This paper discusses a FORTRAN subprogram library developed
primarily to support extended-precision floating-point arithmetic. The
general strategy, which makes limited use of guard digits, is developed
fo achieve high accuracy with reasonable execution time and storage
space.

In addition to describing some previously unpublished algorithms, the
authors present subprograms for simulating extended-precision arith-
metic and for input and output conversion.

FORTRAN extended-precision library
by H. Kuki and J. Ascoly

This paper discusses an extension to the traditional FORTRAN
subprogram library to provide higher-level language support for
extended-precision floating-point arithmetic." The library includes
extended-precision arithmetic simulators, input/output conversion
programs, and explicitly and implicitly called extended-precision
mathematical subprograms.

Extended-precision arithmetic simulation is provided to satisfy two
requirements. Computing systems having extended-precision in-
structions normally do not have a divide instruction, and the simu-
lator performs this operation. In computers not having extended-
precision instructions, the complete set of such instructions is
simulated.

A routine is provided for use in base conversion of input decimal
numbers into an internally usable form, including the conversion
of up to 35 decimal digits of input into the extended-precision hexa-
decimal form. Another routine handles output conversions, in-
cluding conversion of an extended-precision number to a decimal
number of up to 35 digits. This routine handles the conversion and
formatting of the print field. In the cases of both routines, the coding
for handling extended precision can be detached, and the remainder
can be used for the standard conversions.

The extended-precision mathematical functions include square-root,
logarithm, exponential, trigonometric, inverse trigonometric, hyper-
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bolic, and standard complex-valued functions. They also include
the three power routines, A**J, A**B, and (4 4 Bi)**J, and the
complex multiply /divide subroutine.

In this paper, we first consider accuracy goals. We then describe
the extended-precision simulation and the input/output conversion
routines. We finally discuss the mathematical functions, including
several previously unpublished algorithms.

Accuracy goals

Demand for higher quality in standard mathematical libraries has
been building. Programs in the basic libraries have been subjected
to thorough scrutiny in recent years® and are expected by users to
achieve maximum accuracy.

Accuracy goals may be considered at two levels. At the first, we
regard the given argument value as exact, and aim at producing an
answer value that is the nearest in the given precision to the exact
infinite-precision answer. Because this is the greatest accuracy that
can be attained with a given number of places, we shall call it last
digit accuracy. In most instances, this goal can be attained only by
carrying out parts of computations in higher than the working
precision of the library, especially when the relative accuracy of
the result is very sensitive to the accuracy of the argument. At the

" second level, the fact that arguments for a subroutine have suffered

through prior computations or conversions and are subject to at
least minor round-off errors is taken into account. This input
indeterminacy may be magnified several hundred times by the map-
ping of the mathematical function to produce a substantial relative
error in the result. In such cases, the ability of a subroutine to attain
last digit accuracy for uncontaminated arguments loses much of its
significance. Instead, accuracy in the result commensurate with
the effect of the minimal round-off error in the arguments would
seem a reasonable goal.’

Unfortunately, relaxation of the accuracy goal to the second level
tends to compromise users’ confidence in the library.*"® For this
reason, it is worthwhile to aim at last digit accuracy so long as the
cost involved is reasonable. Moreover, the added accuracy helps
to limit the accumulation of round-off errors, improving the prob-
ability of successful computation. As a simple example in which
round-off errors can cause trouble, consider the identity:

v o ) o (3) -0 5 (2] -

Round-off errors can cause the quantity within the brackets to be
less than — 1, making it unacceptable as an argument for arccosine.
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Another desirable goal is to obtain exact results whenever such are
attainable or meaningful. An argument that happens to be an integer
probably does not contain any error. If the corresponding function
value is also an integer, it is helpful to produce such a value exactly.
Also, exact conversion back and forth of integral quantities up to
a certain size is desirable. In the realm of floating-point computation,
such can not be attained without use of guard digits (in which addi-
tional digits are used for intermediate calculations) and true round-
ing (in the sense of producing the machine representable number
that is the nearest to the exact answer).

Conversion between two number systems with incommensurable
bases is inexact except for a small subset of special numbers. For
most applications, the ideal conversion is a rounded one. Denote
by S(8, n) and S(8, m) the sets of all floating-point numbers exactly
expressible in the n-digit base 8 system and the m-digit base § system,
respectively. Here, for simplicity, we do not impose any bounds for
the exponent range. A conversion between these systems is a map-
ping T from S(8, n) into S(8, m). A rounded conversion maps
every x & S(B, n) to a Tx & S(8, m) so that

[x — Tx| = min [|x — y|
yES (9, m)

For the most part, such an element Tx is uniquely determined in
S(8, m). In exceptional cases, x lies exactly half way between two
consecutive numbers in S(8, m). In such cases, we would not insist
on any particular algorithm for choice of either of the two neigh-
boring values.

Due to the accumulation of round-off errors, an always correctly
rounded conversion is not attainable using finite-precision arith-
metic. In fact, if an input conversion is carried out using the machine
arithmetic for the system S(8, m), at least the last digit value of the
result is in doubt. If § = 16, errors of up to 15 in the last digit unit
can exist. Comparable errors are also introduced in the output
conversion. A comparative study of the accuracy of conversions of
various System/360 language processors’ confirms this with one
notable exception. The conversion by the System/360 Assembler
F program attains rounded results almost always. One can ap-
proach the accuracy of an always correctly rounded conversion only
by use of guard digit computation.

Traditionally users are bothered by outputs such as 0.9999998
meaning 1.0, and there has always been a strong demand for ac-
curate conversions.” A virtually rounded conversion such as that
provided by the Assembler F eliminates such grievances.

