This bibliography attempts to help the reader select from the
rich body of sorting literature that which is in accord with his
interests, needs, and prior training.

Historical trends within the field are briefly outlined, and sub-
specialties are identified. Critical comments and classification
of the cited works are intended to help the reader to avoid wasted

effort.

A guided bibliography to sorting
by H. Lorin

In this paper, we restrict the word sorting to mean the ordering
of data by a digital computer. Given a collection of data entries
and an ordering key, various processes can be invoked to arrange
the entries into a desired order. The order is commonly an ascend-
ing or descending numerical or alphabetic sequence, but other
orders are possible. At one time, the meaning of the word sort-
ing was limited to the process of pigeon-hole classification,
whereas the words ‘“‘re-arranging” or ‘“‘ordering” carried the
broader meaning. More recently, however, sorting has come to
include all techniques for the ordered arrangement of data.

A large body of literature about sorting has developed as the
result of continuous and intensive work in the area since the
invention of the general-purpose digital computer. At differ-
ent times during the history of sorting, workers in the field were
preoccupied with different problems. In the late 1950’s, concern
was with improved techniques using tape drives; in the early
1960’s, with efficient methods using minimum storage space;
in the mid 1960’s, with disk-oriented methods; and currently
the industry is becoming concerned with sorting on parallel
processors and in virtual memory environments. Many of the
techniques currently discussed in the literature go back to the
very beginnings of the art; others are truly new.

LORIN IBM SYST J




Categories of sorting activity

Work in sorting is progressing along several lines. Some effort
is aimed at developing greater insight into known techniques and
at discovering more details about their behavior in different
situations.

A second line is the development of improved techniques. For
example, the search for algorithms combining efficient use of
storage space with a small number of comparisons has resulted in
significantly different techniques from those that appear as
“standard” in the early literature.

Other activity is concerned not so much with the fundamental
techniques of achieving order but with the environment in which
an ordering process occurs. Investigations of new kinds of de-
vices, new data-handling techniques for new devices, new pro-
cessor or channel architectures, etc., are constantly underway.

The field of sorting can be roughly categorized into a number of
subspecialties:

Internal sorting is the process of ordering a list of elements re-
siding in primary storage. The list may represent all of the data
to be ordered, or it may be a portion of a larger list all of which
cannot fit into primary storage at one time. There are two types
of internal ordering algorithms: the comparative and the distribu-
tive. The comparative algorithms order the list by making a
series of comparisons of the relative magnitude of the ordering

keys of the elements. The distributive algorithms order the list
by testing a key or a digit of a key against a standard and collect-
ing all members of a group together. Group definitions are then
modified so that all elements and groups are ordered during a
last pass. The performance of comparative algorithms varies
with the number of elements to be sorted and the permutation
of the elements. The performance of distributive algorithm varies
with the range of the keys and their distribution.

The criteria for measuring the performance of an ordering algo-
rithm are: the number of comparisons that must be performed
before the list is ordered, the number of movements of data on
the list before the list is ordered, the amount of space required
beyond that needed to hold the list, and the sensitivity to certain
kinds of order of the data. The number of comparisons among
algorithms varies considerably. The best of the minimum storage
comparative algorithms achieve order with roughly N log, N
comparisons, the worst with roughly N2, where N is the number
of elements to be sorted. A minimum storage algorithm is one
that requires little or no additional storage to perform the order-
ing. The selection of a sorting method and achieving its most

- 1971 SORTING BIBLIOGRAPHY

directions in
sorting
effort

internal
sorting




external
sorting

sort
systems

efficient representation in a computer program is a complex
process. In addition to the machine characteristics and the char-
acteristics of the algorithms, the characteristics of the data to
be sorted must be well understood. Size of the records, size of
the key, physical placement of the key in records, and the distri-
bution and permutation of key values all affect the selection and
performance of a sort and the particular variation of a general
algorithm that the user represents in code.

