
The performance of a complex time-sharing system was moni-
tored under actual operating conditions during a period in
which changes in system conjiguration (both hardware and
software) took place. Various techniques for assessing the im-
pact of those changes on performance are discussed.

Performance criteria and measurement
for a time-sharing system

by Y. Bard

Characterizing the performance of a time-sharing computer
system is a vexing problem. There are two main difficulties:
the extremely variable and nonreproducible load that is usually
placed on such a system, and the lack of an agreed-upon per-
formance criterion that' could be optimized. Because of these
factors, it is often difficult for the system designer to ascertain
how changes in either hardware or software have affected sys-
tem performance. It is also difficult to determine what future
changes are most likely to improve performance.

Although lacking a clear-cut performance criterion, we intend
to describe and evaluate system performance under conditions
of variable and mostly unknown loads. By collecting large vol-
umes of data over extended periods, we expect to make up for
the variations in load, and by evaluating separately various com-
ponents that should enter into any reasonable performance cri-
terion, we hope to present the system designer with information
on which he can base his decisions, even if we cannot dictate
this decision in an objective manner.

The primary performance components discussed in this paper
are overhead, average throughput, and maximum throughput.
Their utility is demonstrated by application to three different
major system configurations, and also to a specific change in a
single module. Another primary performance measure, namely
response time, is not discussed in this paper.

NO. 3 . 1971 TIME-SHARING PERFORMANCE 193

Table 1 Variables by DUSETIMR

Variuble Description Unit

Date
Time of day
Wait time
CP time
Dispatch**

No. users

VSIO

VMIO*

RIO

P. in
P. out
P. steal*

Free-fret*’
User data

1.D.

CPU time in wait state
CPU time in supervisor state
C P time not charged to any user;
mostly dispatch time
Users signed on at moment of
measurement
S I 0 instructions issued by users
to virtual selector channels;
mostly disk and tape 1/0 operations
S I 0 instructions issued by users
to virtual multiplexer channels;
mostly terminal l/O operations
and spooling to virtual
peripheral devices
S I 0 instructions to disks or
drums originated by CP; includes
paging and spooling I/O operations
Pages read in
Pages swapped out
Pages that belonged to users in
the active queues and that were
overwritten by incoming pages
See section on free-fret
For each user signed on at moment
of measurement:
User identification

Day, month, year
Seconds since midnight
Seconds since start up
Seconds since start up
Seconds since start up

Number

Number since start up

Number since start up

Number since start up

Number since start up
Number since start up
Number since start up

Tot. time CPU time accounted to user Seconds since sign-on
Prob. time Problem state time accounted to Seconds since sign-on

user

*These variables were measured only in the later part of the study.
**This variable is called “overhead” in CP, but we have not used that name to avoid confusion with the fact that all CP time is overhead.

Data collection and assembly

The data used in this study were collected by monitoring an
IBM System/360 Model 67 computer running under the CP-67
time-sharing operating system.”2 (CP-67 is described briefly in
the Appendix.) A program entitled DUSETIMR collected the
data. Running of the program was initiated automatically at
nominally five-minute intervals, and the program was run from
the operator’s virtual machine with its data stored in the oper-
ator’s disk space. About once a day the data were transferred
from the disk on to magnetic tape. The program induces CP (the
control program) to supply it with the current values of various
counters that CP maintains. These counters are mostly cumulative
and are reset to zero only at system start-up. Counters apply-
ing to individual users are started each time the user logs on.

