Explored by simulation is the performance of a probabilistic model
of a multiprogrammed single-processor computing system operating
under demand paging.

Results of experiments on statistical methods for improving the
efficiency of the simulation are presented.

Estimates of the response variables in the simulation are reported
for a variety of conditions of system overhead, queuing delays, and
transient response. Sensitivity of these factors to the assumptions
of the model are discussed.

Simulation of a model of paging system performance
by G. S. Shedler and S. C. Yang

Many problems that arise in operating systems lead rather naturally
to the study of queue networks. The models formulated, however,
are frequently of greater complexity than can be handled by existing
mathematical techniques. Queue network simulation by straight-
forward sampling is typically adopted, and often requires long simula-~
tion studies to adequately represent the behavior of queuing systems.
It is advantageous, therefore, to investigate alternatives to straight-
forward sampling. Gaver' has proposed several such alternatives,
Their value is suggested by data derived from a simple (though
mathematically difficult) queuing situation.

In this paper, we apply Gaver’s methods to simulating the more
complex queuing model of a paging machine previously described by
Lewis and Shedler.” Our approach compares three methods of
simulation with straightforward sampling and then estimates the
sensitivity of the system response variables to the assumptions
of the model. In our discussion, we attempt to go beyond a description
of the experiment by illustrating a methodology for the simulation
of probabilistic models.

The computer system in our model is a multiprogrammed, single
processor operating under demand paging. Overhead functions of
the Central Processing Unit (CPU) such as construction and execu-
tion of channel control programs, execution of replacement algo-
rithms, and queue management are represented explicitly. Similarly,

No. 2 + 1971 PAGING SYSTEM PERFORMANCE

other system notions such as a channel-complete interruption and
a postponable interruption are also represented explicitly. Although
expressions for the long-run channel idle time, CPU idle time, and
CPU overhead time have been obtained by Lewis and Shedler,” the
transient or short-term response of the system is not easily charac-
terized mathematically. Further, it is difficult to assess mathemati-
cally the sensitivity of the analytic results to distributional assump-
tions. Accordingly, a simulation of the model addressed to these
matters is desirable. Such a simulation study as discussed in this
paper, also provides a quantitative assessment, not obtained in
Reference 2, of the queuing delays in the system.

Structure of the model

The computer system with which this paper is concerned is a single
processor system with two-level storage, multiprogrammed at a
fixed level (i.e., with a constant number of problem programs), and
operated in a demand paging environment. Such systems are
described in References 3 and 4. The following brief discussion
gives the background necessary for an understanding of the model
evaluated in our discussion.

In a paging system, all information that is explicitly addressable
by the Central Processing Unit (CPU) is divided into units of equal
size called pages. Main storage (or the “execution store’) is similarly
divided into page-size sections called page frames. In such machines,
it is possible to execute a program by using only a few page frames
of main storage. When the page containing the first executable
instruction has been loaded into a page frame, execution begins
and continues until information is required that cannot be found
in main storage. The system fetches the page containing the missing
information, and may overwrite a page frame in main storage.
Thus, under this procedure, called demand paging, information is
brought into main storage only as a result of an attempt to use
information not currently stored there. An instance of demand for
a page that is not in main storage is termed a page exception. When
executing large programs, or operating in a multiprogramming
mode in which main storage is shared among several programs,
main storage is frequently filled when another page has to be
fetched from auxiliary storage. Consequently, a choice must be
made as to which page frame in main storage is to be overwritten,
The rule governing this choice is called the replacement algorithm.
The control program must be capable of saving the content of the
page frame chosen to be overwritten before the overwriting is
performed.

The essential components of the hardware configuration that we
discuss in this paper and show in Figure 1 are the following: main

storage containing S page frames, a Channel Control Unit (CCU),

SHEDLER AND YANG IBM SYST J

Figure 1 Model system hardware configuration

CENTRAL
PROCESSING
UNIT

SYSTEMS CHANNEL AUXILIARY
PROGRAMS it STORAGE

DATA TRANSFER UNIT

MAIN STORAGE
(S PAGES)
PROBLEM
PROGRAMS
(S' PAGES)

and an auxiliary storage device. We assume that N (where N > 2)
problem programs P;, P;, --- , Py are being run in the system.
Thus N is the level of multiprogramming. Part of main storage is
used as the residence of system (control) programs. Of the remaining
S’ page frames of main storage, s, page frames are allocated to
problem program P;. After counting the control programs, we
assume that all the remaining page frames are allotted among the
problem page frames, that is,

N
2 s=5
i=1

If /; is the number of pages in problem program P., the case of

interest to us is the one wherein 1 < s, < [; for1 </ < N.

