
The  performance of a  complex  time-sharing  system  was  moni- 
tored  under  actual  operating  conditions  during  a  period  in 
which  changes  in  system  conjiguration  (both  hardware  and 
software)  took  place.  Various  techniques  for  assessing  the  im- 
pact of those  changes on performance  are  discussed. 

Performance  criteria  and  measurement 
for  a  time-sharing  system 

by Y. Bard 

Characterizing  the  performance of a time-sharing computer 
system is a vexing problem. There  are two main difficulties: 
the  extremely variable and nonreproducible load that is usually 
placed on such  a  system, and the lack of an  agreed-upon  per- 
formance  criterion that' could be  optimized.  Because of these 
factors, it  is often difficult for  the  system  designer to ascertain 
how changes in either  hardware or software  have affected sys- 
tem performance. It is also difficult to  determine  what  future 
changes are most likely to  improve  performance. 

Although lacking a  clear-cut  performance  criterion,  we  intend 
to  describe and evaluate  system  performance  under  conditions 
of variable and mostly unknown  loads. By collecting large vol- 
umes of data  over extended  periods, we expect  to make up  for 
the  variations in load,  and by evaluating separately  various com- 
ponents  that should enter  into any reasonable  performance cri- 
terion, we hope  to  present  the  system  designer with information 
on which he can base his decisions,  even if we cannot  dictate 
this decision in an  objective  manner. 

The primary performance  components  discussed in this paper 
are  overhead,  average  throughput, and maximum throughput. 
Their utility is demonstrated by application to  three different 
major system configurations, and also to a specific change in a 
single module. Another primary performance  measure, namely 
response  time, is not  discussed in this  paper. 
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Table 1 Variables by DUSETIMR 

Variuble Description Unit 

Date 
Time of day 
Wait  time 
CP time 
Dispatch** 

No.  users 

VSIO 

VMIO* 

RIO 

P. in 
P.  out 
P.  steal* 

Free-fret*’ 
User  data 

1.D. 

CPU time in wait state 
CPU time in supervisor  state 
C P  time  not  charged to  any  user; 
mostly  dispatch  time 
Users signed on at moment of 
measurement 
S I 0  instructions  issued by users 
to virtual selector  channels; 
mostly  disk  and tape 1/0 operations 
S I 0  instructions issued by users 
to virtual  multiplexer channels; 
mostly terminal l/O operations 
and spooling to virtual 
peripheral devices 
S I 0  instructions to disks or 
drums originated by CP;  includes 
paging and spooling I/O operations 
Pages  read in 
Pages swapped out 
Pages that belonged to  users in 
the active queues  and  that  were 
overwritten by incoming  pages 
See  section  on free-fret 
For  each  user signed on at moment 
of measurement: 
User identification 

Day, month, year 
Seconds  since midnight 
Seconds since start up 
Seconds since start up 
Seconds  since  start  up 

Number 

Number  since  start up 

Number  since  start up 

Number since start up 

Number  since  start  up 
Number  since  start up 
Number  since  start up 

Tot. time CPU time accounted  to  user Seconds since sign-on 
Prob. time  Problem state time accounted  to Seconds since sign-on 

user 

*These  variables were measured only in the later part of the  study. 
**This variable is called “overhead” in CP, but  we  have  not used that  name  to avoid confusion with the  fact  that all CP time is overhead. 

Data collection and assembly 

The data  used in this  study  were collected by monitoring an 
IBM System/360 Model 67  computer running under  the CP-67 
time-sharing operating  system.”2 (CP-67 is described briefly  in 
the  Appendix.) A program entitled DUSETIMR collected  the 
data. Running of the program was initiated automatically at 
nominally five-minute intervals, and the program was  run from 
the  operator’s  virtual machine with its data stored in the oper- 
ator’s disk space.  About  once  a  day  the  data  were  transferred 
from  the disk on  to magnetic tape. The program induces CP (the 
control program) to supply it with the  current values of various 
counters  that CP maintains. These  counters  are mostly cumulative 
and are  reset  to  zero only at  system  start-up.  Counters apply- 
ing to individual users are  started  each  time  the  user logs on. 
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Table 2 Derived variables 