External sorting is the process of ordering data lists that are too
large to be represented in primary storage. The ordering process
consists of cyclically reading portions of the data into primary
storage and then distributing the elements to devices by some
algorithm. There are two major external sorting methods. The
comparative method is called the sort/merge and is the most
commonly used. The distributive method places elements across
output devices according to the values of individual digits
assigned to each output device. (A number of values may be as-
signed to a device to reduce the number of required devices.)
From pass to pass, different digit portions are scanned (left to
right or right to left) until the data is ordered. It is common for
there to be internal sorting of groups that fit into primary storage
during the last pass. A variation of the technique substitutes
ranges of key values for digit position values.

The sort/merge is a two-step process. For the first step, sorting,
some internal sorting method is used to produce long strings
(runs of ascending values) and to disperse these strings to out-
put devices. Strings are produced by ordering parts of the data

in primary storage. Sublists are read sequentially and ordered
into strings. For the second phase, the strings are read and com-
bined (merged) into larger strings, so that the number of strings
is reduced at each pass. The process ends when the number of
strings is reduced to one long ordered string.

There are a variety of merge types and string dispersion algo-
rithms for tape and random-access storage devices. The design
of a merge depends upon 1/0 subsystem characteristics, device
type, size of primary storage, data characteristics, and many
other factors. The design goal is the balance of as few merge
passes as possible with having each pass as fast as possible.
Attention must be paid to proper buffering and blocking, as well
as to string dispersion. Tape merges differ from each other in the
specific distribution of strings across tape devices. Disk and drum
merge designs differ from each other in the specific assignment
of addresses to strings as they are produced.

Sort systems design includes a number of considerations. A sort
system attempts to provide users with an efficient generalized
sorting capability. The system must be capable of sorting a wide

LORIN IBM SYST J




range of data types, and the sort must be usable over a wide range
of system configurations. The design of a sort system involves
three major decision areas and a number of associated secondary
determinations. - The major decisions are: the type of sorting
techniques that will be made available; the techniques that will
be used to generate a specific sort for specific data and configura-
tion; and the user language (the information the user is asked
to provide and the extent of his options).

There are two major approaches to designing a package. One is
to develop the package as a closed “parameterizable black box.”
In such a system, the user has parameter statements of a form
unique to the sort system and some fixed entry points if he wishes
to insert some code into the running form of the sort provided
by the package. An alternative approach is to view the sort
package as a family of routines called from the user program
using the language caLL or macro facilities. In such a system,
the user has considerably more flexibility in what he may do in
the sort environment. The nature of the user sort ‘“‘language”
is naturally reflected in the differing approaches. The sort pack-
age for the 1BM 709 is a classic form of the “parameterized”
black box; the sort package for the UNIVAC 111 (SODA) is a classic
form of the callable macro.

Sort package design requires many other decisions, such as the
point and methods of calling the sort program. Other determina-
tions include the interfaces between the sort program and higher-
level languages of an operating system, system 1/0 support (and
whether to use it or specially developed 1/0 routines), and oper-

ating system primary and auxiliary storage allocation mech-
anisms.

Developers of sort systems must be thoroughly familiar with
the characteristics of the hardware of the sorting machine, they
must be knowledgeable in program generation techniques, com-
petent in program optimijzation and balancing methods, familiar
with design technology and the operating system and 1/0 areas,
as well as being competent sort specialists. In addition, since
the performance of a sort is critical, a sort development team
must be competent to undertake extensive prediction, analysis,
and test of their product’s performance characteristics.

Several areas in data processing are closely related to sorting:

Searching is the process of efficiently locating a particular ele-
ment in a data set. Search techniques attempt to minimize the
number of comparisons required before an element is found.
Various data structures and their statistical properties are con-
sidered in terms of their effect on the length of search. The pat-
terns of searching are useful for investigating comparison se-

No. 3 -« 1971 SORTING BIBLIOGRAPHY

related
areas




prerequisite
knowledge

248

quences in ordering algorithms, since the number of comparisons
required to achieve order is a critical parameter of a sorting
technique.