Awareness of the importance of rounded conversions was furthered
by recent studies of D. Matula.>® A conversion mapping 7 from
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S(8, n) to S(8, m) is said to be “onto” if every element y in S(8,m)
is reachable as Tx by some element x of S(8, n). It is called “one-
to-ome,” if x, > x, means that Tx, # Tx,. T and another mapping
W in the opposite direction, S(8, m) — S(8, n), constitute a pair of
“recoverable conversions” if W-T is the identity mapping of S(8, n)
onto itself. Then the following hold true.

Given B, §, and m, a rounded conversion T is an “onto” con-
version if # is sufficiently large.

Given 8, 8, and n, a rounded conversion 7 is a “one-to-one”
conversion if m is sufficiently large.

Given 8, 6, and n, a pair of rounded conversions (T, W) con-
stitute recoverable conversions if m is sufficiently large.

More specifically, between the decimal system and the hexadecimal
system, we can say that:

For input conversion, we have 3 = 10 and § = 16. For m = 6,
14, or 28, the minimal values of # for which a rounded conversion
is onto are n = 9, 18, or 35, respectively.

For output conversion, we have § = 16 and 8 = 10. For n = 6,
14, or 28, the minimal values of m for which a rounded conversion
is one-to-one are m = 9, 18, or 35, respectively.

For an out-and-then-in pair of rounded conversions, the minimal
decimal precision that allows recovery of internal numbers is
9, 18, or 35, depending on the hexadecimal precision 6, 14, or
28 of the internal number system.

The conversion modules of this library aim at attaining these goals of
onto, one-to-one, and recoverable conversions without significant
cost in speed or storage requirements.

As was stated earlier, it is generally not possible to attain last digit
accuracy without resorting to extra-precision intermediate computa-
tions. Suppose 6x stands for the relative error of representing a
quantity x by the nearest number in a floating-point system with
n-bit precision. Then 0 £ [éx| < 27". This indeterminacy in the
argument x is reflected in the relative indeterminacy 8y of the func-
tion value y = f(x) in the following fashion:

[6y] = K(f, x) |éx]
where

K, x) = f%

K(f, x) is greater or smaller than 1 depending on the function f
and the range in which x is found. Computation of the function
value f(x) without use of extra-precision arithmetic can not lead to
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accuracy better than K(f, x)27" in general.’ In practice, the result
is usually somewhat worse.

To improve the accuracy of a function subroutine, it may not be
necessary to use extra-precision computation extensively. Direct
computation of a mathematical function usually requires two stages,
the reduction stage and the approximation in the reduced range. The
first stage is to decompose the argument x as x = P(x,, x,) so that
the function value f(x) can be written as f(x) = Q(f(x,), f(x.)
where P and Q are simple algebraic combinations; x, is from a set
of base values {x;} of x for which f(x,) are either trivially found or
economically tabulatable; and accurate computation of f(x,) can
be accomplished economically and stably.

The second stage consists of computing f(x,) and finally combining

f(x.) and f(x,) to form Q(f(x,), f(x.)).

As an example, the sine function can be decomposed as follows:
Letx = (4n + j)Yn/2) + x. where j = 0, 1,2, or3and |x.| £ =/4.
Then, writing x,,.,; for (4n + j)Xx/2), we have

sin (x) = sin (x4n+;) cos (x) + cos (X4 ;) sin (x,)
where

sin (x4,) = 0, cos (x4,) =1
sin (x4,.1) = 1, €08 (X4ns1) = O
$in (Xgne2) = 0, COS (X4n42) = —1

$in (x4,.3) = —1, cos (X4n43) = 0

As is seen in this example, the accuracy of f(x) depends on the ac-
curacy of x,. The accuracy of x. is determined by the inherent error
in x and the round-off error incurred during the reduction process.
If the reduction is carried out in the working precision of the sub-
routine, the generated round-ofl error in x. is of the same order of
magnitude as the indeterminacy of x in the precision. Both errors
become periodically huge relative to the magnitude of x.. Here
limited use of extra-precision arithmetic at the reduction stage can
preserve the full accuracy of x., which will be reflected in the final
accuracy since polynomial approximations of sin (x,) and cos (x.)
in the range |x.| < (7/4) are stable processes.

In many applications, the function value j(x,) corresponding to an
appropriately chosen base value x; of the argument x constitutes a
dominant component of the answer f(x), whereas f(x.) of the re-
duced argument can be regarded as a perturbation part. For example,
if f(x) = e*and x = x; + x,, then f(x) = f(x)f(x.). If we write
f(x) = 1 4+ g(x)), then f(x) = f(x;) + f(x)g(x). If |x.| < 1, then
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g(x.) < 1, and therefore f(x) ~ f(x;) and f(x;)g(x.) can be regarded as
a perturbation part. If the constants f(x;) are given with extra ac-
curacy (either it is a short but exact quantity or else it is encoded
with guard digits), then even if g(x,) is only determined up to the
base precision, f(x;) and g(x.) together determine f(x) to higher
than the base precision. This technique is useful when guard digits
of f(x) are needed for further computations or when the final round-
ing of f(x) is desired.

Higher accuracy is generally attainable through use of a longer
approximation formula and higher-precision arithmetic. Of the
two, the former is relatively inexpensive, since raising the degree
of a polynomial or rational approximation by one raises accuracy
quite substantially. On the other hand, to carry out such an ap-
proximation in a higher precision may be expensive on some com-
puters. This is particularly so if the base precision is the highest
provided by the computer. Then higher-precision calculations re-
quire simulated arithmetic. This is one reason why guard digit
computation was not applied to double-precision libraries until
recently. However, with judicious application of the technique
described above, extra accuracy can often be attained at minor or
no additional cost. This technique is used extensively in the extended-
precision library, in particular, most heavily in our algorithm for
the comprehensive exponential /logarithm routine.