194 BARD IBM SYST J

Table 2 Derived variables

Vuriuble Description Unit

At Time between successive observations Seconds
Problem state Total time-(CP time +wait time) Seconds

Page I/O P. in + P. out Number
Spool I/O RIO - Page 1/0 Number

time

Active users Number of users who have used some problem- Number
state time during the last observation period

Table 3 Data base periods

Number of
Designation Study period Description dura points

I1 -2 9/69 - 11/69 C P version 11, 2 core boxes 1,386
11-3 12/69 - 3/70 C P version 11, 3 core boxes 7,890
111 - 3 5/70-6/70 C P version 111, 3 core boxes 10,508

Table 1 contains a list of the recorded quantities. A full descrip-
tion of the data collection method is given by Adair and Bard.3

Before being subjected to analysis, these data were augmented
with additional variables computed from the primary measured
variables. Table 2 lists those derived variables that were found
useful in the analysis. In addition, most variables were reduced
to a per-second basis by taking the differences between succes-
sive measurements and dividing by the time elapsed between
them.

Measurements used in this study were taken over a period of
ten months. During that time, two major changes occurred in
the system configuration: first, more main storage in the form
of a third core box was added to the initial two; second, version
111 of CP-67 replaced version I1 as the operating system. Many
additional small software and hardware changes occurred during
this period, but their effects were judged to be negligible com-
pared to the effects of the major changes, and so the data were
divided into three subsets as detailed in Table 3. The data within
each subset were treated as being homogeneous.

The increase in number of data points from the first to the third
period is due partly to the fact that 11-2 consists entirely of first
shift measurements, 11-3 contains much second shift and some
third shift data, whereas around-the-clock operation and record-
ing were the rule under 111-3. Since high-load, first-shift data are

NO. 3 . 1971 TIME-SHARING PERFORMANCE

CP overhead regression

By “CP overhead” we mean the central processing unit (CPU)
time spent by CP in servicing the users’ requests for system re-
sources of various kinds, e.g., CPU time, main memory space,
and do operations of various types. This should not be con-
fused with the measured variable generally called “overhead”,
which we call dispatch here (see Table 1). Dispatch constitutes
only a small part of the total CP overhead.

Our approach to analyzing CP overhead is the following: Let us
number the five-minute periods for which we have measurements
p = 1, 2, . ., n, and let the measured CP time in the pth period
be tP. Let the length of the pth period be denoted by T P . Suppose
we are dealing with m different types of requests that CP must
service. Let us designate by nPi (i = 1, 2, . ., m) the measured
number of requests of type i serviced during the pth period.
Suppose 8; is the average time required by CP to service one
request of type i. Then the total CP time spent in the pth period
is given approximately by

tw = 8,TP + einPi
m

i= 1

where 8, is the average amount of time spent by CP during each
second of real time in performing functions other than those
accounted for by the explicitly mentioned requests. In practice,
we divide Equation 1 by T P to obtain

m

where T = t J T w is given in milliseconds of CP time per second
of real tme , and xPi = n J T w is the rate per second of requests
of type i. It is now possible to estimate 8,, 8,, . * a , 8, by fitting
Equation 2 to the observed values of T ~ . This is done by the
method of least squares, i.e., we determine 8,, dl , - . *, 8, so as
to minimize the sum of squares of the residuals

v

goodness If the rw are relatively small, then Equation 2 is considered to
of fit give a good fit to the data. An objective criterion for judging the

196 BARD IBM SYST J

goodness of fit is obtained by comparing the sum of squares of
the residuals to the sum of squares of the deviations of the
measurements from their average value. Let 7 be the average
value of the rLL. Then our goodness-of-fit criterion is R2, the
square of the multiple correlation coefficient

Clearly, if Equation 2 fits the data perfectly, then all residuals
vanish and R 2 = 1. Conversely, if the variables .xwi contribute
nothing to the understanding of rp, then 2 degenerates simply
into rLL = Bo = 7, and hence, rLL = rLL - 7 and R 2 = 0. Thus, if the
assumptions under which we derived Equation 2 are at all valid,
then we expect to find a value of R2 close to 1.

