
Explored by simulation is the performance of a probabilistic model
of a multiprogrammed single-processor computing system operating
under demand paging.

Results of experiments on statistical methods .for improving the
efJiciency of the simulation are presented.

Estimates of the response variables in the simulation are reported
for a variety of conditions of system overhead, queuing delays, and
transient response. Sensitivity of these factors to the assumptions
of the model are discussed.

Simulation of a model of paging system performance
by G. S. Shedler and S. C. Yang

Many problems that arise in operating systems lead rather naturally
to the study of queue networks. The models formulated, however,
are frequently of greater complexity than can be handled by existing
mathematical techniques. Queue network simulation by straight-
forward sampling is typically adopted, and often requires long simula-
tion studies to adequately represent the behavior of queuing systems.
It is advantageous, therefore, to investigate alternatives to straight-
forward sampling. Gaver' has proposed several such alternatives.
Their value is suggested by data derived from a simple (though
mathematically difficult) queuing situation.

In this paper, we apply Gaver's methods to simulating the more
complex queuing model of a paging machine previously described by
Lewis and Shedler.2 Our approach compares three methods of
simulation with straightforward sampling and then estimates the
sensitivity of the system response variables to the assumptions
of the model. In our discussion, we attempt to go beyond adescription
of the experiment by illustrating a methodology for the simulation
of probabilistic models.

The computer system in our model is a multiprogrammed, single
processor operating under demand paging. Overhead functions of
the Central Processing Unit (Cpu) such as construction and execu-
tion of channel control programs, execution of replacement algo-
rithms, and queue management are represented explicitly. Similarly,

NO. 2 ' 1971 PAGING SYSTEM PERFORMANCE 113

expressions for the long-run channel idle time, CPU idle time, and
CPU overhead time have been obtained by Lewis and Shedler,’ the
transient or short-term response of the system is not easily charac-
terized mathematically. Further, it is difficult to assess mathemati-
cally the sensitivity of the analytic results to distributional assump-
tions. Accordingly, a simulation of the model addressed to these
matters is desirable. Such a simulation study as discussed in this
paper, also provides a quantitative assessment, not obtained in
Reference 2, of the queuing delays in the system.

Structure of the model

The computer system with which this paper is concerned is a single
processor system with two-level storage, multiprogrammed at a
fixed level (i.e., with a constant number of problem programs), and
operated in a demand paging environment. Such systems are
described in References 3 and 4. The following brief discussion
gives the background necessary for an understanding of the model
evaluated in our discussion.

In a paging system, all information that is explicitly addressable
by the Central Processing Unit (mu) is divided into units of equal
size called pages. Main storage (or the “execution store”) is similarly
divided into page-size sections called pagefiames. In such machines,
it is possible to execute a program by using only a few page frames
of main storage. When the page containing the first executable
instruction has been loaded into a page frame, execution begins
and continues until information is required that cannot be found
in main storage. The system fetches the page containing the missing
information, and may overwrite a page frame in main storage.
Thus, under this procedure, called demand paging, information is
brought into main storage only as a result of an attempt to use
information not currently stored there. An instance of demand for
a page that is not in main storage is termed a page exception. When
executing large programs, or operating in a multiprogramming
mode in which main storage is shared among several programs,
main storage is frequently filled when another page has to be
fetched from auxiliary storage. Consequently, a choice must be
made as to which page frame in main storage is to be overwritten.
The rule governing this choice is called the replacement algorithm.
The control program must be capable of saving the content of the
page frame chosen to be overwritten before the overwriting is
performed.

The essential components of the hardware configuration that we
discuss in this paper and show in Figure 1 are the following: main
storage containing S page frames, a Channel Control Unit (CCU),

114 SHEDLERANDYANG IBM SYST J

MAIN STORAGE
(S PAGES)

PROBLEM
PROGRAMS
(S' PAGES)

queue. The interpretation of is the picking up of the next page
request and starting execution of the channel control program. The
function of placing a new entry on the CPU (a-stage) queue is
associated with p 3 service and terminating the I/o operation.

Under this interpretation, the major overhead activity is represented
in the a3 service. Note that all six services are provided by two
servers, a single CPU and a single DTU; al, aZ, a3, Dl, and p3 services
are provided only by the CPU. A p z service can be provided only by
the DTU. It is assumed that the CPU and the DTU can provide
service simultaneously, subject to the restriction that no p1 or p3
service can be rendered by the CPU while the DTU is rendering a pZ
service. Assume further that after receiving a3 service, a program
moves instantaneously from the a3 service station to the tail of the
p-stage queue, and after receiving the p3 service, the program moves
instantaneously from the p 3 service station to the tail of the a-stage
queue.