Extended-precision simulation

When an extended-precision instruction is encountered that is not
in the set of instructions of the computer, an interruption is triggered
and control is transferred to the simulator. For systems having
extended-precision instructions, one simulator module is used for
the only missing instruction, the divide instruction; for other
models, another module simulates all extended-precision arithmetic
instructions, which are listed in Table 1. Simulations of MXR and
DXR by the second module require, in their turn, execution of AXR,
SXR, and MXDR, and these are carried out by recursive entries to
the simulator itself. Simulation of instructions other than DXR
yields identical results to those of the hardware, including the
treatment of the condition code and possible exceptional conditions.

The simulator is divided into three parts—prologue, main arith-
metic part, and epilogue. In the prologue section, the operands are
scaled to neutral exponents to ensure an exception-free computation.
Simulation is carried out for the scaled operands, and the result
is scaled back to the proper exponent in the epilogue section, where
exceptional conditions, if any, are detected and reported.

Simulation is carried out primarily using the floating-point arith-
metic instructions with occasional recourse to fixed-point arith-
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Table 1 Extended-precision instructions

Name Mnemonic

ADD NORMALIZED (extended operands,
extended result) RR

SUBTRACT NORMALIZED (extended
operands, extended result) RR

MULTIPLY (extended operands, extended
result) RR

MULTIPLY (long operands, extended result) RR
MULTIPLY (long operands, extended result) RX
LOAD ROUNDED (extended to long) RR
LOAD ROUNDED (long to short) RR
DIVIDE (extended operands, extended result) pseudo RR

metic whenever it is helpful. Floating-point arithmetic is preferred
because the length of extended-precision arithmetic is exactly double
that of long-precision. This means that we need deal only with two
components of each operand. Use of fixed-point arithmetic would
have required four rather than two. Moreover, the normalization
function of the floating-point hardware can be gainfully utilized.
This observation does not apply if the task is to simulate variable-
length extended-precision arithmetic, or if simulation is to be carried
out by the use of microprogramming.

The most involved simulation is that of division. The same algorithm
is used for DXR regardless of the computer. The only difference is
the manner of execution of the other extended-precision instructions
needed to simulate DXR. If they are not provided in the computer
itself, they are simulated. The specifications for DXR call for the
exact truncated quotient. If x and p stand for the two operands, the
exact truncated quotient ¢ = x/y is the unique extended-precision
number that is characterized by the following relation:

gy S x<(qg+ 16%)y

where 167" £ g < 16" (1)

The task is not as simple as it may seem at first glance. Let us evaluate
the number of digits of the quotient x/y that need to be developed
before we know definitely how to round this (high-precision)
quotient to the correct 28 hexadecimal digits of ¢. Let X and Y be
the values of the mantissas of x and y, interpreted as integers. Then,

16 £ x < 16%, 167 < v < 16*
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The distance of the quotients for two such pairs of operands is
given by

X _ x| XY - X%y

s =
Y, Y, Y, Y,

The numerator is an integer, which can be equal to 1. For instance,
take Y, = X,, X, = X, + 1, ¥, = X, — 1. Since 16" < 1,7, <
16°°, & can be as small as 167°°, This means that we need to develop
56 hexadecimal digits of the quotient before we know for sure the
first 28 digits correctly.

A more economical two-step approach was used in the simulator.
The first step carries out a three-stage division in the following
manner.

Letx = x, V x,, vy = y, V y, be decompositions of x and y into
the high-order parts and the low-order parts, respectively. Further,
adopt the following symbol conventions:

Letters stand for quantities of 14 hexadecimal-digit precision, sub-
script /2 for the high-order, subscript £ for the low-order part.

+, —, *, / signify long-precision operations.
@, ©, @ stand for AXR, SXR, and MXDR, respectively.

V stands for concatenation of two long-precision components to
form an extended-precision quantity.

Then we do the following:

g = (/»)*c wherec=1—16""
V=%V x)Oqa®y)Oaq®y,

g: = "/

s=((nVr)O g @y — @*y.

gs = (s/y) + ¢ * 167* (to force a slight overestimate)
@V 4 =(Dq Da

The underestimate of ¢, by c is given to force the sign of ¢, and that
of gs @ ¢, to agree. Without this precaution, the fact that AXR is
carried out with only one guard digit can cause an excessive upward
rounding in the sum, ¢, V ¢,. The sum of ¢, ¢., and s/y, is within
167°° of the infinite-precision quotient x/y, and therefore the
truncated quotient ¢, V ¢, is almost always equal to ¢, and when
it fails to be so, it is equal to the next higher number.

The second step is to verify the inequality (I) by testing the sign of
x — ¥(g. V gq.). This is carried out by a phased reduction. If the
sign is nonnegative, ¢, V ¢, = gq. Otherwise, the next lower number
is chosen as g.
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Conversion

The task of input conversion can be divided into two steps, digit
accumulation and scaling. Basically, a datum for conversion con-
sists of a decimal digit string and a decimal exponent. The digit
string is converted into an internal integer, which is multiplied by an
internal number that is equivalent to the indicated power of ten.
Thus a table of powers of ten must be available to the conversion
program.

If accuracy and speed of conversion are not important, a table
consisting of a single entry, the constant 10, is sufficient. If accuracy
and speed are important, a complete table of powers of ten is pre-
ferred. A compromise would be a two-stage table that contains
every power between 10' and 10'°, and every tenth power thereafter.
Use of this table requires scaling by two successive multiplications,
which results in a modest loss of accuracy. Also, inclusion of nega-
tive powers improves speed and accuracy. Since our aim is to attain
the full rounded accuracy, the precision of each power of ten in the
table should exceed the working precision (We chose 14, 20, and 34
hexadecimal digits of precision for each power of ten for conversion
to a short form, a long form, or an extended-precision number,
respectively.) This means that a complete table would take up a
large amount of storage space.