Another quantity of interest in judging the goodness of fit is the
standard deviation of the residuals, i.e., the root mean square

The smaller s is, the better the fit of the model to the data. In
attempting to fit the CP time data, we found that most residuals
were reasonably small, but some were very large in magnitude
compared to s. Observations that have relatively large residuals
are called outliers, and their presence indicates either gross
errors in the measurements, or the existence of important un-
measured CP activities. It is interesting to note that almost all
CP time outliers had large positive residuals, indicating that CP
time was spent in unaccounted-for activities. Following stan-
dard statistical practice, we dropped the outlying observations
from the analysis, and Equation 2 was refitted to the remaining
observations. The criterion for dropping an observation was that
IrWl exceeded 2.5s.

The crucial question that arises when Equation 2 i s fitted to the
data is which variables .xwi should be chosen for inclusion in the
equation. In our analysis, we were guided by the stepwise-for-
ward selection regression procedure: First choose the variable
capable of giving the greatest reduction in the sum of squares S;
then add the variable capable of giving the greatest additional
reduction and so on until no further significant reduction can be
achieved. The details of the computations for this, as well as for
all the other model-fitting calculations, can be found in standard
texts on regression ana ly~ i s .~

A forward selection regression program was applied to various
subsets of the data. In all cases, it turned out that the program
selected only variables included in the following list:

NO. 3 ' 1971 TIME-SHARING PERFORMANCE

Table 10 Number of observations in different groups

I

Number of
Active users

Data set
11-3 111 - 3

1 2 35 1082 2049
3,4 43 1413 3598
5,6 74 820
7 3 135 802 753
9,lO 162 727 569

11,12 220 838 534
13,14 247 873 514
15,16 207 653 463
17,18 158 383 263
19,20 70 168 148
2 I ,22 26 82
23,24 9 38

85
34

25.26 0 10 I O
2 7 2 8 0 0 3

Average throughput as function of active users

The throughput of the system may be loosely defined as the
amount of work performed per unit time. The amount of work
itself is a vector with several components. Some of these repre-
sent “useful” work, i.e., work directly requested by the users,
e.g., VSIO, VMIO, and problem state time. As a general rule,
changes in the system are considered desirable if useful through-
put is increased, or if the overhead required for a given amount
of useful throughput is decreased.

I

Overall average throughputs for the three periods in question
have already been given in Table 7. These figures do not, how-
ever lend themselves to meaningful comparisons because they
represent system response to widely varying loads. One cannot
blame version I11 of CP for servicing, on the average, fewer
VSIO’S than version 11, when this is due purely to the fact that
fewer VSIO’S were requested. What is needed, then, is some
measure of the load placed on the system. Among the available

ables, the only one that seems to be a measure of load,
rather than of response, is the number of signed-on users, or,
better yet, the number of active users as defined in Table 2. Our
procedure was to group the available observations by number of
active users, and compute separate averages for each group.
Table 10 shows the number of observations available in each
group, and Figures 1 through 5 plot average problem state time,
CP time, wait state time, VSIO, and the page I/O operation rates
as functions of the number of active users. No plots were made
for VMIO because of lack of data, nor for the spool I/O operation
because of its meager contribution to overhead (see Table 8).
Because of the rather small number of observations with more

Figure 1 Average problem state time

z Y 60

5ol A CP 11-3

0 CP 111.3

0 CP 11-2 >
m
B
LL
0

g 40-
w
0
w
Y a

30 -

20 -

0 0 0

A

A 0

ACTIVE USERS

Figure 2 Average CP time

5ol A CP 11-3

0 CP 111-3

0 0 CP 11-2
w

40 t

A

A

A
A

0
0 0

A
0 n o

A o n

30 t A 0
0
0 A

0

ACTIVE USERS

than 22 active users, not much reliance can be placed on the
high ends of the curves.

Certain facts emerge from a study of Figures 1 through 5 . They
are discussed in the following paragraphs.