Vuriuble Description  Unit 

At Time between successive  observations  Seconds 
Problem state Total  time-(CP time +wait  time) Seconds 

Page I/O P. in + P. out  Number 
Spool I/O RIO - Page 1/0 Number 

time 

Active  users  Number of users  who  have used some problem- Number 
state time  during the last  observation  period 

Table 3 Data base periods 

Number of 
Designation  Study  period  Description dura points 

I1 -2  9/69 - 11/69 C P  version 11, 2 core  boxes 1,386 
11-3  12/69 - 3/70 C P  version 11, 3 core boxes 7,890 
111 - 3 5/70-6/70 C P  version 111, 3 core  boxes 10,508 

Table 1 contains  a list of the  recorded  quantities. A full descrip- 
tion of the  data collection method is given by Adair and Bard.3 

Before being subjected  to  analysis,  these data were augmented 
with additional variables  computed from the primary measured 
variables.  Table 2 lists  those  derived  variables  that  were  found 
useful in the analysis. In addition,  most  variables  were  reduced 
to a per-second basis by taking the differences between succes- 
sive  measurements  and dividing by the  time  elapsed  between 
them. 

Measurements  used in this  study  were  taken  over  a period of 
ten months. During  that time, two major changes  occurred in 
the  system configuration: first, more main storage in the  form 
of a third  core  box was added  to  the initial two;  second,  version 
111 of CP-67 replaced version I1 as  the operating  system.  Many 
additional small software and hardware  changes  occurred during 
this period, but their effects were  judged to be negligible com- 
pared to  the effects of the major changes,  and so the  data were 
divided into  three  subsets as detailed in Table 3.  The  data within 
each  subset  were  treated  as being homogeneous. 

The increase in number of data points from the first to  the third 
period is due partly to  the  fact  that 11-2 consists  entirely of first 
shift measurements, 11-3 contains much second shift and  some 
third shift data,  whereas  around-the-clock  operation  and  record- 
ing were  the rule under 111-3. Since high-load, first-shift data  are 
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CP overhead regression 

By “CP overhead”  we mean the  central  processing unit (CPU) 
time spent by CP in servicing the  users’  requests for system re- 
sources of various  kinds, e.g., CPU time, main memory space, 
and do operations of various  types.  This should not  be  con- 
fused with the measured  variable generally called “overhead”, 
which we call dispatch  here  (see  Table 1). Dispatch  constitutes 
only a small part of the  total CP overhead. 

Our  approach  to analyzing CP overhead is the following: Let us 
number  the five-minute periods for which we have  measurements 
p = 1, 2, . ., n, and let the  measured CP time in the  pth period 
be tP. Let  the length of the  pth period be  denoted  by T P .  Suppose 
we are dealing with m different types of requests  that CP must 
service. Let us designate by nPi (i = 1, 2, . ., m) the  measured 
number of requests of type i serviced during the pth period. 
Suppose 8; is the  average time required by CP to  service  one 
request of type i. Then  the  total CP time spent in the pth period 
is given approximately by 

tw = 8,TP + einPi 
m 

i= 1 

where 8, is the  average  amount of time spent by CP during each 
second of real time in performing functions  other  than  those 
accounted  for by the explicitly mentioned requests.  In  practice, 
we divide Equation 1 by T P  to  obtain 

m 

where T = t J T w  is given in milliseconds of CP time per second 
of real tme ,  and xPi = n J T w  is the  rate per  second of requests 
of type i. It is now possible to estimate 8,, 8,, . * a ,  8, by fitting 
Equation 2 to  the observed values of T ~ .  This is done by the 
method of least  squares, i.e., we determine 8,, dl ,  - . *, 8, so as 
to minimize the sum of squares of the  residuals 

v 

goodness If  the rw are relatively small, then  Equation 2 is considered to 
of fit give a good fit to  the  data.  An  objective  criterion  for judging the 
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goodness of  fit  is obtained by comparing the sum of squares of 
the  residuals  to the sum of squares of the  deviations of the 
measurements from their  average value. Let 7 be  the  average 
value of the rLL. Then our goodness-of-fit criterion is R2,  the 
square of the multiple correlation coefficient 