Fortunately, a scheme was devised to achieve accurate results
efficiently using a table consisting of every sixth power of ten.
Essentially, the scheme is to carry out part of the scaling while the

digits are being accumulated by a shift of the decimal point. More
specifically, the procedure is as follows. (Since the principle involved
is the same for the short, the long, or the extended-precision con-
version, an illustration is given only for the long-precision con-
version.)

Given a digit string £ of length d and an exponent p, our task is to
obtain the closest 14 hexadecimal digit number to x-10?, where
x is the integer value of the string &. First we limit d to 18, since there
is no significant advantage in allowing longer strings for the long-
form conversion. Let p = 6p, 4+ p,, where p, and p, are integers such
that 0 < p, = 5. Consider the string Z to have been padded at the end
with p, digits of zeros. We convert this d + p, digit string to a
floating-point integer, 8 digits at a time, with the aid of the System/
360 CVB (convert to binary) instruction. The result is then multiplied
by the power 10°”° from the table to obtain the answer. The recursive
accumulation x < x-10° + x,, is carried out in long form for the
first two times, and, if the third iteration is necessary, it is carried
out with guard digits to preserve the full accuracy. Due to the
limitation on the value of d, at most three iterations are required
for the digit accumulation. The scaling by 10°” is then carried out
with guard digits, followed by rounding.
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The sparser the powers-of-ten table, the more digit padding becomes
necessary. This increases the complexity of computation and de-
creases the speed. Using every sixth power of ten, the maximum
number of iterations needed in the digit accumulation is two for
short precision, three for long precision, and five for extended
precision. For the short-form or long-form conversion, no use was
made of extended-precision instructions.

The input conversion routine handles only the arithmetic of con-
version (exclusive of the format scan).

Accuracy tests using random input data showed that only seven out
of 71,000 cases failed to round correctly, and all of the failures were
threshold cases, that is, they could have been effectively rounded
either way.

The arithmetic task of output conversion can also be divided into
two steps, scaling and digit generation. Basically, a datum for con-
version consists of a hexadecimal floating-point number and a set
of parameter values for scaling and formatting. By multiplying by
an appropriate power of ten, the number is scaled to fall within a
basic range such as [1, 10"), where n is a fixed integer. The integer
part of this scaled number is converted to yield up to n leading deci-
mal digits of output. The fraction part is multiplied by 10" to yield an
integer providing the next n digits, and so on. The scaling and for-
matting parameters, together with the index of the power of ten
used in the scaling described above, are used to determine the decimal
exponent, the position of the decimal point, and other quantities
needed for editing the print line.

Output conversion is the reverse of input conversion, not only in
its objectives but also in the sequence of subtasks involved. The
problem of trade offs with regard to accuracy, speed, and storage
requirements is also present in an analogous form for output con-
version, [t is no surprise, then, that the solution to this problem also
takes a similar form. First, we set the value of n above to be 8, since
it is again convenient to convert 8 digits at a time. Also, we wish to
use the same power-of-ten table used for the input conversion. This
is feasible, since we are scaling the given datum to the range [1, 10%),
and the availability of every sixth power is sufficient to accomplish
this scaling using only a single multiplication.

For the sake of brevity, we use as an illustration the F-conversion
of a long-form datum. We are given a hexadecimal floating-point
datum x, a decimal place index d, and a scale factor p, and we pro-
ceed as follows.

The first task is to determine the decimal scale of x, i.e., an integer
J such that 107" < x < 10”. Although correct determination of

J at the beginning simplifies subsequent logic flow, this task requires
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a substantial amount of computing. It is better to make a rough
estimate of J at the outset, and to make appropriate adjustments if
this is proven wrong later. Only a few instructions are required to
estimate J = floor [log,, (x) + 1] close enough to satisfy the relation:

1007 2 x < 2-107

Then the true decimal scale of x is either J or J + 1. Next we evaluate
the number N of significant digits to be developed as

N= N(J)y=min(d+ p+ J, 18)

N is limited to 18, since there is no significant merit in developing
more digits if the datum is in long-precision form.

Next, we decompose J as 6j 4+ k, where 3 £ k£ £ 8, and multiply
x by 107% to obtain a scaled value y = x-10~%". This multiplication
is carried out with guard digits to produce 20 hexadecimal digits
of y. Now 10*" £ y < 2-10%, 3 < k £ 8. If we find y = 107, then
we raise k and J by one and adjust N(J). Using this (corrected) k,
we compute the rounding bias 0.5-10* " and add it to y. If this
rounding causes y to equal or exceed 10*, we again adjust k, J, and
N. At this time, we have the scaled and prerounded datum y and
its correct decimal scale k,3 = k £ 9.

Generation of decimal digits proceeds as follows. We have 10* <
y < 2.5-10% The System/360 convert to decimal (CVD) instruction
can convert integers in this range, so we use it to convert the integer
part of y to obtain the first k digits of the decimal string. The fraction
part of p, which, after absorption of the original guard digits, com-
prises a normal long-form number, is multiplied by 10°. The integer

part of the result is used to yield the next 8 decimal digits, and so on,
until we have the required N digits.

Editing a FORTRAN priut line requires determination of various
parameter values. They are, from left to right along the print line:

The number of leading blanks

The sign of the number

The number of significant digits before the decimal point
The number of zeros before the decimal point

The number of zeros after the decimal point

The number of significant digits after the decimal point
The number of trailing blanks

The exponent field

These are determined, using the standard rule, from the values of d,
p, J, and the print field width. Special care is necessary when the

value of N turns out to be negative.