File organization includes the structure of data files, the methods
other than physical contiguity that can be used to represent an
ordering of a file, and the variability and complexity of records
and record groups in a file. For example, the use of chaining
techniques to represent a desired order can relieve a sort program
of the need to move large amounts of data. The use of key-
transformation hashing techniques as a means of re-ordering
elements by developing addresses that represent their order is
of interest. Similarly, additional problems exist in sort situa-
tions in which it is necessary to order records of variable size.

Hardware characteristics and organizations affect sort al-
gorithms. Workers in the field have been fascinated in the past
with the development of architectures that would be ideal and
practical for sorting. Multiway comparison instructions are an
example of what sorting people have been asking for and not
getting. However, they have gotten various forms of indirect
addressing, search instructions, associative memories, intelligent
channels, caches, and a host of auxiliary storage devices. It is
essential that sort development activities take cognizance of the
subtleties of hardware and hardware performance.

Surely as important as CcpU characteristics and 1/0 subsystem
path capabilities is the nature of the devices that will hold data
during the sorting process. The tape unit is the simplest device
to support, because of its sequentidl, noncyclic, positional
addressability. The read backward capability, rewind charac-
teristics, and start times have some effect on sort design, but
the major factor in tape sorting is a proper distribution across
different tapes. Disks, drums, data cells, and other random- or
mass-access devices present a different set of problems, because
of their latency times and the great variation in performance due
to specific positioning of data. Techniques to minimize seek and
search time dominate sort design for these devices.

Important related considerations for sorting are the accessibility,
and the organizational and path interface characteristics of new
storage devices. In addition, there has been a recent rebirth of
interest in dedicated sorting machines with hardware-imple-
mented sorting algorithms.

Sorting literature

Those who wish only to find and implement a reasonable sort
need no associated specialized knowledge. Working descriptions

LORIN IBM SYST J




of sorting methods with usable guides to relative performance
exist in the extensive literature of the field. Many of the articles
tend to be oriented toward statisticians or mathematicians, but
there exists sufficient narrative material so that a programmer
or analyst without this background can familiarize himself with
techniques and alternatives.

A reading knowledge of ALGOL is important. One of the quickest
ways to become familiar with a number of sorting techniques is
to read the algorithms published in the Communications of the
ACM. In addition to these, some authors have chosen ALGOL as
a language to demonstrate an algorithm in their articles. Some
caution must be exercised here because many of the algorithms
are carelessly prepared or erroneously printed. Some are in a
nonexecutable “pseudo-aAr.GoL” and do not represent a workable
form.

The ALGoL algorithms noted in this bibliography are at least
procedurally correct from a sorting point of view. They have been
coded into workable PL/1 equivalents and extensively tested.

Those who desire to specialize in the development or analysis
of sort algorithms or to be very careful in their choice of a sort
procedure must have a statistical and mathematical background.
An appreciation of the derivation, applicability, and generality
of formulas used to project performance requires concepts of
permutation, distribution, randomness, nonparameteric tests
for randomness, autocorrelation, etc. Developing performance
analysis methods for new techniques or new combinations of
techniques requires facility in algebra and calculus. Algebra is
often used to describe sorting processes. Bounds or limits on
performance are often expressed in the calculus. A very thorough
understanding of sorting is based on a usable knowledge of these
disciplines.

But the development of sorting programs is an activity far more
extensive than the development of sorting algorithms. The
worker with little mathematics or statistics can make important
contributions to the field once he has understood an algorithm
theoretically developed.

The following guide through the rich literature of sorting attempts
to enable the reader to develop the degree of knowledge he de-
sires with a minimum number of false starts and duplicated ef-
forts, and without reading at the wrong mathematical level.

BIBLIOGRAPHY

1. Sorting Techniques C20-1639, International Business Machines, Data
Processing Division, White Plains, New York (1965). A nice overview of
internal and external sorting, with some general performance characteristics

- 1971 SORTING BIBLIOGRAPHY

introductory
articles




given. The manual, although excellent in general, contains some errors
carried over from its sources. It is also a little dated and does not include
recently developed techniques. Use it only as an introductory guide.