NO. 3 ' 1971 TIME-SHARING PERFORMANCE

Figure 4 Average VSlO rate

2 30
v1
CL
,I 0 CP 111-3 0
0
9 - A CP 11.3 0

0 CP 11.2

0

20 -

A o
& f l A A

0
A

A n 0 0

0
A

0

0 0

- [I

0

O A O
10 - D A E

A o

0 A
- 0 0

Q
0

ACTIVE USERS

Figure 2 shows that the increase in useful throughput in going
from 11-2 to 11-3 caused a corresponding increase in overhead.
On the other hand, the more efficient coding of version 111
caused a drastic reduction in overhead when going from 11-3
to 111-3.

Figure 3 demonstrates what could have been concluded from
Figures 1 and 2. Namely, in going from 11-2 to 11-3, increased
problem state and CP times caused a reduction in wait state, and
in going from 11-3 to 111-3, decreased CP time combined with
unchanged problem state time result in increased wait state time.

Figure 5 shows how the paging rate increases exponentially
with the number of active users. As expected, a decrease in
paging is experienced when the core box is added. If the through-
put had otherwise remained unchanged, the decrease in paging
would have been much more noticeable. In practice, the system
was able to increase useful throughput (problem state time and
VSIO) while still maintaining a reduced paging rate.

Saturation

In the preceding section, we have examined the average system
throughput under varying load conditions. It is shown that the
reduction in overhead due to going from version I1 to version I11

NO. 3 . 1971 TIME-SHARING PERFORMANCE 205

Figure 5 Average paging rate

Figure 6 Illustration of
Pareto-maximality

0 60-
m
CL
w 0 CP 111.3

E
2 0 CP 11-2

5o c1 - A CP 11-3
0

a
40 - a

a 9
0

30 -
o n

A
20 -

ACTIVE USERS

has not, on the average, resulted in increased throughput. This
is a reflection of the fact that most of the time, system resources
were not taxed to the limit; hence, reduction of overhead merely
increased the slack (wait time). In principle, however, a system
with lower overhead should be able to provide greater throughput
when the load approaches the limiting capacity of the system.
To verify this proposition, we attempted to isolate those observa-
tions that appeared to represent conditions of maximal through-
put.

x'2 I

2 Since throughput is measured by several variables simulta-
neously, it is not meaningful to talk of maximal throughput per se.
It is not very interesting to know that, say, the maximum ob-
served problem state time was 95 percent. What we are interested
in are conditions of saturation, in which the rate of one through-
put cannot be increased further except at the expense of some
other throughput. Suppose we have m throughput variables,
whose values at the pth observation are x,,, xv2, , xWm. The
notation x, denotes the vector whose components are these
values. Each observation can be regarded as a point in m-dimen-
sional Euclidean space. All the points fall in a certain feasible
region of this space; a hypothetical collection of six points for
m = 2 is depicted in Figure 6. Now we say that point p dominates
point if no component of x$ exceeds the corresponding compo-
nent of x,, i.e., if 5 xWi for i = 1 , 2 , . . -, m. In Figure 6, point 1
is dominated by 2, 3 , 4, and 5, point 2 by 4, and point 3 by 5 .
Those points that are not dominated by any other points (4,5, and

x1 -

206 BARD IBM SYST J

6 in Figure 6) are called Pareto-maximal points. These are the
points that are of interest to us: if x& is Pareto-maximal, then we
know that at no time did we observe throughputs that exceeded
x& in all components; any increase in some components of x& was
accompanied by a decrease in at least one other component. Any
observations taken during periods of system saturation must be
Pareto-maximal points. In principle, a Pareto-maximal point
need not be a saturation point; it may simply happen that during
the period of observation the load placed on the system did not
happen to reach saturation conditions. However, when many
observations are available, it is likely that the Pareto-maximal
points (particularly when they fall on a fairly smooth curve)
do indeed represent conditions close to saturation. This supposi-
tion was further verified as follows:

If no saturation occurs, then one expects the curves joining the
Pareto-maximal points to shift outwards gradually as the number
of observations is increased. In fact, it was found that as new
points were encountered, these tended to fill out the curves
joining the old points, without much affecting the position of
the curves.

