
This  paper discusses  a FORTRAN subprogram  library  developed 
primarily  to support extended-precision  floating-point  arithmetic.  The 
general strategy, which makes  limited use of guard  digits, is developed 
to achieve  high  accuracy  with  reasonable execution  time and storage 
space. 

In addition to describing some  previously unpublished algorithms,  the 
authors  present subprograms for  simulating extended-precision  arith- 
metic and for  input and output  conversion. 

FORTRAN extended=precision  library 
by H. Kuki and J. Ascoly 

This  paper discusses an extension  to the  traditional FORTRAN 
subprogram  library to provide higher-level language support for 
extended-precision  floating-point  arithmetic.' The library includes 
extended-precision  arithmetic  simulators, input/output conversion 
programs,  and explicitly and implicitly called extended-precision 
mathematical  subprograms. 

Extended-precision  arithmetic  simulation  is provided to satisfy two 
requirements.  Computing systems having extended-precision in- 
structions  normally do  not have a divide instruction,  and  the simu- 
lator performs  this  operation.  In  computers not having extended- 
precision instructions,  the  complete set of such instructions  is 
simulated. 

A routine is provided  for use in base conversion of input decimal 
numbers  into  an internally  usable  form, including the conversion 
of up to 35 decimal digits of input  into  the extended-precision hexa- 
decimal form.  Another  routine  handles  output  conversions,  in- 
cluding conversion of an extended-precision number to a decimal 
number of up to 35 digits. This  routine  handles  the conversion and 
formatting of the  print field. In the cases of both  routines, the coding 
for  handling extended precision can be  detached,  and  the  remainder 
can  be used for the  standard conversions. 

The extended-precision mathematical  functions  include  square-root, 
logarithm,  exponential,  trigonometric, inverse trigonometric,  hyper- 
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the three power routines, A**J,  A**B,  and ( A  + Bi)**J, and  the 
complex multiply/divide  subroutine. 

In this  paper, we first consider accuracy goals. We then  describe 
the extended-precision simulation and  the  inputjoutput conversion 
routines. We finally discuss the  mathematical  functions, including 
several previously unpublished  algorithms. 

Accuracy goals 

accuracy in Demand  for higher quality  in  standard  mathematical  libraries  has 
general been building.  Programs in the basic libraries have been subjected 

to thorough scrutiny in recent years' and  are expected by users to 
achieve maximum  accuracy. 

Accuracy goals may be considered at two levels. At  the  first, we 
regard  the given argument value as exact, and aim at producing an 
answer value that is the  nearest in the given precision to  the exact 
infinite-precision answer. Because this is the  greatest  accuracy that 
can  be  attained  with a given number of places, we shall call  it  last 
digit  accuracy. In  most instances,  this  goal  can  be  attained  only by 
carrying out  parts of computations  in higher than  the working 
precision of the  library, especially when the relative accuracy of I 
the  result is very sensitive to  the accuracy of the  argument.  At  the 
second level, the  fact  that arguments for a  subroutine  have suffered I 
through  prior  computations or conversions and  are  subject to  at 
least minor round-off errors  is  taken  into  account.  This  input 
indeterminacy  may be magnified several hundred times by the  map- 
ping of the  mathematical  function to  produce a  substantial relative 
error  in  the  result.  In such cases, the ability of a subroutine  to  attain 
last digit accuracy for  uncontaminated  arguments loses much of its 
significance. Instead, accuracy in the  result  commensurate with 
the effect  of the  minimal round-off error in the  arguments would 
seem a reasonable  goal.3 

Unfortunately,  relaxation of the accuracy goal to the  second level 
tends to compromise users' confidence in the For this 
reason, it is  worthwhile to aim at last  digit  accuracy so long  as  the 
cost involved is reasonable.  Moreover,  the  added accuracy helps 
to limit  the  accumulation of round-off  errors,  improving the  prob- 
ability of successful computation.  As a simple  example in which 
round-off errors  can cause trouble, consider the  identity: 

Round-off errors  can  cause  the  quantity within the brackets to be 
less than - 1, making it unacceptable as  an  argument  for arccosine. 
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Another desirable goal is to  obtain exact results whenever such are 
attainable or meaningful. An  argument that happens to  be  an integer 
probably  does not  contain any error. If the  corresponding  function 
value is also an integer, it is helpful to produce such a value exactly. 
Also, exact conversion back  and  forth of integral  quantities up  to 
a  certain size  is desirable. In the  realm of floating-point  computation, 
such can  not be attained  without use  of guard digits (in which addi- 
tional  digits  are used for intermediate calculations) and true  round- 
ing (in the sense of producing  the  machine representable number 
that is the nearest to the exact answer). 

Conversion between two  number systems with incommensurable 
bases is inexact except for a small subset of special numbers. For 
most  applications,  the ideal conversion is a  rounded  one.  Denote 
by S(p, n) and S(6, m) the sets of all  floating-point  numbers exactly 
expressible in the n-digit base p system and  the m-digit base 6 system, 
respectively. Here, for simplicity, we do  not impose any bounds for 
the  exponent  range.  A conversion between these systems is a map- 
ping T from .S(p, rz) into S(6, m). A  rounded conversion maps 
every x E S(p, n) to a Tx E S(6, m) so that 

Ix - TxI = min Ix - yl 
tJES(G,m) 

For  the  most  part, such an element Tx is uniquely determined in 
S(6, m). In exceptional cases, x lies exactly half way between two 
consecutive numbers  in S(6, m). In such cases, we would not insist 
on any  particular  algorithm  for choice of either of the  two neigh- 
boring values. 

Due to the  accumulation of round-off errors,  an always correctly 
rounded conversion is not  attainable using finite-precision arith- 
metic. In fact, if an input conversion is carried out using the  machine 
arithmetic for the system S(6, m), at least the  last digit value of the 
result is in doubt. If 6 = 16, errors of up to 15 in the  last digit unit 
can exist. Comparable  errors  are  also  introduced in the  output 
conversion. A  comparative  study of the accuracy of conversions of 
various System/360 language processors' confirms this with one 
notable exception. The conversion by the System/360 Assembler 
F program  attains  rounded results almost always. One can ap- 
proach  the accuracy of an always correctly rounded conversion only 
by use of guard digit computation. 