Clearly, if Equation 2 fits the  data  perfectly,  then all residuals 
vanish and R 2  = 1. Conversely, if the variables .xwi contribute 
nothing to  the  understanding of rp, then 2 degenerates simply 
into rLL = Bo = 7, and  hence, rLL = rLL - 7 and R 2  = 0. Thus, if the 
assumptions  under which we  derived  Equation 2 are  at all valid, 
then we expect  to find a value of R2 close to 1. 

Another  quantity of interest in judging the  goodness of  fit  is the 
standard  deviation of the  residuals, i.e.,  the  root mean square 

The smaller s is,  the  better  the fit  of the model to  the  data.  In 
attempting  to fit the CP time data, we found that most residuals 
were  reasonably small, but  some  were  very large in magnitude 
compared to s. Observations  that  have relatively large residuals 
are called outliers, and  their  presence  indicates  either  gross 
errors in the measurements, or  the existence of important un- 
measured CP activities. It is interesting  to  note  that  almost all 
CP time  outliers had large positive residuals, indicating that CP 
time was spent in unaccounted-for  activities. Following stan- 
dard  statistical  practice, we dropped  the outlying observations 
from the  analysis,  and  Equation 2 was refitted to  the remaining 
observations. The criterion  for  dropping  an  observation was that 
IrWl exceeded 2.5s. 

The crucial question  that  arises when Equation 2 i s  fitted  to  the 
data is which variables .xwi should be chosen  for inclusion in the 
equation.  In  our  analysis, we were guided by the stepwise-for- 
ward selection  regression  procedure:  First  choose  the variable 
capable of giving the  greatest  reduction in the sum of squares S; 
then add the variable capable of giving the  greatest additional 
reduction  and so on until no further significant reduction  can be 
achieved. The details of the  computations  for  this, as well as  for 
all the  other model-fitting calculations, can be found in standard 
texts on regression ana ly~ i s .~  

A forward selection regression program was applied to various 
subsets of the  data.  In all cases, it turned  out  that  the program 
selected only variables included in the following list: 
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Table 10 Number of observations in  different  groups 

I 

Number of 
Active users 

Data set 
11-3 111 - 3 

1 2  35 1082  2049 
3,4  43 1413  3598 
5,6  74 820 
7 3  135 802 753 
9,lO  162 727  569 

11,12  220 838  534 
13,14  247 873  514 
15,16  207 653  463 
17,18  158 383  263 
19,20  70 168  148 
2 I ,22  26 82  
23,24  9 38 

85 
34 

25.26 0 10 I O  
2 7 2 8  0 0 3 

Average throughput as function of active users 

The throughput of the  system may be loosely defined  as  the 
amount of work performed per unit time. The amount of work 
itself is a vector with several  components.  Some of these  repre- 
sent  “useful”  work,  i.e., work directly  requested by the users, 
e.g., VSIO, VMIO, and problem state time. As  a general rule, 
changes in the  system  are  considered  desirable if useful through- 
put is increased,  or if the  overhead  required  for a given amount 
of useful throughput is decreased. 

I 

Overall  average  throughputs  for  the  three  periods in question 
have  already been given in Table 7. These figures do  not, how- 
ever lend themselves  to meaningful comparisons  because they 
represent  system  response  to widely varying loads. One cannot 
blame version I11 of CP for servicing, on the  average,  fewer 
VSIO’S than  version 11, when this is due purely to  the  fact  that 
fewer VSIO’S were  requested.  What is needed,  then, is some 
measure of the load placed on the  system. Among the available 

ables, the only one  that  seems  to  be  a  measure of load, 
rather  than of response, is the  number of signed-on users,  or, 
better  yet,  the  number of active  users  as defined in Table 2. Our 
procedure was to  group  the available observations by number of 
active  users,  and  compute  separate  averages  for each group. 
Table 10 shows  the  number of observations available in each 
group,  and  Figures 1 through 5 plot average problem state  time, 
CP time, wait state  time, VSIO, and  the page I/O operation  rates 
as functions of the number of active  users. No plots were made 
for VMIO because of lack of data, nor  for the spool I/O operation 
because of its meager contribution to overhead  (see  Table 8). 
Because of the  rather small number of observations with more 



