An experimental on-line network design system is proposed. Called
DESIGNPAD, it consists of a small computer with graphic display
equipment connected to a time-sharing computer and includes the
necessary programming support for the equipment.

The system is designed 1o accept problems covering a broad spectrum
of applications in the form of labeled block diagrams. The input/output
medium, the man-machine interface, and the supporting data structures,
particularly the cellular structure, are discussed.

A computer graphics system for block diagram problems

by L. A. Belady, M. W. Blasgen, C. J. Evangelisti,
and R. D. Tennison

Generally it is easier to express complex ideas symbolically by
sketching them on paper rather than by using other means of
communication. When such two-dimensional representations were
applied to computer output, they resulted in the development of
computer graphics." But they are only now being applied to the
input. We anticipate an evolution in input from one-dimensional
character strings to two-dimensional methods occurring similarly to
the one in which programming languages evolved from machine
code and assembly language to such higher level languages as PL/1.
To further this evolution, the construction of an experimental system
called DESIGNPAD was started with the major single objective to
explore the potential of two-dimensional man-machine interfaces
for both computer input and output.

Frequent need for total reprogramming to reflect even slight varia-
tions in functional specifications has been an unfortunate attribute
of computer graphics. For example, the case of a program for
graphical electrical network analysis® being incompatible with a
system for graphical programming using flowcharts® is ‘a mani-
festation of this difficulty, although there are commonalities between
these two problem-solving areas. DESIGNPAD is a single, integrated
graphics system that can handle both these applications and similar
ones. First outlined by Baskin and Belady,* it is an extension of the
work by Baskin and Morse® which developed from work by
Sutherland.’

No.2 - 1971 DESIGNPAD




Figure 1 Examples of labeled block diagrams

START

<>
YES
NO

z=x*ky

=

DESIGNPAD applications range over all problems that can be
represented by labeled block diagrams. A labeled block diagram
consists of interconnections or lines between attacher points of
blocks, with text possibly associated with these elements. Examples

are shown in Figure 1. Potential applications include any discipline
that uses block diagrams for problem specification, even conven-
tional programming techniques, since a degenerate case of a labeled
block diagram is text alone. A precise definition of a labeled block
diagram appears in Appendix A,

The DESIGNPAD system contains facilities for structuring these
diagrams in an interactive fashion. Because of the choice of appli-
cation domain, this input phase is common to all users, permitting
the entire graphics section of the system to be application inde-
pendent. Thus, at the same time, we gain extensive commonality
in programming and a large scope of applications.” We feel that
this range of applications is an important feature of the DESIGNPAD
system.

A new concept developed in the system employs a data structure
called a cellular structure to implement the unbounded two-
dimensional drawing media. Other concepts such as the hierarchical
library structure, the use of two computing systems (a system-
subsystem) with the associated function allocation problem, the
drawing package, and the data structures used in the system are not

BELADY ET AL IBM SYST J




necessarily novel but are combined in DESIGNPAD in an original
configuration.

In this paper, we first describe the approach used in organizing the
system. Then the various functions performed by different parts of
the systern are presented. Finally, the data structures necessary
for the operation are discussed.

The system-subsystem approach

DESIGNPAD was designed as an experimental extension to a time-
sharing machine. To be economically effective in operation, the
system was required to make use of existing time-sharing programs
without extensive reprogramming. Correspondingly, the experi-
mental vehicle is a system-subsystem arrangement where the fost
computer is a conventional, large data-base, time-sharing machine
with a small satellite computer attached to it. This organization
has been used in several other projects.® The host, a time-shared
System/360, Model 67 running under the time-sharing system
TSS/360, is the central analysis machine, whereas the satellite, an
IBM 1130 combined with an IBM 2250 display unit (Model 4), is a
high-capability user terminal. The satellite communicates with the
host via standard telephone service at 2000 baud. The hardware in
the system is standard,”'’ and DESIGNPAD programs and data
residing in the host are stored and accessed using the standard
TSS facilities.

The system-subsystem arrangement shown in Figure 2 offers advan-
tages as well as some problems. The structuring of ideas, or modeling,
becomes restricted to the satellite with little or no work load pre-
sented to the host until some analysis of the model is desired. This
results in relatively infrequent access to the powerful host with its
large library, and intimate man-machine communication is con-
centrated in the satellite. Restricting the communication in this
manner permits the satellite to function as a transformer of graphic
information into strings and vice versa such that the string format
is compatible with the conventional requirements of programs in
the host library. For example, existing packages like GPSS,'! ECAP,'?
and CSMP'? or even LISP," can be imbedded in the DESIGNPAD
framework.

