
Explored by simulation is the performance of  a  probabilistic model 
of a  multiprogrammed single-processor computing system operating 
under demand  paging. 

Results of experiments  on statistical methods .for improving the 
efJiciency of the simulation are presented. 

Estimates  of the response variables in the simulation are reported 
for a  variety of conditions of  system overhead, queuing delays, and 
transient response. Sensitivity of these factors to  the  assumptions 
of the model are discussed. 

Simulation of a model of paging  system  performance 
by G. S. Shedler and S. C. Yang 

Many  problems that arise in operating systems lead rather  naturally 
to the  study of queue  networks. The models formulated, however, 
are frequently of greater complexity than can be handled by existing 
mathematical  techniques.  Queue  network  simulation by straight- 
forward sampling is typically adopted,  and often requires long  simula- 
tion  studies to adequately represent the behavior of queuing systems. 
It is advantageous,  therefore, to investigate alternatives to straight- 
forward sampling. Gaver'  has  proposed several such  alternatives. 
Their value is suggested by data derived from  a simple (though 
mathematically difficult) queuing  situation. 

In this  paper, we apply Gaver's methods to simulating  the  more 
complex queuing model of a paging machine previously described by 
Lewis and Shedler.2 Our  approach compares  three  methods of 
simulation with straightforward  sampling  and  then  estimates the 
sensitivity of the system response variables to the  assumptions 
of the model. In  our discussion, we attempt  to go beyond adescription 
of the experiment by illustrating  a  methodology  for  the  simulation 
of probabilistic models. 

The  computer system in our model is a  multiprogrammed, single 
processor operating  under  demand paging. Overhead  functions of 
the  Central Processing Unit (Cpu) such as construction  and execu- 
tion of channel  control  programs, execution of replacement algo- 
rithms,  and  queue  management  are represented explicitly. Similarly, 
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expressions for  the  long-run  channel idle time, CPU idle time, and 
CPU overhead time have been obtained by Lewis and Shedler,’ the 
transient or short-term  response of the system is not easily charac- 
terized mathematically. Further,  it is difficult to assess mathemati- 
cally the sensitivity of the  analytic results to distributional  assump- 
tions. Accordingly, a  simulation of the  model addressed to these 
matters is desirable. Such a  simulation  study as discussed in  this 
paper,  also  provides  a  quantitative assessment, not  obtained in 
Reference 2, of the  queuing delays in  the system. 

Structure of the model 

The computer system with which this  paper is concerned is a single 
processor system with two-level storage,  multiprogrammed at a 
fixed  level (i.e., with a  constant  number of problem  programs), and 
operated in a  demand paging environment. Such systems are 
described in References 3 and 4. The following brief discussion 
gives the  background necessary for an understanding of the  model 
evaluated  in our discussion. 

In a paging system, all  information that is explicitly addressable 
by the  Central Processing Unit (mu) is divided into  units of equal 
size called pages. Main  storage  (or  the “execution store”) is similarly 
divided into page-size sections called pagefiames. In such machines, 
it is possible to  execute a  program  by using only a few page  frames 
of main  storage.  When  the page containing the first executable 
instruction  has been loaded into a page frame, execution begins 
and continues  until  information is required that  cannot be found 
in main  storage.  The system fetches the  page  containing  the missing 
information,  and may overwrite a page frame in main  storage. 
Thus,  under  this  procedure, called demand  paging, information is 
brought  into main  storage only as a result of an  attempt  to use 
information  not  currently  stored there. An instance of demand  for 
a page that is not in main  storage is termed  a page  exception. When 
executing large programs, or operating in a  multiprogramming 
mode in which main  storage is shared  among several programs, 
main  storage is frequently filled  when another page has  to be 
fetched from auxiliary storage.  Consequently,  a choice must be 
made  as  to which page frame  in  main  storage is to be  overwritten. 
The rule governing this choice is called the replacement  algorithm. 
The  control  program  must be capable of saving the  content of the 
page frame  chosen to be  overwritten  before the overwriting is 
performed. 