For G-conversion, the following interpretation was taken as to the
effect of a scale factor p. First, note that the parameter d is defined
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to be the number of significant digits, i.e., N = d. The American
Standard specifies the following:

If 0 = J = d, then the sliding point F-type conversion is used.
In this case, the scale factor p is ignored.
If J is outside [0, d], E-type (or D, or Q') conversion is used.
In this case, the scale factor p is in effect.

Our implementation of the second case is as follows:

First we limit p to the range [0, d], i.e., force p to 0 if p < 0 and
force p to dif p > d. This is done because the value of p outside
[0, d] has no practical use and, if allowed, could cause con-
siderable technical difficulties.

In order to comply with the definition of the parameter d as the
precision, we place p significant digits in front of the decimal
point and d — p significant digits following the decimal point.
This allows the printed digits (and the decimal point) to fit into
the allocated d + 1 positions of the print field.

The decimal exponent is adjusted to reflect the shift of the decimal
point by p.

This interpretation is in conformity with the primary purpose of
the G-conversion, namely an extension of the F-conversion with
the aim of achieving as much precision as possible within the al-
located space.

Accuracy tests using random data showed 65 cases of failure to
round correctly out of a total of 71,000 tried. The worst case observed
was in the conversion of an extended-precision number to 35 decimal
digits where the error was 0.566 in the 35th digit.

For conversion of long-form or short-form numbers, use of extended-
precision arithmetic is avoided.

Mathematical functions

As was discussed earlier, computation of a mathematical function
consists in general of two stages—the reduction stage and the
approximation stage. The basic range into which the argument is
reduced must be such that within this range, one has an approxima-
tion algorithm that is both efficient and stable. By efficiency, we
mean economy of speed and storage requirements while attaining a
predetermined accuracy goal. OQur accuracy goal is to keep the
maximum relative error well within the range of the last digit value
of the working precision.

Among polynomial (or rational) approximations of a given degree,
there is one that minimizes the maximum error in the given range.
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Such an approximation is called a minimax approximation, and
we seek such an approximation of the lowest degree that satisfies
our accuracy goal. Of the several algorithms available to us to deter-
mine coefficients of such approximations, we used two, Maehly’s
second direct method and Remez’ second method."'** Coefficients
were computed by these methods in 38 hexadecimal digits of pre-
cision before being rounded to extended precision. A multiple
precision arithmetic package built by John Ehrman of Stanford
Linear Accelerator Center was used in this computation.

Often the minimax technique was applied so as to obtain the mini-
max with a constraint. Consider for example a polynomial approxi-
mation of cos (x), x| £ «/4. Let

PGP = D ax*
i=0

be an unconstrained minimax approximation in the range with an
ErTor ¢, i.€., cos (x) = P(x") 4 e Since cos (x), as a function of x%,
has a standard error curve, the maximum error ¢, = max [e is
attained at the end point x* = 0 of the range. This means that a, =
1 & ¢. If the approximation meets our goal, then ¢, is less than the
round-off error of fitting the constant g, to our working precision.
This means that, by encoding the constant g, in the working pre-
cision, we would be introducing another error of the size ¢, so that
the maximum error of the computed answer is at least 2¢,. If this
has a visible effect on the answer, we wish to obtain an approxima-
tion that is exact at x° = 0 and has the smallest possible error
elsewhere in the range. One way to accomplish this is as follows.
Define a function f(w) on [0, z°/16] by

cos (\/;) — 1
(w) = w

-1 if w=20

if w0

Then apply the minimax technique to obtain an approximation
P(w) of f(w) that minimizes the maximum of E-w/cos (1/w), where
E stands for the absolute error £ = f(w) — P(w). This minimax
problem has a nonstandard error curve, but either one of two
minimax methods we used produced acceptable results for our
application. One verifies easily that E-x*/cos (x) is the relative
error of the approximation 1 + x*P(x*) of cos (x), and that this
approximation is exact at x = 0.

Another example of a minimax problem with constraints is seen in
the following. A particularly efficient form of approximation of the
exponential function is

2x+ P(x%)

P Rx)=1+ ———————-—Q(xz) PO
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where P and Q are polynomials of given degrees. Efficiency of this
form is due to the existence of a rapidly converging continued frac-
tion expansion of the hyperbolic tangent function. We have

Px’) _ _R(x) — 1
0G")  x-(R(x) + 1)

Hence, we define a function f(w) of nonnegative argument w as

27 — 1

f(W)=m, x = Vw,

and apply the minimax technique on f(w) to determine the coeffi-

cients of P and Q. Let

_ Pw)
fo) =5y T E

Then the relative error of R(x) as an approximation of 2° is given by

_&QZI“Q'l"XP_Q—xP—xQE

L 27 Q — xP O+ xP + xQF

= Ed+reNa+ 279 =ie+ 2+ 298

The last expression provides the weight function relative to which
the E is to be minimized.

The fact that the extended-precision instruction set does not provide
the divide instruction may indicate preference of polynomials over
rational functions as approximations. Complete simulation of an
arithmetic instruction invariably takes much longer than its equiv-
alent in machine arithmetic would. However, when a division is
called for in computing mathematical functions, the problem is
often so localized that the exponent scaling of operands is not
necessary. Also, accuracy requirements for division vary depending
upon applications. Under these conditions, division may be simu-
lated quite economically. On the other hand, for many functions,
rational approximations tend to be much more efficient than poly-
nomial approximations, and this economy is quite substantial when
approximations of high degrees are involved. Thus we found our-
selves selecting more rational approximations than we had antici-
pated originally.

