
The use of Jirst-order  predicate calculus in proving  correctness and 
other properties of programs is shown to be possible in practical 
situations. 

The necessary  concepts and theory are explained, and some practical 
examples  worked through. 

The application of formal  logic to programs  and  programming 
C. D. Allen 

Considerable progress has recently been made  in  the  application of 
the  methods of formal logic to  the proof of properties of computer 
programs.  Starting  from  the work of McCarthy  and Floyd,' 
formal  methods have been developed by Manna, Ashcroft, and 
others  to  the  point where standard  methods  can  be usefully applied 
to  a wide class of programs  to prove their correctness and to discover 
their limitations, if any. (By limitations, we mean restrictions on 
the  range of inputs  for which they will produce  correct results.) 

The formalism used is that of mathematics and predicate calculus 
of the first order, with occasional excursions into elementary set 
t h e ~ r y . ~  Where necessary, we make use of other axiomatic theories, 
particularly that of the  natural  number^.^ t 4  

In this  paper, we attempt  to show the  kind of results that  can be 
obtained,  the techniques required,  and their application to practical 
programs. Very little of the  material presented is original with the 
present author.  Theorem 4 is believed to  be so, and  the examples 
were constructed for this paper.  The sources of the  remainder  are 
listed in  the References. 

The theory is presented as necessary from the basic logical and set 
theoretic ideas. These latter  are summarized briefly in  the first 
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section to make  the  paper  self-contained; however broader knowl- 
edge of this basis such as given in References 3 and 4 is helpful. The 
second section develops the techniques along  the lines of Manna5-’ 
and A ~ h c r o f t ~ ” ~  in as elementary a  fashion as possible, while 
retaining  rigor. 

The logical basis 

Truth, falsehood,  and  propositions  are  the basic concepts of formal truth, 
(symbolic, mathematical) logic. The concept of a proposition may falsehood, and 
be informally described as  “any  statement that is true or false.” propositions 
Thus, “ 2  is less than 3” and “twice 4 is 7” are propositions-the 
first true,  the second false.” In the  formalism,  propositions  are 
represented by lower-case letters, p ,  q, etc.,  and their trulh-values, 
“true”  or “false,” by T and F, respectively. 

Various operators  are defined with propositions as operands, giving the combination 
new propositions. The truth-values of such  constructed  propositions of propositions 
depend only on the  truth-values of their constituents.  We shall use 
the following operators  and  notation: 

7P not p ,  true if p is false and vice versa 
P & 4  p and q, true if and only if each of p and q is true 
p V q p or q, false if and only if each of p and q is false 
p 3 q p implies q, false if and only if p is true  and q is false 
P ” 4  p is equivalent to q, true if and only i f p  and q are  both 

true  or  both false 

The order of precedence of these operators in expressions is that 
in which they are  written  above, with highest. We may note  that, 
with these definitions: 

Table 1 Truth-values of 

P & q = ) P  

T T  T T 
T F  F T 
F T  F T 
F F  F T 

l(P & 4)  = 1P v 14 

l(P v 4)  = 1P & 14 

P 3 4  K l P V 4  

l(P 3 4) = P & 14 

A syntactically correct expression (formula) formed from  proposi- 
tion  symbols  and these operators is called a well-formed  formula 
(wff) and itself stands for a  proposition. 

A  tautology is a wff whose truth-value is T whatever truth-values tautologies 
its  constituents  may have. For example 

I 
1 

is a  tautology. We may evaluate  its  truth-value in all possible cases 
as  in  Table 1. 
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Propositional A formal system called the propositional calculus may be set up with 
calculus a set of axioms (propositions assumed to  be true) and  a rule of 

inference, which allows one to infer true  propositions  from  other 
propositions. Within such  a system, a deduclion of one  proposition 
from  other  propositions may be defined as follows. A proposition 
q is deduced from a set P of propositions p l ,  p z ,  . . . in a deduction 
step if one of the following holds: 

1. Substitution: q is obtained  from p i  in P by substituting  a wff for 
all occurrences of one or more of the  propositional variables in 
pi. 

2. Modus  ponens: propositions of the  forms p and p 3 q are each 
in P .  

A deduction of qn from  a set P of propositions is a sequence of 
propositions ql, q2, . . . , qn such that each qi is obtained from 
the  propositions P and/or ql ,  q2, . * , qi- l  by one  or  more  de- 
duction steps. 

If q can  be  obtained  from p l ,   p z ,  . . . , pn by deduction, we write: 

P l r P z r  * * .  , P n k 4  

(Usually we omit  the axioms from such a list of p’s. Thus if q is 
deducible from the axioms and r,  we write: 

rl- 4 ,  

and if q is deducible from the axioms alone: 

t 4.) 
Given an  appropriate set of axioms (see for example References 3 
and 4), we may prove  the following theorems. 

The completeness theorem-If p is a tautology, then 1- p .  

The deduction theorem-If P, p q, then P t p 3 q and conversely. 

Using these theorems, we may derive rules of inference more power- 
ful than  modus ponens. For example: 

(P 3 4 )  3 ((P 3 r )  3 (P 3 4 r ) )  

is a  tautology.  Thus, by the completeness theorem 

t (P 3 4) 3 ((P 3 r> 3 (P 3 4 & r))  

whence, by the  deduction  theorem: 

c 

P 3 4 t ( P > r ) > ( P > q & r )  
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whence, by the  deduction  theorem  again: 

P > q , ~ > r i - p > q & r  

and this may be used in  modus  ponens  to deduce p 3 q & r from 
p 3 q a n d p  3 r .  