By organizing the system in this manner, the DESIGNPAD effort was
directed toward the development of the modeling subsystem on
the satellite (i.e., the programs run on the satellite computer),
facilitating the creation of graphic input and providing for visual
feedback and the design of data structures for both machines. The
data structures should respond efficiently to manipulations on, and
the display of, block diagrams and serve as conventional in-
put/output files for existing program packages.

No.2 + 1971 DESIGNPAD




function
allocation

Figure 2 DESIGNPAD organization

DISPLAY ACTION
FILE FILE

ACTION
FILES

DISPLAY

» DRAWING
PACKAGE

USER INTERFACE
FILES

OUTPUT APPLICATION
PACKAGE [ PROGRAMS

SATELLITE

|
{
|
I
i
|
|
!
|
!
|
%
|
|
|
|
B
|
!
|
\
II
!
|
|
|
|
T
|
t
|
(SUBSYSTEM) :

HOST
(SYSTEM)

Among the many functions of the system, some must be provided by
the satellite and some by the host, but there is a gray area in
between. For this reason, DESIGNPAD has considerable flexibility
to permit experimentation in function allocation. For .example,
because of the low-speed intermachine communication, certain
groups of data (specifically the action file discussed later) are stored
almost identically in both machines. Experience may show that
such redundancy is unnecessary, or it may show that the low-speed
communication is intolerable, Another example of an experiment
is the determination of whether the package of output subroutines
should reside in the host, the satellite, or both. The point here is
that DESIGNPAD is at least as much a system study as it is a graphics
interface experiment. What follows is thus a description for the
initial configuration of the DESIGNPAD system.

The satellite processor supports the input/output tasks for the
designer, providing immediate visual feedback to him of the
system’s interpretation of his actions. In this way, the demands
for rapid response are handled locally at the graphics terminal.
Once the user has confirmed his action (e.g., “draw line”), the
result is sent to the host system for subsequent analysis or recall.
Since only observed and confirmed actions are sent to the host, the
transmission rate of 2000 baud is not seen to be a bottleneck for
transmission from satellite to host. If a large data transfer is re-
quested by the satellite from the host data structures, however,
some noticeable delay is expected. For example, to transmit a file
of a thousand 32-bit words (corresponding to a very large action
file), the transmission delay would be approximately 30 seconds.

BELADY ET AL

IBM SYST J




The host processor manages those tasks not requiring quick response
but rather large complex supporting programs. Thus the host
processor manages the major data structures, carries out whatever
analysis of data is necessary, and generates output. This support
includes the recording of all user actions, the extraction of the
relevant geometric and topological information from the model as
represented by a list of user actions, and the execution of analytical
programs.

To provide a smooth transition for DESIGNPAD users from both
conventional time-sharing operations and from the use of drafting
boards, the concept of a modeling sheet was introduced. The sheet
acts like a large piece of paper and is the basic two-dimensional
medium, the device-independent carrier of all input or output infor-
mation from user or host whether graphic, textual, or both.
DESIGNPAD is equipped to handle a large number of sheets for
each user.

The sheets are equivalent to a sheet of paper sixty feet square. To
utilize this large sheet, a user first begins work in the portion of the
sheet visible on the display unit. If more area is needed to draw the
model, the area in the display can be moved to access an unused
portion of the sheet.

At the satellite, a sheet may be displayed on the screen, a model
constructed on it, and then the entire contents of the sheet trans-
mitted to the host for analysis. The host similarly formats graphic
output and transmits it to the satellite. Each sheet has a unique

name which is generally symbolic (like a picture of a block) and
which may be specified by the user. The symbols corresponding to
all the sheets available to the user, plus the additional symbols to
be used as blocks in the block diagrams, are gathered together on a
library sheet. Models are constructed graphically by using built-in
system functions such as “draw line” and by referring to another
sheet containing blocks in order to obtain a copy of a particular
block. Reference for the user is ultimately made possible by his
assigned library sheet containing the blocks he may use in his
model. Some of these blocks may represent sheets he has created
(or will create) thus permitting both hierarchical and recursive use
of blocks in the system. The concepts of hierarchy and recursion in
DESIGNPAD are illustrated in Figure 3. ‘

The modeling subsystem

This section discusses the modeling subsystem of DESIGNPAD,
which provides the support at the satellite display system to con-
struct models, transmit requests for analysis to the host machine,
and examine output. The subsystem provides a program technique
for displaying the contents of sheets, a drawing package and a text

No.2 + 1971 DESIGNPAD

modeling
media




viewports
and
windows

Figure 3 Viewports, sheets, and windows showing hierarchy and recursion

editor to modify the contents of a sheet, and an output package to
receive output from the host after analysis has been requested.
Sheets can be filed and retrieved, and there is a block specification
facility where special user-defined blocks can be constructed.
Appendix B contains a more detailed description of the operational
facilities and control commands.