Traditionally users are  bothered by outputs  such  as 0.9999998 
meaning 1.0, and  there  has always been a  strong  demand for ac- 
curate  conversion^.^ A virtually rounded  conversion such as that 
provided by the Assembler F eliminates such grievances. 

Awareness of the  importance of rounded  conversions was furthered 
by recent studies of D. M a t ~ l a . * ' ~  A  conversion  mapping T from 
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accuracy  better than K(f, x)2-" in general.' In practice,  the  result 
is usually somewhat worse. 

To improve  the  accuracy of a  function  subroutine, it may not  be 
necessary to use  extra-precision  computation extensively. Direct 
computation of a  mathematical  function usually requires  two stages, 
the  reduction  stage  and  the  approximation in the reduced range. The 
first stage is to decompose the  argument x as x = P ( x , ,  x,) so that 
the  function value f (x)  can  be written as f(x) = Q(f(x i ) ,  f (xe) )  
where P and Q are simple  algebraic  combinations; x, is from  a set 
of base values {x,  of x for which f(x,) are either trivially found  or 
economically tabulatable;  and  accurate  computation of f(x,) can 
be accomplished economically and  stably. 

The second  stage  consists of computing f (x , )  and finally combining 
f(xJ and f(x,> to form P(f(x;>, f(xJ>. 

As an example, the sine  function can  be decomposed as follows: 
Let x = (412 + j ) ( ~ / 2 )  + x, where j = 0, 1, 2, or 3 and Ix, I 5 7/4. 
Then, writing for (4n + j ) (7 /2 ) ,  we have 

sin ( x )  = sin cos (x , )  + cos sin (x,)  

where 

sin (x,,) = 0, cos (x,,) = 1 

sin = 1, COS ( x 4 n + l )  = 0 

sin ( x q n i 2 )  = 0 ,  cos = - 1 

sin ( x ~ , + ~ )  = - 1, cos (x~,+~) = 0 

As is seen in this example, the accuracy of f(x) depends on  the ac- 
curacy of x,. The accuracy of x, is determined by the  inherent  error 
in x and  the round-off  error  incurred  during  the  reduction process. 
If the  reduction is  carried out in the working precision of the  sub- 
routine,  the generated  round-oft'  error in x, is of the  same  order of 
magnitude  as  the  indeterminacy of x i n  the precision. Both  errors 
become periodically huge relative to  the magnitude of x,. Here 
limited use of extra-precision arithmetic at  the reduction  stage  can 
preserve the full accuracy of x,, which  will be reflected in the final 
accuracy since polynomial  approximations of sin (x,) and  cos (x,) 
in the  range 1x.1 5 ( ~ / 4 )  are stable processes. 

In many  applications, the function value /(x,) corresponding to  an 
appropriately chosen base value x, of the  argument x constitutes  a 
dominant  component of the answer ?(x), whereas f(xJ of the re- 
duced argument  can  be  regarded  as  a  perturbation  part.  For  example, 
if /(x) = e" and x = x i  + x,, then f(x) = f(x,)f(xJ. If  we write 
/(x,> = 1 + g(xA then ?(x) = f ( x j )  + f (x , )g(x , ) .  If Ix,/ << 1, then 
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a  perturbation  part. If the  constants f ( x i )  are given with extra  ac- 
curacy (either it is a short  but exact quantity  or else it is encoded 
with guard digits), then even if g(xJ is only determined up  to the 
base precision, f ( x , )  and g(x.) together determine f(x) to higher 
than  the  base precision. This  technique is useful when guard  digits 
of f(x) are needed for further  computations  or when the final round- 
ing of f(x) is desired. 

Higher accuracy is generally attainable  through use  of a  longer 
approximation  formula  and higher-precision arithmetic. Of the 
two, the former is relatively inexpensive, since raising the degree 
of a  polynomial or  rational  approximation by one raises accuracy 
quite  substantially. On the  other  hand, to carry out such an  ap- 
proximation in a higher precision may be expensive on  some  com- 
puters.  This is particularly so if the base precision is the highest 
provided by the  computer.  Then higher-precision calculations re- 
quire simulated arithmetic.  This is one  reason why guard digit 
computation was not applied to double-precision libraries  until 
recently. However, with judicious  application of the  technique 
described above,  extra accuracy can  often  be  attained at minor  or 
no additional  cost.  This  technique is used extensively in  the extended- 
precision library,  in  particular,  most heavily in our algorithm  for 
the comprehensive exponential/logarithm  routine. 

Extended-precision simulation 

When an extended-precision instruction is encountered that is not 
in the set of instructions of the  computer, an  interruption is triggered 
and  control is transferred to the  simulator. For systems having 
extended-precision instructions,  one  simulator  module is used for 
the only missing instruction,  the divide instruction; for other 
models, another  module simulates all extended-precision arithmetic 
instructions, which are listed in Table 1. Simulations of MXR and 
DXR by the second module  require,  in  their turn, execution of AXR, 
SXR, and MXDR, and these are  carried out by recursive entries to 
the  simulator itself. Simulation of instructions  other than DXR 
yields identical results to those of the  hardware, including the 
treatment of the  condition  code  and possible exceptional  conditions. 

The simulator  is divided into  three parts-prologue, main  arith- 
metic part,  and epilogue. In  the prologue section, the  operands  are 
scaled to neutral  exponents to ensure an exception-free computation. 
Simulation is carried out for the scaled operands,  and  the  result 
is scaled back to  the proper  exponent in the epilogue section, where 
exceptional conditions, if any,  are detected and  reported. 