Under the multiprogramming assumption, there is more than one
program resident in main storage, thereby giving rise to contention
for processing resources. Hence a conceptual queue is formed for
processing services to be provided by the CPU. Whenever a
program that is receiving processing service from the CPU references
a page that is not in main storage, a request for data transfer service
is made by the CPU to a Channel Control Unit (CCU) to move the
referenced page from auxiliary storage to main storage so as to be
available for processing. Having initiated this request, the CPU is
free to service the next available program. A data transfer service
consists of activity of a ccuU and an input/output device (say a drum
or a disk).

Since we have assumed multiprogramming, there can be more than
one request waiting for data transfer service. Thus a second con-
ceptual queue is formed for data transfer services to be provided
by a Data Transfer Unit (DTU). As soon as a referenced page is
moved from auxiliary storage to main storage, the requesting

No. 2 ¢+ 1971 PAGING SYSTEM PERFORMANCE

Figure 2 Schematic of system overhead model

a-STAGE
QUEUE

\ WAITING STATION

program is again logically available for processing. It is assumed
that the CPU can be operated concurrently with the DTU. Thus, in
the multiprogramming mode, the CPU can process one program
while the DTU is processing a page request for another program.

The foregoing discussion has made no mention of system overhead:
CPU processing to switch from one problem program to another
to construct and execute appropriate channel programs, and such
other activities as queue management and execution of the replace-
ment algorithm. In the model with which this paper is concerned,
system overhead functions are represented explicitly. The results of
the analysis presented in Reference 2 provide a quantitative assess-
ment of the effects of system overhead in terms of parameters that
describe CPU overhead functions and the processing requirements
and paging characteristics of the program load.

A schematic representation of the system overhead model is shown
in Figure 2. Basically, the model consists of two sequential stages,
the a-stage and the -stage, joined in a loop. The system serves a
constant number of N problem programs P,, P,, --- , Py, where
N > 2. Each program goes through both stages sequentially and
returns to the first stage in a continuously repeated process. Within
the «-stage, a program receives in order each of three services
a;, ay, and ag. Similarly, within the $-stage, a program receives the
three ordered services B;, B, and B;. The assumption that N is
constant is an approximation justified by the usual practice of
operating such a system in a saturated mode.

Our interpretation of the six services, a;, as, a3, 81, B2, and B;, in a
demand paging system is as follows. Problem program processing
corresponds to a, service, and data transfer service (paging)
corresponds to S, service. The remaining services «;, as, 81, and 8,
are interpreted as system overhead functions. We think of o
service as the picking up of the next program for processing from
the a-stage queue and restoring the machine state for the program.
Associated with a3 are the following services: saving the machine
state of the program that is relinquishing the CPU, executing the
replacement algorithm, constructing the channel control program
for the required page, and placing an entry onto the paging (8-stage)

SHEDLER AND YANG IBM SYST J

queue. The interpretation of g, is the picking up of the next page
request and starting execution of the channel control program. The
function of placing a new entry on the CPU (a-stage) queue is
associated with 8, service and terminating the 1/0 operation.

Under this interpretation, the major overhead activity is represented
in the «; service. Note that all six services are provided by two
servers, a single CPU and a single DTU; a,, a,, as, 81, and B3, services
are provided only by the CPU. A 8, service can be provided only by
the DTU. It is assumed that the CPU and the DTU can provide
service simultaneously, subject to the restriction that no 8, or s
service can be rendered by the CPU while the DTU is rendering a 3,
service. Assume further that after receiving oy service, a program
moves instantaneously from the «; service station to the tail of the
B-stage queue, and after receiving the 8, service, the program moves
instantaneously from the 8, service station to the tail of the a-stage
queue.