In developing a  theory, we are interested in obtaining general re- 
sults, such as: 

x2 - 1 = (x  + l ) ( x  - 1) 

This,  as  it  stands, is not  a  proposition, since its  truth  can only be 
determined after substituting  a value of x. With such a  substitution, 
the  statement becomes a  proposition. Such statements  are called 
predicates; they are usually written like functions, with their vari- 
ables made explicit; thus p(x ,  y )  may be  a predicate with variables 
x and y.  

Propositions may be  obtained  from predicates by substitution for 
their variables. However, the resulting statement usually is a mean- 
ingful proposition only if the values substituted are chosen from 
some restricted set.  (Thus  the predicate of x given above is meaning- 
ful if the values of x are numbers.) Such sets are called domains 

For choice of the variable from  a given domain,  there are three 
possibilities for a predicate p(x): 

1. It may be  true for all values of x from  the  domain. 
2. It may be  true  for some, but not all values from the  domain. 
3. It may be  true  for no values from the  domain. 

In case 1, the predicate is said to  be valid in (or over) the domain; 
in cases 1 and 2 it  is said to be satisfiable in the  domain;  in case 3 it is 
said to  be unsatisfiable in the  domain. 

There is a second  way in which a  proposition may be  obtained from 
a predicate, namely quantiJcation. For example, ‘>(x) is valid in the 
domain D of x” is a  proposition, since its  truth does not depend 
on any  particular value of x being substituted. This proposition is 
written 

( VX)(P(X)) 

and usually read “for all x, p(x).” The  part (V  x) is called a uniuersal 
quantij7er. 

Again, ‘>(x) is satisfiable” is a  proposition (we shall omit references 
to a  domain except where a particular domain is essential to  the 
argument). This is written 

( 3 X ) ( P ( X ) )  
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and usually read “there exists an x such that p(x).” The  part ( 3 x )  
is  called an existential quantifier. 

Note  that quantifiers refer to one specific variable. From a two- 
variable predicate, p(x ,  y) ,  we may form the eight propositions: 

1. (vx)(vY)(P(x, Y ) )  2.  (VY>(V’)(P(X, Y ) )  

3 .  ( 3 X ) ( V Y ) ( P ( X ,  Y ) )  4. (V” 3 x)(P(xt Y ) )  

5 .  (Vx)( 3 Y)(P(X,  Y ) )  6 .  ( 3 y ) ( V x ) ( P ( x ,  y ) )  

7. ( 3 x>( 3 Y ) ( P ( X ,  Y ) )  8. ( 3 Y)(  3 x) (P(x ,  Y ) )  

Note  that successive quantifiers are applied from right to  left; thus: 

( 3  X ) ( V Y > ( P ( X ,  Y ) )  = ( 3 X)[(VJJ)(P(Xr Y) ) l  

Also note  that 1 and 2 are equivalent, as are 7 and 8, but  that the 
other pairs  are  not equivalent to each other. (Consider p(x ,  y )  to 
be y = x 2 ;  then 3 is false but 4 is true in the domain of complex 
numbers, while 5 is true and 6 false.) 

We shall write 

( V x ,  y) (p(x,  y ) )  for ( V x) (  V y)(p(x , y ) )  and 

( 3 x ,  Y M X ,  Y ) )  for ( 3 x)( 3 Y ) ( P b ,  Y N  

With predicates of one variable, we have 

l(Vx>cP(~)) = ( 3 x)(dx))  and 

4 3 x”) = (Vx)(ldx)) 

Note  that  the definition of wff is  extended to allow the inclusion of 
propositions formed in this way. 

Frequently in deductions we shall omit universal quantifiers. An 
expression such as: 

q,(x) 3 q 2 G )  I 

in  which the x is not quantified we shall take to stand for the proposi- 
tion : 

and  similarly for expressions  with more variables. Such unquantified 
variables are called free in the expression and may be substituted 
for in a deduction step. Note also that substitution for explicitly 
quantified variables does not alter the meaning of the expression ; 
for example, 
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partial If a variable x is restricted to a  particular  domain, D, a  function 
functions f ( x )  may or may not be defined for all values of x in the  domain. 

and If it is, it is said to be total; if not,  it is said to be partial, over or in 
predicates the  domain D. Thus, for example, the  reciprocal  function, I/y, 

is partial over the  real  numbers, being undefined for y = 0. How- 
ever, it is total over the  natural  numbers.  Note  that by defining 

we produce  a  function  total over the  real  numbers, which may 
serve the  same  purpose as  l/y in many circumstances. Predicates 
are  functions of their variables producing values of T or F. Thus 
they too may be total  or  partial.  (Consider: 1 / y  < 0.) 

Proofs of program properties 

In this section, we examine the  application of logic to pro- 
grams.5-7.9 . l o  

the basic We first consider programs described by flow charts  and/or func- 
theory tional definitions. The  units of a flow chart  are of two types: function 

boxes, as shown in Figure 1 ,  and test boxes, as shown in Figure 2. 