Note that since observations were taken at about five-minute
intervals, only saturation periods lasting at least five minutes
can be detected in the data. To obtain fuller information on
saturation conditions, it is necessary to take observations more
frequently. Note also that it is no doubt possible to concoct
job mixtures under which the system will sustain loads heavier
than observed in our measurements.

The algorithm discussed here selects the Pareto-maximal points.
We process the observations x& (p = 2, 3 , 1, n) one at a time,
and at the time of this processing, we have already built up a
list of candidates that is the collection of Pareto-maximal points
relative to the first p-1 observations. Initially, the list of candi-
dates consists of the observation x]. We compare x& to all the
candidates. If some candidate dominates x&, we proceed to xp+
Otherwise, x& is added to the list of candidates, and all previous
entries which are dominated by x& are deleted. After the last
observation has been processed, the list of candidates is identical
to the set of Pareto-maximal points.

We chose the three variables, percentage of problem state time,
page r/o per second, and VSIO per second, for the Pareto-maximal
analysis. Since it is difficult to present three-dimensional results
graphically, three separate analyses were carried out on the
three pairwise combinations of these variables, and the results
are plotted in Figures 7 through 9. To avoid confusion, smooth
curves were fitted by eye to the Pareto-maximal points. The
three-dimensional picture can be reasonably approximated by

NO. 3 . 1971 TIME-SHARING PERFORMANCE

\ \

- - CP 11-3

----- CP 11.2

CP 111-3 - - CP 11-3

----- CP 11.2

I I I I I I I I
10 20 30 40 50 60 70 80 9

PERCENT OF PROBLEM STATE TIME

Saturation: VSlO vs problem state time

CP 111-3

- - CP 11-3

CP 11-2 "-"

Figure 9 Saturation: Pages vs VSlO

0 I I I I I
0 10 20 30 40 50

VSIO PER SEC

constructing nearly planar surfaces whose intersections with the
coordinate planes are the curves of Figures 7 through 9.

Figures 7 through 9 show that version 111 of CP has consistently
provided higher peak-load throughput rates than version 11. In
all cases, the “frontier” of the observed operating region was
pushed outwards. We are therefore tempted to conclude that
version 111 can indeed sustain higher loads than version I1 be-
fore becoming saturated.

CP merely services VSIO requests as they come along. But through
its dispatch and paging algorithms, CP exerts more direct control
over problem state time and page I/O operations. Therefore, it is

NO. 3 . 1971 TIME-SHARING PERFORMANCE 209

particularly interesting to study Figure 7 which shows the peak
load relationship between these two variables. The 111-3 curve
can be broken into three parts: (1) When problem state time is
less than 40 percent, the paging rate is about constant at 75 to
80 pages per second. This is close to the average maximum
paging rate possible on the drum under the paging algorithm used
by these versions of CP. Hence, we conclude that the limiting
factor here is the paging mechanism. (2) By referring to the
DUSETIMR records, we found that in all Paretct-maximal points
falling in the region to the right and below the double line in
Figure 7, CP accounted for all the remaining CPU time, with prac-
tically no wait state time observed. Hence, CPU capacity is the
limiting factor in this region. If CP coding were made even more
efficient, performance could perhaps be improved in this region.
(3) When problem state time is between 40 and 55 percent,
neither the CPU nor the paging mechanism is saturated. It seems,
therefore, that the dispatch and paging algorithms of CP may be
responsible for the slack, and that revision of these algorithms
could result in increased throughput.

Under version I1 of CP, paging saturation never occurred (at
least not over five-minute periods), and CPU saturation occurred
when problem state time exceeded 50 percent.