The single CPU renders «;, a,, @3, B, and B; services to the N
programs in the system. Having begun to render an «;, as, 8, or S;
service to one program, the CPU completes that service without
interruption. Interruption is possible for an «, service. An a,
service is interrupted at the epoch at which a 3, service is completed
by the DTU, and the «, service continues at the point of service
where the interruption occurred. The B,-complete interruption of
an a, service is thus called pre-emptive resume interruption.

At an epoch of completion of an «y, a,, a;, 81, or 8; service and at
an epoch of interruption of an a, service (i.e., completion of a 3,
service), the CPU chooses the next service according to the following
priority rule:

1. If a program is waiting for 3, service, begin that service.
2. Otherwise, if a program is waiting for $8, service, begin that
service—provided no DTU 8, is in progress.
. Otherwise, if the last o service was a completed «, service,
begin an «;.
. If the last « service was an interrupted «,, resume the a,.
. If the last « service was an «,, begin an «,.
. If the last « service was an a3, and the a-stage queue is not empty,
begin an «;.

If no claim is made on the CPU according to the priority rule, the
CPU is assumed to remain idle until the completion of the next 3,
service, at which time the priority rule is invoked. We assume that
both the queue in the a-stage and the queue in the 3-stage are
served under a first-in, first-out (FIFO) queuing discipline.

Since no interruption of an «, or «; service can occur, a program
completing a 8, service during an «, or o, service to another program

No. 2 + 1971 PAGING SYSTEM PERFORMANCE

CPU
priority
rule

distributional
assumptions

must wait in the g-stage queue until the completion of that service
before receiving its 3; service. Similarly, a program whose «, service
is interrupted by a 3, completion must wait in the a-stage queue
until a 3 service has been rendered before its a, service is resumed.
In fact, if any program is in the §-stage queue, the o, service is not
resumed until 8, service by the DTU begins again. These priority
rules are based on the tacit assumption that the bottleneck in a
multiprogrammed system is in fetching pages from auxiliary storage,
which is generally true in today’s systems.

The system overhead model has been previously analyzed under
the following distributional assumptions, which we use in our
simulation studies:

Service times at the six service stations are independent of one
another.

Successive «, and «; service times are independent and identically
distributed random variables 4, and A4, with arbitrary distribu-
tions F, () and F, (1), e.8.,

F. () = prob{d, <t}

Fori = 1,2, and 3, the successive 3, service times are independent
and identically distributed random variables B, with arbitrary dis-
tributions Fj (1).

The successive «, service times are independent and identically
distributed random variables 4, with exponential distribution
having rate parameter \,, i.c.,

F.(f) = probiA, <t} =1 —e M fort>0

The model is analyzed by concentrating on particular epochs at
which changes occur in the state of the system as defined in Refer-
ence 2. These changes in state are generated by a one-step Markov
chain, and the times between changes (given the initial and final
states) are independent of the previous history of the process.
Such a stochastic process is termed a semi-Markov process.

The exponential distributional assumption for the «, service time is
essential for the analysis. An assessment of the sensitivity of certain
response variables to this assumption is a result of the present
simulation study, and is discussed later in this paper.

Some further remarks about the assumptions concerning «, service
times are in order. We have assumed that each of the programs
P., P,, --- , Py is constrained to run in storage that is smaller than
its length (i.e., for all 7, where 5, < /;). Under the demand paging
assumption, a page is moved from the drum to main storage only
when needed and when not in main storage. Whenever P, references
a missing page while the portion of main storage allocated to P, is
filled to its capacity, a page in s, is replaced by the newly referenced

SHEDLER AND YANG IBM SYST J

page, in accordance with the replacement algorithm. If the page
to be replaced can only be one of the s, pages in main storage
belonging to program P, the replacement algorithm is said to
operate locally. If the replacement algorithm is applied to the
entire S” area of the main storage, it is said to operate globally. We
consider an execution interval of a program to be a time interval
during which the CPU can continue to process the program without
referencing a page that is not in main storage. Thus program P,,
under a replacement algorithm that operates locally in a region of
size s,, gives rise to a sequence of execution intervals independently
of the other programs. The length of an execution interval of
program P, is independent of the length of an execution interval
of program P; for j # i. Under a replacement algorithm that
operates locally, however, successive execution intervals of a single
program might well not be statistically independent. We assume,
nevertheless, that the combined sequence of execution intervals of
the set of NV programs that comprise the program load is such that
successive execution intervals are independent.