Figure 1 Sample function box In  Figure 1, is a collection of variables on which the  program 
acts and/or which may affect the program’s action.  Thus,  all quan- 
tities, such as  the contents of machine registers, control blocks, 
etc., which can affect the results of program execution at any  point 

by execution of the  program.  This collection of values describes 
completely that  part of the system in which the  program is being 
executed that is relevant to  the program. It must  contain  enough 
information to determine  the succeeding action of the  program. 
We refer to this set of values as “the state.”  The function f takes 
part or all of the  state  as  argument  and gives  new values for  the 
state  as result. It need not  be defined for all possible values of its 
argument, i.e., it may be partial over the  domain of states. 

I i  
c = f(C) must  be included, as  must  those  stored values that may be changed 

Figure 2 Sample test box In Figure 2, p is a predicate on  states (assumed total),  and exit 
from the box is to node i + 1 if y(Q is true for the  state on entry 
and to node i + 2 if p(E) is false for this  state. 

(The test of a  partial predicate, defined only over part of the  domain 
# + I  1- ’(‘) Lli+2 of states,  can be replaced by evaluation of the  predicate followed 

by a test on its  truth-value,  stored as an extra variable in the  state.) 

We shall sometimes refer to  paths in such a flow chart:  a  function 
box provides a  path  from its entry  node to  its exit node; a test box 
provides two  paths  from its entry  node to its exit nodes. 
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Functions may be defined  by conditional expressions in the  manner 
of McCarthy.’ They may be nested, and their definitions may be 
recursive. Such a definition indicates an algorithm for evaluation 
of the  function; e.g., the definition: 

f(n) = ( n  = 0 f 1, n # 0 + n.f(n - 1)) 

(consisting of two clauses each giving one case of the definition) 
gives the value 1 for n = 0 directly. For other positive integral 
values of n, it indicates how the value may be  obtained by recursive 
use of the definition. Thus,  for n = 5. we calculate the sequence: 

5.f(4),  5.4.j(3),  5.4.3.f(2),  5.4.3.2.f(1), 

5.4.3.2.1.f(0),  5.4.3.2.1.1 

which terminates when the first clause of the definition is used. 

We  use the term point to mean a  point in execution of a  program 
which control may be said to have reached. Thus  it includes all 
nodes of a flow chart  program,  and also the  points where a  function 
definition such as  that above is entered or left.  There is a set of 
identifiable values of program variables at each such point.  The 
term path is used to denote  a possible flow of control between points, 
including points within function definitions. Considering two adja- 
cent  points in a  program,  the  operations on the  state  that  take 
place between them are designed to produce specific properties of 
the  state  variables; e.g., a multiplication produces the property 
that one variable is the  product of two others.  The  operations 
between particular  points  are chosen by the programmer on  the 
assumption that  the state already has some properties;  e.g.,  that 
one of the variables is positive and  another  nonzero. These pro- 
perties can be expressed formally as predicates, q(E), of the  state. 
The  determinate action of the  program between the nodes sets up  a 
relation between such properties: if the earlier state has the assumed 
properties summarized in qt ( t ) ,  then the  latter will have the derived 
properties summarized in q t ,  ,((). This “if . . . then” relation is 
formalized as implication. Other  conditions may be included in 
this  implication; in particular,  the  conditions that must hold in 
order  that  a function evaluation shall succeed with a defined value 
f (x)  for  input x may be summarized in a predicate t (x ,  f(x)) and 
included with q i .  

Thus we may set up  wffs of the predicate calculus giving general 
expression to each such relation,  and  attempt to deduce formally 
(and  thus verifiably) from this basis the properties of the  program. 
Hence with each node of a  program, we associate a predicate symbol 
q i  (with a distinct subscript), assumed to  take a  state as an argu- 
ment. With each function that may be evaluated in the  course of 
execution, we associate a predicate symbol ti (with a distinct sub- 
script) assumed to  take twq states  as arguments. Using these symbols, 
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Figure 3 Function box 

Y i  
I L+1 

2=f$O 

10 

~~ 

and free state variables E ,  t ’ ,  . . . , ten), we construct  a set of wffs 
of the first-order predicate calculus. The complete rules for such 
constructions  are very lengthy and detailed, and we do  not attempt 
to state them here. Later we shall make explicit the objectives of 
the  construction; when these are  understood,  the rules can  be 
easily generated for every  specific case. We give some of the simpler 
rules now. They may be intuitively justified by taking  the predicate 
q%(E) to mean “the associated node is reached during execution 
with state E,” and  the predicate t ,(E, t’) to  mean “if the associated 
function evaluation is started with state E ,  then it will terminate 
with state E’.’’ 

Thus, for a function box of a flow chart,  as shown in  Figure 3, the 
wff is: 

s,(E) & ti({, E ’ )  3 4i+l(E’) 

For a test box of a flow chart, as shown in  Figure 2, two wfYs are 
formed,  one for each path: 

4%(E) & P ( 0  3 4i+l(E) 

4i(E) 6% ,P(E) 3 q i + m  

For  a function definition of the  form: 

f l ( 0  = 

P A 8  4 f P ( 8  

P 3 ( 0  -+ f 3 ( 8  

P A 9  + fn(E) 

the wfYs are: 

41(E) & P A 8  3 4 2 ( 0  

4 1 a  8L l P Z ( 0  P 3 ( 8  3 4 3 ( 8  

41(8 & l P Z ( 8  8L l P d 8  8L * . . P n ( 8  3 4 m  

and : 

% ( E )  & P Z ( 8  & tz(E9 E ’ )  3 t 1 6 ,  t ’ )  

416)  8L lP&)  & P3(E) 8L h ( E ,  E ’ )  3 tl(E, E ’ )  

41([) & lPZ(‘$) & lP3(E)  & ” .  P n ( 0  & tn(4,  E ’ )  3 tl(E, E ’ )  
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where, in the  last  two examples, the  subscripts have been chosen 
to match  those of the  function definition. In practice, all the q’s 
and 2’s in  the  W  formulas  for a complete  program  must  be given 
distinct  subscripts. 