. C. C. Gotlieb, “Sorting on computers,” Communications of the ACM 6, No.
5, 184-201 (May 1963). A very compact introduction to the field. An
alternative to Reference 1 for the very busy reader.

. E. H. Friend, “Sorting on electronic computer systems,” Journal of the
Association for Computing Machinery 3, No. 3, 134-168 (July 1956). A true
jewel and better every time it is read, despite its age. No better introduction
to considerations in designing an external sort exists. The appendixes are
worthwhile. Little mathematics is required except in the appendixes.

. P. F. Windley, “Trees, forests, and rearranging,” British Computer Journal
3, No. 2, 84—88 (1960). This article introduces the concept of binary tree
structure and its use in ordering data. The style is narrative except for the
derivation of expected number of compares and standard deviation. The
reader with limited mathematical background will come away with a good
idea of the nature of trees. The reader with more mathematics will see a rare
instance of the published development of deviation of number of compares
in the general literature. The reader of this article might also profit from the
following paper.

. W. Burge, “Sorting, trees, and measures of order,” Information and Control
1, No. 3, 181-197 (September 1958).

internal The following collection of references is intended to extend the introductory

sorting material to acquaint the reader with some of the more widely known algorithms
and to solidify his appreciation for the area. These articles may be read in any
order. Together with the introductory articles, this material should bring the
reader to an intermediate point where he understands and is familiar with the
underlying concepts, problems, and procedures of internal sorting.

6. J. Boothroyd, “Stringsort, Algorithm 207,” Communications of the ACM 6,
No. 10, 165 (October 1963). A clever merge that is worthwhile to under-
stand as an example of a merge not dependent upon a premerge sorting
process.

. R. W. Floyd, “Treesort 3, Algorithm 243,” Communications of the ACM 17,
No. 12, 701 (December 1964). This algorithm is the last in a series of al-
gorithms by the author that impose a tree structure on a list of items to be
sorted. It is useful as an example of a technique closely associated with the
“replacement selection” so widely used in sorting packages.

. M. H. Hall, “Method of comparing time requirements of sorting methods,”
Communications of the ACM 6, No. 5, 259-263 (May 1963). Techniques
for very fine calibration of sort performance. Nothing really new here, but
it is worthwhile to tread through such an article. The formulas quoted are
not reliable. The reader begins to develop a feeling for what is involved in
comparing sorts.

. C. A. R. Hoare, “QUICKSORT,” British Computer Journal 5, No. 1,
10-15 (1962). The introductory article for the technique discusses all the
later refinements. A gem for all readers.

. T. N. Hibbard, “Empirical study of minimum storage sorting,” Communica-
tions of the ACM 6, No. 5, 206213 (May 1963). A presentation of radix
exchange, a nonrecursively encoded form of QUICKSORT, a modified
SHELLSORT, and a combined technique derived from SHELLSORT and
merging. (Unhappily, “D” in ALGOL contains errors.) Methods are ana-
lyzed and compared in different data situations of random and nonrandom
distribution and order. The nonmathematical reader will miss some details,
but the algorithms and conclusions are worthwhile.

. C. A. R. Hoare, “QUICKSORT, PARTITION, FIND, Algorithms 63,
64, 65,7 Communications of the ACM 4, No. 7, 321-322 (July 1961). The
first ALGOL presentation of the recursive partitioning algorithm. The al-
gorithm in Hibbard is essentially the same but does not formally recurse.

250 LORIN IBM SYST J




A review of this form is useful to see the underlying concepts of the technique
as originally presented. Either Hibbard or Hoare should be studied inten-
sively.

. D. L. Shell, “A highspeed sorting procedure,” Communications of the ACM
2, No. 7, 30-32 (July 1959). The famous SHELLSORT initial presentation.
Easy narrative style, with example.