The single CPU renders al , az, a3, pl, and p 3 services to the N
programs in the system. Having begun to render an al , a3, pl, or p3
service to one program, the CPU completes that service without
interruption. Interruption is possible for an az service. An a2
service is interrupted at the epoch at which a p2 service is completed
by the DTU, and the az service continues at the point of service
where the interruption occurred. The pz-complete interruption of
an aZ service is thus called pre-emptive resume interruption.

At an epoch of completion of an al , az , a3, PI, or p3 service and at
an epoch of interruption of an az service (i.e., completion of a p2
service), the CPU chooses the next service according to the following
priority rule:

1. If a program is waiting for p 3 service, begin that service.
2. Otherwise, if a program is waiting for P1 service, begin that

3. Otherwise, if the last a service was a completed az service,

4 . If the last a service was an interrupted az, resume the a2.
5. If the last a service was an a1, begin an aZ.
6 . If the last a service was an a3, and the a-stage queue is not empty,

service-provided no DTU pz is in progress.

begin an a3.

begin an al .

If no claim is made on the CPU according to the priority rule, the
CPU is assumed to remain idle until the completion of the next pz
service, at which time the priority rule is invoked. We assume that
both the queue in the a-stage and the queue in the P-stage are
served under a first-in, first-out (FIFO) queuing discipline.

Since no interruption of an a , or a3 service can occur, a program
completing a p z service during an a1 or a3 service to another program

NO. 2 1971 PAGING SYSTEM P E R F O R M A N C E

must wait in the p-stage queue until the completion of that service
before receiving its p3 service. Similarly, a program whose a2 service
is interrupted by a pz completion must wait in the a-stage queue
until a p service has been rendered before its a2 service is resumed.
In fact, if any program is in the p-stage queue, the az service is not
resumed until pz service by the DTU begins again. These priority
rules are based on the tacit assumption that the bottleneck in a
multiprogrammed system is in fetching pages from auxiliary storage,
which is generally true in today’s systems.

distributional The system overhead model has been previously analyzed under
assumptions the following distributional assumptions, which we use in our

simulation studies:

Service times at the six service stations are independent of one
another.
Successive a , and a, service times are independent and identically
distributed random variables A , and A , with arbitrary distribu-
tions FA,(t) and F,,(t), e.g.,

F A , (t) = prob(A, I t }

For i = 1,2, and 3 , the successive fl service times are independent
and identically distributed random variables Bi with arbitrary dis-
tributions FB,(t).
The successive a2 service times are independent and identically
distributed random variables A , with exponential distribution
having rate parameter X2, i.e.,

F,%(t) = prob(A, 5 t) = 1 - e-’’‘ for t 2 0

The model is analyzed by concentrating on particular epochs at
which changes occur in the state of the system as defined in Refer-
ence 2. These changes in state are generated by a one-step Markov
chain, and the times between changes (given the initial and final
states) are independent of the previous history of the process.
Such a stochastic process is termed a semi-Markov process.

The exponential distributional assumption for the a2 service time is
essential for the analysis. An assessment of the sensitivity of certain
response variables to this assumption is a result of the present
simulation study, and is discussed later in this paper.

Some further remarks about the assumptions concerning az service
times are in order, We have assumed that each of the programs

its length (i.e., for all i, where s, < l ,) . Under the demand paging
assumption, a page is moved from the drum to main storage only
when needed and when not in main storage. Whenever Pi references
a missing page while the portion of main storage allocated to P , is

PI, P2, . . . , Pw is constrained to run in storage that is smaller than

In the method known as stratijication discussed in Reference 1, m
(for m 2 2) companion realizations Wj'), Wj2), . . . , Virn) are
averaged to form a single estimate Wi. To obtain the Wlk) , the unit
interval is divided into the following m equal parts:

Using one random number that is uniformly distributed over
(0, l), an interval ri is chosen. Within r i , a value R'" is chosen by
means of a second random number that is uniformly distributed
over the interval (0, l/m). Obtain the sample X"' associated with
the first of the m companion realizations from R"' by using the
appropriate probability integral transformation. For the second of
the companion realizations, i.e., the sample X " ' , use R"), which is
obtained by adding l / m to R"', and possibly subtracting 1 to
place R'" in the unit interval. Subsequent additions of l/m and
possible subtractions of 1 yield R (3) , . . . , R (m) , from which

carried out for each variable in X. Note that two independent
random numbers are used to generate m samples of an input
variable, one for each of the m companion realizations. The un-
biased stratification estimator Fa of Q W] is given by the equation

x'3', . . . , X("' are obtained. This stratification procedure is

We wish to point out that stratification is an extension of the anti-
thetic idea in that it has the tendency to provide an equal distribu-
tion of X across companion realizations. If the values FV;'),

estimate obtained from Equation 2 tends to have a variance smaller
than that obtained from mn independent realizations. The experi-
ments reported in this paper use the value m = 3.

wy, . . . , Wjm) are sufficiently negatively correlated, the final

The fourth method studied is a combination of antithetic variables
and stratification. By treating the second random number as uni-
formly distributed over (0, l/m) antithetically inside the interval
(0, l/m), 2m companion realizations can be generated, and the
final estimate Fa,= is obtained by averaging.

Results of our experiments on the four estimating procedures are
given in Tables 1 and 2. We consider two instances of a response
variable W: CPU utilization, and DTU utilization. In both cases,
the system input variable X is the exponentially distributed cy2

service time. For positive integral c, CPU utilization Tcpu(c) is
defined as

Here A(t ,) is the total amount of time that the CPU renders service
during the time interval (0, t,), and t , is the epoch of simulated

NO. 2 * 1971 PAGING SYSTEM PERFORMANCE

Table 1 Straightforward and antithetic-variable estimates of CPU and DTU utilization

CPU

DTU

C

100

200

X 2

2.00
1.50
1.00

2.00
1.50
1.00

2.00
1.50
1 .OO

2.00
1.50
1 .OO

2.00
1.50
1 .OO

2.00
1.50
1 .OO

Straightforward

Mean

71.41
81.87
92.79

71.00
81.56
92.64

70.87
81.43
92.70

91.26
86.12
72.44

91.72
86.64
72.82

91.96
86.85
72.89
A

Variance

0.1935
0.2514
0.0810

0.0886
0.1226
0.0285

0.1573
0.0899
0.0318

0.0255
0.0783
0.3776

0.0132
0.0686
0.0713

0.0114
0.0525
0.0745

T
-I-

Mean

71.56
81.87
92.78

71.06
81.61
92.71

70.91
81.46
92.66

91.12
85.99
72.26

91.65
86.60
72.80

91.86
86.81
73.01

Variam

0.0572
0.0266
0.0233

0.0353
0.0211
0.0232

0.0195
0.0237
0.0139

0.0301
0.1618
0.1503

0.0175
0.0701
0.1076

0.0104
0.0394
0.0764

___-

_ _ ~

Antithetic

Range of
correlation coeficient

-0.8528 -0,4966
-0.9363 -0.7365
-0.8439 -9.5603

-0.8672 -0.3930
-0.9254 -0.6697
-0.8199 0.5930

-0.8722 -0.4958
-0.9018 -0.7225
-0.8629 -0.5993

-0.5469 -0.0075
-0.4943 $0.1410
-0.6859 -0.2400

-0.6913 +0.0175
-0.6002 +0.1344
-0.6824 -0.0700

-0.4222 +0.1960
-0.5470 -0.0435
-0.5648 -0.2016

Average
correlation
coeficient

-0.7042
-0.8263
-0.7091
~"

-0.7119
-0.8199
-0.7276 ____
-0.7300
-0.8240
-0.7561
____-

-0.2517
-0.2063
-0.4139

-0.2093
-0.2228
-0.3556

-0.2012
-0.2480
-0.3991

time at which the c + 1st customer begins his aI service. Similarly,
the DTU utilization TDTI,(c) is defined as

where B(tJ is the total amount of time that the DTU renders service
during the time interval (0, tJ .

The results shown in Tables 1 and 2 are for the case in which the
level of multiprogramming is 3. The al, a2, and a3 service times are
exponentially distributed, and the p-stage service times are constant.
Unit time is taken to be the duration of a p2 service. The average
duration of the dominant overhead service cy3 is 0.2, and the duration
of an average a] , PI, or p3 service is 0.02.