In the  last  two cases, we have omitted  some q predicates, on the 
grounds  that  the formulas as given are immediately deducible from 
those including additional 4’s. For example, for  the  function f l  in 
the  last example, we could have written: 

I 
S I @ )  3 q z ( 0  

SZ(‘9 & & ( E ,  E ’ )  3 d t ’ )  

q&’) & ta(E’, E ” )  3 q4(E”) 

etc. From these we may deduce  the  formulas given ; as we shall I 
briefer. 

I see later, the set given  is adequate for our  purposes  and somewhat 
I 

i 
~ Note  that we must, in the process of definition, ultimately reach 

“basic” functions,  i.e.,  functions that  are defined by axioms, or 
left undefined. If f ( ( )  is such a  function,  under  the  intuitive  meaning 
of the t predicates given above, we have that 

which is the  W  formula for such  functions. Thus the  formation of 
W  formulas  terminates when such  functions  are  reached. If f is a 
partial  function,  and  the predicate p ( i )  is true if and only if i is in 
the  domain o f f ,  the  formula is modified to 

I s(0 & P ( 0  3 t 6 ,  fQ)> 

We call the full set of  wfYs obtained in this way for a program 
I 

I “the  W  formulas” for the  program. 

We claim that the  formal system, based on appropriately  constructed 
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W  formulas as axioms, is related to execution of the  program  in  a 
specific and useful way. 

In what follows, we shall be considering the use of  specific pre- 
dicates  in place of the symbols qt and t i .  To keep  the  description 
general, we shall use +i and T ,  to denote specific predicates being 
substituted  for q i  and t i ,  respectively. 

We shall also be concerned with sets of executions of the  program 
determined as follows. We assume that, for  the  programs we are 
considering, one execution is completely determined by the initial 
state k with which execution starts at node 1. Given  a specific pre- 
dicate,  this  determines  a set of states E for which +](C;) is true; 
each of these determines  a single execution of the  program. The 
whole set of such executions we call “executions of the  program 
with initial  condition 4, .” 

We now turn  to the  question of the  properties we wish to consider 
of the  state at the  various  points. To determine exactly what is 
happening in execution of a  program,  the  properties  one needs are 
such as  to distinguish between values that  do arise in execution 
and values that  do  not.  Thus if the  domain of x is the integers and x 
has only the values 1, 2, 4, 5 when execution reaches point i, an 
appropriate  predicate would be: 

qi(x) = 0 < x I 5 & x  # 3 I 
Such a predicate, true only of the values that  do arise in execution, 
is called a  “minimal valid” predicate, and tells only the  truth. 

However, we may need to know merely that  at this  point x is posi- 
tive-e.g., to ensure success of the  square root function that follows. 
A predicate : 

q i ( x )  = x 2 0 

would thus be adequate, even though  it is true for values other  than 
those arising in execution. Such a predicate is called a “valid” 
predicate, and tells us more  than  the  truth. (Minimal valid pre- 
dicates  are minimal in the sense that they are satisfied by a smaller 
set of values than valid predicates.) 

More precise definitions of these terms follow. 

Dejinition I: The set &, +a, . ’ . , &, +<,, T ~ ,  r2 ,  . . . of predicates is 
called “a set of valid (4’s) and convergence (7’s) predicates” or 
‘‘VC predicates” for  the  program  for initial condition dl if they 
satisfy the following criterion. In the set of executions of the  program 
with initial condition dl,  +$(E) is true for all states with which the 
associated node is reached,  and T , ( E ,  E ’ )  is true for all pairs of states 
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f and f’ with which an evaluation of the associated function  starts 
and finishes, respectively. 

I 
Note  that vc  predicates may be  true  for  states  other  than  those 
mentioned in  the definition. 

Dejinition 2: The set 42, 43, . . . , &, &, T,, T ~ ,  . . . of predicates is 
called “a set of minimal valid (4’s) and convergence (7’s) predicates” 
or “MVC predicates” for the program with initial condition 4,  if 
they satisfy the following criterion. In the set of executions of the 
program with initial condition 4,, 4i(t)  is true i f  and only i f  the 
associated node is reached with state f ,  and ~ ( 5 ,  t’) is true i f  and 
only if an evaluation of the associated function  starts  and terminates 
with states 5, t’, respectively. 

Note  that, under these definitions, a set of MVC predicates is a 
set of VC predicates, but  the converse may not be  true. 

i Examples and theorems 
I 

A trivial example may help to make these ideas clear. Consider example 1 
the  program shown in  Figure 4, in which 

Figure 4 Example 1 

3 IF 
t Here we have assumed that 20-x, and 2x are  total functions of x, x = ~ ~ - - x  

so that no t predicates for them are  required.  (For we have, for 
example : 

from which we may deduce immediately: 
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which we have  used as W6. If there exist predicates +*, 720, and +,, 
that satisfy the first  two equations, they  also  satisfy the third, since 
it is deducible from them. Conversely, if +4 and +o satisfy the third 
equation, then 

7*0(x, Y )  = +4(x) + O ( Y )  

together  with +4 and +o satisfies the first  two. Thus the elimination 
of 1 in this manner does not affect the following arguments.) 