Further, for the given program load, under a given memory
partition «(s,, --- , s,) and a specified replacement algorithm that
operates locally, we assume that successive execution intervals are
all exponentially distributed. Although this exponential distribution
is essential for the analysis given in Reference 2, limited experimental
evidence suggests that it is not an unreasonable assumption. It
should be emphasized that the parameter of the exponential dis-
tribution is a function of the sizes s,, which comprise the storage
partition .

The result of the analysis given in Reference 2 is the determination
of the long-run expected fraction of time that each of the six services
is rendered, and hence the long-run expected fraction of time that
each of the two servers is busy. From this, the effectiveness of the
multiprogramming can be assessed.

Simulation methods

In multiprogrammed computer systems of the type considered in
this paper, certain response variables are of particular interest. Four
such response variables are: (1) the fraction of time spent by the
CPU doing problem program processing (as opposed to processing
associated with overhead functions or being idle), (2) fraction of
time the DTU is busy, (3) lengths of queues, and (4) waiting times
in queues. These response variables are, in turn, influenced by such
other variables as level of multiprogramming (i.e., constant number
of problem programs), nature of the program load, characteristics
of the physical devices, control strategy, and the like. In general, a
response variable W is influenced by a set of system input variables,
say X,, X,, X, - -+ , that we denote collectively by the vector X.

No.2 * 1971 PAGING SYSTEM PERFORMANCE

straightforward
sampling

antithetic
variables

The probabilistic model provides a way of relating W to the collec-
tion of random variables X, and gives rise to a known but very
complicated function.

W = {X) 1)

We seek information about such characteristics of W as the expected
value E[W] and the probability distribution of W. Simulation
methods have been used for studying the distribution of W in
which one observes sample values of that variable. Following
Gaver, we now briefly outline the four simulation methods with
which the paper is concerned.

Straightforward sampling is the basic technique that is used as a
standard of comparison for the other methods discussed in this
paper. An observation of W is computed from Equation 1 by using
a sample value of X, To find a sample value of X = (X3, X;, ---),
choose a vector of pseudo-random numbers that are uniformly
distributed over the interval (0, 1). Then convert these numbers to
realizations or samples of X;, X,, :-+ , perhaps by means of the
probability integral transformation

X = Fx'(R)

where Fy is the probability distribution function of X and R is a
random number uniformly distributed on (0, 1). A description and
evaluation is given in Reference 5 of the pseudo-random number
generator used in the experiments reported in this paper. In straight-
forward sampling, n independent realizations of W, denoted by
W,, W,, -+, W,, are obtained and averaged to give ¥, an unbiased
estimator of E[W], as follows:

n i1

The variance of the estimator W = 1/n Var [W]. Thus it is clear
that the estimate can be brought closer to E[W] by increasing the
number of independent realizations #. The investigation of alterna-
tives to straightforward sampling is of interest because, in general,
rather long simulation studies are required to adequately represent
the behavior of queuing systems.

One alternative is that of antithetic variables, proposed for queuing
problems by Page® and further discussed in Reference 7. The anti-
thetic idea is to create companion realizations W{"” and W;*
resulting from antithetic samples X! and X!, which in turn are
the result of R and 1 — R. The two antithetic realizations W;" and
W are averaged to obtain the estimate W,. The average W, of
W., W,, --- , W, is unbiased and is taken as the antithetic estimator
of E[W1]in the expression

n 3 (1) (2)
1 S w, = % 3 Wi + Wi

n 7= i=1 2

SHEDLER AND YANG IBM. SYST J

In the method known as stratification discussed in Reference 1, m
(for m > 2) companion realizations W, W, --. | W{™ are
averaged to form a single estimate W,. To obtain the W* | the unit
interval is divided into the following m equal parts:

—1 _
r1=<0’1;1')"."rk=<£c—7_,%>""’rm= m 1’1)