Figure 1 Average  problem  state  time 
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Figure 2 Average CP time 
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than 22 active  users,  not  much  reliance  can  be  placed  on  the 
high ends of the  curves. 

Certain  facts  emerge  from a study of Figures 1 through 5 .  They 
are  discussed in the following paragraphs. 
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Figure 4 Average VSlO rate 
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Figure  2 shows that  the  increase in useful throughput in going 
from 11-2 to 11-3 caused a corresponding  increase in overhead. 
On  the  other  hand, the more efficient coding of version 111 
caused a drastic  reduction in overhead when going from 11-3 
to 111-3. 

Figure 3 demonstrates what could have  been  concluded from 
Figures 1 and  2.  Namely, in going from 11-2 to 11-3, increased 
problem state  and CP times caused a reduction in wait state, and 
in going from 11-3 to 111-3, decreased CP time combined with 
unchanged problem state time result in increased wait state time. 

Figure 5 shows how the paging rate  increases exponentially 
with the  number of active  users. As expected,  a  decrease in 
paging  is experienced when the  core box is added. If the through- 
put had otherwise remained unchanged,  the  decrease in  paging 
would have been much more  noticeable. In practice,  the  system 
was able  to  increase useful throughput (problem state  time  and 
VSIO) while still maintaining a  reduced paging rate. 

Saturation 

In  the preceding section, we have examined the  average  system 
throughput  under varying load conditions. It is shown  that  the 
reduction in overhead due  to going from version I1 to version I11 
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Figure 5 Average  paging  rate 

Figure 6 Illustration of 
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has  not, on the average, resulted in increased  throughput.  This 
is a reflection of the  fact  that  most of the  time,  system  resources 
were  not  taxed to  the limit; hence,  reduction of overhead merely 
increased  the  slack (wait time). In principle, however,  a  system 
with lower overhead  should  be  able to provide  greater  throughput 
when the load approaches  the limiting capacity of the  system. 
To verify this proposition, we attempted to isolate  those  observa- 
tions  that  appeared  to  represent  conditions of maximal through- 
put. 

x'2 I 

2 Since  throughput is measured by several variables simulta- 
neously, it is not meaningful to talk of maximal throughput per  se. 
It is not  very  interesting  to know that,  say,  the maximum ob- 
served problem state time was 95 percent.  What we are interested 
in are conditions of saturation, in which the  rate of one through- 
put  cannot  be  increased  further  except  at  the  expense of some 
other  throughput.  Suppose  we  have  m  throughput  variables, 
whose values at the  pth observation are x,,, xv2, , xWm. The 
notation x, denotes  the  vector  whose  components  are  these 
values. Each  observation  can be regarded as a point in m-dimen- 
sional Euclidean  space. All the points fall in a  certain feasible 
region of this space; a hypothetical  collection of six points for 
m = 2 is depicted in Figure 6. Now we say  that point p dominates 
point if no component of x$ exceeds  the  corresponding compo- 
nent of x,, i.e., if 5 xWi for  i = 1 , 2 ,  . . -, m. In  Figure 6, point 1 
is dominated by 2, 3 ,  4, and 5, point 2 by 4, and  point 3 by 5 .  
Those points  that are not dominated by any  other  points (4,5, and 