To examine graphic input and output, viewports and windows are
provided. Each viewport is a rectangular area, the size of which is
adjustable. Up to four viewpoints can be obtained by dividing the
display screen so that the user can view parts of four different sheets
simultaneously, Using this capability, for example, one viewport
could contain the portion of the model that is under construction

BELADY ET AL IBM SYST J




or being analyzed, while another viewport could be used to display
the blocks that may be copied into the model. A third viewport
might be used to display a sheet containing light keys, and the
fourth could be used to examine the results of the analysis of the
network.

The boundary of the displayed portion of the sheet in the viewport
is called a window." A procedure known as “windowing” allows
continuous change of the window position on the sheet to display
in a viewport a portion of a sheet. In this way, a large model can be
constructed by creating a portion of the model and then windowing
over a few inches in order to continue. Also, many light keys can
be placed on a single sheet, a circumstance that may prevent all the
keys from being simultaneously displayed, but one in which window-
ing can be used to gain access to them. Figure 3 illustrates the use of
four viewports and the windows.

A user wishing to construct a block diagram on a sheet uses a set
of facilities called the drawing package. With the drawing package,
he may copy an individual block onto a sheet. (A block is a symbol
that is designed by the user with special points called atracher
points) He may draw a line or a series of lines between attacher
points, The end of a line not connected to an attacher point is
called an endpoint, and endpoints may also be connected with lines.
A user may also erase blocks and lines from a sheet.

Although the drawing package permits the construction of block
diagrams made up of blocks and interconnections, text is usually
required to completely specify the network. Thus DESIGNPAD has
a text-editing facility incorporated into the drawing package for
the creation, modification, and elimination of textual entities. A
textual entity (or simply text) is a group of alphanumeric characters
that are logically treated as a single unit, much like a block. The
text-editing commands permit creation of text at a specified location,
character-by-character editing, and deletion of the entire entity.
It is well to point out that the contents of a sheet may be entirely
text, as in the case of a FORTRAN program, for example. If text is
mixed with blocks and lines, it becomes necessary to have a facility
to associate text with particular blocks (as in the case of program
flowcharts), or with particular attacher points (as in the case of
integrators in an analog computer simulation). This is also provided
by the drawing package and permits the creation or deletion of hooks
that associate text with endpoints, blocks, or attacher points. These
terms are illustrated in Figure 4.

In the modeling mode, two of the viewports are designated the
modeling viewport and reference viewport. The user constructs the
desired block diagram on the sheet displayed in the modeling view-
port. This construction process requires the use of the reference
viewport, in which is displayed a sheet containing blocks.

No. 2 ¢+ 1971 DESIGNPAD

drawing
package




block
specification

file storage
and retrieval

Figure 4 An example of blocks, texts, attacher points, lines, endpoints, and hooks

BLOCK LINE //TEXT

¥=3
ATTACHER
M POINT

ENDPOINT

The existence of the two viewports and the variety of operands—
blocks, attacher points, endpoints, lines, texts, and hooks—provide
for a drawing package without explicit commands. In a conven-
tional drawing package, a command is given along with a set of
operands. For example, the command to copy a block is followed
by two operands: which block to copy and where the block is to be
copied. The DESIGNPAD drawing package eliminates the commands
for operations used to construct block diagrams. A pair of operands
alone determine which operation is to be executed. For example, a
block from the reference viewport and a point in the modeling
viewport determine that a block is to be copied. The drawing func-
tions are described more fully in Appendix B, and a complete
description is available elsewhere."®

In the block specification mode, the user may create a new block
by specifying its shape and function. Thus there are two phases, the
first being a drawing phase where the appearance of the block
(shape, number of attacher points, etc.) is determined by the user,
and the second a specification of the function of the block. In the-
drawing phase, the system provides the user with a set of graphic
functions, not unlike the implied drawing package, such that the
block can be designed quickly. In the specification phase, the user
may determine the function of the block on its associated sheet.
One way to specify the function of a block is to construct a network
on this sheet (possibly including the block being defined, thus per-
mitting recursion). This introduces the possibility of defining hier-
archical networks which, combined with the windowing facility,
permit the construction of large and complex networks.