Using one random number that is uniformly distributed over
(0, 1), an interval r; is chosen. Within 7, a value R is chosen by
means of a second random number that is uniformly distributed
over the interval (0, 1/m). Obtain the sample X'’ associated with
the first of the m companion realizations from R‘*’ by using the
appropriate probability integral transformation. For the second of
the companion realizations, i.e., the sample X*’, use R**’, which is
obtained by adding 1/m to R, and possibly subtracting 1 to
place R in the unit interval. Subsequent additions of 1/m and
possible subtractions of 1 yield R, .-~ | R™, from which
X®, ..., X™ are obtained. This stratification procedure is
carried out for each variable in X. Note that two independent
random numbers are used to generate m samples of an input
variable, one for each of the m companion realizations. The un-
biased stratification estimator #, of E[W1]is given by the equation

n n (1) . (m)
Po=g 3 W= 3 e)
n = n =i

m

We wish to point out that stratification is an extension of the anti-
thetic idea in that it has the tendency to provide an equal distribu-
tion of X across companion realizations. If the values W,

w®, ..., W™ are sufficiently negatively correlated, the final
estimate obtained from Equation 2 tends to have a variance smaller
than that obtained from mn independent realizations. The experi-

ments reported in this paper use the value m = 3.

The fourth method studied is a combination of antithetic variables
and stratification. By treating the second random number as uni-
formly distributed over (0, 1/m) antithetically inside the interval
(0, 1/m), 2m companion realizations can be generated, and the
final estimate W, , is obtained by averaging.

Results of our experiments on the four estimating procedures are
given in Tables 1 and 2. We consider two instances of a response
variable W: CPU utilization, and DTU utilization. In both cases,
the system input variable X is the exponentially distributed «,
service time. For positive integral ¢, CPU utilization Tcpy(c) is
defined as

Topule) = —

Here A(z,) is the total amount of time that the CPU renders service
during the time interval (0, 7.), and ¢, is the epoch of simulated

No. 2 - 1971 PAGING SYSTEM PERFORMANCE

stratification

antithetic
variables
and
stratification

Table 1 Straightforward and antithetic-variable estimates of CPU and DTU utilization

Straightforward Antithetic

Average
Range of correlation
Variance Variance correlation coefficient coefficient

>
©

0.1935 . 0.0572 —0.8528 —0.4966 —0.7042
0.2514 . 0.0266 —0.9363 —0.7365 -0.8263
0.0810 . 0.0233 —0.8439 —9.5603 —0.7091

—— N

0.0886 . 0.0353 —0.8672 —0.3930 —0.7119
0.1226 . 0.0211 —0.9254 —0.6697 —0.8199
0.0285 . 0.0232 —0.8199 0.5930 —0.7276

== N

0.1573 . 0.0195 —0.8722 —0.4958 —0.7300
0.0899 . 0.0237 —0.9018 —0.7225 —0.8240
0.0318 . 0.0139 —0.8629 —0.5993 —-0.7561

—_— N

0.0255 . 0.0301 —0.5469 —0.0075 -0.2517
0.0783 . 0.1618 —0.4943 +0.1410 —0.2063
0.3776 . 0.1503 —0.6859 —0.2400 —0.4139

848|228 |383|388|838| 848

0.0132 . 0.0175 —0.6913 40.0175 ~0.2093
0.0686 . 0.0701 —0.6002 +0.1344 —0.2228
0.0713 . 0.1076 —0.6824 —0.0700 —0.3556

el)

0.0114 . 0.0104 —0.4222 +0.1960 —0.2012
0.0525 . 0.039%4 —0.5470 —0.0435 —0.2480
0.0745 0.0764 —0.5648 —0.2016 —0.3991

— N

time at which the ¢ 4+ 1st customer begins his «, service. Similarly,
the DTU utilization Thro(c) is defined as

B(@.)

Z

Tprule) = X 100
where B(t,) is the total amount of time that the DTU renders service
during the time interval (0, ¢.).

The results shown in Tables 1 and 2 are for the case in which the
level of multiprogramming is 3. The a;, a,, and a; service times are
exponentially distributed, and the g-stage service times are constant.
Unit time is taken to be the duration of a 8, service. The average
duration of the dominant overhead service «; is 0.2, and the duration
of an average a4, 8, or 8, service is 0.02.