We considered use of methods such as Pan’s for economical evalua-
tion of polynomials but in the end chose not to use them. These
methods allow polynomials to be evaluated with fewer multiplica-
tions than the standard method of nested multiplication. However,
algorithms based on such methods tend to show poor round-off
characteristics. Moreover, a trial code revealed that they are not
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particularly efficient for our applications. For one thing, the logic
flow becomes more complicated than that of nested multiplication,
and it requires more frequent loading and storing of register con-
tents. Also, since the polynomials we use are those with rapidly
diminishing high-degree terms, about 30 percent of the iterations
in the nested multiplication can be carried out in long precision.
In our example, Pan’s method was no faster than the nested multi-
plication and it required considerably more storage space.

The traditional approach to computing the real-to-real exponentia-
tion x” is to compute exp (y¥-log (x)) by use of external subroutines
for computation of the exponential and the logarithm functions. It
was recognized early, however, that one can not attain very high
accuracy in this way regardless of the accuracy of the two subroutines
used.'® This is due to the fact that, when the magnitude of y is large,
the working precision accuracy of log (x) is not sufficient to assure
the relative accuracy of x”. Being external subroutines, both the
output of the logarithm subroutine and the input to the exponential
subroutine are limited to the working precision. The size of errors
in x¥ caused by these limitations is comparable to the effect of the
argument indeterminacy discussed earlier. However, in view of the
importance of this function, it is highly desirable to attain a higher
accuracy. In particular, it is desirable to obtain exact results if
both the base x and the exponent y are integral quantities.

In order to attain this goal, it is necessary to develop intermediate
results with higher than the working precision. This was tried before,
at the University of Toronto and at Argonne National Laboratory
in the early 1960’s, and later at the University of Chicago. It is
worth noting that these efforts differed in their packaging concepts.
The Toronto approach was to build into the exponential subroutine
and the logarithm subroutine a facility to distinguish calls by the
x" routine from other calls and to pass on a few hidden guard
digits to and from the x” routine. The Argonne approach was to
have a stand-alone x” subroutine independent of and in addition
to the exponential and logarithm subroutines. The Chicago ap-
proach was to prepare the x” subroutine with a minor entry point
for computation of the exponential function, so that if only the
exponential function were needed, a shorter, separate subroutine
would be loaded. The approach used in this library is to combine
in a single subroutine five functions—the base e logarithm, the base
10 logarithm, the base e exponential, the base 2 exponential, and the
real-to-real exponentiation.

The basic algorithm consists of two parts—that for computing
the base 2 logarithm and that for computing the base 2 exponential.
Other functions are trivially obtainable from these two. x” is com-
puted as 2¢'°*®) In order to achieve our accuracy goal, we aim
at computing log, (x) with two extra hexadecimal digits of precision.
To do this economically, we need to reduce the argument sharply
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so that the perturbation part can be computed in the working pre-
cision.

We write x = 16" 2 “m, where g is 0, 1,2, or 3and 0.5 £ m < 1.
We then choose an appropriately distributed set of base points «, in
[0.5, 1], and, for the given m, choose the closest «,. Then, letting
z=(m — a,)/(m + «,), we have:

1
log, (x) = 4p — q + log, o, + log, <_ﬂ>

1~z
Here 4p — g + log, («,) is the dominant part, and log, [(1 + z)/
(1 — 2)] is the perturbation part. We wish to limit the latter to less
than 1677 in magnitude. This requires more than 129 values of «,
and their high-precision logarithmic values. Since we can not afford
to carry so many constants, we proceed as follows.

We estimate log, (m) very crudely, and obtain three indexes 0 < i <
8,0=<,j=<3,0=<k = 4,s0that 20i + 5j 4 k is the nearest integer
to —160-log, (m). Using these indexes, we select three constants
8:,v,, and 8,, where 8, = 27"}, v, = [277*1, and 5, = [27"].
Here the brackets denote rounding to the closest 17-bit quantity.
These 18 constants, 3., v;, 8, and their logarithms (in 34 hexadecimal
digits) are encoded in the program. Then the economically comput-
able product «;;, = B9, is taken to be the base point for m.
This is sufficiently close to m. In fact, the magnitude of log, [(1 -+
z)/(1 — z)]is not much bigger than 1/320, and an approximation of
the form zP(z*) in the working precision, where P stands for a
polynomial of degree 5, is sufficient for our purpose. Extra pre-
cision is maintained as follows: The integer 4p — ¢ and the high-
order part of logya,;. (= log,8; + logyy, + log.d,) comprise the
dominant part of log,(x) and are kept in short precision. The sum
of the low-order part of log,a,;, and log,{(1 + 2)/(1 — z)] comprises
the perturbation part and is kept in extended precision. Together
they represent log,(x) within 167°° in absolute error or 167 *° in
relative error, whichever is smaller.

Having obtained log,(x) in such high precision, we multiply it by
y with care, preserving this accuracy. Then we raise the product z
to the power of 2 as follows.

First we decompose zas z = 4p — ¢ — r, where ¢ = 0, 1, 2, or 3,
and 0 £ » < 1. We find two indexes, i, j/, 0 £ i = 8,0 2 j=3,
such that 4/ + ; is the integer nearest to 32r. Using these indexes,
we obtain the product ¢,; = B,v,, where the factors §,, v, are from
the pool of constants described above. We obtain the reduced
argument s = —r — logwp,; accurately by subtracting log,e,; =
log.8. + log,y; from —r in steps. The quantity s is approximately
bounded by +1/64.

We compute 2° by a minimax approximation of the form:
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s 25 P(s%)
2 =100 — o)

where P and Q are polynomials of degree 2. Finally, we assemble
the power 2° as 16”- (27 %¢,,)- 2° and in the process apply the rounding.