DESIGNPAD provides a facility for the filing and subsequent re-
trieval of sheets. Thus a model at any stage of its construction may
be filed for later use. This storage and retrieval is done in one of
two ways. As the model is constructed, a display file that is used to
refresh the display unit is produced in the main memory of the
satellite and stored on its disk, and simultaneously an action file is
created in the host. The action file is a chronological list of all the
actions the user took in constructing a model (for example: draw
line, copy block, draw line, etc.). Thus at any time there are two

BELADY ET AL IBM SYST J




files in the system capable of reconstructing the sheet for viewing
on the display. At retrieval time, the system first attempts to locate
the display file on the disk of the satellite. Because of the size of this
file, however, the system may have replaced the desired sheet with
the display file of a more recently accessed sheet. In this case, the
system requests that the host transmit the appropriate action file
to the satellite which then dynamically recreates the display file.
An important point here is that a display file can be created either
by a user drawing on the display unit or by an action file transmitted
from the host. There is only one set of programs that create the
display file; however, its input may be taken from either source.

Once the block diagram is complete and all the necessary blocks
have been specified, the analysis mode is entered, and the application
program (normally supplied by the user) analyzes the network.
Input to the application program is taken from the interface file,
so named because it provides the interface between the DESIGNPAD
system and the user’s application program. This file is discussed in
detail Tater in this paper. The system has been designed so that all
application programs accepting any representation of a labeled
block diagram as input can be incorporated.

An output package that permits displaying results of the analysis
is provided in the host. The package includes subroutines for plot-
ting conventional x-y graphs, bar graphs, projections of three-
dimensional surfaces for functions of two variables, and other
graphs on the satellite display unit. In addition, application programs
may create an action file in order to produce block diagrams as
output, This permits the display of text or of complex shapes made
up of lines produced with the drawing package. The output pro-
duced with these routines is placed on a sheet, thus allowing the
drawing of numerous plots and use of the windowing facility to
move from one to another. The output, being simply a sheet, may
be filed and later retrieved for further study in any viewport.
Besides providing static output in the form of graphs and models,
DESIGNPAD provides dynamic output (animation).

Data structures

This section describes the data structures (or files) found in
DESIGNPAD. These structures include the action file, the display
file, and the interface file. The overall organization and data flow
are shown in Figure 2.

As stated previously, the satellite computer acts as a terminal and
issues a series of transactions representing user actions. These
actions determine the graphical elements that make up the contents
of a sheet and are simultaneously transmitted to the host and
recorded there in a file called the action file. New actions taken on

No. 2 - 1971 DESIGNPAD

analysis




display
file

celiular
structure

a sheet update this file so that a sheet generated at the satellite is
completely described. The contents of all sheets therefore reside
in the host. Since storage in the satellite is limited, the action file in
the host is used as secondary storage.

In addition to using the action file for storage, DESIGNPAD also
uses the file to generate animated output. An action file describing
a series of changes to a sheet can serve as a script for animated
output. Animation is accomplished by having an application pro-
gram in the host produce a sequence of commands that describe
the initial frame and subsequent changes to that frame on an action
file. A special transaction called “mark frame” acts as a delimiter
by marking the beginning of each frame of animated output. All
transactions between the special mark frame transactions constitute
the modifications to the frame of animated output. A moving line,
for example, is represented by the following transactions: draw A,
mark frame, erase A, draw B, mark frame, erase B, draw C, mark
frame, etc. An action file describing animated output is then trans-
mitted to the satellite where it is processed for display. Since the
file is now associated with the satellite and no further host-satellite
transmission is required, the animation can be presented at normal
speed. Such an action file may be stored in the satellite, and a user
may run an animation many times.

As the designer uses the drawing package to create a model on a
sheet being displayed, his action builds a data structure, the display
file, in the satellite. The display file is a set of graphic orders that are
commands to the display unit to generate an image. The display
file for a sheet thus contains a large number (perhaps thousands) of
commands taken from a small set of graphic orders (DESIGNPAD
uses only eight with any frequency). If this file is presented to the.
display unit, the sheet will be displayed. Unfortunately this makes
no sense in DESIGNPAD since the sheet is very large compared to
the screen size. Most display units will display unintelligible in-
formation when presented with a display file that requests off-screen
images. To overcome this problem, two solutions—scaling and
windowing'—were considered. Scaling reduces an image to fit into a
given area, whereas windowing (or scissoring) ““cuts out” and displays
a portion of the image. To provide the user with flexibility, either
technique must be done dynamically so that the windowing or
scaling can be quickly changed under user control.