I 
If we take as an initial condition 

d1(x): x > o  

I 

then we note that, for  such initial x’s, at node 4, x must  be  less 
than 10. Thus, 

is a set of VC predicates  for initial condition &. Note, for example, 
that c#I~(x) is true for x = 3, a value that never  arises in execution. 
For the same initial condition: 

may  be  seen to be a set of MVC’s. I 
By the definitions, if ($9, 79 j is a set  of MVC predicates and {+ i ,  7,  } 
a set of VC predicates, the set of states or pairs of states for 
which or 7; is true is included in the set of states or pairs of states 
for  which +< or 7i is true. Thus: 
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7;(f,  t ’ )  3 7~({,  t ’ )  
Further, all MVC sets are logically equivalent, since they determine 
the  same sets of states  and  state  pairs. 

In the example above, since only a finite number of states  could arise 
in execution, it is not difficult to verify that  the predicates chosen 
are V c  and MVC sets (by notionally  running  all  distinct cases). 
Generally this is not possible; however, a test for VC sets is given 
by Theorem 1 below. This  test is sufficient, but  not necessary; as 
we shall see by example, some VC sets do  not satisfy this  test.  How- 
ever, Theorem 2 shows that  the MVC set must satisfy this  test, so 
that  the test is useful. 

The basic results of Manna, as extended by Ashcroft, are  the fol- 
lowing theorems : 

Theorem 1: If a set I + $ ,  7 ,  } of predicates and an initial predicate 
satisfy the W formulas for a  program when substituted for the 

qi and 2, (i.e., the resulting formulas  are  true),  then  the set is a 
vc set for initial condition 

A sketch of a proof of this  takes  the following form.  First we show 
that, for a W formula, if the q’s and t’s on the left are replaced by 
members of a vc set and if the  formula is true,  the q or t on  the 
right  must be in a VC set. For example, for  the  formula: 

4i(O 8l P(5)  3 4i+l(O 

obtained  from  one leg of a test box, we argue as follows. If &({) is 
in a vc set and if the  test box is entered with a  state t1 (in any of the 
set of executions), then 

+ i ( M  

is true. If p(  E,) is true,  then  the T exit will be taken with state E l .  Also 
if 

+ i 6 )  & P ( 0  3 4i+lU) 

is true, since both terms  on  the left are  true for t1, 

+ i + 1 ( 5 1 >  

is true. Since this  argument  holds for all appropriate &’s, there 
must be a VC set containing +i and + i + l .  

Using a similar result for each W formula, we see that, since all the 
W formulas  are  true,  there  must  be a vc set containing all the 4’s 
and 7’s. The only exceptional cases are  the  formulas involving q,,  
for example, 
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41(0 6% t l ( F 5  E’) 3 4 2 ( E ’ )  

In such cases, the  argument is modified to say that if 

416) c% TI({, t ’ )  3 +&’> 
is true  and T~ is in  a vc set for an execution such that +1({1) is true, 
then +2 is in a VC set containing T~ for initial condition 

Theorem 2: The set of minimal valid and convergence predicates 
for the  program  for initial condition satisfies the W formulas 
when substituted  for  the q’s and t’s with +1 substituted  for ql .  A 
similar sketch of a proof may be given. For example, for the  formula 

(corresponding to nodes i and k being connected through  an evalua- 
tion of a  function f i ) ,  if c#~({) and ~ ~ ( t ; ,  t’) are  in  an MVC set,  then by 
definition + & ( E l )  and 7?(t1, t2) are only true if execution reached 
node i with state E l  and if the function evaluated with t1 produced 
E2. In such cases, execution must reach node k with state {*; hence, 
since +k(,$) is in  the MVC set, +k(t2)  must  be  true.  Thus 

I + i ( O  & Ti({> E ’ )  3 + k ( t ’ )  

Again, the  argument for formulas involving +1 depend on +1 being 
true  rather  than being in  the MVC set. But the set is for initial  con- 
dition +,, i.e.,  it  is an MVC set for executions for which &({) is true 
for the states at node 1, which gives  us what we require. 

I 

Returning  to Example 1, consider again the W formulas  and  the set 
of predicates stated to be  a vc set for initial condition x 2 0. Sub- 
stituting in  the W formulas, we have: I 

I 

w1: X > O & X 2 5 > X 2 5  

w2: x 2 0 & x < 5 3 O < x < 5  

w3: x 2 5 3 0 < 7 < 1 0  

w4: O ~ X < 5 > O < X < 5  

w5 : 0 I x < 5 & x ’ = 2 x > 0 I x ’ < 1 0  

W6: 0 ~ x < 1 0 3 1 0 < 2 0 - x ~ 2 0  

w7: o < x < 5 3 2 x = 2 x  

and these are all true.  Thus, by Theorem 1, the predicates are indeed 
a vc set for initial condition x 2 0. 

Note  that there may well be vc sets that do  not satisfy the W for- 
mulas. For example, if  we take  the above set but change &(x) to 
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x 2 0, the set is still a vc  set, but does not satisfy W4. Note  also 
that in checking that these predicates satisfy the W formulas, we 
have used properties of the  operators <, =, etc., between states, 
i.e., we are using results  from  the theory of the  domain of states. 