In each realization, all customers are in the CPU queue at time ¢ = 0.
We observed that for a given customer c, the result of terminating
each realization when the next customer (¢ + 1) is about to start
his «, service varies only slightly from defining a time interval
(0, ¢.) by the first realization, and terminating all subsequent
realizations at simulated time ¢..

SHEDLER AND YANG IBM SYST J

Table 2 Four methods of estimating CPU and DTU utilization

CPU utilization DTU utilization

Method Mean Variance Mean Variance

Straightforward 71.41 0.1935 91.26 0.0255
Antithetics 71.56 0.0572 91.12 0.0301
Stratification 71.57 0.0830 91.00 0.0267
Stratification

& antithetics 71.55 0.0135 91.09 0.0193

Straightforward 81.87 0.2514 86.12 0.0783
Antithetics 81.87 0.0266 85.99 0.1618
Stratification 81.91 0.0802 85.91 0.0911
Stratification

& antithetics 81.93 0.0097 86.07 0.0206

Straightforward 92.79 0.0810 72.44 0.3776
Antithetics 92.78 0.0233 72.26 0.1503
Stratification 0.0280 72.38 0.1511
Stratification

& antithetics 0.0239 72.14 0.0509

In Table 1, we display results of a comparative assessment of
straightforward sampling and the antithetic estimating procedure.
Here the variances are estimates of Var { W,}, each obtained from a
set of k = 20 independent observations of #,, and the means are
obtained from k observations. Each of the m observations of #, is

based on n = 30 pairs of companion realizations. Also displayed is
the mean correlation coefficient and its range for each of the m
observations of .. For straightforward sampling, the means and
variances displayed were obtained from k = 20 independent obser-
vations of 7, each based on n = 60 realizations. Thus the total
number of realizations used to obtain the estimates is the same for
both the straightforward and antithetic-variable methods.

We conclude from the results in Table 1 that, for CPU utilization,
the antithetic estimating procedure is useful in variance reduction,
Note, however, the lack of evidence that a similar gain is obtainable
for DTU utilization. This observation may well have to be considered
in future investigations of policies for determining whether the
antithetic procedure should be employed in the simulation of
different queuing problems. Table 2 shows some results for the
straightforward method compared with the antithetic and stratifica-
tion procedures, and the combination of stratification with anti-
thetics. For stratification (with m = 3), the given means and
variances are obtained from k = 20 independent observations of 7,
each observation being based on n = 20 sets of companion realiza-
tions. For the combination of stratification and antithetics, the
means and variances given are obtained from k£ = 20 independent

No. 2 * 1971 PAGING SYSTEM PERFORMANCE

comparative
results

observations of W, ,, each observation being based on n = 10 sets
of companion realizations.

QOur results in Tables 1 and 2 provide no evidence that stratification
is preferable to antithetics. There is evidence, however, that for
CPU utilization an additional gain over antithetics is obtainable by
the use of the combination of stratification and antithetics.

Simulation results

In this section, we define several quantities of interest in the model,
and present results of further simulation studies. In accordance with
our findings in the previous section, all simulation results are
obtained by the method of antithetic variates.

In the model, the single CPU processes problem programs (a,
service) and performs overhead functions (a,, o, B8:, 8 services).
The DTU provides paging service (3, service). Quantities of primary
interest in the model are the percentages of time that the CPU
spends rendering each of the several services that it provides (as
opposed to being idle), and the percentage of time that the DTU
renders paging service (as opposed to being idle).

Thus, for example, we define the random variable T, (c) as the
percentage of the total time that the CPU performs «; service, so
that

T,,(0) = X 100

A..(.)
te

Here ¢, referring to the cth customer, is a positive integer. The
percentage is obtained by multiplying by 100 the quotient of the
total amount of time spent by the CPU performing o, service {4, ,(¢.)]
during the time interval and the total time ¢..

Definitions of the other random variables representing the times
that the CPU performs a,, a3, B, and f; services follow corre-
spondingly:

4..(.)

¢

A.,(t.)
L

Aﬂ-(tc)
z

Ag,(t.)
t.