DESIGNPAD incorporates only windowing, since dynamic scaling
requires special hardware and is not by itself sufficient; it is not
possible to construct a model on a sheet whose scale has been
significantly reduced. Dynamic windowing can be carried out in
two ways—Dby special hardware or by an appropriately organized
display file. It was felt that special hardware would make the result-
ing system less transferable to a new location, and in addition,
hardware windowing implies certain data management problems

BELADY ET AL IBM SYST J




discussed later in this paper. Therefore, DESIGNPAD uses the second
alternative, employing a cellular structure for the display file. A
cellular structure is implemented by conceptually partitioning the
sheet into cells one and a half inches square. (This is considered to
be the most convenient size; however, this is another example of a
parameter to be determined by experiment.) The display file asso-
ciated with the sheet is then divided into groups of graphical data.
The orders which make up this graphical data are incremental
orders (graphic orders which, independent of the absolute beam
position, displace the electron beam a specified amount) and to-
gether form a graphic subroutine. A cell is displayed on the screen
by executing its graphic subroutine. All graphic objects crossing cell
boundaries are divided into subparts and placed in the appropriate
subroutines. For example, a line which passes through four cells is
broken up into sublines, and these are placed into four subroutines.
A textual entity that spans several cells is partitioned into subentities
that are again placed in appropriate subroutines. The subroutines
are assigned names corresponding to their coordinates on the sheet,
stored on the satellite’s disk, and later accessed by using their names.

When a portion of a sheet is to be displayed, the cells (or more
accurately, the subroutines corresponding to the cells) for that
portion are retrieved from disk and displayed as shown in Figure 5.
Each cell is preceded by a positioning vector, a graphic order which
moves the beam to a specified position but does not cause a line
to appear on the screen. When a user “windows” using one of the
viewports, the positioning vectors for the cells under that viewport
are modified causing the entire sheet to move under the viewport.
When a column or row of cells passes over a viewport boundary, the
entire column or row of cells is removed from the graphic orders
being displayed and a new column or row of cells is displayed.
New cells do not appear until there is room for them. Cells surround-
ing the ones being displayed in a viewport are kept in a main-memory
buffer so that a user will not experience delays during windowing,
The buffer will be replenished with cells from disk depending on the
direction and speed of windowing. At the completion of windowing
(caused by confirming the present position), the sheet registers itself
at the cell boundaries automatically.

As previously stated, the sheets are divided into cells to allow a
continuous view on the sheet as it moves under the viewport. This
““prescissoring” eliminates the need for a scissoring operation while
windowing; thus the windowing is rapid and requires no special-
purpose clipping hardware. Another advantage of cellular sheets
is that searching display files on the x, y position of the input
device is more efficient. Such searching is necessary if, for example,
the user points at a line on the screen and requests that the line be
erased. Since DESIGNPAD uses the pointing device (a light pen, but
it could be the stylus of a tablet) only to obtain x, y positional
information, the display file must be searched to locate all graphical

No.2 * 1971 DESIGNPAD




Figure 5 Cellular structure and window

SHEET

U’T‘*‘w’ﬁﬂ‘ﬂj‘ﬂ

CORE

O

L

USER CONTROL

@-@ ANTICIPATED BY SYSTEM

entities at that position. The entire display list must be searched in
the usual organization, but only a single cell need be searched when
the display list has a cellular structure.

Scissoring ‘“on the fly”’, which is an alternative to cells, solves the
problem of separating the visible information from the invisible
provided both are kept in high-speed storage. Unfortunately a
memory management problem arises since main memory can over-
flow in an attempt to accommodate large sheets. The cellular
structure, however, solves this problem by prescissoring, and the
cell becomes the single fundamental unit of display information
for transition between visible and invisible and between main mem-
ory and disk. Figure 5 illustrates this management technique.

There are some disadvantages to the cellular structure. Since some
graphic entities are broken up into subparts and placed into cells,
it is necessary to reconstruct these entities for such graphic functions
as erase. This operation can be time-consuming. The problem can
be avoided by storing more information. For example, the relation
between line L and sublines a, b, ¢ could be entered into a special
data structure and later retrieved. Another approach is to search
the cells for the desired information. Suppose all the lines that
share point A as endpoints are to be found. A special graphic order
is inserted to mark endpoints of lines. The cell on which point A lies
is searched. If an endpoint is found, all sublines sharing point A are
placed on a list. For each subline on the list, a search will be made
for additional sublines in other cells until complete lines have been
found. Either approach, the supplementary data structure or the

BELADY ET AL IBM SYST J




Figure 6 A sheet generated at the satellite

a

o

extra orders, requires approximately the same amount of storage; the
latter, however, is attractive because it places all information in a
single data structure.

Another disadvantage of the cellular structure manifests itself in
the process of windowing. When a user windows, a column or row
of cells drops from view suddenly at the edge of a viewport. This
would not happen if special clipping hardware were employed.
However, this phenomenon occurs at the edge of the viewport only,
whereas the motion at the center is smooth.

Each sheet generated at the satellite has associated with it an inter-
face file at the host. The file, which is the input to application
programs, is a compound data structure’® built from transactions
received from the satellite. The file contains all the relevant geometric
and topological information and is updated by any new transactions.
An example will be used to illustrate the organization of this file.