The essential components of the hardware  configuration that we 
discuss in this  paper  and show in Figure  1  are  the following: main 
storage  containing S page frames, a Channel  Control Unit (CCU), 
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queue. The  interpretation of is the picking up of the next page 
request and  starting execution of the  channel  control  program. The 
function of placing a new entry  on  the CPU (a-stage)  queue is 
associated with p 3  service and  terminating  the I/o operation. 

Under  this  interpretation,  the  major overhead activity is represented 
in the a3 service. Note  that all six services are provided by two 
servers, a single CPU and  a single DTU; al, aZ, a3, Dl, and p3 services 
are provided only by the CPU. A p z  service can be provided only by 
the DTU. It is assumed that  the CPU and  the DTU can provide 
service simultaneously, subject to the restriction that  no p1 or p3 
service can be rendered by the CPU while the DTU is rendering  a pZ 
service. Assume further that after receiving a3 service, a  program 
moves instantaneously  from  the a3 service station to the  tail of the 
p-stage queue,  and  after receiving the p3 service, the  program moves 
instantaneously  from  the p 3  service station to the  tail of the  a-stage 
queue. 

The single CPU renders al ,  az, a3, pl, and p 3  services to the N 
programs in the system. Having begun to render an al ,  a3, pl, or p3 
service to  one  program,  the CPU completes that service without 
interruption.  Interruption  is possible for an az service. An a2 
service is interrupted at the epoch at which a p2 service is completed 
by the DTU, and  the az service continues at the  point of service 
where the  interruption  occurred. The pz-complete interruption of 
an aZ service is thus called pre-emptive resume interruption. 

At an epoch of completion of an al ,  az ,  a3, PI, or p3 service and  at 
an epoch of interruption of an az service (i.e., completion of a p2 
service), the CPU chooses the next service according to the following 
priority rule: 

1. If a  program is waiting for p 3  service, begin that service. 
2. Otherwise, if a  program is waiting for P1 service, begin that 

3. Otherwise, if the  last a service was a completed az service, 

4 .  If the  last a service was an interrupted az,  resume the a2. 
5.  If the  last a service was an a1, begin an aZ. 
6 .  If the  last a service was an a3, and  the  a-stage  queue is not  empty, 

service-provided no DTU pz is in progress. 

begin an a3. 

begin an al .  

If no claim is made on the CPU according to the priority rule, the 
CPU is assumed to remain idle until  the  completion of the next pz 
service, at which time  the priority rule is invoked. We assume that 
both  the queue in the a-stage  and  the  queue in the P-stage are 
served under  a first-in, first-out (FIFO) queuing discipline. 

Since no interruption of an a ,  or a3 service can occur, a  program 
completing  a p z  service during an a1 or a3 service to another  program 
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must wait in the p-stage queue  until  the  completion of that service 
before receiving its p3 service. Similarly, a  program whose a2 service 
is interrupted by a pz completion  must wait in the  a-stage  queue 
until  a p service has been rendered before its a2 service  is resumed. 
In fact, if any  program is in the p-stage queue,  the az service is not 
resumed until pz service by the DTU begins again.  These  priority 
rules are based on the tacit  assumption that  the bottleneck in a 
multiprogrammed system is in fetching pages from auxiliary storage, 
which is generally true  in today’s systems. 

distributional The system overhead model has been previously analyzed  under 
assumptions the following distributional  assumptions, which we use in our 

simulation studies: 

Service times at the six service stations  are  independent of one 
another. 
Successive a ,  and a, service times are  independent  and identically 
distributed  random variables A ,  and A ,  with arbitrary  distribu- 
tions FA,(t)  and F,,(t), e.g., 

F A , ( t )  = prob(A, I t }  

For i = 1,2, and 3 ,  the successive fl service times  are  independent 
and identically distributed  random variables Bi  with arbitrary dis- 
tributions FB,(t). 
The successive a2 service times  are  independent and identically 
distributed  random variables A ,  with exponential  distribution 
having rate  parameter X2, i.e., 

F,%(t) = prob(A, 5 t )  = 1 - e-’’‘ for t 2 0 

The  model is analyzed by concentrating on particular  epochs at  
which changes occur in the  state of the system as defined in Refer- 
ence 2. These changes in state  are generated by a one-step Markov 
chain,  and  the times between changes (given the  initial  and final 
states)  are  independent of the previous history of the process. 
Such a stochastic process is termed a  semi-Markov process. 