When we begin to assess saturation by VSIO requests (Figures
8 and 9), we are hampered by the fact that these are quite variable
in length, complexity, and distribution among available channels
and devices. Therefore, a simple count of requests does not per-
mit us to tell whether or not r/o channel capacity was being taxed
at any given time. Figure 8 does show, however, the region of
CPU saturation where no appreciable wait time was observed.
CPU saturation occurs at a somewhat lower level of percentage
of the problem state when VSIO rate is high than when page do
rate is high, undoubtedly because CP time per VSIO is larger than
CP time per page I/O (see Table 5).

The information contained in the saturation curves could benefit
system users by informing them of trade-off rates at saturation
between the different resources. These can be estimated by
taking the negative slopes of the saturation curves. Approximate
rates are as follows:

1 1 milliseconds problem state time = 1 page (CP 11) or

12 milliseconds problem state time = 1 VSIO

3 pages = 2 VSIO

We will use an example to show how these figures should be
interpreted. Suppose a programmer wants to rewrite a program
in such a way that fewer VSIO’S will be required but at the expense
of increased CPU time. For instance, intermediate results may be

1.4 pages (CP 111)

210 BARD IBM SYST J

r

recomputed whenever needed instead of being written out on
secondary storage and later retrieved. If the increase in CPU
time is less than 12 milliseconds for each VSIO eliminated, then
the performance of this program under heavy load conditions can
be expected to improve (i.e., more such programs will be runnable
in a given time period). The application of these principles to
changes in page requirements is less straightforward since it is
difficult to predict these requirements in an arbitrary environ-
ment.

Free-fret module

One of the goals of any measurement technique is to evaluate the
effects caused by specific changes in the system. These changes
are usually not as gross as the addition of a core box or the instal-
lation of a new version of CP, and the task of determining their

~ effects is accordingly more difficult. As a test of what can be
done in this area, we attempted to assess the effects of changes

1 made in the free-fret module of CP.

The free-fret module manages the free storage areas required by
CP. When CP is called upon to perform some transaction (e.g.,
read in a page), it requires a few words of temporary storage and
calls on the FREE routine, which allocates the required storage
area from a storage pool. When CP completes the transaction, it

~ calls on the FRET routine to return the storage area to the pool.
An investigation by Margolin et aL5 showed that it was possible

version I1 of CP, and the new algorithm was included in version
111. The effect of this change was thereby confounded with the
effects of other changes incorporated in version 111.

To isolate the effects of the change in the free-fret algorithm, an
experiment was run over a two-week period. On Monday and

second week, the computer was run under the normal version

Monday and Thursday of the second week, the computer was
run under version I I I modified to include the old free-fret algo-
rithm. This design was selected so as to balance out any changes
in load between the first and second week, or between different
days in the same week. Data specific to the free-fret module were
collected. Obtained among other things were counts of all calls
to FREE and FRET and the time spent in executing these sub-
routines. These data will be reported on elsewhere.' Suffice it
to say here that the average CPU time spent in servicing a FREE
call went down from 363 (old) to 47 (new) microseconds, the
average FRET, from 245 to 45 microseconds, and the fraction

I to improve considerably on the free-fret algorithm included in

I

I Thursday of the first week, and Tuesday and Wednesday of the

I 111 of CP. On Tuesday and Wednesday of the first week, and

Table 11 Effect of free-fret algorithm on CP coefficients

11* I l l* I I l t Unit
CP version

*I 9.7 9.7 7.9 msec of CP time per VSIO
8 2 2.3 2.6 msec of C P time per VMIO
0s 6.1 3.0 2.0 msec of C P time per page I/O
6 4 6.0 5.7 4.6 msec of C P time per spool I/O

:New free-fret algorithm
Old tree-frct .~lgoi-~thnl

Table 12 Average throughputs during free-fret test period

Variables Old free-fret New free-fret

Percentage of problem state time 19.8 22.0
Percentage of C P time 21.3 18.1

VSIO per sec 11.7 12.4

VMlO per sec 8.5 8.5
Spool I/O per sec 1.1 I .2
Page l/O per sec 6.7 7 .0

percent.fi Our primary concern here is with the question of how
these changes affected overall system overhead and performance.