Figure 6 shows a sheet that has been generated at the satellite. The
sheet contains four blocks of different types. Each of the four
blocks has a unique name, its (x, y) coordinates on the sheet
(e.g., a, d, g, J). The type of block is represented by the coordinates
of that block on the library sheet. Thus a block’s type is its name
on the library sheet. The sheet also contains six lines, and the name
of a line is determined by the coordinates of its two endpoints.

Figure 7 shows the transactions sent to the host for this sheet. The
first transaction identifies the sheet to which the succeeding trans-
actions refer. A transaction to copy a block has two parts of data:
where the block is to be copied on the sheet and the type of block.
A transaction for drawing a line requires the coordinates of the
endpoints of the line.

These transactions are inputs to the program that produces the
interface file. The interface file consists of entities, attributes, and
data. These notions are also used in the LEAP language and else-
where.'® '® The entities are the basic elements of the file, and data
is attached to them. Examples of entities are instances of blocks,
lines, hooks, and texts. To associate some data with an entity, the

No. 2 + 1971 DESIGNPAD

interface
file




Figure 7 Transactions from satellite to host

TRANSACTION* COMMENTS

ON SHEET A THE FOLLOWING TRANSACTIONS ARE ON
THE SHEET WHOSE BLOCK IS AT A ON
LIBRARY SHEET.

COPYa,B COPY AT LOCATION a ON THE ABOVE
SHEET AN INSTANCE OF THE BLOCK THAT
IS AT B ON THE LIBRARY SHEET.

DRAW b.d DRAW A LINE FROM b TO d.

COPYd,C

DRAW et

COPY gD

DRAW h,i

COPY j,E

DRAW k|

DRAW |,m

DRAW m,i

“UPPER CASE LETTERS ARE COORDINATES ON LIBRARY SHEET,
LOWER CASE ARE COORDINATES ON THE MODELING SHEET.

Figure 8 A representation of the initial entries in the interface file

D A BLOCK ENTITY

[ Auneenty

“SET OF BLOCKS' ENTITY

6 “SET OF LINES" ENTITY

/ “MEMBERS OF* RELATION

156 BELADY ET AL IBM SYST J




Figure ¢ Interface file with new entity and new relation

oo Jeon

D BLOCKENTITY

[ uneentiry

o] POINT ENTITY

RELATION RELATING A POINT
WITH BLOCKS AND LINES

data is filed with that entity under an attribute. For example, if the
number of attacher points for Block A is five, an entity with the
name BLOCK A is created, and the attribute NUMBER OF ATTACHER
POINTS OF is used to file the data “5”. Later when the query
“NUMBER OF ATTACHER POINTS OF (BLOCK A) is ?” is presented
to the data structure, the answer “5” is returned.

In addition to associating entities with data, attributes can associate
entities with other entities. Such an attribute is called relation. To
illustrate the concept of relation, suppose that POINT A is an entity
representing point a, LINE AB is an entity representing line a, b and
that the attribute LINES BEGINNING AT applies to the entity
POINT A. The answer to the query, “LINES BEGINNING AT (POINT
A) are 77 would be LINE AB. In this case, the attribute returns
another entity as a value.

Figure 8 shows a representation of the interface file at a point where
the basic data from transactions have been added to it. The square
symbols represent instances of blocks and the rectangular symbols
represent lines. The symbols in the figure have been placed so that
their positions correspond to the positions of the lines and blocks
in Figure 6. As shown in Figure 8 two new entities have been added
to the interface file. One represents the set of lines and is called
SET OF LINES; the other represents the set of blocks and is called
SET OF BLOCKS. The relation MEMBERS OF is assigned to these
new entities. Thus we have a means of getting all the blocks in a
sheet simply by asking ‘“MEMBERS OF (SET OF BLOCKS) are 7”.
Similarly, the set of lines in the sheet may be accessed.

In addition to the line and block entities, Figure 9 shows a new type
of entity that has been added to the file. The new entity represents
a point on the sheet, either an attacher point of a block or the
endpoint of a line or both, A new relation is also added to the file
to relate points with blocks and lines. Thus lines that end on
attacher points of a block are related to the block through the new
relation and the new entity.