x1 - 
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6 in Figure 6) are called Pareto-maximal  points. These  are the 
points  that are of interest  to us: if x& is Pareto-maximal,  then we 
know that  at no time did we observe  throughputs  that  exceeded 
x& in  all components; any increase in some components of x& was 
accompanied by a  decrease in at least  one  other  component.  Any 
observations  taken during periods of system  saturation  must be 
Pareto-maximal  points. In principle, a Pareto-maximal point 
need not be a  saturation  point; it may simply happen  that during 
the period of observation  the load placed on the  system did not 
happen to  reach  saturation  conditions.  However, when many 
observations  are  available, it is likely that  the  Pareto-maximal 
points  (particularly when they fall on a fairly smooth  curve) 
do indeed  represent  conditions  close  to  saturation.  This  supposi- 
tion was further verified as follows: 

If no  saturation  occurs,  then  one  expects  the  curves joining the 
Pareto-maximal  points  to shift outwards gradually as  the  number 
of observations is increased. In  fact, it was found  that  as new 
points  were  encountered,  these  tended to fill out  the  curves 
joining the old points, without much affecting the position of 
the  curves. 

Note that  since  observations were taken at  about five-minute 
intervals, only saturation periods lasting at least five minutes 
can be  detected in the  data. To obtain fuller information on 
saturation  conditions, it  is necessary to  take observations  more 
frequently. Note also  that it  is no  doubt  possible  to  concoct 
job mixtures  under which the  system will sustain loads heavier 
than  observed in our  measurements. 

The algorithm discussed  here  selects  the  Pareto-maximal  points. 
We  process  the  observations x& (p  = 2, 3 ,  1, n)  one  at  a  time, 
and at the time of this processing, we have  already built up  a 
list of candidates  that is the collection of Pareto-maximal points 
relative to  the first p-1 observations. Initially, the list of candi- 
dates  consists of the  observation x]. We compare x& to all the 
candidates. If some candidate  dominates x&, we proceed  to xp+ 
Otherwise, x& is added to  the list of candidates, and all previous 
entries which are dominated by x& are deleted.  After  the last 
observation has been processed,  the list of candidates is identical 
to  the  set of Pareto-maximal points. 

We chose  the  three  variables,  percentage of problem state  time, 
page r/o per second,  and VSIO per  second,  for  the Pareto-maximal 
analysis. Since it  is  difficult to  present  three-dimensional  results 
graphically, three  separate  analyses  were  carried  out  on  the 
three pairwise combinations of these  variables, and the  results 
are plotted in Figures 7 through 9. To avoid confusion,  smooth 
curves  were fitted by eye  to  the Pareto-maximal  points. The 
three-dimensional  picture  can be reasonably  approximated by 
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Figure 9 Saturation:  Pages vs VSlO 
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constructing nearly planar  surfaces whose intersections with the 
coordinate planes are the  curves of Figures 7 through 9. 

Figures 7 through 9 show  that version 111 of CP has consistently 
provided higher peak-load throughput  rates than version 11. In 
all cases,  the  “frontier” of the observed  operating region was 
pushed outwards. We are therefore tempted to  conclude  that 
version 111 can indeed sustain higher loads than  version I1 be- 
fore becoming saturated. 

CP merely services VSIO requests as they  come along. But through 
its dispatch  and paging algorithms, CP exerts  more  direct  control 
over problem state  time and page I/O operations.  Therefore, it  is 
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particularly interesting to study  Figure 7 which shows  the peak 
load relationship between these  two variables. The 111-3 curve 
can be broken  into  three  parts: (1) When problem state time is 
less than 40 percent,  the paging rate is about  constant  at 75 to 
80 pages per  second. This is close to the  average maximum 
paging rate  possible  on  the  drum  under the paging algorithm used 
by these  versions of CP. Hence, we conclude  that  the limiting 
factor  here is the paging mechanism. (2) By referring to  the 
DUSETIMR records, we found  that in all Paretct-maximal points 
falling in the region to  the right and below the  double line in 
Figure 7, CP accounted  for all the remaining CPU time, with prac- 
tically no wait state time observed.  Hence, CPU capacity is the 
limiting factor in this region. If CP coding were made even more 
efficient, performance could perhaps be improved in this region. 
(3) When problem state time is between 40 and 55 percent, 
neither  the CPU nor the paging mechanism is saturated. It seems, 
therefore,  that  the  dispatch  and paging algorithms of CP may be 
responsible  for the slack,  and  that revision of these algorithms 
could result in increased  throughput. 