Ty, (c) = X 100

T, (c) X 100

T, (c) X 100

T5.(c) X 100

Table 3 shows the results of the simulation by giving estimates of
expected values of the quantities just defined as a function of the

SHEDLER AND YANG IBM SYST J

Estimates of expected valves

Overhead CPU DTU DTU
idle busy idle
To(0) Tolc) Tplo) Tglo) 100—Tepule) | Torule) | 100—Tprule)

0.952 | 4.758 | 0.941 | 0.927 . 0.241 46.296 .704
0.936 | 4.681 | 0.934 | 0.930 . 0.204 46.563 .447
0.934 | 4.669 | 0.933 | 0.931 . 0.248 46.570 .430
0.929 | 4.647 { 0.929 | 0.928 . 0.254 46.417 .583

1.649) 9.244 | 1.609 | 1.576 6.537 79.135 .865
1.631 | 8.153 .623 .616 6.494 80.893 .107
1.626 | 8.130 | 1.622 | 1.618 . 6.637 80.979 .021
1.618 | 8.091 .616 | 1.614 . 6.702 80.760 .240

1.997 | 9.985 | 1.919 | 1.879 . 35.102 94.185 .815
1.931 | 9.656 | 1.916 | 1.909 . 36.855 95.475 .525
1.923 | 9.617 | 1.916 | 1.912 . 37.061 95.621 .379
1.918 | 9.592 | 1.915 913 . 37.027 95.658 .342

Average queuve lengths and waiting times

CPU queue DTU queue

Lepylo) Wepul(e) Lprulc) Wprule)

.357 4.879 0.168 0.330
.367 5.037 0.156 0.328
.366 5.057 0.158 0.336
.365 5.085 0.159 0.342

.383 1.670 0.872 .044
.329 1.626 0.904 .107
.321 1.623 0.912 122
.328 1.640 0.909 122

.265 0.265 2.130 .180
.191 9.197 2.212 .301
.183 0.190 2.221 315
.185 0.193 2.218 .315

customer ordinal number ¢ and the rate parameter A, of the exponen-
tially distributed «, service times. The level of multiprogramming is
4, and the average duration of an «; service is 0.10. The other
parameter values are the same as those used in the simulation results
reported in the previous section. These parameter values apply to
results shown in Tables 3 through 6.

Estimates of expected values obtained by simulating several quanti-
ties of interest in connection with queuing delays in the model are
given in Table 4. These quantities—average waiting time in the

No.2 - 1971 PAGING SYSTEM PERFORMANCE

CPU queue (W¢py) and in the DTU queue (Wpqry), and average
length of CPU queue (L¢pv) and the DTU queue (Lpry)—are defined
as follows: Let ¢ be a positive integer representing the customer
ordinal number. Then

Worn(@) = ¢ 32 [10) = 1.0)]

and
1 [
Worole) = = E () — ()]

where 1,(j) is the epoch at which the jth customer joins the CPU
queue, and #(j) is the epoch at which the jth customer joins the
DTU queue. Similarly for the CPU queue, #,(j) is the epoch at which
the jth customer begins his «;, service and #/(j) is the epoch at
which the jth customer begins his 3, service.

Form > 1,let {1} be the sequence of epochs (such that z, < ¢, + 1)
at which changes in the length of the CPU queue occur. Similarly,
{t/} is the sequence of epochs (wherein ¢, < #/,,) at which changes
in the DTU queue length occur. Finally, let /; be the length of the
CPU queue during the interval (¢, #;,,), and let /; represent the DTU
queue length during the interval (¢, #/,,). Using this notation, we
define average CPU and DTU queue lengths as the following random
variables:

&
:E: L(ticn — 1)

i=1
Lopyle) = I
+1

and

i
2 Hl, — 1)

Lprylc) = \i=1

tria

Here, t,,, is the epoch at which the ¢ + 1st customer begins his
a; service, and tf,, is the epoch at which the ¢ + 1st customer
begins his 3, service.

Table 4 gives estimates of the expected values of the four quantities
just defined as a function of ¢ and the rate parameter \, of the
exponentially distributed a, service time. Again, the other parameter
values have been defined earlier in this paper.