. E. J. Isaac and R. C. Singleton, “Sorting by address calculation,” Journal
of the Association for Computing Machinery 3, No. 3, 169-174 (1956).
A narrative introduction of the method. Tradeoffs in space and time are dis-
cussed. Experimental results are obsolete.

. W. Fuerzeig, ‘“‘Mathsort, Algorithm 23,” Communications of the ACM 3,
No. 11, 601 (November 1960). An encoding of a digit sort using frequency
counts to reduce space requirements.

The following articles can deepen the reader’s familiarity with the area of internal advanced
sorting. internal

15. R. C. Bose and R. J. Nelson, “A sorting problem,” Journal of the Association sorting

for Computing Machinery 9, No. 2, 282-296 (April 1962). Presents an
algorithm for developing a series of comparisons on a list to be sorted such
that the sequence of compares is unchanged regardless of compare results.
This sequence must be shown to be shortest (that is, no other fixed sequence
can be shorter) and to successfully achieve order. The authors show both
weight (number of compares) and ordering property. After this, the reader
should read the following paper.

. T. N. Hibbard, “A simple sorting algorithm,” Journal of the Association for
Computing Machinery 10, No. 2, 142-150 (April 1963). In this article, a
method of computer generation of Bose-Nelson sequence is incorporated into
an ALGOL sorting algorithm. This and the preceding article have rather
formidable notation.

. T. N. Hibbard, “Some combinatorial properties of certain trees with appli-
cation to searching and sorting,” Journal of the Association for Computing
Machinery 9, No. 1, 13-28 (January 1962). A formal discussion of tree
structure and the presentation of a QUICKSORT variant in this context.
The QUICKSORT variant is identical to that given in the Hibbard article
of 1963 listed above.

. B. S. Brawn, F. G. Gustavson, and E. S. Mankin, Sorting Performance in a
Paged Virtual Memory, IBM Thomas J. Watson Research Report RC2435,
Yorktown Heights, New York (April 1969). A study of five variations of
sorting on a paging machine. Each method is a variant of QUICKSORT
with or without merging. The authors also comment on other techniques
(insertion, radix-exchange) and other design choices (key or record sort)
operating in a paging environment.

. R. B. Lazarus and R. M. Frank, “A high-speed sorting procedure,” Com-
munications of the ACM 3, No. 1, 20-22 (January 1960). A suggested
modification of Shell’s technique to avoid the development of disjoint sorted
strings on the last pass. Basically, one attempts to force distance between
comparands to an odd number. Issue is taken up by Hibbard and reflected
in the following paper.

. J. Boothroyd, “SHELLSORT Algorithm 201,” Communications of the
ACM 6, No. 8, 445 (August 1963).

. R. S. Scowen, “QUICKSORT, Algorithm 271,” Communications of the
ACM 8, No. 11, 669-670 (November 1965). An algorithm, elegantly and
carefully presented, that is very like Hibbard’s version of QUICKSORT.

. R. C. Singleton, “An efficient algorithm for sorting with minimal storage,
Algorithm 347, Communications of the ACM 12, No. 3, 185 (March 1969).
A further honing of the QUICKSORT approach. The algorithm provides
for median sampling and an alternative for short partitions.

. G. S. Shedler, An Example of Indeterminacy in a Parallel Algorithm, 1BM
Thomas J. Watson Research Report RC2084, Yorktown Heights, New York
(May 8, 1968). Also,

1971 SORTING BIBLIOGRAPHY




external
sorting

. G. 8. Shedler, A Parallel Method for Sorting, RC1823, (March 18, 1967) and
Hlustrations of Decomposition in Parallel Algorithms, RC2047 (April 3,
1968) IBM Thomas J. Watson Research Reports, Yorktown Heights, New
York. Investigation and presentation of a QUICKSORT-like sort on a
parallel processor. The general problem of operating on parallel processors
is the development of noninterfering subtasks such that, although more
comparisons may be made in sum by all processors, so many of them are
made in parallel that elapsed time is reduced.