In each realization, all customers are in the CPU queue at time t = 0.
We observed that for a given customer c, the result of terminating
each realization when the next customer (c + 1) is about to start
his a1 service varies only slightly from defining a time interval
(0, t,) by the first realization, and terminating all subsequent
realizations at simulated time t,.

122 SHEDLER AND YANG IBM SYST J

Table 2 Four methods of estimating CPU and DTU utilization

2.00

1.50

1 .OO

Method

Straightforward
Antithetics
Stratification
Stratification

& antithetics

Straightforward
Antithetics
Stratification
Stratification

& antithetics

Straightforward
Antithetics
Stratification
Stratification

& antithetics

CPU utilization

Mean Variance

71.41 0.1935
71.56 0.0572
71.57 0.0830

71.55 0.0135

81.87 0.2514
81.87 0.0266
81.91 0.0802

81.93 0.0097

92.79 0.0810
92.78 0.0233
92.79 0.0280

92.83 0.0239

I__

DTU utilization

Mean Variance

91.26 0.0255
91.12 0.0301
91 .OO 0.0267

91.09 0.0193

86.12 0.0783
85.99 0.1618
85.91 0.0911

86.07 0.0206

72.44 0.3776
72.26 0.1503
72.38 0.1511

72.14 0.0509

-

-

In Table 1, we display results of a comparative assessment of
straightforward sampling and the antithetic estimating procedure.
Here the variances are estimates of Var { Wa], each obtained from a
set of k = 20 independent observations of Pa, and the means are
obtained from k observations. Each of the m observations of W, is
based on n = 30 pairs of companion realizations. Also displayed is
the mean correlation coefficient and its range for each of the m
observations of Pa. For straightforward sampling, the means and
variances displayed were obtained from k = 20 independent obser-
vations of W, each based on n = 60 realizations. Thus the total
number of realizations used to obtain the estimates is the same for
both the straightforward and antithetic-variable methods.

We conclude from the results in Table 1 that, for CPU utilization,
the antithetic estimating procedure is useful in variance reduction,
Note, however, the lack of evidence that a similar gain is obtainable
for DTU utilization. This observation may well have to be considered
in future investigations of policies for determining whether the
antithetic procedure should be employed in the simulation of
different queuing problems. Table 2 shows some results for the
straightforward method compared with the antithetic and stratifica-
tion procedures, and the combination of stratification with anti-
thetics. For stratification (with m = 3), the given means and
variances are obtained from k = 20 independent observations of F V S ,

each observation being based on n = 20 sets of companion realiza-
tions. For the combination of stratification and antithetics, the
means and variances given are obtained from k = 20 independent

comparative
results

NO. 2 * 1971 PAGING SYSTEM PERFORMANCE

observations of Fa,,, each observation being based on n = 10 sets
of companion realizations.

Our results in Tables 1 and 2 provide no evidence that stratification
is preferable to antithetics. There is evidence, however, that for
CPU utilization an additional gain over antithetics is obtainable by
the use of the combination of stratification and antithetics.

Simulation results

In this section, we define several quantities of interest in the model,
and present results of further simulation studies. In accordance with
our findings in the previous section, all simulation results are
obtained by the method of antithetic variates.

In the model, the single CPU processes problem programs (az
service) and performs overhead functions (a1, a3, pl, p.? services).
The DTU provides paging service (P, service). Quantities of primary
interest in the model are the percentages of time that the CPU
spends rendering each of the several services that it provides (as
opposed to being idle), and the percentage of time that the DTU
renders paging service (as opposed to being idle).

Thus, for example, we define the random variable T,,(c) as the
percentage of the total time that the CPU performs al service, so
that

T a l k) = ~

Here c, referring to the cth customer, is a positive integer. The
percentage is obtained by multiplying by 100 the quotient of the
total amount of time spent by the CPU performing al service [A , , (tc)]
during the time interval and the total time t,.