No.2 ¢ 1971 DESIGNPAD




Figure 10 Interface file with new entity and relation giving topology of a diagram

D BLOCK ENTITY

[ uneenmry

(o] POINT ENTITY

A NODE ENTITY TO ASSOCIATE ATTACHER
POINTS THAT ARE CONNECTED TOGETHER

A RELATION TO FIND ATTACHER
POINTS THAT ARE CONNECTED

Finally, Figure 10 shows another new entity and new relation added
to the file. The entity represented by a triangle is used to collect
the set of attacher points that are wired together. Thus the topology
of the diagram has been extracted. The attacher points of connected
blocks are known independent of the number and location of the
lines connecting them,

In this example, the manner in which lines were used to connect
attacher points was not material. In other applications, the arrange-
ment of lines may carry information for the application program.
In fact, a diagram may consist simply of lines, texts, and hooks.
The flexibility of a compound data structure is required to handle
a variety of applications. Many such data structures have been
implemented.'*

Summary

This paper has described the design of an experimental system
intended for solving complex problems. Facilities are provided for
stating a problem as a labeled block diagram of arbitrary complexity.
A block diagram can be drawn on a representative sheet that is
many times larger than the screen of the cathode-ray tube. The block
diagram may be structured into a hierarchy of sheets allowing
blocks to be designed and specified by the user. The modeling
subsystem provides a number of viewports so that more than one
sheet can be displayed. To make entering of block diagrams easier,
a drawing package that does not require commands for creating the
diagram but uses only the operands to determine the command is a
part of the system. Finally, a data structure in the host computer is
provided to allow for easy access to data by any application program.

BELADY ET AL IBM SYST J




ACKNOWLEDGMENTS

The help of A. J. Stein and V. Watson of the IBM Thomas J. Watson
Research Center in programming the modeling subsystem is greatly
appreciated.

CITED REFERENCES

1. C. 1. Johnson, “Interactive graphics in data processing: Principles of
interactive systems,” IBM Systems Journal 7, Nos. 3 & 4, 147-173
(1968).

. F. F. Kuo, W. G. Magnuson Jr., and W. J. Walsh, “Computer graphics
in electronic design,” Datamation 15, No. 3, 71-79 (March 1969).

. W. R. Sutherland, On-Line Graphical Specification of Computer Pro-
cedures, Technical Report 405, Lincoln Laboratory, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts (May 1966).

. H. B. Baskin and L. A. Belady, “DESIGNPAD: A graphic design/
preblem-solving facility,” Proceedings of the Third Annual Princeton
Conference on Information Sciences and Systems, 173 (1969).

. H. B. Baskin and S. P. Morse, “Interactive graphics in data processing:
A multilevel modeling structure for interactive graphic design,” IBM
Systems Journal 7, Nos. 3 & 4, 218-228 (1968).

. I. E. Sutherland, “SKETCHPAD--A man-machine graphical com-
munication system,” AFIPS Conference Proceedings, Spring Joint Com-
puter Conference 23, 329-346 (1963).

. H. B. Baskin, “A comprehensive applications methodology for symbolic
computer graphics,” Pertinent Concepts in Computer Graphics, Uni-
versity of Illinois Press, Urbana, Illinois (1969).

. W. H. Ninke, “Graphic I-—A remote graphical display console system,”
AFIPS Conference Proceedings, Fall Joint Computer Conference 27,
Part I, 839-846 (1965).

. A. Appel, T. P. Dankowski, and R. L. Dougherty, “Interactive graphics
in data pracessing: Aspects of display technology,” IBM Systems
Journal 7, Nos. 3 & 4, 176187 (1968).

. TSS/360 Concepts and Facilities, System/360 Reference Library, C28-
2003, International Business Machines Corporation, Data Processing
Division, White Plains, New York.

. G. Gordon, System Simulation, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey (1969).

. R. W. Jensen and M. D. Lieberman, IBM Electronic Circuit Analysis
Program; Techniques and Applications, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1968).

. 1130 Continuous Systems Modeling Program, H20-0209-1, Interna-
tional Business Machines Corporation, Data Processing Division, White
Plains, New York.

. J. McCarthy, et al., LISP 1.5 Programmer’s Manual, The MIT Press,
Cambridge, Massachusetts (1966).

. C. J. Evangelisti and S. P. Morse, Graphical Modeling Using Con-
textually Implied Functions, RC 2280, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York (1970). Accepted for pub-
lication in the Computer Journal.

. J. C. Gray, “Compound data structures for computer-aided design,”
Proceedings of the 22nd National Conference of the Association for
Computing Machinery P-67, 355-365 (1967).

. J. A. Feldman and P. D. Rovner, “An Algol-based asscciative lan-
guage,” Communications of the ACM 12, No. 8, 439-449 (1969).

. A. J. Symonds, “Interactive graphics in data processing: Auxiliary-
storage associative data structure for PL/1,” IBM Systems Journal 1,
Nos. 3 & 4,229-245 (1968).

.2+ 1971 DESIGNPAD




Appendix A: Block diagram definitions

DESIGNPAD is equipped to handle a large class of block diagrams:

Definition: A block is a pair (b, A) where b is called the block name
and A is an ordered set called the attacher points.