. M. H. Van Emden, “‘Increasing the efficiency of QUICKSORT,” Communi-
cations of the ACM 13, No. 9, 563 -566 (September 1970). A rather formal
article discussing a technique for reducing the comparisons in QUICKSORT
to closer to N log, N. The method is an example of the growing interest in
“heuristic” sorting, which attempts to take maximum advantage of what is
dynamically discovered about data during the process of sorting. An impor-
tant if formidable article in this area follows.

. W. D. Frazer and A. C. McKeller, “Samplesort: a sampling approach to
minimal storage time sorting,” Journal of the Association for Computing
Machinery 17, No. 3, 496 - 507 (July 1970). See also the following.

. M. H. Van Emden, “Increasing the efficiency of QUICKSORT, Algorithm
402,” Communications of the ACM 13, No. 11, 693 (November 1970).
This ALGOL algorithm is based upon the technique described in the other
cited Van Emden article. The nonmathematical reader may observe the
method from the algorithm. Comparison with another version of QUICK-
SORT is provided.

. L. J. Woodrum, “Internal sorting with minimal comparing” IBM Systems
Journal 8, No. 3, 189-203 (1969). A nice discussion of the properties of
comparative sorts, and the presentation (in APL) of a merge with minimum
compare properties. A knowledge of APL and some statistics is required for
a full appreciation of the article.

. M. D. Maclaren, “Radix exchange plus sifting,” Journal of the Association
of Computing Machinery 13, No. 3, 404-411 (July 1966). A narrative
description of a combined method with a formalized discussion of its
efficiency.

This collection should provide an awareness of some details of the basic tech-
niques on tape and drum/disk and of considerations in merge design.

30. B. K. Betz and W. C, Carter, “New merge sort techniques,” ACM National

31.

Proceedings, p. 14 (1959). Introductory descriptions of cascade tape merges.
Somewhat formal. But see also Reference 48.

R. L. Gilstad, “Polyphase merge sorting—an advanced technique,” Pro-
ceedings Eastern Joint Computer Conference, 143 ~148 (1960). An intro-
ductory description of the polyphase merge.

. N. A. Black, “Optimum merging from mass storage,” Communications of

the ACM 13, No. 12, 745-749 (December 1970). A full discussion of the
parameters involved in optimizing a mass storage merge. The article begins
with a narrative of a simple “complete pass” merge scheme and an alternative
to it. Notation is introduced but the nonmathematical reader who sticks to it
will be rewarded with a real understanding of the complexities involved in
merge design.

. A. Bayes, “A generalized partial pass block sort,” Communications of the

ACM 11, No. 7, 491 -493 (July 1968). One of the rare recent discussions of a
distribution-type sorting technique. Comparisons with known sorts of this
type are provided and their general nature described.

. W. H. Burge, Analysis of Compromise Merge Sort Techniques, IBM Thomas

J. Watson Research Report RC2987, Yorktown Heights, New York (July
1970). This article describes the natare of the “k-1” merge family in terms
of tree structures. “Compromise” techniques, which are between two stan-
dard k-1 merges, polyphase and cascade, are shown to be superior. For the
sophisticated, mathematical reader. A very important article, since it is
(perhaps) the first to investigate the “‘compromise” merge in detail.

LORIN IBM SYST J




. B. J. Gassner, “Sorting by replacement selection,” Communications of the
ACM 10, No. 2, 89-93 (February 1967). Formal discussion of the now
standard method of producing long strings for a merge. Although this is an
article about an internal method, its aim is to establish the length of strings
that will be produced for a merge.

. R. L. Gilstad, “Read backward polyphase sorting,” Communications of the
ACM 6, No. 5, 220-223 (May 1963). A description of the distribution re-
quirements for accomplishing backward read polyphase.

. M. A. Goetz and G. S. Toth, “Comparison of oscillating and polyphase,”
Communications of the ACM 6, No. 5, 223 -225 (May 1963). The authors
compare various claims and clarify some terms involved in comparing these
techniques. An interesting example of a controversial article.