The exponential  distributional  assumption  for  the a2 service time is 
essential for the analysis. An assessment of the sensitivity of certain 
response variables to this  assumption is a result of the present 
simulation  study,  and is discussed later in this  paper. 

Some further  remarks about  the assumptions  concerning az service 
times are in order, We have assumed that each of the  programs 

its  length (i.e., for all i, where s, < l , ) .  Under the demand paging 
assumption,  a page is moved from  the drum  to main  storage only 
when needed and when not in main  storage. Whenever Pi references 
a missing page while the  portion of main  storage  allocated to P ,  is 

PI, P2, . . . , Pw is constrained to run in storage that is smaller than 







In  the  method known as stratijication discussed in Reference 1, m 
(for m 2 2) companion realizations Wj'), Wj2), . . . , Virn) are 
averaged to form  a single estimate Wi. To obtain  the Wlk) ,  the  unit 
interval is divided into  the following m equal  parts: 

Using  one  random  number that is uniformly distributed over 
(0, l), an interval ri is chosen. Within r i ,  a value R'" is chosen by 
means of a second random  number that is uniformly distributed 
over the interval (0, l/m). Obtain the sample X"'  associated with 
the first of the m companion  realizations  from R"' by using the 
appropriate  probability integral transformation. For  the second of 
the  companion realizations, i.e., the sample X " ' ,  use R"), which is 
obtained by adding l / m  to R"',  and possibly subtracting 1 to 
place R'" in the unit interval. Subsequent additions of l/m and 
possible subtractions of 1 yield R ( 3 ) ,  . . . , R ( m ) ,  from which 

carried  out for each variable in X. Note  that two independent 
random  numbers  are used to generate m samples of an  input 
variable, one  for each of the m companion realizations. The un- 
biased stratification estimator Fa of Q W ]  is given by the  equation 

x'3', . . . , X("'  are  obtained.  This stratification procedure is 

We  wish to point out  that stratification is an extension of the  anti- 
thetic idea in  that it has  the tendency to provide an equal  distribu- 
tion of X across companion realizations. If the values FV;'), 

estimate  obtained  from  Equation 2 tends  to have a variance smaller 
than that obtained from mn independent realizations. The experi- 
ments  reported in this  paper use the value m = 3. 

wy, . . . , Wjm) are sufficiently negatively correlated,  the final 

The  fourth method studied is a  combination of antithetic variables 
and stratification. By treating the second random number as uni- 
formly distributed over (0, l/m) antithetically inside the  interval 
(0, l/m), 2m companion realizations can be generated, and  the 
final estimate Fa,= is obtained by averaging. 

Results of our experiments on  the  four estimating procedures are 
given in Tables 1 and 2. We consider two instances of a response 
variable W: CPU utilization,  and DTU utilization. In  both cases, 
the system input variable X is the exponentially distributed cy2 

service time. For positive integral c, CPU utilization Tcpu(c) is 
defined as 

Here A(t , )  is the  total  amount of time that  the CPU renders service 
during  the time interval (0, t,), and t ,  is the epoch of simulated 
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Table 1 Straightforward  and  antithetic-variable estimates of CPU and DTU utilization 