Tests show that the results of exponentiation x* are virtually always
correctly rounded except for cases where x is very close to 1.0 and
y is very large. In particular, if x is an integer less than 1000, and
y is an integer such that x* < 16, then the result is always exact.
This statement is also expected to apply when x exceeds 1000.

A long precision implementation of this algorithm was also coded.'*
It is to be noted that the cost of argument reduction in this algorithm
is substantial and is largely independent of the working precision.
A less sharp reduction, on the other hand, would have required
more expensive approximations in the basic ranges. For the ex-
tended-precision version, the cost of reduction is amply offset by
the economy in basic approximations. For the long-precision version,
the latter is not quite enough to cover the former. For example,
computation of DEXP and DLOG according to this algorithm is
slower by 15 to 25 percent than the subroutine in the current
FORTRAN library, and this is the price one pays for the improved
accuracy of x”. Computation of DX**DY according to our algorithm
is still slightly faster than that of the current library. It would be
prohibitively expensive to apply this particular algorithm to the
short-precision library.

Despite the lack of an extended-precision divide instruction, division
iterations in the manner of the Newton-Raphson refinements turned
out to be more efficient than several multiplicative iteration formulas
we have tried. This is partly due to the fact that we can still use
short- and long-precision divisions for all but the final iteration, and
also to our choice of the final iteration formula that requires only
a very rough simulation of the extended-precision division.

By scaling, we reduce the problem to the case where x = 16*-m,
1/16 = m < 1. This particular scaling is used to avoid possible
intermediate underflows. The first approximation y, to ~/x is
computed as,

1.576942 )
0.9540356 4+ m

Yo = 16""<1.807018 -

These coefficients were determined to minimize the relative error
of the approximation while being exact at m = 1. The maximum
relative error of y, over the range 1/16 < m < 1is 27%*,

We Apply Newton-Raphson iteration three times—twice in short
precision and once in long precision:

No.1 - 1971 EXTENDED-PRECISION LIBRARY

square-
root
subroutine




trigonometric
functions

1
y,-=—<y1--1+x> i=1,2,3
2 Vi

At the end of the third iteration, the relative error e, of y, is at most
274

The final iteration has the following form'® and is carried out in
extended precision:

By substituting (I + e;)+/x for y, in this formula, one sees that the
relative error e, of y, is essentially equal to 15, or 27'*° in this case.

Note that the right-hand term of the formula is only a correctional
term to y, and is limited by 2°*' in relative magnitude. Therefore a
rough simulated division that takes only 1.5 times MXR time (men-
tioned above) is sufficient for computing this term. In the process of
combining this term with y;, a rounding bias is introduced to attain
rounded results virtually always.

As was discussed earlier with the example of the sine function, the
relative accuracy of the computed value of a trigonometric function
depends largely on the care exercised in the reduction stage. For
this reason, it is desirable to use an arithmetic of higher than the
working precision during this stage. It is also desirable to use an
identical reduction algorithm for all trigonometric functions, so
that an argument is reduced to the same value in the basic range
regardless of the function involved. In this way, we are able to pro-
duce function values that satisfy various trigonometric identities
as accurately as the approximations used in the basic range can
satisfy them.

Our task is to decompose the given argument x as x = (r/2)n + r,
where nis an integer and — 7 /4 < r £ =/4. Given x, there isexactly
one pair of values (n, r) that satisfies this relation. Upon closer
examination of our algorithm, however, we find that the require-
ment —7/4 < r £ w/4 is not a critical one; that is, we can enlarge
our basic range modestly without paying any significant penalty.
On the other hand, the identity x = (#/2)n 4+ r must be maintained
accurately. By this relaxed rule, there can occasionally be more than
one choice of n for the given value of x; but once # is chosen, the
remainder must be computed very accurately.

More specifically, we compute (2/7)x + 0.5 in the working precision,
and take the integer part of this quantity to obtain n. Then, by a
staged reduction, we subtract the product (x/2)n from x to obtain
the reduced argument r, employing in the process approximately
10 hexadecimal guard digits. Since |r| can be a few percent larger
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than /4 due to round-off if |x] is large, the approximation formula
for the reduced argument must be chosen so as to be valid over this
slightly enlarged basic range. This is done without raising the degree
of approximation formula. Thus the use of extra-precision arith-
metic is limited to the staged reduction x — (x/2)n. The cost for
this is fairly minor.

Within the basic range, minimax approximations of the following
forms are used for respective functions (P, stands for a polynomial
of degree k):

sin () =7 + 7 Pro(r”)
cos () =2 1 + r* Pu(r)
tan (r) = r+ Po(r")/ Ps(r*)
cot (r) =2 P5(r")/(r- Po(r"))

Algorithms for arcsine and arccosine functions follow essentially
the same logic as those used in the short- and long-precision versions
of the current FORTRAN library. On the other hand, a more elaborate
scheme was introduced for computation of the arctangent function
in extended precision to lower the degree of approximation and also
to limit the number of divisions involved. It proceeds as follows:

We choose origins 6,7 = 1,2, --- , 7, to be approximately (i/16)r
in such a way that tan 6, are exact short-form numbers, and let
6, = 0 and 8; = =/2. We define break points 8,,7 = 0,1, --+ , §, as

2i — 1
B n % T

If8, £ x < B;fori=1,2,---,7, we use the reduction:

x—tanﬁ,—)

t = . rct
arctan (x) = §; + arctan (1 + x-tan 8,

If B £ x < o, we use the reduction:

arctan (x) = 65 4 arctan <:1>
X

In either case, the quantity within the parenthesis on the right is
within the basic range (8, 8,), i.e., less than tan (x/32) in magnitude.
Within the basic range, a minimax approximation of the form
x + x*- P,.(x%) is used to evaluate arctan (x).

