requests record 0479, the index shows that it is the fifth
relative record in the installed machine file. When it is requested
to do so, BDAM retrieves the fifth record in that data set. In this
manner, an index is built for each different type of key for each
data file within the system. Therefore, data files with three keys
(record, string, and group) have three index files to permit the
retrieval of records from that file by each of the three possible
keys.

There must be one index record for each data record to retrieve
data by the record key. It is not necessary, however, to have a
one-to-one correspondence between strings and groups and their
respective indexes. String keys, as an example, take advantage of
the physical arrangement of the file and only have indexes point-
ing to the first record in each string. Other data records of each
string are thus retrieved by reading them sequentially. The same
technique is used for group-key indexing and retrieval.

New records added to the file are placed in an overflow area
specifically set aside for that purpose. Index records are created
and/or modified to logically integrate the new records into their
respective files. This is one of several housekeeping functions
that are scheduled in a batch mode when the terminal network is
shut down. From time to time, it is necessary to reorganize the
files because additions and deletions eventually distort their phys-
ical sequence to such an extent that retrieval time is adversely
affected. Reorganization is accomplished by rewriting the data
records in their proper sequence in another location and elimin-
ating the original file storage area. The index files that refer to the
reorganized data files must also be recreated so as to point to the
new locations.

System protection

When a company commits its basic records to a data processing
system, safeguards must be instituted to protect the system and
the records from manipulative and from physical damage. The
overall problem of authorization and a hypothetical solution are

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

authorization

discussed by Friedman.? The administrative system deals with
the same problem of assuring the authenticity of system users,
but incorporates an actual solution that is somewhat less flexible
than the one Friedman proposes. Procedures are also built into
the system for reconstructing and auditing the data base in case
of either physical or manipulative damage.

Authorization is an integral part of the system design, wherein
operational responsibility focuses on each individual manager
whose personnel actually use the system. Assume, for example,
that a manager at a given location has been delegated responsi-
bility for accounts receivable and billing at that location. He has
been given responsibility for using whatever files may have been
assigned to his care on a need-to-know basis. The administrative
system recognizes the manager by his employee number and
security code. In the example, these identifications correspond
to the manager’s authorization for accounts receivable and bill-
ing —and no other applications.

Of course, the manager does not regularly perform transactions
on the files; he delegates this responsibility to employees who
work under his direction. Nevertheless, the manager’s authoriza-
tion must first be recognized by the system so that he may regis-
ter his employees. Clearly, an employee cannot perform actions
for which the manager is not authorized. Thus, based on the man-
ager’s registration, the employees are given security codes to
perform actions delegated to them by their manager. This is the
essence of the employee’s need-to-know qualifications.

In actuality, neither the manager nor his employees perform ac-
tions or transactions until they have satisfactorily completed a
training course for the actions in each specific transaction. In
effect, the first step in authorization merely permits one to take
a training course. Step by step, the student is guided through the
accounts receivable and billing operations instructions on the
2260 that he will use in actual operations. Only after the student
has satisfactorily completed the instruction is he permitted to
perform actions in the administrative system.

When a trained user enters his employee number and security
code, the system checks his authorization and training capability
to perform the action he requests. If both are positive, he may
begin that action.

In the case of a security error, the basic mode is for the 2260 to
lock up and remain locked until a security person unlocks it.
When entering his security code and employee number, the user
is actually given two attempts. If he makes an error on the first
attempt, the system signals him to try again. A second security
error locks the machine. Attempts to perform actions for which

WIMBROW IBM SYST §

one is not authorized and trained similarly cause the machine to
lock after a reminder is presented on the first attempt. The system
is programmed to generate new security codes, which are mailed
to authorized employees on a monthly basis. Although many
safeguards are incorporated in the administrative system, respon-
sibility for its success focuses on the individual manager and his
employees.

As was previously mentioned, there must be a way to reconstruct
all or part of the data base in the event of its destruction. That
capability is a primary task and is an automatic feature of the
data management system.

Two choices were considered in designing of the reconstruction
capability. The first possibility might be called “‘quick recon-
struction” for it emphasizes rapid recovery from any data base
damage. The disadvantage of this approach is that significant
amounts of daily machine time are necessary to produce the rapid
reconstruction capability. Since the possibility exists that it will
never be necessary to rebuild the data base, all the processing
done as interim steps for quick reconstruction is a wasted effort.

A second approach minimizes the day-to-day costs of providing
reconstruction capability at the expense of the great amount of
time to reconstruct the data base should the necessity occur. If
reconstruction is unnecessary (except in rare instances), the low
day-to-day cost is certainly the more economical approach.

No economical technique allows instantaneous reconstruction
of the data base. Hence, ‘““fast” and “slow” are relative terms.
If the data base is destroyed, a system interruption must occur.
Therefore, the amount of time required for reconstruction is not
the main criterion, assuming that the amount of time can be held
within acceptable limits. The advanced administrative system
has implemented the second of these two choices: low day-to-day
cost with higher emergency cost.

In addition to the capability to reconstruct the data base, an effec-
tive data management system should have the ability to provide
an audit trail for the data base. Such an audit trail should provide
the auditor with the ability to determine what information was
changed, who changed it, and when this was done. The “who”
can be construed to be either the program that caused the change
or the individual who supplied input to the program. The design
of the data management system embodies both the ability to re-
construct and to audit individual records in the data base.