CPU 

DTU 

C 

100 

200 

X 2  

2.00 
1.50 
1.00 

2.00 
1.50 
1.00 

2.00 
1.50 
1 .OO 

2.00 
1.50 
1 .OO 

2.00 
1.50 
1 .OO 

2.00 
1.50 
1 .OO 

Straightforward 

Mean 

71.41 
81.87 
92.79 

71.00 
81.56 
92.64 

70.87 
81.43 
92.70 

91.26 
86.12 
72.44 

91.72 
86.64 
72.82 

91.96 
86.85 
72.89 
A 

Variance 

0.1935 
0.2514 
0.0810 

0.0886 
0.1226 
0.0285 

0.1573 
0.0899 
0.0318 

0.0255 
0.0783 
0.3776 

0.0132 
0.0686 
0.0713 

0.0114 
0.0525 
0.0745 

T 
-I- 

Mean 

71.56 
81.87 
92.78 

71.06 
81.61 
92.71 

70.91 
81.46 
92.66 

91.12 
85.99 
72.26 

91.65 
86.60 
72.80 

91.86 
86.81 
73.01 

Variam 

0.0572 
0.0266 
0.0233 

0.0353 
0.0211 
0.0232 

0.0195 
0.0237 
0.0139 

0.0301 
0.1618 
0.1503 

0.0175 
0.0701 
0.1076 

0.0104 
0.0394 
0.0764 

___- 

_ _ ~  

Antithetic 

Range of 
correlation  coeficient 

-0.8528 -0,4966 
-0.9363 -0.7365 
-0.8439 -9.5603 

-0.8672 -0.3930 
-0.9254 -0.6697 
-0.8199 0.5930 

-0.8722 -0.4958 
-0.9018 -0.7225 
-0.8629 -0.5993 

-0.5469 -0.0075 
-0.4943 $0.1410 
-0.6859 -0.2400 

-0.6913 +0.0175 
-0.6002 +0.1344 
-0.6824 -0.0700 

-0.4222 +0.1960 
-0.5470 -0.0435 
-0.5648 -0.2016 

Average 
correlation 
coeficient 

-0.7042 
-0.8263 
-0.7091 
~" 

-0.7119 
-0.8199 
-0.7276 ____ 
-0.7300 
-0.8240 
-0.7561 
____- 

-0.2517 
-0.2063 
-0.4139 

-0.2093 
-0.2228 
-0.3556 

-0.2012 
-0.2480 
-0.3991 

time at which the c + 1st customer begins his aI service. Similarly, 
the DTU utilization TDTI,(c) is defined as 

where B(tJ is the  total  amount of time that  the DTU renders service 
during  the time interval (0, tJ .  

The results shown in Tables 1 and 2 are  for  the case in which the 
level of multiprogramming is 3. The al, a2, and a3 service times are 
exponentially distributed,  and  the p-stage service times are constant. 
Unit time is taken to be the  duration of a p2 service. The average 
duration of the  dominant overhead service cy3 is 0.2, and  the  duration 
of an average a] ,  PI, or p3 service is 0.02. 

In each realization, all customers are in the CPU queue  at time t = 0. 
We observed that for  a given customer c, the result of terminating 
each realization when the next customer (c + 1) is about  to  start 
his a1 service varies only slightly from defining a time interval 
(0, t,) by the first realization, and terminating all subsequent 
realizations at simulated time t,. 
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Table 2 Four methods of estimating CPU and DTU utilization 