Simulation is carried out primarily using the  floating-point  arith- 
metic instructions with occasional recourse to fixed-point arith- 
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Table 1 Extended-precision  instructions 

ADD NORMALIZED (extended operands, 
extended result) 

SUBTRACT NORMALIZED (extended 
operands, extended result) 

MULTIPLY (extended operands, extended 
result) 

MULTIPLY (long operands, extended result) 

MIJLTIPLY (long operands, extended result) 

LOAD ROUNDED (extended to long) 

LOAD ROUNDED (long to short) 

DIVIDE (extended operands. extended result) 

AXR 

SXR 

MXR 

MXDR 

MXD 

LRDR 

LRER 

DXR 

RR 

RR 

RR 

RR 

RX 

RR 

RR 

pseudo RR 

metic whenever it is helpful.  Floating-point  arithmetic is preferred 
because the length of extended-precision arithmetic is exactly double 
that of long-precision.  This  means that we need deal  only with two 
components of each  operand.  Use of fixed-point  arithmetic  would 
have required  four  rather than two.  Moreover,  the  normalization 
function of the  floating-point  hardware  can be gainfully utilized. 
This  observation  does not apply if the task is to simulate  variable- 
length extended-precision arithmetic,  or if simulation is to  be carried 
out by the use of microprogramming. 

The  most involved simulation is that of division. The  same algorithm 
is used for DXR regardless of the  computer.  The only difference is 
the  manner of execution of the  other extended-precision  instructions 
needed to simulate DXR. If thev are  not  movided in the  commter 

exact  truncated  quotient. If x and y stand  for  the two  operands,  the 
exact truncated  quotient q = x/y is  the  unique extended-precision 
number that is characterized bv the following relation: 

where 16’”’ 5 q < 16” (I) 

The task is not  as simple  as it  may seem at first glance. Let us evaluate 
the  number of digits of the  quotient x/y that need to be developed 
before we know definitely how to  round this  (high-precision) 
quotient  to  the correct 28 hexadecimal digits of q. Let X and Y be 
the values of the  mantissas of x and y ,  interpreted  as  integers.  Then, 
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The distance of the  quotients for two such pairs of operands is 
given by 

The  numerator is an integer, which can  be  equal  to 1. For instance, 
take Y,  = X , ,  X, = X, + 1, Y,  = X ,  - 1. Since lQ4 5 Y , Y ,  < 
1656, 6 can be  as small as  16-56.  This  means that we need to develop 
56 hexadecimal digits of the  quotient  before we know for  sure  the 
first 28 digits  correctly. 

A more economical two-step approach was used in the simulator. 
The first  step  carries out a  three-stage division in  the following 
manner. 

Let x = X h  V xc ,  y = y h  V y ,  be  decompositions of x and y into 
the  high-order  parts  and  the  low-order  parts, respectively. Further, 
adopt  the following symbol  conventions: 

Letters  stand  for  quantities of 14 hexadecimal-digit precision, sub- 
script h for  the  high-order,  subscript 8 for the low-order part. 

+, - , *, / signify long-precision operations. 

0, 0, 0 stand  for AXR,  SXR, and MXDR, respectively. 

v stands  for  concatenation of two  long-precision  components to 
form an extended-precision quantity. 

Then we do the following: 

q, = (x lL /yh)  * c where c = 1 - 16", 
rh v rc = ( ( X h  v x,) 0 q1 yh)  0 ql 0 Y C  

q 2  = r,JY* 
s = ((rh v re)  0 q2 o yh)  - q2 * ye 
q3 = ( s / y h )  + q1 * 16-35 (to force a slight overestimate) 
q h  v q c  = ( 4 3  0 92) 0 41 
The underestimate of q, by c is given to force the sign of q, and  that 
of q3 0 q2 to agree.  Without  this  precaution,  the  fact  that AXR is 
carried out with only one  guard  digit  can  cause an excessive upward 
rounding  in  the  sum, qh v qc. The  sum of q,, q,, and s / y h  is within 
16-3g of the infinite-precision quotient x / y ,  and  therefore  the 
truncated  quotient qh v q, is  almost always equal  to q, and when 
it fails to  be so, it is  equal to the next higher number. 

The second step  is to verify the inequality (I) by testing the sign of 
x - y(q, v qc).  This  is  carried  out by a  phased  reduction. If the 
sign is nonnegative, qh v y e  = q. Otherwise, the next lower number 
is chosen as q. 
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Conversion 

The task of input  conversion can  be divided into two steps,  digit 
accumulation  and scaling. Basically, a datum  for conversion  con- 
sists of a decimal digit  string  and  a decimal exponent. The digit 
string  is  converted into  an  internal integer, which is multiplied by an 
internal  number  that is equivalent to the  indicated power of ten. 
Thus a  table of powers of ten  must  be  available to the conversion 
program. 

If accuracy  and speed of conversion are  not  important, a  table 
consisting of a single entry,  the  constant 10, is sufficient. If accuracy 
and speed are  important, a  complete  table of powers of ten  is  pre- 
ferred.  A  compromise would be  a  two-stage  table that  contains 
every power between 10' and lo'', and every tenth power thereafter. 
Use of this  table  requires scaling by two successive multiplications, 
which results in a  modest  loss of accuracy.  Also, inclusion of nega- 
tive powers  improves speed and  accuracy. Since our aim is to  attain 
the full rounded  accuracy,  the precision of each power of ten in  the 
table  should exceed the working precision (We  chose 14, 20, and 34 
hexadecimal digits of precision for  each power of ten  for  conversion 
to a short  form, a  long  form,  or an extended-precision  number, 
respectively.) This  means  that a  complete  table would take  up a 
large amount of storage  space. 

Fortunately,  a  scheme was devised to achieve accurate  results 
efficiently using a  table  consisting of every sixth power of ten. 
Essentially, the scheme is to carry  out  part of the scaling while the 
digits are being accumulated by a  shift of the decimal  point. More 
specifically, the  procedure is as follows. (Since the principle involved 
is the  same for the  short,  the  long,  or  the extended-precision  con- 
version, an  illustration  is given only for the long-precision  con- 
version.) 