For arctangent of two arguments, care was exercised to avoid
premature underflows and overflows, as was done in the short-form
and the long-form versions of the current FORTRAN library. How-
ever, if we find, by a short-form division, that 8s £ |x,/x,| < o,
then we use the following reduction to eliminate one division:
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arctan < adl ) = @, + arctan <:|12—|>
X

2 |x1|

The algorithms for the hyperbolic functions follow essentially the
same logic as those used in the short-form and the long-form
versions. The algorithms for the complex-valued functions were
somewhat simplified in several cases by use of direct scaling. The
cost of exponent scaling is independent of the precision involved,
and therefore it becomes relatively minor for higher-precision com-
putations.

A new scaling method was devised for the complex multiply and
divide subroutine. Let the two operands be denoted by a 4 bi and
¢ + di. Then,

(a + bi) * (c + di) = (ac — bd) + (ad + bc)i, and

a -+ bi  ac + bd bc—ad‘i
62+d2

c+di~cz+d2+

Direct computation of these formulas can lead to premature over-
flows and underflows. For multiplication, this occurs only when
the result approaches the overflow or the underflow threshold,
whereas a loss of accuracy due to partial underflows can occur
somewhat earlier. For division, overflows and underflows can occur
even if the result is near 1, and the operands are well within the
legitimate exponent range. Thus some form of scaling of the oper-
ands is called for.

Scaling the operands by dividing them by max (|c|, |d|), as is done
in some programs, is out of the question for the extended-precision
library. Moreover, this method increases roundoff errors somewhat.
Scaling by adjusting the exponents of operands is acceptable,
but we wish to minimize the cost of doing so. The scheme we de-
vised was to scale only one operand instead of two as is usually
done, and yet to provide the full protection. We leave the first
operand a + bi intact and scale the second operand ¢ + di in such
a way as to counter balance the magnitude of the first operand.
For division, a midcourse change of scale becomes necessary for
successful computation.

First, we determine two exponents p,, p, that satisfy:

< max (|a|, [b]) < 167 and

max ([c|, |d]) < 167
Then we choose the exponent g as ¢ = —3if p, = 0, and ¢ = 31
if p; < 0. We scale ¢ and d by 16 ¢ and reverse the sign of d if

the operation is a divide:
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=c 16"

di

_ { d-16"7%* if complex multiplication

—d- 16" if complex division

Here, scaling is done by exponent adjustment, and if this results
in underflow of one of the components, we replace the affected
component by 0. Then we compute:

Uy + Uli = (aC1 - bd}) + (adl + bcl)l

Since we have 16°™" < max (|¢,|, |d\]) < 16°, and also —34 < p, +
g < 60, this calculation causes no overflow and no significant under-
flow. The product is obtained by scaling back u, + v,i by 16°77,

If the quotient is our aim, then we compute the divisor w, = (¢} +
d?)-167%¢. This computation is safe since 16" < ¢! 4+ d? < 2-16,
and we have 16> < w, < 2. Now we compute the quotients u, =
u,/w, and v, = v;/w; and scale them back to obtain the answer
U4 viiu=u-160""and v = v,- 16777,

At each intermediate stage, the magnitude of the result is within
(167, 16%), safely within the exponent range of our number system.
If an overflow or underflow condition is present in the answer, it is
detected at the final stage of scale restoration.

There are two economical algorithms for building powers for
integer power subroutines: X*+J and (X 4+ Y#)*+*J. One can be called
the “bottom up” method, and the other the “top down” method.
L. R. Turner of NASA Lewis Research Center had communicated
to us that the “top down” method is somewhat more accurate
than the “bottom up” method. This was confirmed by our tests,
and since the former is only insignificantly slower than the latter,
we have adopted the “top down” method. In the case of computing
x”, the method proceeds as follows.

Assume x # 0 and J > 0. Let the binary representation of J be

J = Z gj2n47'
im0

where g, = land g, =Qor 1 forj= 1,2, .-, n Thusn + 1is
the number of significant binary digits of J. We initialize z, = x.
i n = 0, z = z is the answer. We do the following for
]: 1’29 MR (M

2 .

Zi g if g
z; =

2 .

z;1ex if g, =
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Then, at the end of iterations, z = z, is the answer.

This is “top down™ since we scan the binary representation of J
from the left to right while building the power. The “bottom up”
method, which is used in the short-form and the long-form versions
in the current FORTRAN library scans the representation of J from
right to left.

It is to be noted that, either way we build up powers, the growth
of round-off errors is roughly proportional to J — 1. Our tests also
showed that between two exponents of similar magnitudes, the
incidence of one’s in their binary representations has little to do
with accumulation of roundoff errors. For example, we did not
recognize any significant difference between error statistics for
X" and x*'**, despite the fact that computation of the former

requires 24 multiplications and that of the latter 13 multiplications.

Concluding remarks

Each subroutine in the FORTRAN extended-precision library has
been subjected to a set of rigorous performance tests involving
thousands of random sample arguments. Master reference programs
that compute these functions in 38 hexadecimal digits of precision
were used to measure the accuracy of the tested programs.

Despite the elaborate care exercised in preparation of the programs
in this library, these programs cannot create accuracy where there
is none. The accuracy of the computed function value depends on
the quality of the input argument as well as the quality of the algo-
rithm used. Seemingly minor contamination of the input value can
cause substantial relative errors. The most one can expect and all
we have attempted is to minimize any error due to computational
method by careful coding, which includes occasional use of guard
digits. The average cost of this use of extra precision arithmetic is
estimated to be about 10 percent in execution time and somewhat
more in storage requirements. We believe this to be a reasonable
price to pay for the extra precision of the results.
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