2.00 

1.50 

1 .OO 

Method 

Straightforward 
Antithetics 
Stratification 
Stratification 

& antithetics 

Straightforward 
Antithetics 
Stratification 
Stratification 

& antithetics 

Straightforward 
Antithetics 
Stratification 
Stratification 

& antithetics 

CPU utilization 

Mean Variance 

71.41 0.1935 
71.56 0.0572 
71.57 0.0830 

71.55 0.0135 

81.87 0.2514 
81.87 0.0266 
81.91 0.0802 

81.93 0.0097 

92.79 0.0810 
92.78 0.0233 
92.79 0.0280 

92.83 0.0239 

I__ 

DTU utilization 

Mean Variance 

91.26 0.0255 
91.12  0.0301 
91 .OO 0.0267 

91.09 0.0193 

86.12 0.0783 
85.99 0.1618 
85.91 0.0911 

86.07 0.0206 

72.44 0.3776 
72.26 0.1503 
72.38 0.1511 

72.14 0.0509 

- 

- 

In Table 1, we display results of a  comparative assessment of 
straightforward sampling and  the  antithetic estimating procedure. 
Here the variances are estimates of Var { Wa], each obtained  from  a 
set of k = 20 independent observations of Pa, and the  means are 
obtained  from k observations. Each of the m observations of W, is 
based on n = 30 pairs of companion realizations. Also displayed is 
the mean correlation coefficient and  its range  for each of the m 
observations of Pa. For straightforward sampling, the  means and 
variances displayed were obtained  from k = 20 independent obser- 
vations of W, each based on n = 60 realizations. Thus  the  total 
number of realizations used to  obtain  the estimates is the same for 
both the straightforward and antithetic-variable methods. 

We conclude from  the results in  Table 1 that,  for CPU utilization, 
the  antithetic estimating procedure is useful in variance reduction, 
Note, however, the lack of evidence that a similar gain is obtainable 
for DTU utilization. This observation may well have to be considered 
in future investigations of policies for determining whether the 
antithetic procedure should be employed in the simulation of 
different queuing problems. Table 2 shows some results for the 
straightforward  method  compared with the  antithetic  and stratifica- 
tion procedures, and  the  combination of stratification with anti- 
thetics. For stratification (with m = 3), the given means and 
variances are  obtained  from k = 20 independent observations of F V S ,  

each observation being based on n = 20 sets of companion realiza- 
tions. For  the combination of stratification and  antithetics, the 
means and variances given are  obtained  from k = 20 independent 

comparative 
results 
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observations of Fa,,, each observation being  based on n = 10 sets 
of companion realizations. 

Our results in Tables 1 and 2 provide no evidence that stratification 
is preferable to antithetics. There is evidence,  however, that for 
CPU utilization an additional gain  over antithetics is obtainable by 
the use  of the combination of stratification and antithetics. 

Simulation results 

In this section, we define  several quantities of interest in the model, 
and present results of further simulation studies. In accordance with 
our findings  in the previous section, all simulation results are 
obtained by the method of antithetic variates. 

In the model, the single CPU processes problem programs (az 
service) and performs overhead functions (a1, a3, pl, p.? services). 
The DTU provides paging  service (P, service). Quantities of primary 
interest in the model are the percentages of time that the CPU 
spends rendering each of the several  services that  it provides (as 
opposed to being  idle), and the percentage of time that the DTU 
renders paging  service (as opposed to being  idle). 

Thus, for example, we define the random variable T,,(c) as  the 
percentage of the total time that the CPU performs al service, so 
that 

T a l k )  = ~ 

Here c, referring to the cth customer, is a positive integer. The 
percentage is obtained by multiplying by 100 the quotient of the 
total  amount of time spent by the CPU performing al service [ A ,  , ( tc)]  
during the time interval and  the  total time t,. 

A a , ( t c )  x 100 
t c  

Definitions of the other random variables representing the times 
that the cPU performs a2, a8, PI, and p3 services  follow corre- 
spondingly: 

Table 3 shows the results of the simulation by  giving estimates of 
expected  values of the quantities just defined as  a function of the 
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Table 3 Estimates of expected values - 

A S  
___ 

0.50 

1 .OO 

2.00 

- 

- 

C 

50 
250 
500 

lo00 

50 
250 
500 

lo00 

50 
250 
500 

lo00 
- 

Overhead 

___ 
0.952 
0.936 
0.934 
0.929 

1.649 
1.631 
1.626 
1.618 

1.997 
1.931 
1.923 
1.918 

__ 

~ 

- 

___ 
4.758 
4.681 
4.669 
4.647 

9.244 
8.153 
8.130 
8.091 

9.985 
9.656 
9.617 
9.592 

__ 

__ 

- 

-1 

-I- 

! - 

0.941 
0.934 
0.933 
0.929 

1 .609 
1.623 
1.622 
1.616 

1.919 
1.916 
1.916 
1.915 

~ 

~ 

0.927 
0.930 
0.931 
0.928 

1.576 
1.616 
1.618 
1.614 

1.879 
1.909 
1.912 
1.913 

Table 4 Average queue lengths and  waiting times 

AP C 

1 50 

I- 
50 

1.00 1 
50 

2.00 ;; 
lo00 

Totnl Tu&) 
______ 

7.573 92.186 
7.482 92.314 
7.466 92.286 
7.434 92.312 

13.077 80.386 
13.023 80.481 
12.996 80.367 
12.940 80.358 

15.779 49.119 
15.412 47.733 
15.369 47.570 
15.338 47.635 

CPU 
idle 

100"TCPU(~) 