Given a  digit  string 3 of length d and an exponent p ,  our  task  is to 
obtain the closest 14 hexadecimal digit  number to x. lo", where 
x is the integer value of the  string X:. First we limit d to 18, since there 
is no significant advantage in allowing longer  strings  for the long- 
form  conversion.  Let p = 6p0 + p l ,  where po and pl are integers such 
that 0 5 p 1  5 5. Consider  the  string X: to have  been  padded at the  end 
with p1 digits of zeros. We convert  this d + p1 digit string to a 
floating-point  integer,  8  digits at a  time,  with  the  aid of the System/ 
360 CVB (convert to  binary)  instruction.  The  result  is  then multiplied 
by the power  from the  table  to  obtain  the answer. The recursive 
accumulation x t x. 10' + x, is  carried out in  long  form  for  the 
first two times, and, if the third  iteration  is necessary, it is carried 
out with guard  digits to preserve the full accuracy. Due  to  the 
limitation on the  value of d, at  most three  iterations  are  required 
for the digit  accumulation. The scaling by is  then  carried out 
with guard  digits, followed by rounding. 
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The sparser  the powers-of-ten table,  the more digit  padding becomes 
necessary. This increases the complexity of computation  and  de- 
creases the  speed. Using every sixth power of ten, the maximum 
number of iterations needed in  the  digit  accumulation is two  for 
short precision, three for long precision, and five for extended 
precision. For  the  short-form  or long-form  conversion, no use was 
made of extended-precision instructions. 

The  input conversion  routine  handles only the  arithmetic of con- 
version (exclusive of the  format scan). 

Accuracy tests using random  input  data showed that only seven out 
of 71,000 cases failed to round  correctly, and all of the  failures were 
threshold cases, that is, they could  have been effectively rounded 
either way. 

output The  arithmetic task of output conversion  can also be divided into 
two  steps, scaling and  digit  generation. Basically, a datum for  con- 
version consists of a hexadecimal floating-point  number  and  a set 
of parameter  values  for scaling and  formatting. By multiplying by 
an appropriate power of ten,  the  number is scaled to fall within a 
basic  range such as [ l ,  lW), where n is a fixed integer. The integer 
part of this scaled number  is  converted to yield up  to n leading deci- 
mal  digits of output.  The fraction part is multiplied by 10" to yield an 
integer providing the next n digits,  and so on.  The scaling and  for- 
matting  parameters,  together  with  the  index of the power of ten 
used in  the scaling described above, are used to determine the decimal 
exponent,  the  position of the decimal point,  and  other quantities 
needed for  editing  the  print  line. 

Output conversion  is  the reverse of input  conversion, not only in 
its objectives but also in the  sequence of subtasks  involved. The 
problem of trade offs with regard to accuracy,  speed,  and  storage 
requirements  is  also  present  in an  analogous  form for output  con- 
version.  It is no surprise,  then,  that  the  solution to this  problem also 
takes  a similar form.  First, we set  the value of n above to be 8, since 
it is again convenient to convert 8 digits at a  time. Also, we wish to 
use the  same  power-of-ten  table used for the  input conversion.  This 
is feasible, since we are scaling the given datum  to  the range [ 1, lo'), 
and the availability of every sixth power is sufficient to accomplish 
this scaling using only a single multiplication. 

For the  sake of brevity, we use as an illustration  the  F-conversion 
of a long-form datum. We are given a hexadecimal floating-point 
datum x, a decimal place index d, and  a scale factor p ,  and we pro- 
ceed as follows. 

The first task is to determine the decimal scale of x, i.e., an integer 
J such that IOJ" 5 x < loJ. Although  correct  determination of 
J at the beginning simplifies subsequent logic flow, this  task  requires 
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a  substantial  amount of computing. It is better to  make a  rough 
estimate of J at the  outset,  and to make  appropriate  adjustments if 
this is proven wrong later. Only a few instructions  are required to 
estimate J = floor [log,, (x) + I] close enough to satisfy the  relation: 

loJ-' _I x < 2.1OJ 
Then  the  true decimal scale of x is either J or J + 1 .  Next we evaluate 
the number N of significant digits to be developed as 

N = N ( J )  = min (d + p + J ,  18) 

N is limited to 18, since there is no significant merit in developing 
more digits if the  datum  is  in long-precision form. 

Next, we decompose J as 6 j  + k ,  where 3 5 k 5 8, and multiply 
x by lo-" to obtain  a scaled value y = x. This multiplication 
is carried out with guard digits to produce 20 hexadecimal digits 
of y.  Now IOk" 5 y < 2.  lok, 3 5 k 5 8. If we find y 2 IOk, then 
we raise k and J by one  and  adjust N ( 4 .  Using this (corrected) k ,  
we compute  the  rounding bias 0.5. 10k-N and  add it to y. If this 
rounding causes y to equal or exceed IOk, we again  adjust k ,  J ,  and 
N .  At  this time, we have the scaled and prerounded  datum y and 
its  correct decimal scale k ,  3 I k I 9. 

Generation of decimal digits proceeds as follows. We have 10' 5 
y < 2.5. loR. The System/360 convert  to decimal (CVD) instruction 
can convert integers in this range, so we use it  to convert the integer 
part of y to obtain  the first k digits of the decimal string. The  fraction 
part of y ,  which, after absorption of the original guard digits, com- 
prises a  normal long-form number, is multiplied by 10'. The integer 
part of the result is used to yield the next 8 decimal digits, and so on, 
until we have the required N digits. 

Editing a FORTRAN print line requires determination of various 
parameter values. They are, from left to  right along the  print  line: 

The number of leading blanks 
The sign of the  number 
The number of significant digits before the decimal point 
The  number of zeros before the decimal point 
The number of zeros after the decimal point 
The number of significant digits after the decimal point 
The number of trailing blanks 
The exponent field 

These are  determined, using the  standard rule, from the values of d, 
p ,  J, and the print field width. Special care  is necessary when the 
value of N turns  out  to be negative. 

For G-conversion, the following interpretation was taken as  to the 
effect  of a scale factor p .  First,  note that  the parameter d is defined 
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choice of 
approximations 

in general 

to  be  the  number of significant digits, i.e., N = d. The American 
Standard specifies the following: 

If 0 5 J 5 d, then the sliding point  F-type conversion is used. 