The objectives of the specific construction of the W formulas  from 
specific paths in the  program is that the  proofs of Theorem 1 and 
Theorem 2 can  be  carried  through with them. 

In  the  light of the  above  theorems, we consider  the cases in  which F 
is a member of an MVC set,  for some node i. Since a minimal valid 
predicate is true for precisely those  states with which this  node is 
reached, if F is in an MVC set,  the  node  can never be reached. In 
particular, if F is the  predicate associated with the exit node,  the 
program  does  not  terminate. Conversely, if a  program  does not 
terminate, F is the minimal valid predicate for the exit node. F is 
also valid for this node  (as indeed is any predicate). Thus we can 
prove termination by proving that  the minimal valid predicate for 
node 0 cannot be F. By Theorem 2 ,  this will be so if there is no set of 
predicates satisfying the W formulas with F substituted for qo, dl 
for q,,  and  the  initial  condition q51 assumed to be true. Since these 
formulas (with substitution for q1 and qo only) are wff‘s  of the first- 
order predicate calculus, and since this  theory is both  complete 
and consistent, this is so if the  formulas  are  not  consistent;  i.e., 
from  them  one  can  deduce  a  contradiction. 

Theorem 3 :  If the W formulas, with substituted for q1 and F 
substituted for qo, are inconsistent with the  truth of c$~, then the 
program  terminates  for  initial  condition q51 (Manna, extended by 
Ashcroft). 

Continuing with our trivial example, with the required substitutions 
we obtain: 

1. x 2 0 & x  2 5 3 q2(x) 
2. x 2 0 & x  < 5 3 q3(x) 

3. q 2 b )  3 q4(7) 
4. q3(x) 3 qdx) 
5. q3(x) f d X ,  x’) 3 qdx’) 

6 .  q4(x) 3 F 

7. qdx) 3 tdX, 2x) 

and  from 6 we obtain  immediately: 

8. ,q4(x) 

and  deduce  (from  the expressions identified at the  right)  as follows: 
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example 2 

Figure 5 Example 2 

18 

9 .  192(x) 8, 3 

10. x < o v x < 5  9 ,  1 

1 1 .  l d X )  v $,(X, x’) 8,  5 

12. lq3(X) v ,q,5(x) 11, 7 

1 3 .  - 1 q 3 ( ~ )  12, 4 

14. x < O V x 2 5  13, 2 

1 5 .  x < 0 14, 10 

which contradicts &(x), i.e., x 2 0 in this case. Hence, the  program 
terminates for x 2. 0. 

As a  more significant example, we take  the  program in Figure 5. 

Without  further specification of the  functions involved, this  rep- 
resents the general case of a single loop, with f4(E) being the initializa- 
tion  operations  and f,(<) the  computations  in  the  loop. From this 
information alone, we can prove that, under some specific assump- 
tions on f4, f5, and p ,  the  program will terminate  for any input  state. 
We thus  obtain  a very general result concerning loops. We have 
formulas as follows: 

w1:  s18> 3 q4(I) 

w2: s16) 6% t4(4, I‘) 3 s26’) 

w3: q 2 ( 0  6% P ( 0  3 qd.9 

w4: q 2 ( E )  6% l P ( 0  3 s m  

w5 : q3(8 3 qd5) 

W6: q 3 ( 8  6% t 5 ( E ,  4’) 3 s z ( I ’ >  
w7: 94(4) 3 t4(4, f4Q)) 

W8: d o  3 t A 4 7  f&)) 

where we have assumed that  the functions involved always terminate. 

If  we substitute for q1 and F for qo in WI, W2, and W4, we obtain: 

1 * + l ( O  3 q4(I) 

2. + 1 ( 0  6% t 4 ( t ,  I’) 3 d 4 ’ )  
3 .  1s&> v P ( ‘ 9  

From these and  the remaining W  formulas, we deduce: 

4. 9 2 ( 0  6% P(4) 3 9 5 ( 0  w3, w5 

5 .  3 t 5 ( 4 ,  f 5 ( 0 >  4, W8 
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5 ,  w3 
6, W6 

and by repeated use of 7: 

where we write ! ; (E)  for fs o f d  0 . . . 0 fd(t) with r applications of the 
function, and f :  ( E )  = E .  

Now suppose that, for  some k :  

then 

8, A10 

3, A9 

11, 12 

1, w7 

14, 2 

Hence by 13 with t1 = f4(E) 

Thus, under assumptions A9, A10,  with El = f4(t), this program 
terminates for input condition &(t). Since this holds for all &, 
assumptions A9 and A10 ensure termination of the program for 
all inputs. As a simple application of this result, consider the program 
in  which 

n being an integer variable and X the remainder of the state variables. 
Let : 

where n, is a constant value 2 0, 

Then with: 

NO. 1 . 1971 APPLICATION OF FORMAL LOGIC 19 



Figure 6 Example 3 

ENTRY 

Y = ”  I ’  
--I2 

I F 3  o \  

I 4  

LENGTH(X)C l-Y=YIIX 

Y=Y 11 SUBSTR (X, LENGTH (X). 1): EX’T 

X=SUBSTR (X, 1. LENGTH (X)-l): 

I 

and A9 and A10 become: 

n l - k = O  

O < r < k > n l - r # O  

Remembering that n, 2 0, each of these is satisfied by k = n,. 
Hence the  loop terminates. 