0.241 
0.204 
0.248 
0.254 

6.537 
6.494 
6.637 
6.702 

35.102 
36.855 
37.061 
37.027 

L C P d C )  

2.357 
2.367 
2.366 
2.365 

1.383 
1.329 
1.321 
1.328 

0.265 
0.191 
0.183 
0.185 

W,P,(C) LDTIdC) 

4.879 0.168 
5.037 0.156 
5.057 0.158 
5.085 0.159 

1.670 0.872 
1.626 0.904 
1.623 0.912 
1 .640 0.909 

0.265 2.130 
9.197 2.212 
0.190 2.221 
0.193 2.218 

WDT& 

0.330 
0.328 
0.336 
0.342 

- 
1.044 
1.107 
1.122 
1.122 

2.180 
2.301 
2.315 
2.315 

customer  ordinal  number c and  the  rate parameter X, of the exponen- 
tially distributed a2 service times. The level of multiprogramming is 
4, and  the average duration of an as service is 0.10. The other 
parameter values are  the same as those used in the  simulation  results 
reported in the previous section. These  parameter values apply to 
results shown in Tables 3 through 6 .  

Estimates of expected values obtained by simulating several quanti- 
ties of interest in connection with queuing delays in the model  are 
given in Table 4. These quantities-average waiting time in the 

DTU DTU 
busy idle 

TDTU(c) loo-TDTU(c) 

46.296 53.704 
46.563 53.447 
46.570 53.430 
46.417 53.583 

79.135 20.865 
80.893 19.107 
80.979 19.021 
80.760 19.240 

94.185 5.815 
95.475 4.525 
95.621 4.379 
95.658 4.342 
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CPU queue (W,,,) and in the DTU queue (WDTU), and average 
length  of CPU queue (Lcpu) and  the DTU queue (LDT,)-are defined 
as follows: Let c be a positive integer representing  the  customer 
ordinal  number.  Then 

~ c P u ( c )  = - [ t , ( j )  - WI 

and 

1 "  
c i-1 

l C  
WIITtJ(c) = [t;O') - t : ( d l  

1 = 1  

where &( j )  is the epoch at which the j th  customer  joins  the CPU 
queue,  and t $ ( j )  is the epoch at  which the j th  customer  joins  the 
DTU queue. Similarly for  the CPU queue, t,(j) is the  epoch at which 
the j th  customer begins his al ,  service and t;( j)  is the  epoch at 
which the  jth customer begins his P1 service. 

For m 2 1, let { t m )  be  the sequence of epochs (such that ti < ti + 1) 
at  which changes in the length of the CPU queue occur. Similarly, 
{ tA] is the sequence of epochs (wherein t i  < t;+l) at which changes 
in the DTU queue  length  occur.  Finally, let Zk be the  length of the 
CPU queue  during  the  interval (ti, t i + l ) ,  and let ZL represent the DTU 
queue length during  the  interval ( t : ,   t $+ l ) .  Using this  notation, we 
define average CPU and DTU queue  lengths as the following random 
variables: 

k 

l i ( t i , l  - ti)  
i = l  

LCPU(C) = 

and 

tk+ 1 

k' 

W + l  - 0 
LDTU(C) = f = '  

t k +  1 

Here, t k + l  is the  epoch at which the c + 1st customer begins his 
a1 service, and t:+l is the  epoch at  which the c + 1st customer 
begins his p1 service. 