Under version I1 of CP, paging saturation  never  occurred  (at 
least  not  over five-minute periods),  and CPU saturation  occurred 
when problem state time exceeded 50 percent. 

When we  begin to  assess saturation by VSIO requests  (Figures 
8 and 9), we are hampered by the  fact  that  these  are  quite variable 
in length,  complexity, and distribution among available channels 
and devices.  Therefore,  a simple count of requests  does  not per- 
mit us to tell whether or not r/o channel  capacity was being taxed 
at  any given time. Figure 8 does  show,  however,  the region of 
CPU saturation  where no appreciable wait time was observed. 
CPU saturation  occurs  at  a  somewhat  lower level of percentage 
of the problem state when VSIO rate is  high than when page do 
rate is high, undoubtedly  because CP time  per VSIO is larger than 
CP time per page I/O (see  Table 5).  

The information contained in the saturation  curves could benefit 
system  users by informing them of trade-off rates at saturation 
between the different resources. These can be estimated by 
taking the negative slopes of the saturation  curves.  Approximate 
rates  are  as follows: 

1 1  milliseconds problem state time = 1 page (CP 11) or 

12 milliseconds problem state time = 1 VSIO 

3 pages = 2 VSIO 

We will use an example  to  show how these figures should be 
interpreted.  Suppose a programmer  wants to rewrite  a program 
in such a way that  fewer VSIO’S will be  required  but at  the  expense 
of increased CPU time. For instance,  intermediate  results may be 

1.4 pages (CP 111) 
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recomputed  whenever needed instead of being written out on 
secondary  storage  and  later  retrieved. If the increase in CPU 
time is less than 12 milliseconds for  each VSIO eliminated,  then 
the  performance of this program under  heavy load conditions  can 
be expected  to  improve (i.e., more  such  programs will be runnable 
in a given time period). The application of these principles to 
changes in page requirements is less straightforward  since it  is 
difficult to  predict  these  requirements in an  arbitrary  environ- 
ment. 

Free-fret  module 

One of the goals of any  measurement  technique is to evaluate  the 
effects caused by specific changes in the system. These changes 
are usually not as gross  as  the addition of a core box or  the instal- 
lation of a new version of CP, and  the  task of determining their 

~ effects is accordingly more difficult. As a  test of what  can be 
done in this  area, we attempted  to  assess  the effects of changes 

1 made in the free-fret module of CP. 

The free-fret module manages the  free  storage  areas  required by 
CP. When CP is called upon to perform some  transaction (e.g., 
read in a  page), it requires  a  few words of temporary  storage  and 
calls on the FREE routine, which allocates  the  required  storage 
area from a storage pool. When CP completes the transaction, it 

~ calls on  the FRET routine  to  return the storage  area to  the pool. 
An investigation by Margolin et aL5 showed that it was possible 

version I1 of CP, and  the new algorithm was included in version 
111. The effect of this  change was thereby confounded with the 
effects of other  changes  incorporated in version 111. 

To isolate  the effects of the  change in the  free-fret  algorithm, an 
experiment was run  over a two-week  period.  On  Monday  and 

second  week,  the  computer was run under  the normal version 

Monday  and  Thursday of the  second  week, the  computer was 
run under version I I I modified to include the old free-fret algo- 
rithm. This design was selected so as  to balance out  any  changes 
in load between the first and  second  week,  or between different 
days in the  same  week. Data specific to the  free-fret module were 
collected.  Obtained among other things were counts of all calls 
to FREE and FRET and the time spent in executing  these  sub- 
routines. These  data will be  reported  on elsewhere.' Suffice  it 
to say here  that  the  average CPU time spent in servicing a FREE 
call went down from 363 (old) to 47 (new)  microseconds,  the 
average FRET, from 245 to 45 microseconds,  and  the  fraction 