The functions f 4  and f5 could include other  operations on X that 
do not alter n without affecting the above argument.  Thus we have 
shown that setting a  counter positive or zero, testing for zero at 
the head of the  loop, and  counting  down within the  loop will ensure 
termination. 

example 3 

Practical applications 

As another practical example, consider the (€%/I) program shown 
in Table 2 written to reverse a  string.  The flow chart for this  program 
is shown in  Figure 6. 

This  program uses variables X,  Y, which are varying length character 
strings, the  constants ” and 1, functions LENGTH, SUBSTR, and 
operations 1 I (concatenation), 5 ,  -, and assignment. We  use 
the following notations: 

N for ” (the null string) 

b(A) for LENGTH (A), where A is a string 

X[p:q] for SUBSTR ( X ,  p ,  q - p f  l), where X is a string and p and q 
are such that SUBSTR is  defined for these arguments 

Table 2 Example 3 listing 

REVERSE: PROC(X); 
DCL X CHAR(*)  VARYING, 

y = I ! .  

THEN GO TO L5; 
Y = Y 1 1  SUBSTR (X, LENGTH(X), 1) ;  

GO TO L2; 

END ; 

Y CHAR(LENGTH(X)) VARYING; 

L2 : IF LEGGTH ( x )  < = I 

X = SUBSTR (X, 1, LENGTH (X) - 1); 

L5 : Y = Y 1 1  x ;  
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We now prove by induction 

as follows: 

by 1 1, noting that: 

b(X[l: n]) = n, and if 

Z = X[1: b ( X )  - r] then 

Z[1: b(2 )  - 11 = Z[1: b ( X )  - r - 11 

= X[1: b ( X )  - r - 11 and 

Z[b(Z)] = Z [ b ( X )  - r] = X [ b ( X )  - r] 

14. ~ ( r ,  X ,  Y )  8~ b ( X )  > r + 1 3 a(r + 1, X, Y )  12,  13 

15. q z ( X ,  Y )  b ( X )  > 1 3 d l ,  X ,  Y )  11 

16. q d X ,  Y )  & b ( X )  > r + 1 3 P(r + 1 ,  X ,  Y )  

by induction from 14 and 15. 
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10. 04(X, Y )  = p 4 ( X ,  Y )  v X = A & Y = A[a]  & a  > 1 

1 1 .  + 5 ( X ,  Y )  = ( X  = A[1]  

& Y = A[a]  1 1  A [ a  - 1 1  1 1  . . .  I (  A [ 2 ]  

V X = A & Y = N & a < l )  

12. & ( X ,  Y )  = ( Y  = A[a]  1 1  A[a  - 11 1 1  . . .  1 1  A[1]  

V Y = N & a = O )  

13 .  + F ( X ,  Y )  = 1 5 i < b ( X )  

& O  5 j 5 b ( X )  & i + j - 15 b ( X )  

14. T F ( X ,  i, j ,  Y )  = ( Y  = X [ i :  i + j - 11)  

Then,  substituting in the W formulas, we show that we obtain 
true formulas. For example, for W5 we have: 

1 5 .  ( p S ( X ,  Y )  V X = A & Y = N & u > 1) & Z = Z [ b ( X ) ]  

3 p , ( X ,  Y 1 1  Z )  v x = A & Y ( 1  z = A [ a ]  & a  > 1 

Proof: Assume that p 3 ( X ,  Y) is true, i.e., 

and let nl be such an n, then: 

n, being such an n. Thus 

Also we have: 
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26. X = A & Y = N & Z  = X[b(X)] 

3 Y I I  z = 25 

27. 3 Y I (  Z = A[a] 26, 3 

28. X =  A &  Y =  N & a >  1 & Z =  X[b(X)] 

3 x =  A &  Y I I Z =  A [ a l & a >  1 2 7  

29. ( p 3 ( X ,  Y )  V X = A & Y = N & u > 1)  

& z = X[b(X)I 3 p 4 ( X ,  Y [ I 2) v X = A 

& Y I I Z =  A [ a ] & a >  1 23, 28 

Q.E.D. 

Again, taking W2 we have: 

30. ( p 2 ( X ,  Y )  V X = A & Y = N) 

& b ( X )  5 1 3 x = A111 

& Y = A[al 1 1  A[a  - 1 1  1 1  * * *  1 1  A121 

V X =  A & Y =  N & a < l  

Proof: Assume that p2(X,  Y) is true, i.e. 

31 .  ( 3 n ) ( X  = A[1:  n] 

& Y = A[a] 1 1  A [ a  - 1 1  1 1  . . .  1 1  A [ n  + 11 

& l l n < a )  

and let n, be such an n. Then: 

32. X = A [ 1 :  n13 

33 .  Y = A[al ( I  A [ a  - 11 1 1  I I  A[n1 + 11 

34. 1 5 n,  < a 

35 .  b ( X )  5 1 3 n, I 1 32 

36. > n 1 = 1  34, 35 

37. 3 Y = A[a] 1 1  A [ u  - 1 1  [ I  1 1  A [ 2 ]  36, 33 

3 8 .  3 X = A [ l ]  32, 36 

39. 3 X = A[1] 

& Y = A[a] 1 1  A [ u  - 11 ( 1  . . .  I [  A[2] 37, 38 

40. p 2 ( X ,  Y )  & b ( X )  5 1 

3 x = A[1] 

& Y = A[a] 1 1  A [ a  - 1 1  1 1  . . *  1 1  A[21 3 1 ,  39 
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41. 3 C 40 

where C is the  right-hand side of 30. 