Table 4 gives estimates of the expected values of the  four  quantities 
just defined as a  function of c and  the  rate parameter X, of the 
exponentially distributed cy2 service time.  Again,  the  other  parameter 
values have been defined earlier in this  paper. 

An essential assumption of the analysis given  in Reference 2 requires 
that  the probability  distribution of a, service be exponential. An 
indication of the sensitivity of the response variables to  this assump- 
tion is provided by the simulation results given  in Tables 5 and 6. 
Here  estimates of CPU utilization and DTU utilization are given as 
functions of c for six different a, service distributions. For k = 2 



Table 5 CPU utilization  for  several 012 service time  distributions 

l l  
Erlang-2 Constant 

100. 000 
1oo.Ooo 
100.000 
100.o00 

l o o .  000 
100.000 
100.000 
100.000 

66.303 
64.007 
63,728 
63.569 

Erlang-3 

100.000 
loo. 000 
100.000 
100.000 

98.778 
98.775 
98.714 
98.690 

65.464 
63.497 
63.411 
63.285 

x2 c Exponential 

50 99.759 
250 99.796 
500 99.752 

1000 99.746 

50 93.463 
250 93.504 
500 93.363 

1000 93.298 

50 64.898 
250 63.145 
500 62.939 

1000 63.121 

0.50 

2.00 

97.747 
98.018 
98.008 
97.993 

99.983 
99.986 
99.974 
99.977 

99.999 
99.993 
99.996 
99.995 

97.440 
97.416 
97.342 
97.257 

84.327 
84.049 
83.941 
84.163 

58.622 
57.800 
57.648 
58.018 

98.208 
98.300 
98.202 
98.158 

66.096 
63.730 
63.433 
63.263 

-i 65.231 
63.364 
63.301 
63.286 

Table 6 DTU utilization  for  several 01.' service time  distributions 

F,,(x) = 1 - ~ 

1 
(1 + XZXY 

49.804 
48.003 
47.906 
47.017 

76.915 
75.917 
75.898 
74.895 

90.485 
90.655 
90.767 
90.259 

Erlang- Constant Exponential Erlang-2 Uniform 

45.443 
46.123 
46.217 
46.265 

82.259 
84.242 
84.451 
84.557 

x2 

0.50 

C 

50 
250 
500 

lo00 

" 

46.296 
46.563 
46.570 
46.417 

79.135 
80.893 
80.979 
80.760 

" 

45.380 
46.122 
46.218 
46.266 

84.514 
85.878 
86.073 
86.170 

46.311 
46.597 
46.487 
46.405 

82.685 
84.202 
84.111 
83.977 

- 

46.124 
46.490 
46.410 
46.419 

83.613 
85.222 
85.179 
85.251 

1 

50 
250 
500 

lo00 
1 .OO 

50 
250 
500 

lo00 

94.670 
95.707 
95.859 
95.941 

94.721 
95.880 
96.038 
96.117 

94.449 
95.468 
95.600 
95.667 

94.185 94.599 
95.475 95.673 
95.621 95.878 
95.658 95.908 

2.00 

the  intervals between k events in a completely random series. In 
addition,  the  constant  distribution  and  uniform  distribution,  as 
well as a long-tailed distribution specified  by 

are  considered. Both CPU utilization  and DTU utilization  are 
relatively insensitive (i.e., less than  ten percent) to all the observed 
distributions, with the exception of the long-tailed distribution 
where somewhat  greater differences are observed. 
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Concluding remarks 

This paper compares three simulation methods with straightforward 
sampling to study  the efficiency  of these methods in estimating  the 
performance of a demand-paging system model. Measures of 
system overhead, queuing delays, and  transient response of the 
modeled system are related to parameters describing the processing 
demands of the  programs  load.  Our results for  this specific system 
model suggest that variance reduction from  straightforward sampling 
techniques is obtainable by the  method of antithetic variables. 
However, one should not necessarily expect a similar gain for all 
response variables in a model. With regard to variance reduction, 
additional gains may be obtainable by a  combination of stratification 
and antithetics. 
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