I to improve  considerably  on  the  free-fret algorithm included in 

I 

I Thursday of the first week,  and  Tuesday  and  Wednesday of the 

I 111 of CP. On  Tuesday  and  Wednesday of the first week,  and 



Table 11 Effect of free-fret  algorithm on CP coefficients 

11* I l l*  I I l t  Unit 
CP version 

*I 9.7 9.7 7.9 msec of CP time per VSIO 
8 2  2.3  2.6 msec of C P  time per VMIO 
0s 6.1 3.0 2.0 msec of C P  time per page I/O 
6 4  6.0 5.7 4.6 msec of C P  time per spool I/O 

:New free-fret algorithm 
Old tree-frct .~lgoi-~thnl 

Table 12 Average throughputs during  free-fret test period 

Variables Old free-fret New free-fret 

Percentage of problem state time 19.8  22.0 
Percentage of C P  time 21.3 18.1 

VSIO per  sec 11.7 12.4 

VMlO per  sec 8.5 8.5 
Spool I/O per  sec 1.1 I .2 
Page l/O per sec 6.7 7 .0 

percent.fi  Our primary concern  here is with the  question of how 
these changes affected overall system  overhead and performance. 

A regression analysis similar to  the  one  discussed  earlier was 
carried  out on the  data  for version I11 running with the old free- 
fret algorithm. The results  are  shown in Table 1 1. For compari- 
son we  have included from Table 5 the  results pertaining to 11-3 
and 111-3. 

It is immediately evident  that practically the  entire  improvement 
in version 111 over 11 in the handling of VSIO and spool do opera- 
tions is due  to  the new free-fret algorithm. In  the handling of 
page I/O operations,  other  changes in the coding contribute  to a 
50 percent  improvement and the  free-fret algorithm contributes 
an additional 16 percent. 

The volume of data available was insufficient to follow the  pro- 
cedures previously described in the  sections on average through- 
put  and  saturation.  However.  Table 12 shows  the  average 
throughputs  under the two algorithms during the eight-day test 
period. As shown in Table 12, there is an  increase in throughput 
under the new algorithm,  but  we do not  have as yet a sufficiently 
good statistical model that would permit us to determine  whether 



The results of the  free-fret  experiment  were used to verify the 
Oi estimates in the following manner. We consider an equation 
similar to Equation 1, but  instead of rIL, we put in NIL,  the number 
of calls to FREE in the  pth period. (The number of FRET calls is 
almost identical.) The same  regression  procedure is used to  esti- 
mate the coefficients, whose meaning now  is “number of FREE 
calls per VSIO”, etc. It turned  out  that  the  number of calls per 
VSIO, VMIO, page do, and spool r/o operations  were, on the 
average 3.5, 0, 2, and 2, respectively.  Since  the saving per pair 
of calls is 363 + 245 - 47 - 45 = 516  microseconds, it follows 
that  the time per VSIO,  VMIO, page do, and spool I/O operation 
should be reduced by 1.8, 0, 1.0, and 1.0 milliseconds, respec- 
tively. Table 11 shows  reductions of 1.8, -0.3, 1.0, and 1.1 sec- 
onds, in excellent  agreement with the predicted results. 

Summary comment 

We conclude from the  discussions in this  paper  that  measure- 
ments  taken  over a sufficiently long period on a system in full 
operation  can lead to a meaningful assessment of system  perfor- 
mance under  various configurations. For instance, we have 
shown that addition of a  core box has  increased  average through- 
put  and  that reduction in overhead by recoding some CP modules 
has resulted in increased peak-load capacity. 

At present,  rather long observation  periods  are  required,  but 
the following steps should increase  the sensitivity of our  tech- 
niques,  and hence reduce  the  amount of data needed: 

1 .  Decrease the time between measurements at peak use times. 
The chance of a saturated condition lasting one minute is 
much higher than  its lasting five minutes. 