An essential assumption of the analysis given in Reference 2 requires
that the probability distribution of «, service be exponential. An
indication of the sensitivity of the response variables to this assump-
tion is provided by the simulation results given in Tables 5 and 6.
Here estimates of CPU utilization and DTU utilization are given as
functions of ¢ for six different «, service distributions, For k = 2
and k = 3, we consider the Erlang-k distributions, which represent

SHEDLER AND YANG IBM SYST J

Table 5 CPU utilization for several as service time distributions

1

Fo=1- q o

Exponential | Erlang-2 | Erlang-3 Constant Uniform

99.759 99.999 100.000 100.000 99.983 97.747
99.796 99.993 100.000 100.000 99.986 98.018
99.752 99.996 100.000 100.000 99.974 98.008
99.746 99.995 100.000 100.000 99.977 97.993

.463 97.440 778 100.000 98.208 84.327
.504 97.416 775 100.000 98.300 84.049
.363 97.342 714 100.000 98.202 83.941
.298 97.2517 .690 100.000 98.158 84.163

64.898 65.231 65.464 66.303 66.096 58.622
63.145 63.364 63.497 64.007 63.730 57.800
62.939 63.301 63.411 63.728 63.433 57.648
63.121 63.286 63.285 63.569 63.263 58.018

Table 6 DTU utilization for several a. service time distributions

_ 1
(1 =+ NP

F, =1
Exponential | Erlang-2 | Erlang-3 | Constant | Uniform)

46.296 46.311 46.124 45.380 45.443 49.804
46.563 46.597 46.490 46.122 46.123 48.003
46.570 46.487 46.410 46.218 46.217 47.906
46.417 46.405 46.419 46.266 46.265 47.017

79.135 82.685 .613 84.514 82.259 76.915
80.893 84.202 222 85.878 84.242 75.917
80.979 84.111 .179 86.073 84.451 75.898
80.760 83.977 .251 86.170 84.557 74.895

94.185 94.599 .670 94.721 94.449 90.485
95.475 95.673 707 95.880 95.468 90.655
95.621 95.878 .859 96.038 95.600 90.767
95.658 95.908 .941 96.117 95.667 90.259

the intervals between k events in a completely random series. In
addition, the constant distribution and uniform distribution, as
well as a long-tailed distribution specified by

1
T4)

are considered. Both CPU utilization and DTU utilization are
relatively insensitive (i.e., less than ten percent) to all the observed
distributions, with the exception of the long-tailed distribution
where somewhat greater differences are observed.

FA,(.X') =1

No.2 ¢ 1971 PAGING SYSTEM PERFORMANCE

128

Concluding remarks

This paper compares three simulation methods with straightforward
sampling to study the efficiency of these methods in estimating the
performance of a demand-paging system model. Measures of
system overhead, queuing delays, and transient response of the
modeled system are related to parameters describing the processing
demands of the programs load. Our results for this specific system
model suggest that variance reduction from straightforward sampling
techniques is obtainable by the method of antithetic variables.
However, one should not necessarily expect a similar gain for all
response variables in a model. With regard to variance reduction,
additional gains may be obtainable by a combination of stratification
and antithetics.

CITED REFERENCES

1. D. P. Gaver, “Statistical methods for improving simulation efficiency,”
Third Conference of Applications of Simulation December 8-10, 1969,
Los Angeles, California, 38-46 (December 1969).

. P. A, W. Lewis and G. S. Shedler, “A cyclic queue model of system
overhead in multiprogrammed computing systems,” Journal ACM 18,
No. 2 (April 1971).

. B. Randell and C. J. Kuehner, “Dynamic storage allocation systems,”
Communications of the Association for Computing Machinery 11, No.
5,297-305 (1968).

. C. J. Kuehner and B. Randell, “Demand paging in perspective,” AFIPS
Conference Proceedings Fall Joint Computer Conference, 33, 1011-1018
(1968).

. P. AL W. Lewis, A. S. Goodman, and J. M. Miller, “A pseudo-random
number generator for the System/360,” IBM Systems Journal 8, No. 2,
136-146 (1969).

. E. S. Page, “On Monte Carlo methods in congestion problems: IL”
Operations Research 13, No. 2, 300-305 (March-April).

. J. Hammersley and D. Handscomb, Monte Carlo Methods, Methuen and
Co., Ltd., London (1964).

SHEDLER AND YANG IBM SYST J