A regression analysis similar to the one discussed earlier was
carried out on the data for version I11 running with the old free-
fret algorithm. The results are shown in Table 1 1. For compari-
son we have included from Table 5 the results pertaining to 11-3
and 111-3.

It is immediately evident that practically the entire improvement
in version 111 over 11 in the handling of VSIO and spool do opera-
tions is due to the new free-fret algorithm. In the handling of
page I/O operations, other changes in the coding contribute to a
50 percent improvement and the free-fret algorithm contributes
an additional 16 percent.

The volume of data available was insufficient to follow the pro-
cedures previously described in the sections on average through-
put and saturation. However. Table 12 shows the average
throughputs under the two algorithms during the eight-day test
period. As shown in Table 12, there is an increase in throughput
under the new algorithm, but we do not have as yet a sufficiently
good statistical model that would permit us to determine whether

The results of the free-fret experiment were used to verify the
Oi estimates in the following manner. We consider an equation
similar to Equation 1, but instead of rIL, we put in NIL, the number
of calls to FREE in the pth period. (The number of FRET calls is
almost identical.) The same regression procedure is used to esti-
mate the coefficients, whose meaning now is “number of FREE
calls per VSIO”, etc. It turned out that the number of calls per
VSIO, VMIO, page do, and spool r/o operations were, on the
average 3.5, 0, 2, and 2, respectively. Since the saving per pair
of calls is 363 + 245 - 47 - 45 = 516 microseconds, it follows
that the time per VSIO, VMIO, page do, and spool I/O operation
should be reduced by 1.8, 0, 1.0, and 1.0 milliseconds, respec-
tively. Table 11 shows reductions of 1.8, -0.3, 1.0, and 1.1 sec-
onds, in excellent agreement with the predicted results.

Summary comment

We conclude from the discussions in this paper that measure-
ments taken over a sufficiently long period on a system in full
operation can lead to a meaningful assessment of system perfor-
mance under various configurations. For instance, we have
shown that addition of a core box has increased average through-
put and that reduction in overhead by recoding some CP modules
has resulted in increased peak-load capacity.

At present, rather long observation periods are required, but
the following steps should increase the sensitivity of our tech-
niques, and hence reduce the amount of data needed:

1 . Decrease the time between measurements at peak use times.
The chance of a saturated condition lasting one minute is
much higher than its lasting five minutes.

2. Establish statistical models that better account for the vari-
ability in the data and that enable us to test the significance
of observed changes from one system configuration to the
next.

3. Obtain more detailed and extensive measurements. For in-
stance, we should not only count VSIO’S but also measure the
amount of data transmitted, channel utilization, and channel
queue lengths.

Some of these steps are being implemented currently and will
subsequently be reported in future papers.

The data and statistical estimates derived from the parameters,
which reflect the performance of a certain CP-67 system, may not
be representative of the performance of other CP-67 installations.
In particular, the system measured was an interim development
system that experienced many changes during the measurement

formance improvements included in version 111 were not in-
corporated in this system during the measurement period.

ACKNOWLEDGMENT
The author wishes to thank other members of the IBM Cambridge
Scientific Center for their assistance and participation in the proj-
ect. In particular, B. H. Margolin, T. I. Peterson, and M. Schat-
zoff made many contributions to the project, and R. J. Adair and
R. Parmelee have been very helpful in explaining the workings
of CP- 67 and contributing the data-gathering programs, Adair
especially, for having written the DUSETIMR program. Also,
thanks are due to members of the group under R. A. Meyer, and
of the group under M. Fleming, for their cooperation in the
running of the free-fret experiment.

A paper on similar material was presented at the ACM SIGOPS
Workshop on System Performance Evaluation in Cambridge,
Massachusetts, April 5 - 7 , 197 1.