A a , (t c) x 100
t c

Definitions of the other random variables representing the times
that the cPU performs a2, a8, PI, and p3 services follow corre-
spondingly:

Table 3 shows the results of the simulation by giving estimates of
expected values of the quantities just defined as a function of the

124 SHEDLER AND YANG IBM SYST J

Table 3 Estimates of expected values -

A S

0.50

1 .OO

2.00

-

-

C

50
250
500

lo00

50
250
500

lo00

50
250
500

lo00
-

Overhead

0.952
0.936
0.934
0.929

1.649
1.631
1.626
1.618

1.997
1.931
1.923
1.918

__

~

-

4.758
4.681
4.669
4.647

9.244
8.153
8.130
8.091

9.985
9.656
9.617
9.592

__

__

-

-1

-I-

! -

0.941
0.934
0.933
0.929

1 .609
1.623
1.622
1.616

1.919
1.916
1.916
1.915

~

~

0.927
0.930
0.931
0.928

1.576
1.616
1.618
1.614

1.879
1.909
1.912
1.913

Table 4 Average queue lengths and waiting times

AP C

1 50

I-
50

1.00 1
50

2.00 ;;
lo00

Totnl Tu&)

7.573 92.186
7.482 92.314
7.466 92.286
7.434 92.312

13.077 80.386
13.023 80.481
12.996 80.367
12.940 80.358

15.779 49.119
15.412 47.733
15.369 47.570
15.338 47.635

CPU
idle

100"TCPU(~)

0.241
0.204
0.248
0.254

6.537
6.494
6.637
6.702

35.102
36.855
37.061
37.027

L C P d C)

2.357
2.367
2.366
2.365

1.383
1.329
1.321
1.328

0.265
0.191
0.183
0.185

W,P,(C) LDTIdC)

4.879 0.168
5.037 0.156
5.057 0.158
5.085 0.159

1.670 0.872
1.626 0.904
1.623 0.912
1 .640 0.909

0.265 2.130
9.197 2.212
0.190 2.221
0.193 2.218

WDT&

0.330
0.328
0.336
0.342

-
1.044
1.107
1.122
1.122

2.180
2.301
2.315
2.315

customer ordinal number c and the rate parameter X, of the exponen-
tially distributed a2 service times. The level of multiprogramming is
4, and the average duration of an as service is 0.10. The other
parameter values are the same as those used in the simulation results
reported in the previous section. These parameter values apply to
results shown in Tables 3 through 6 .

Estimates of expected values obtained by simulating several quanti-
ties of interest in connection with queuing delays in the model are
given in Table 4. These quantities-average waiting time in the

DTU DTU
busy idle

TDTU(c) loo-TDTU(c)

46.296 53.704
46.563 53.447
46.570 53.430
46.417 53.583

79.135 20.865
80.893 19.107
80.979 19.021
80.760 19.240

94.185 5.815
95.475 4.525
95.621 4.379
95.658 4.342

NO. 2 . 1971 PAGING SYSTEM PERFORMANCE 125

CPU queue (W,,,) and in the DTU queue (WDTU), and average
length of CPU queue (Lcpu) and the DTU queue (LDT,)-are defined
as follows: Let c be a positive integer representing the customer
ordinal number. Then

~ c P u (c) = - [t , (j) - WI

and

1 "
c i-1

l C
WIITtJ(c) = [t;O') - t : (d l

1 = 1

where &(j) is the epoch at which the j th customer joins the CPU
queue, and t $ (j) is the epoch at which the j th customer joins the
DTU queue. Similarly for the CPU queue, t,(j) is the epoch at which
the j th customer begins his al , service and t;(j) is the epoch at
which the jth customer begins his P1 service.

For m 2 1, let { t m) be the sequence of epochs (such that ti < ti + 1)
at which changes in the length of the CPU queue occur. Similarly,
{ tA] is the sequence of epochs (wherein t i < t;+l) at which changes
in the DTU queue length occur. Finally, let Zk be the length of the
CPU queue during the interval (ti, t i + l) , and let ZL represent the DTU
queue length during the interval (t : , t $+ l) . Using this notation, we
define average CPU and DTU queue lengths as the following random
variables:

k

l i (t i , l - ti)
i = l

LCPU(C) =

and

tk+ 1

k'

W + l - 0
LDTU(C) = f = '

t k + 1

Here, t k + l is the epoch at which the c + 1st customer begins his
a1 service, and t:+l is the epoch at which the c + 1st customer
begins his p1 service.

Table 4 gives estimates of the expected values of the four quantities
just defined as a function of c and the rate parameter X, of the
exponentially distributed cy2 service time. Again, the other parameter
values have been defined earlier in this paper.