Definition: A labeled block diagram is a quadruple (B, &, E, T) of
sets and two relations L and H. The elements of B are blocks and &
is the set of all attacher points of the blocks in B. E is called the set
of endpoints, and the elements of T are called text. The relation
L:a\J E— a\J Eyields a set of ordered pairs called the lines,
and H: T — E\U @ \U B yields the hooks.

These definitions introduce more concepts than absolutely necessary,
but they correspond with the notions discussed in the paper. Blocks,
block names, endpoints, and attacher points correspond exactly.
The attacher points are ordered simply to distinguish them. The
two relations indicate connections—if al and c4 are attacher points,
and L(al) = ¢4, then al and c4 are connected by a line. Similarly if
ttt is a text, b is a block, and H(ttt) = b, then ttt is related to b by
a hook.

Appendix B: Modeling subsystem facilities

Listed here is a more detailed description of the facilities provided
by the modeling subsystem. These facilities include the drawing
package and the control commands necessary to construct and
analyze a model.

Facility Control Command Description

Start-up Cold start System initializes with four predefined viewports, displaying the
library sheet, the light-key sheet, and two blank sheets.

Warm start System starts up in same condition as left by this user.

Control Viewport size Upon selection of the appropriate light key, any selected view-
port boundary will move with the light pen.

Display sheet Select a block on the library sheet and a point in a viewport.
The sheet is displayed in that viewport.

Window Select viewport and appropriate light key, and a special window-
ing control appears on the screen. Using the light pen on this
control moves the sheet continuously in the viewport.

Clear sheet Selecting a light key and a viewport clears the specified sheet.

Analyze Selecting appropriate light key and entering an identifier through
the alphanumeric keyboard causes that application program Lo
operate on the model in the modeling viewport.

Display /blank hooks A light key suppresses all the hooks. A similar command redis-
plays them.

Move Selecting a light key and pointing at a block in the modeling
space moves the block along with all lines or blocks attached to
it under the pen. The lines stretch or contract as needed.

160 BELADY ET AL IBM SYST J




Facility

Drawing

Text editing

Block definition

No.2 + 1971

Control Command

Draw line

Copy block

Erase line /block

Begin text

Edit text
Delete text

Relate text

Erase hook

Specify shape

Label block

Specify function

Specification complete

Save

Quit

Description

Placing the pen at a point in the modeling viewport and con-
firming causes a flashing point to appear at this position. Moving
the pen away causes a line to be drawn from that point to the
pen position, which can then be moved to the desired location
and confirmed. In the “rubber-band” mode in which the line
follows the pen, the line on the screen is a single, long stroke.
Upon confirmation, the line is broken up and entered into the
cellular display file.

Pointing at a block in the reference viewport and confirming
causes the block to flash, Moving the pen in the modeling
viewport causes a copy of the block to follow the pen, and as in
“draw line”, the block may be placed as desired.

Selecting an isolated point in the reference viewport and a line
or block in the modeling viewport erases that line or block. An
unconfirmed erase blanks out the beam (the display file is es-
sentially unchanged, but instead of actually drawing the line, the
electron beam is simply moved without drawing), whereas when
the erase is confirmed, the cellular display file is modified. In
addition to single line /block erase, selecting a point in common
between several lines or blocks erases all of them.

Selecting a point in the modeling space and entering any alphanu-
meric character displays that character at the point; text mode
is entered (thus all characters entered are displayed) and a
left margin is established automatically.

The usual text-editing facilities are provided.

Selecting any isolated point in the reference space and specifying
a character in a textual entity erases the entity.

Selecting a textual entity and a line or block or attacher point
creates a hook from the point to the text.

Selecting an isolated point in the reference viewport and a hook
erases the hook.

Selecting a light key causes the shape specification mode to be
entered. A new picture is brought on the screen, consisting of a
large area for drawing a block, an area in the corner where the
block is reproduced as it is drawn in actual size (i.e., it is scaled
down), and several light keys for use in drawing.

This mode is entered automatically permitting lines to be drawn
between any two points in the drawing area. In addition, attacher
points can be specified with the use of the light keys.

Touching the appropriate light key permits a block to be labeled
with an alphanumeric character string for use in the application
program.

After shape specification, a light key returns the user to the
modeling phase, with the sheet corresponding to the newly
defined block in the modeling viewport. The implied drawing
package may now be used to draw a model that describes the
function of the new block. The new block appears on the library
sheet in the reference viewport, and thus recursive definitions are
permitted.

A light key completes this phase,

A light key causes all models and blocks defined at this session
to be saved under the user’s name.

Shuts down the system.

DESIGNPAD 161