CITED REFERENCES AND FOOTNOTE
1 . R. A. Meyer and L. H. Seawright, “A virtual machine time-sharing system,”

IBM Systems Journal 9, No. 3 , 199-218 (1970).
2 . CP-67ICMS Version 3 System Description Manual, Form No. GH20-

0802-1, International Business Machines Corporation, Data Processing Divi-
sion, White Plains, New York (1970).

3. R. Adair and Y. Bard, CP-67 Measurement Method, Report No. G320-2072.
International Business Machines Corporation, Cambridge Scientific Center,
Cambridge, Massachusetts (197 I).

4. N . R. Draper and H. Smith, Applied Regression Analysis, John Wiley and
Sons, New York, New York (1966).

5 . B. H. Margolin, R. Parmelee, and M. Schatzoff, private communication.
6. These figures include the time required for collecting the data. Hence, in the

absence of measurements, the reduction in the time spent by C P in free-fret
would be from 14.6 to 2.3 percent.

7. CP-67 Program Logic Manual, Form No. GY20-0590-0, International
Business Machines Corporation, Data Processing Division, White Plains,
New York (1970).

Appendix: Description of CP-67

To further the understanding of those readers who are not
familiar with CP-67, we give a brief overview of the system. The
following description applies to versions I1 and 111.

CP-67 is a control program that manages the resources of an
IBM System/360 Model 67 in a time-sharing environment.’ It
creates for each user a virtual machine that (except for timing
considerations) appears to the user as a complete stand-alone
System/360. The user’s terminal serves both as the operator

214 BARD IBM SYST J

console, or panel, of the virtual machine and as an do device at-
tached to a virtual multiplexer channel. The user may employ
any appropriate operating system (os, CMS, etc.) to run his virtual
machine. The configuration of the virtual machine (i.e., main
storage size, r/o devices, etc.) is established by means of entries
in the user directory, and bears no relationship to the configura-
tion of the real machine on which CP is running.

CP has six principal functions. One of those functions is to sched-
ule CPU time (dispatch), i.e., determine which user should run
at any given time. CP selects a subset of users who are assigned
to queues. Queue sizes may not exceed fixed limits, which usu-
ally depend on the size of real main storage. A runnable user is
selected from one of the queues and is given control of the CPU.
He will run until his time slice is up, until he causes a paging
exception (see below), until he attempts to execute a privileged
operation (e.g., do), or until some other interruption occurs. CP
will then attempt to satisfy whatever request the user is making
and dispatches another user (or possibly the same one if still
runnable). When a user in a queue has accumulated a certain
amount of CPU time, he is dropped from the queue, and some
other user with currently higher priority is admitted in his place.
Priorities are set so that the user waiting the longest usually has
the highest priority.

Another function allocates main storage (paging). Main storage
is divided into 4096-byte pages. When a running user refers to
one of his pages that is not currently in main storage, a paging
exception occurs. The user is interrupted, and CP brings the re-
quired page into main storage from the backup store (usually a
magnetic drum). This page must be written over some page cur-
rently in main storage. CP first attempts to overwrite a page not
belonging to a user in a queue; if no such pages can be found, a
page is “stolen” from a user in a queue. If the page to be over-
written has been changed since it was last brought in, then it
must be written out on the back-up store before the new page
can be brought in. Thus, a paging exception will sometimes cause
two page I/O operations (page out followed by page in), and some-
times one page do operation (page in only).

A third function interprets and simulates virtual I/O operations.
CP intercepts all attempts by virtual machines to execute I/O
operations. CP translates these operations from the virtual de-
vices recognized by the users to the real devices attached to the
machine. It then executes the required operations and returns to
the user the appropriate condition codes.

A fourth function performs I/O spooling operations. CP will read
card .decks through the real card reader and file them in disk
areas, where they can be found by the users’ virtual card readers.

NO. 3 . 1971 TIME-SHARING PERFORMANCE

216 BARD