An essential assumption of the analysis given in Reference 2 requires
that the probability distribution of a, service be exponential. An
indication of the sensitivity of the response variables to this assump-
tion is provided by the simulation results given in Tables 5 and 6.
Here estimates of CPU utilization and DTU utilization are given as
functions of c for six different a, service distributions. For k = 2

Table 5 CPU utilization for several 012 service time distributions

l l
Erlang-2 Constant

100. 000
1oo.Ooo
100.000
100.o00

l o o . 000
100.000
100.000
100.000

66.303
64.007
63,728
63.569

Erlang-3

100.000
loo. 000
100.000
100.000

98.778
98.775
98.714
98.690

65.464
63.497
63.411
63.285

x2 c Exponential

50 99.759
250 99.796
500 99.752

1000 99.746

50 93.463
250 93.504
500 93.363

1000 93.298

50 64.898
250 63.145
500 62.939

1000 63.121

0.50

2.00

97.747
98.018
98.008
97.993

99.983
99.986
99.974
99.977

99.999
99.993
99.996
99.995

97.440
97.416
97.342
97.257

84.327
84.049
83.941
84.163

58.622
57.800
57.648
58.018

98.208
98.300
98.202
98.158

66.096
63.730
63.433
63.263

-i 65.231
63.364
63.301
63.286

Table 6 DTU utilization for several 01.' service time distributions

F,,(x) = 1 - ~

1
(1 + XZXY

49.804
48.003
47.906
47.017

76.915
75.917
75.898
74.895

90.485
90.655
90.767
90.259

Erlang- Constant Exponential Erlang-2 Uniform

45.443
46.123
46.217
46.265

82.259
84.242
84.451
84.557

x2

0.50

C

50
250
500

lo00

"

46.296
46.563
46.570
46.417

79.135
80.893
80.979
80.760

"

45.380
46.122
46.218
46.266

84.514
85.878
86.073
86.170

46.311
46.597
46.487
46.405

82.685
84.202
84.111
83.977

-

46.124
46.490
46.410
46.419

83.613
85.222
85.179
85.251

1

50
250
500

lo00
1 .OO

50
250
500

lo00

94.670
95.707
95.859
95.941

94.721
95.880
96.038
96.117

94.449
95.468
95.600
95.667

94.185 94.599
95.475 95.673
95.621 95.878
95.658 95.908

2.00

the intervals between k events in a completely random series. In
addition, the constant distribution and uniform distribution, as
well as a long-tailed distribution specified by

are considered. Both CPU utilization and DTU utilization are
relatively insensitive (i.e., less than ten percent) to all the observed
distributions, with the exception of the long-tailed distribution
where somewhat greater differences are observed.

NO. 2 * 1971 PAGING SYSTEM PERFORMANCE 127

Concluding remarks

This paper compares three simulation methods with straightforward
sampling to study the efficiency of these methods in estimating the
performance of a demand-paging system model. Measures of
system overhead, queuing delays, and transient response of the
modeled system are related to parameters describing the processing
demands of the programs load. Our results for this specific system
model suggest that variance reduction from straightforward sampling
techniques is obtainable by the method of antithetic variables.
However, one should not necessarily expect a similar gain for all
response variables in a model. With regard to variance reduction,
additional gains may be obtainable by a combination of stratification
and antithetics.

CITED REFERENCES

1. D. P. Gaver, “Statistical methods for improving simulation efficiency,”
Third Conference of Applications of Simulation December 8-10, 1969,
Los Angeles, California, 38-46 (December 1969).

2. P. A. W. Lewis and G. S . Shedler, “A cyclic queue model of system
overhead in multiprogrammed computing systems,” Journal ACM 18,
No. 2 (April 1971).

3. B. Randell and C. J. Kuehner, “Dynamic storage allocation systems,”
Communications of the Association for Computing Machinery 11, No.
5,297-305 (1968).

4. C . J. Kuehner and B. Randell, “Demand paging in perspective,” AFZPS
Conference Proceedings Fall Joint Computer Conference, 33, 101 1-1018
(1968).

5. P. A. W. Lewis, A. S. Goodman, and J. M. Miller, “A pseudo-random
number generator for the System/360,” ISM Systems Journal 8, No. 2,
136-146 (1969).

6. E. S . Page, “On Monte Carlo methods in congestion problems: 11,”
Operations Research 13, No. 2, 300-305 (March-April).

7. J. Hamrnersley and D. Handscomb, Monte Carlo Methods, Methuen and
Co., Ltd., London (1964).