If J is outside [0, dl, E-type  (or D, or Q") conversion is used. 
In this case, the scale factor p is ignored. 

In  this case, the scale factor p is in effect. 

Our implementation of the second case is as follows: 

First we limit p to  the range [0, dl, i.e., force p to 0 if p < 0 and 
force p to d if p > d. This is done because the value of p outside 
[0, dl has no practical use and, if allowed, could cause con- 
siderable technical difficulties. 
In order  to comply with the definition of the  parameter d as  the 
precision, we place p significant digits in front of the decimal 
point  and d - p significant digits following the decimal point. 
This allows the printed digits (and  the decimal point)  to fit into 
the allocated d + 1 positions of the  print field. 
The decimal exponent is adjusted to reflect the shift of the decimal 
point byp. 

This interpretation is in conformity with the primary purpose of 
the G-conversion, namely an extension of the F-conversion with 
the aim of achieving as much precision as possible within the  al- 
located space. 

Accuracy tests using random  data showed  65 cases of failure to 
round correctly out of a  total of 71,000 tried. The worst case observed 
was in the conversion of an extended-precision number to 35 decimal 
digits where the  error was 0.566 in the 35th digit. 

For conversion of long-form or short-form numbers, use of extended- 
precision arithmetic is avoided. 

Mathematical  functions 

As  was discussed earlier, computation of a mathematical function 
consists in general of two stages-the reduction stage and  the 
approximation stage. The basic range  into which the argument is 
reduced must be such that within this range, one has an approxima- 
tion algorithm that is both efficient and stable. By efficiency,  we 
mean economy of speed and  storage requirements while attaining  a 
predetermined accuracy goal. Our accuracy goal is to keep the 
maximum relative error well within the  range of the  last digit value 
of the working precision. 

Among polynomial (or  rational)  approximations of a given degree, 



Such an approximation is called a minimax approximation,  and 
we seek such an  approximation of the lowest degree that satisfies 
our accuracy goal. Of the several algorithms available to us to deter- 
mine coefficients of such approximations, we used two, Maehly's 
second direct method and Remez' second method.11'12 Coefficients 
were computed by these methods in 38 hexadecimal digits of pre- 
cision before being rounded  to extended precision. A multiple 
precision arithmetic package built by John Ehrman of Stanford 
Linear Accelerator Center was used in  this  computation. 

Often the minimax technique was applied so as to obtain  the mini- 
max with a  constraint. Consider for example a polynonlial approxi- 
mation of cos (x), 1x1 5 7r/4. Let 

be an unconstrained minimax approximation in the range with an 
error E ,  i.e., cos (x) = f'(xz) + c. Since cos (x), as a function of x2,  
has  a  standard  error curve, the maximum error E ,  = max / E ]  is 
attained at the end point x' = 0 of the range. This means that a,, = 

I f to. If the  approximation meets our goal, then E ,  is  less than  the 
round-off error of fitting the constant a, to our working precision. 
This  means that, by encoding the  constant a, in the working pre- 
cision, we would be  introducing  another  error of the size E,,, so that 
the maximum error of the computed answer is at least 26, .  If this 
has a visible  effect on  the answer, we  wish to  obtain  an approxima- 
tion that is exact at x2 = 0 and has  the smallest possible error 
elsewhere in the range. One way to accomplish this is as follows. 
Define a function f (w) on [0, ir2/16] by 

~ 

Then apply the minimax technique to  obtain  an  approximation 
P(w) of f (w) that minimizes the maximum of E. w/cos (di), where 
E stands  for  the  absolute  error E = f ( w )  - P(w). This minimax 
problem has  a  nonstandard  error curve, but either one of two 

~ minimax methods we used produced acceptable results for  our 

error of the approximation 1 + xzP(x2) of cos (x), and  that this 
approximation  is exact at x = 0. 

i 

I application. One verifies  easily that E.x2/cos (x) is the relative 

~ 

I Another example of a minimax problem with constraints is seen in 
the following. A particularly efficient form of approximation of the 
exponential function is 

2" G R ( x )  = 1 + 2.x. P ( x 2 )  
Q ( 2 )  - x .  P ( 2 )  
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where P and Q are polynomials of given degrees. Efficiency  of this 
form is due  to the existence of a rapidly converging continued frac- 
tion expansion of the hyperbolic tangent  function. We have 

Hence, we define a function f ( w )  of nonnegative argument w as 

2" - 1 
x.(2" + 1 )  ' 

= x = di, 

and apply the minimax technique on f (w)  to  determine  the coeffi- 
cients of P and Q .  Let 

Then the relative error of R(x) as  an  approximation of 2" is given by 

R ( x )  1""1"-. Q -I- X P  Q - X P  - x Q E  
2" Q - X P  Q + X P  + x Q E  

= - (1 + R ( x ) ) ( l  + 2-") GZ 5 ( 2  + 2" + 2-")E Ex 
2 

The last expression provides the weight function relative to which 
the E is to be minimized. 

The fact that  the extended-precision instruction set does not provide 
the divide instruction may indicate preference of polynomials over 
rational  functions  as  approximations. Complete simulation of an 
arithmetic  instruction invariably takes much longer than  its equiv- 
alent in  machine arithmetic would. However, when a division is 
called for in computing mathematical  functions,  the  problem is 
often so localized that the exponent scaling of operands is not 
necessary. Also, accuracy requirements for division vary depending 
upon applications. Under these conditions, division may be simu- 
lated quite economically. On  the other hand, for many functions, 
rational  approximations tend to be much more efficient than poly- 
nomial approximations,  and  this economy is quite  substantial when 
approximations of high degrees are involved. Thus we found  our- 
selves selecting more  rational  approximations  than we had antici- 
pated originally. 