2. Establish  statistical models that  better  account  for  the vari- 
ability in the  data and  that  enable us to  test  the significance 
of observed  changes from one  system configuration to  the 
next. 

3. Obtain more detailed  and  extensive  measurements. For in- 
stance,  we should not only count VSIO’S but  also  measure  the 
amount of data  transmitted,  channel  utilization,  and  channel 
queue lengths. 

Some of these  steps  are being implemented currently  and will 
subsequently be reported in future  papers. 

The  data and  statistical  estimates  derived  from  the  parameters, 
which reflect the performance of a  certain CP-67 system, may not 
be representative of the  performance of other CP-67 installations. 
In  particular,  the  system  measured was an interim development 
system  that  experienced many changes during the  measurement 



formance improvements included in version 111 were  not in- 
corporated in this system during the  measurement  period. 
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Appendix:  Description of CP-67 

To further  the  understanding of those  readers  who  are  not 
familiar with CP-67, we give a brief overview of the  system.  The 
following description applies to  versions I1 and 111. 

CP-67 is a control program that manages the  resources of an 
IBM System/360 Model 67 in a time-sharing environment.’ It 
creates  for  each  user a virtual machine that  (except  for timing 
considerations)  appears  to  the  user  as a complete  stand-alone 
System/360. The user’s terminal serves  both  as  the  operator 
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console, or panel, of the virtual machine and as an do device  at- 
tached  to  a virtual multiplexer channel. The user may employ 
any appropriate  operating  system (os, CMS, etc.)  to run his virtual 
machine. The configuration of the virtual machine (i.e., main 
storage  size, r/o devices,  etc.) is established by means of entries 
in the  user  directory, and bears no relationship  to  the configura- 
tion of the real machine on which CP is running. 

CP has six principal functions. One of those  functions is to  sched- 
ule CPU time  (dispatch),  i.e.,  determine which user should run 
at any given time. CP selects a subset of users  who  are assigned 
to  queues.  Queue  sizes may not  exceed fixed limits, which usu- 
ally depend on the size of real main storage. A runnable  user is 
selected from one of the queues  and is given control of the CPU. 
He will run until his time slice is up, until he causes  a paging 
exception  (see below), until he  attempts  to  execute  a privileged 
operation  (e.g., do), or until some  other  interruption  occurs. CP 
will then  attempt to satisfy  whatever  request  the  user is making 
and  dispatches  another  user  (or possibly the  same  one if still 
runnable). When a  user in a  queue has accumulated  a  certain 
amount of CPU time, he is dropped from the  queue,  and  some 
other  user with currently higher priority is admitted in  his place. 
Priorities are  set so that the  user waiting the longest usually has 
the highest priority. 

Another  function  allocates main storage (paging). Main storage 
is divided into  4096-byte pages. When a running user  refers to 
one of  his pages that is not  currently in  main storage,  a paging 
exception  occurs. The user is interrupted,  and CP brings the re- 
quired page into main storage from the  backup  store (usually a 
magnetic drum). This page must be written  over  some page cur- 
rently in  main storage. CP first attempts  to overwrite a page not 
belonging to a  user in a  queue; if no  such pages can be  found,  a 
page is “stolen”  from  a  user in a  queue. If the page to be over- 
written has been changed since it was last brought in, then it 
must be written  out on the  back-up  store  before  the new page 
can be brought in. Thus, a paging exception will sometimes  cause 
two page I/O operations (page out followed by page in), and  some- 
times one page do operation  (page in only). 

A third function  interprets and simulates virtual I/O operations. 
CP intercepts all attempts by virtual machines to  execute I/O 
operations. CP translates  these  operations from the virtual  de- 
vices recognized by the  users  to  the real devices  attached to the 
machine. It then executes  the required operations and returns  to 
the  user  the  appropriate condition codes. 

A  fourth  function  performs I/O spooling operations. CP will read 
card  .decks through the real card  reader  and file them in disk 
areas,  where  they can be found by the  users’ virtual card  readers. 
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