. M. A. Goetz, “Some improvements in technology of string merging and
internal sorting,” AFIPS Conference Proceedings, Spring Joint Computer
Conference 26 (1964). Interaction between replacement-selection internal
sort and polyphase merging.

. M. A. Goetz “Organization and storage of data for efficient disk sorting,”
Communications of the ACM 6, No. 5, 245-247 (May 1963).

. G. Hubbard, “Some characteristics of sorting in computing systems using
random access storage,” Communications of the ACM 6, No. 5 (May 1963).
Introductory description of disk sorting in an IBM disk context.

. D. Knuth, “Length of strings for a merge set,” Communications of the ACM
6, No. 11, 685-688 (November 1963). Despite his many comments, books,
and articles, this author has not published frequently in the general periodical
literature. This article discusses, rather formally, the length of strings that can
be expected from replacement selection. The interesting result is the impact
of reversing the direction of strings for a backward polyphase. The expected
string size is shown to be 1.5 times the number of elements in the tournament.

. W. D. Malcolm, “String distribution for polyphase merge,” Communica-
tions of the ACM 6, No. 5,217-219 (May 1963). The “dummy”’ distribution
technique now adopted as standard in most implementations of polyphase
sort/merge programs.

. A. G. Mendoza, “A dispersion pass algorithm for polyphase merge,”
Communications of the ACM 5, No. 10, 502-504 (October 1962). This
article undertakes a proof that a particular algorithm for adjusting to the
proper distribution for a polyphase merge is efficient. The adjustment tech-
nique has been obsoleted by Reference 42. However, the distribution is of
interest since it differs from that described in Reference 42. A combination
of the ideas of both is a popular implementation. The general reader will
avoid, with no loss, the proofs of efficiency. i

. S. Sobel, “Oscillating sort—a new sort merging technique,” Journal of the
Association for Computing Machinery 9, No. 3, 372-374 (1962). First
description of oscillating merge. A nice narrative, but be wary of the com-
parisons in Table 1. Even if accurate, these “‘power of merge” figures are a
misleading index to how hard a merge works to order data.

. C. E. Radke, “Merge-sort analysis by matrix techniques,” IBM Systems
Journal 5, No. 4, 226247 (1966). Various merges seen as operations on
matrices. Conditions under which merges “converge’ and do not “converge,”
where convergence is defined to be the reduction to one ordered string with-
out a change in matrix operator.

This collection is intended to introduce basic considerations in organizing a sort sorting
package of some generality and contending with a sort system in an operating systems
system environment. Advanced reading is not listed here since it will obviously

be derived from the collection of user and internal manuals associated with
vendor-provided sort programs. '

46. J. B. Glore, “Sorting nonredundant files with FACT compiler,” Communi-
cations of the ACM 6, No. 5, 231-239 (May 1963). An interesting introduc-
tion to the interaction of language, its data facilities, and sorting.

1971 SORTING BIBLIOGRAPHY




47.

48.

J. B. Paterson, “COBOL sort verb,” Communications of the ACM 6, No. 5,
255-258 (May 1963). The capabilities and implications of the COBOL sort
call are described.

R. Pratt, “UNIVAC IlI sort,” ACM Sort Symposium, Princeton (Novem-
ber 1962). A nice general description of the techniques, organization, and
structure of a vendor package. A narrative description of a cascade merge
is included.

. D. J. Waks, “Conversion, reconversion, and comparison techniques in

variable-length sorting,” Communications of the ACM 6, No. §, 267-271
(May 1963).

The bibliography is by no means exhaustive. The bibliographies of the articles
listed here will lead the reader further. An extensive bibliography exists in the
May, 1963 Communications of the ACM and in the IBM Sorting Technigues
manual. The reader will have noticed a great proportion of the references come
from ACM publications. This is intentional since the author feels these are the
publications most accessible to general workers in our field. The large number of
articles from the May 1963 issue of Communications of ACM is due to the fact
that this issue published articles from the November 1962 ACM Sort Symposium
in Princeton, New Jersey.

IBM SYST §