We considered use of methods such as Pan's for economical evalua- 
tion of polynomials but  in  the end chose not  to use them. These 
methods allow polynomials to be evaluated with  fewer multiplica- 
tions than  the  standard method of nested multiplication. However, 
algorithms based on such methods tend to show poor round-off 



particularly efficient for our  applications. For  one thing, the logic 
flow becomes more complicated than  that of nested multiplication, 
and  it requires more frequent  loading  and  storing of register con- 
tents.  Also, since the polynomials we use are those  with  rapidly 
diminishing high-degree terms, about 30 percent of the  iterations 
in  the nested multiplication  can  be  carried out in  long precision. 
In our example, Pan’s method was no faster  than  the nested multi- 
plication  and it required  considerably more  storage space. 

The  traditional  approach to computing  the real-to-real  exponentia- 
tion x’ is to  compute exp (y.log (x)) by use of external  subroutines 
for  computation of the  exponential  and  the  logarithm  functions. It 
was recognized early,  however, that  one  can  not  attain very high 
accuracy in  this way regardless of the  accuracy of the two subroutines 
used.13 This is due  to  the fact that, when the  magnitude of y is large, 
the  working precision accuracy of log (x) is not sufficient to assure 
the relative accuracy of xu. Being external  subroutines, both  the 
output of the  logarithm  subroutine  and  the  input  to  the  exponential 
subroutine  are limited to the  working precision. The size of errors 
in x’ caused by these  limitations  is  comparable  to  the effect  of the 
argument  indeterminacy discussed earlier.  However,  in view  of the 
importance of this  function,  it is highly desirable to attain a higher 
accuracy. In  particular, it is desirable to  obtain exact  results if 
both  the base x and  the  exponent y are integral  quantities. 

In order  to  attain this  goal,  it  is necessary to develop  intermediate 
results  with higher than  the working precision. This was tried before, 
at the University of Toronto  and  at Argonne  National  Laboratory 
in  the  early 1960’s, and  later at the  University of Chicago. It is 
worth  noting that these efforts differed in their  packaging  concepts. 
The  Toronto  approach was to build into  the  exponential  subroutine 
and  the  logarithm  subroutine  a facility to distinguish calls by the 
xu routine  from  other calls and  to pass on a few hidden  guard 
digits to  and  from  the xu routine.  The  Argonne  approach was to 
have a  stand-alone x” subroutine  independent of and  in  addition 
to  the exponential  and  logarithm  subroutines. The Chicago ap- 
proach  was  to  prepare  the x” subroutine with a  minor  entry  point 
for  computation of the  exponential  function, so that if only the 
exponential  function were needed,  a  shorter,  separate  subroutine 
would be loaded.  The  approach used in this  library is to combine 
in a single  subroutine five functions-the base e logarithm,  the base 
10 logarithm,  the  base e exponential,  the  base 2 exponential,  and  the 
real-to-real  exponentiation. 

The basic algorithm consists of two parts-that for computing 
the  base 2 logarithm  and  that  for  computing  the  base 2 exponential. 
Other  functions are trivially obtainable  from these two. XI’ is com- 

at computing log, (x) with  two  extra hexadecimal digits of precision. 
To  do this economically, we need to reduce  the  argument  sharply 

puted as 2 Z I ‘ ‘ l o C ? ( Z )  . In order to achieve our accuracy goal, we aim 
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so that  the  perturbation  part can  be  computed  in  the  working  pre- 
cision. 

We write  x = 16” 2-‘m, where q is 0,  I ,  2, or  3  and 0.5 5 m < 1. 
We then  choose an  appropriately distributed  set of base  points CY, in 
[ O S ,  11, and,  for  the given m, choose  the closest an. Then,  letting 
z = (m - C Y , J / ( ~  + a,), we have: 

Here 4p - q + log, (CYJ is the  dominant  part, and log, [(l + z)/  
(1 - z)] is the  perturbation  part. We wish to limit  the  latter to less 
than 16-2 in magnitude.  This  requires  more than 129 values of CY, 
and  their high-precision logarithmic values. Since we can  not afford 
to  carry so many  constants, we proceed as follows. 

We estimate log, (m) very crudely,  and  obtain  three indexes 0 5 i 5 
8,O 5 j 5 3,O 5 k 5 4, so that 20i + 5 j  + k is the nearest integer 
to - 160.1og, (m). Using  these indexes, we select three  constants 
p;, y l ,  and 6k, where pt = [2-’/’], y j  = [2”i/32], and 6 ,  = [2-k’160]. 
Here  the brackets  denote  rounding to  the closest 17-bit quantity. 
These 18 constants, p z ,  y j ,  6k, and  their  logarithms  (in 34 hexadecimal 
digits) are encoded  in the  program.  Then  the economically comput- 
able  product a % ,  , = pty l l i k  is taken to  be  the base point for rn. 
This is sufficiently close to m. In fact,  the  magnitude of log, [(I + 
z) / (  1 - z)] is  not much bigger than 1 /320, and  an  approximation of 
the  form zP(z2) in  the working precision, where P stands for  a 
polynomial of degree 5, is sufficient for our purpose. Extra pre- 
cision is maintained  as follows: The integer 4p - q and  the  high- 
order part of 1og2atik (= log,p, + log,y, + log,lik) comprise  the 
dominant  part of log2(x) and  are  kept in short precision. The sum 
of the low-order part of log,a, ,: and log,[(l + z ) / (  1 - z )]  comprises 
the  perturbation  part  and is kept  in extended precision. Together 
they represent log,(x) within 16-30 in  absolute  error  or 16”’ in 
relative error, whichever is smaller. 

Having  obtained log,(x) in such high precision, we multiply it by 
y with  care, preserving this  accuracy.  Then we raise the  product z 
to the power of 2 as follows. 

First we decompose z as z = 4p - q - r, where q = 0, 1, 2, or 3, 
and 0 5 Y < I .  We find two indexes, i, j ,  0 5 i 5 8, 0 5 j 5 3, 
such that 4i + j is the integer nearest to 32r. Using these indexes, 
we obtain  the  product pt, = p 7 y , ,  where the  factors p., y 1  are  from 
the  pool of constants described above. We obtain  the reduced 
argument s = - r  - 1og2pzj accurately by subtracting log,p,, = 

log,p, + log,y, from - r  in steps. The  quantity s is approximately 
bounded by f 1/64. 