The programming technique on which both the reconstruction
and auditing capabilities are based is the classical accounting
procedure of the journalization of all changes made to ledger

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

data-base
reconstruction
and auditing

accounts with cross references (folio numbers) so that details of
accounts can be reconstructed or the ledgers recreated. In the
administrative system, the data base is analogous to the ledger,
and all records in the data base are, therefore, ledger accounts.
Any change made to any record is journalized in the data file
Jjournal and appropriate cross references made. The term “any
change” must be interpreted in its broadest sense. That is,
changes include not only changes to existing records (updates),
but also include the creation of new records and the deletion of
existing records.

Just as in the real-time operational environment, so also in re-
construction and auditing all data base activity is accomplished
by the data management system. Allocated to the data manage-
ment system are one or more magnetic tape drives for use by the
data management system for the data file journal. When a re-
quest is made that causes the creation, updating, or deletion of
any record, the data management system creates a journal record
on tape. The journal record consists of the new version of the
record after it has been acted upon by the user. Also included in
this data file journal is the signature of the requester — program,
terminal, and user identification number. Each data file journal
tape is sequentially numbered from the time the system first be-
came operational. The sequential number is incremented by one
for each new data file journal tape. It is exactly analogous to the
prenumbered pages in an accountant’s journal.

Associated with each record in the data base is a control field
for the exclusive use of data management. Included in this control
field is an area to record the folio number of the last update. When
a record is created, updated, or deleted, the folio field associated
with that individual record is posted with the number of the data
file journal tape currently being used by the data management sys-
tem. Recall that the data management system writes an image of
the updated record including the signature of the requester on
the data file journal tape. The previous contents of the folio field
associated with the record are also included in the data file journal
record as the “old folio”. In this way we capture in the data file
journal record an exact copy of the following:

e Current version of the record

e User who caused the record to be written in the data base

e Pointer (old folio) to earlier data file journal giving the pre-
vious version of the record

Thus a complete audit from the current content of any record,
back through time — update by update —may be accomplished at
any time by using the folio numbers.

It is possible to reconstruct any or all files in the data base by
taking all data file journals since the beginning of administrative

WIMBROW IBM SYST J

system operations and analyzing them to rebuild the files. This
approach is impractical because of the volume of records in-
volved. To reduce this volume to a workable size, a data file
image tape is periodically created for each file in the data base.
The interval of time when this image is taken varies from file to
file, based upon its activity. As a file becomes disorderly as a re-
sult of activity, a reorganization of the file takes place. Concur-
rent with reorganization, a data file image is created. The image
is an exact copy of all records in the file at the time of reorganiza-
tion. The decision to reorganize is the responsibility of the data
base control group. They issue the instructions to the computer
operations group to perform the reorganization. The time of re-
organization is recorded together with the first folio number that
reflects the reorganization.

In the event of damage to any of the files, we gather together all
data file journals created since a damaged file was last reorga-
nized. The data file journals are processed by a program that
copies from the data file journal tape (which contains records
from all files) every record related to the file that is being recon-
structed. In making the selective copy, a sequence number is
added to each record for control purposes. Extracted records
are sorted into descending sequence number within data base se-
quence. This sort puts the output in the exact sequence of the
data file image taken at the last reorganization. Duplicate records
(caused by updating the same record more than once since the
reorganization) are together on the tape with the current record
first. Duplicate records are omitted in the process because they
are of no further use. The sorted records and the data file image
are now processed by a program that creates a new data file that
contains current records or a copy from the data file image tape.

It is not feasible to block the writing of the data file journal tapes
because this would greatly increase the risk of losing several
journal entries in the event of machine failure. For this reason,
entries in the data file journal are written unblocked. This tech-
nique causes multiple reels of data file journals to be created each
day. For protection of the data file journal as well as to conserve
space, the journals are ‘‘compacted” every night. The compaction
program reads the data file journals created each day, organizes
them into large blocks, and creates a compacted data file journal
output tape. The compacted data file journal is stored in a secure
underground location.

Concluding remarks

In the advanced administrative system, we drew on the following
earlier technologies that were innovative at the time we began
planning the system:

No. 4 - 1971 INTERACTIVE ADMINISTRATIVE SYSTEM

282

On-line data base management of airline reservation systems
Interactive teleprocessing terminal environment of airline
reservation systems

e Computer assisted instruction

» Operating system with multiprocessing capability

Analogously, the techniques pioneered or extended by the ad-
ministrative system may serve as reference points of demon-
strated feasibility that can lead to further advancements in in-
formation system applications. The large, varied, and highly
structured data base used by the administrative system may guide
others in implementing more generalized data base concepts.
Administrative system use of alphanumeric terminals in a tele-
processing environment suggests the use of graphic terminals
and large data base systems with greater problem solving capabil-
ity. Our authorization technique, whereby thousands of users
share a common data base while maintaining the security and in-
tegrity of the information, may lead to the implementation of
more flexibile authorization systems.

The advanced administrative system described in this paper is,
of course, a snapshot of that system in its present state of opera-
tions. Both the system and the methods are themselves subjects
of continuing research and development with the intention of
increasing both their scope and efficiency.

CITED REFERENCES

1. M. N. Perry and W. R. Plugge, “American Airlines SABRE electronic reser-
vation system,” AFIPS Conference Proceedings, Western Joint Computer
Conference 19, 593 -601 (May 1961).

2. T. D. Friedman, “The authorization problem in shared files,” IBM Systems
Journal 9, No. 4, 258 -280 (1970).

WIMBROW IBM SYST I