We compute 2s by a  minimax  approximation of the  form: 
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2 " 1 +  2sP(s2)  
Q(?) - sP(sZ)  

where P and Q are polynomials of degree 2. Finally, we assemble 
the power 2" as 16"~(2-*pi,).2" and  in  the process apply the  rounding. 

Tests show that  the  results of exponentiation x' are virtually always 
correctly rounded except for cases where x is  very close to 1.0 and 
y is very large. In particular, if x is an integer less than 1000, and 
y is an integer such that x' < 16", then t t c  result is always exact. 
This  statement is also expected to apply when x exceeds 1000. 

A long precision implementation of this  algorithm was also ~ 0 d e d . l ~  
It is to be noted that the cost of argument  reduction in this  algorithm 
is substantial  and is largely independent of the working precision. 
A less sharp  reduction, on the  other  hand, would have required 
more expensive approximations in the basic ranges. For  the ex- 
tended-precision version, the  cost of reduction is amply offset by 
the  economy in basic  approximations. For  the long-precision version, 
the  latter is not  quite  enough to cover the  former.  For example, 
computation of DEXP and DLOG according to this  algorithm is 
slower by 15 to 25 percent than  the  subroutine in the  current 
FORTRAN library,  and  this is the price one pays for the improved 
accuracy of x'. Computation of DX**DY according to  our algorithm 
is still slightly faster than  that of the  current  library. It would be 
prohibitively expensive to apply  this  particular  algorithm to the 
short-precision  library. 

Despite  the lack of an extended-precision divide instruction, division 
iterations  in  the  manner of the  Newton-Raphson refinements turned 
out  to  be  more efficient than several multiplicative iteration  formulas 
we have  tried.  This is partly due  to  the fact that we can still use 
short-  and long-precision divisions for all but the final iteration,  and 
also to our choice of the final iteration  formula that requires only 
a very rough  simulation of the extended-precision division. 

By scaling, we reduce  the problem to the case where x = 1632.m, 
I / I 6  5 m < 1. This  particular scaling is used to avoid possible 
intermediate underflows. The first approximation yo to 4; is 
computed  as, 

0.9540356 + m 

These coefficients were determined to minimize the relative error 
of the  approximation while being exact at m = 1. The maximum 
relative error of yo over the  range  1/16 5 m 5 1 is 2-5.48. 

We Apply Newton-Raphson  iteration  three times-twice in  short 
precision and  once in long  precision: 

NO. 1 . 1971 EXTENDED-PRECISION LIBRARY 



At  the end of the  third  iteration,  the relative error c3 of y, is at  most 
2-41. 

The final iteration has  the following form''  and  is  carried out in 
extended precision: 

By substituting (1 + t3) 4; for y3 in  this  formula,  one sees that  the 
relative error t4  of y4 is essentially equal to t c : ,  or 2-Iz5 in this case. 

Note  that  the right-hand  term of the  formula  is only a  correctional 
term to y3 and is limited by T 4 '  in relative magnitude.  Therefore  a 
rough  simulated division that takes only 1.5 times MXR time  (men- 
tioned  above) is sufficient for  computing  this  term. In the process of 
combining  this  term with y3, a  rounding  bias is introduced to  attain 
rounded results virtually always. 

trigonometric As was discussed earlier with the example of the sine function,  the 
functions relative accuracy of the computed value of a  trigonometric  function 

depends largely on the  care exercised in the  reduction stage. For 
this  reason,  it  is  desirable to use an arithmetic of higher than  the 
working precision during  this  stage.  It is also desirable to use an 
identical  reduction  algorithm  for all trigonometric  functions, so 
that  an  argument  is reduced to the  same  value in the basic  range 
regardless of the  function  involved. In this way, we are  able to pro- 
duce  function values that satisfy various  trigonometric  identities 
as  accurately  as  the  approximations used in  the basic range  can 
satisfy them. 

Our  task is to decompose the given argument x as x = (a/2)n + r ,  
where n is an integer and - 7r/4 < r 5 ~ / 4 .  Given x, there  isexactly 
one  pair of values (n ,  r )  that satisfies this  relation. Upon closer 
examination of our algorithm, however, we find that  the require- 
ment -a14 < r 5 ~ / 4  is not a critical one;  that is, we can  enlarge 
our basic range modestly without paying any significant penalty. 
On the  other  hand,  the identity x = (a/2)n + Y must  be  maintained 
accurately. By this relaxed rule,  there  can occasionally be  more  than 
one choice of n for  the given value of x ;  but once n is chosen,  the 
remainder  must  be  computed very accurately. 

More specifically, we compute (2/a)x + 0.5 in  the  working precision, 
and  take  the integer part of this  quantity to obtain n. Then, by a 
staged reduction, we subtract  the  product (x /2)n from x to  obtain 
the reduced  argument r ,  employing  in the process approximately 







c1 7 c .  16‘-*’ 

dl = { d .  1 6a-p2  if complex multiplication 

- d .  1 6“*’ if complex division 

Here, scaling is done by exponent  adjustment,  and if this  results 
in underflow of one of the  components, we replace the affected 
component by 0. Then we compute: 

Since we have 16“’ 5 max ( I C , / ,  ld,I) < 16“, and  also -34 5 p1  + 
q 5 60, this  calculation causes no overflow and no significant under- 
flow. The  product is obtained by scaling back u, + uli  by 16“-”’. 

If the  quotient is our  aim,  then we compute  the divisor w1 = (c: + 
d:). 16-“. This  computation is safe since 16””-’ 5 c: + df < 2.16’“, 
and we have 16-’ 5 w, < 2. Now we compute  the  quotients u2 = 

u,/wl and u, = ul /wl  and scale them back to obtain  the answer 
u + ui: u = Z4?’16-“-”’ and u = u p .  16-“-”’. 

At  each  intermediate stage, the  magnitude of the result is within 
(16-35, 1663)), safely within the  exponent  range of our number system. 
If an overflow or underflow condition is present in the answer, it is 
detected at the final stage of scale restoration. 

There  are two economical algorithms for building powers for 
integer power subroutines: X**Jand (X + Yi)**J. One can be called 
the  ”bottom  up”  method,  and  the  other  the  “top  down”  method. 
L. R. Turner of NASA Lewis Research Center had  communicated 
to us that the “top down”  method is somewhat more  accurate 
than  the  “bottom  up”  method.  This was confirmed by our tests, 
and since the  former is only insignificantly slower than  the  latter, 
we have adopted the “top  down”  method. In the case of computing 
xJ, the  method proceeds as follows. 

Assume x # 0 and J > 0. Let the binary representation of J be 

J = g,2”” 
i=O 

where go = I and g ,  = 0 or 1 for j = 1, 2, . - .  , n. Thus n + 1 is 
the  number of significant binary digits of J .  We initialize z, = x .  
If n = 0, z = zo is the answer. We do the following for 
j = 1 ,  2, . . .  , n:  

z ;  = b;-, if gi = 0 
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This is “top  down” since we scan the  binary  representation of J 
from  the  left  to  right while building the power. The  “bottom up’’ 
method, which is used in the  short-form  and  the long-form versions 
in the  current FORTRAN library scans the  representation of J from 
right to left. 

It is  to be  noted  that, either way we build up powers, the growth 
of round-off errors is roughly proportional to J - 1. Our tests also 
showed that between two exponents of similar magnitudes, the 
incidence of one’s in their binary  representations  has  little to  do 
with accumulation of roundoff errors. For example, we did not 
recognize any significant difference between error statistics for 

and x8”’, despite the fact that  computation of the former 
requires 24 multiplications and  that of the  latter 13 multiplications. 

Concluding remarks 

Each subroutine in the FORTRAN extended-precision library  has 
been subjected to a set of rigorous performance tests involving 
thousands of random sample arguments.  Master reference programs 
that compute these functions in 38 hexadecimal digits of precision 
were used to measure the accuracy of the tested programs. 

Despite the  elaborate care exercised  in preparation of the  programs 
in this  library, these programs  cannot create accuracy where there 
is none.  The accuracy of the computed function value depends on 
the quality of the  input argument as well as  the quality of the algo- 
rithm used. Seemingly minor contamination of the  input value can 
cause substantial relative errors.  The most one  can expect and all 
we have attempted is to minimize any error  due  to  computational 
method by careful coding, which includes occasional use  of guard 
digits. The average cost of this use of extra precision arithmetic is 
estimated to be about 10 percent in execution time and somewhat 
more  in  storage requirements. We  believe this to be a reasonable 
price to pay for the  extra precision of the results. 

ACKNOWLEDGMENTS 

The following members of the University of Chicago Computation 
Center have participated in the development of this library:  Gary 
Duggan, Marcia Kastner,  John Keck, Paul Kinnucan,  Thomas 
Morgan,  and  Dorothy  Raden. 

CITED  REFERENCES  AND  FOOTNOTES 
1. This capability is provided in  the  IBM  System/360 Models 85 and 195 

and  in  the  IBM System/370 computers. See A. Padegs, “Structural 
aspects of the System/360 Model 85, 111, Extension to floating-point 
architecture” IBM Systems Journal 7, No. 1, 22-29 (1968). 

I 60 KUKI AND ASCOLY IBM SYST J I 



2.  W. J .  Cody,  “Software for  the elementary  functions,”  Mathematical 
Software Symposium at  Purdue University, (April  1970). Proceedings 
to appear. 

3. H. Kuki,  “Comments on the  ANL evaluation of OS/360 FORTRAN 
Math  Function Library,” SHARE Secretary  Distribution 169, C-4773, 

4.  W. J. Cody, “Critique of the  FORTRAN  lV(H) Library for  the 
System/360,” SHARE Secretary  Distribution 169, C-4773, pp 3-46 
(July  1967). 

5.  H. Kuki, “Mathematical  function  subprograms for basic system librar- 
ies: objectives, constraints, and trade-offs,” Mathematical  Software 
Symposium at  Purdue University, (April  1970). Proceedings to appear. 

6. J. R. Ehrman, “A study of floating-point conversions  in some OS/360 
components,” SHARE Secretary  Distribution 195, C-5207, (June  1969). 

7. D.  Warnock,  “Report from  SHARE  FORTRAN project,” SHARE 
Secretary  Distribution 203, C-5340 (April  1970). 

8. D. W. Matula,  “A  formalization of floating point  numeric base conver- 
sion,” Computer Systems Laboratory Technical  Report  No. 17, Wash- 
ington University, St. Louis, Missouri (March  1970). 

9. D. W. Matula, “In  and  out conversion,” Communications of the ACM 
11, No.  1,47-50 (January  1968). 

10. Q is the  FORTRAN  format code that specifies conversion of up to 
thirty-five decimal digits to  or  from their hexadecimal equivalent. 

11. J. F. Hart et  al, Computer approximations, John Wiley & Sons, Inc., 
New York, New York (1968). 

12. C. T. Fike, Computer evaluation of mathematical functions, Prentice- 
Hall, EngIewood Cliffs, New Jersey (1968). 

13.  N. W. Clark  and W. J. Cody, “Self-contained exponentiation,” AFIPS 
Conference Proceedings, 35, 701-706 (1969). 

14. N. W. Clark, W. J. Cody, and  H. Kuki, “Self-contained power routines,” 
Mathematical  Software Symposium at Purdue University, (April  1970). 
Proceedings to appear. 

15. I. Wladawsky, private  communication (1966). Also, an equivalent form, 
due  to  R. Dedekind,  appears in Survey of  Numerical Analysis, edited 
by J. Todd,  McGraw-Hill Publishing Co., Inc., New York, p. 22 (1962). 

pp 47-53 (July 1967). 

NO. 1 ’ 1971 EXTENDED-PRECISION LIBRARY 61 