42. X =  A &  Y =  N & b ( X ) <  1 

> a l l  

43. > X = A & Y = N & a < l  42 

44. 3 c 43 

45. ( p , ( X ,  Y )  V X = A & Y = N) & b ( X ) <  1 > C 41, 44 

Q.E.D. 

Similarly, we may  prove that  the remaining  W  formulas, when 
the 4 and T are  substituted for the q and t ,  are  true.  Thus, by 
Theorem 1, &(X, Y) is a valid predicate for the exit node  for  input 
$l(X, Y). Hence for inputs X = A (and  any Y), the  program  com- 
putes  the reverse of A ,  in Y on  termination. 

minimal So far,  it  appears  that the  proof of termination can tell us  nothing 
valid concerning  the  function actually computed when and if the  program 

predicate terminates. We are interested particularly  in discovering a minimal 
valid predicate for the output point, since it is this that excludes 
all values that  are  not  computed. However, the  methods presented 
so far only tell us whether a given predicate  is valid, not whether 
it is minimal,  and they only do this if  we can  construct  a whole 
set of predicates  for  the  program. 

If a  program successfully computes f(tl) from an  input  state t1, 
the  minimal  predicate for the  output  point  is: 

for  input  condition : 

In this section, we show how a  proof of termination may be  con- 
structed that gives I(<) explicitly if the  construction succeeds, 
without  any need to guess predicates for the  intermediate  points. 

We now consider in  more  detail  the sets of states  corresponding 
to the predicates in a VC or MVC set,  and  the  relations within and 
between VC sets and MVC sets. 

Firstly,  a given input  condition &(E) determines  a  set: 
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of input  states; each of these determines a single execution of the 
program. The set of executions so determined gives  rise to a set 
of states at each point of the program; the minimal valid predicates 
for  input condition 41([) correspond precisely  with these sets. 
The minimal convergence ( t )  predicates determine sets of pairs 
of states (6, 6’) such that  the corresponding function is entered 
with state 4 at least once in the set of executions, and then terminates 
with state i’. If Ti is the set of pairs for some function and if Si 
and Si+1 are the minimal valid sets for the nodes on either side of 
the function, then we have: 

2 .  4 E si 6% (6, 4’) E Ti 3 6’ E si+1 

which  is the set-theoretic form of the W formula: 

3 .  S i ( 4 )  8t ti([, 6’) 3 4i+l(6’) 

Thus the minimal convergence predicates express the mapping 
between the input and output states of a function; the W formulas 
relating the q predicates express the mapping between the minimal 
valid sets at the appropriate nodes, set up by execution of the 
function or the program between the nodes. It is this property 
that ensures that the W formulas reflect the action of the program. 

The sets corresponding to a vc set of predicates are supersets of 
those for the MVC set, that is, they contain the minimal valid sets, 
but more states besides. The fact that a set of predicates satisfies 
the W formulas corresponds to the correct mappings holding 
between these enlarged sets. Since implication corresponds to the 
inclusion relation between sets, the relations expressed  by the W 
formulas allow the sets to become larger (become valid rather 
than minimal) but never to get  smaller-thus  they must always 
contain the minimal sets. 

These relations between sets of states are  the fundamental features 

rather deeper results concerning the logic. 

Thus, suppose that we can‘deduce from the W formulas a formula 
of the  form: 

4.  41(8 &L P ( 4 )  3 so(f(4)) 

where p is  some predicate and f some function. (The deduction 
may  involve properties of the states and the functions and operations 
used in the program.) Consider an input condition 6 = El, where 
6, is a single state such that: 

5 .  P(61) 

~ of a program. By appealing directly to them, we may obtain some 
i 
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and this input  condition.  Then, by Theorem 2 ,  the MVC set satisfies 
the  W  formulas; hence it satisfies 4 above, since this is deducible 
from  the  W  formulas. 

Thus : 

since p(El) is true. Now the set SI of inputs we are considering 
contains just  the state El .  We assume that  the  program is determinate, 
i.e., that  for  a single input  state, there is not  more  than one possible 
output  state. By 8 above, since 4: is minimal, there is one  output 
state, f(&), hence 

Thus we have Theorem 4. 

Theorem 4 :  If ql(k) & p(E) 3 q,(f(()) can  be deduced from the 
W  formulas,  then for any input  satisfyingp,  the  program terminates 
and computes f ( E ) .  

If the whole program, regarded as  a single function, is embedded 
in  a larger program,  it would be useful to have a single W  formula 
for it.  Theorem 4 shows that  an  appropriate formula is: 

where p(E) is that appearing in 4. This derivation allows us to  treat 
programs piecemeal and to prove properties of parts independently, 
later carrying through  a study of the whole program. 

the examples Continuing with Example 2,  from the  W  formulas for the  loop 
concluded program, we may deduce as before: 



and  this  formula has the required form.  Hence,  for  initial  states 
satisfying: 

(0 I r < n 3 ~ ( f ;  0 f4(t1))) & d f ;  0 f 4 ( t 1 ) )  

the  program  terminates with state 

Note  that if for some k 

then the least  number principle3 applied to 

guarantees that there exists an n such that the  condition for termina- 
tion is true. Hence, a wider condition for termination is 

for  the  input  state El, and  the IZ in the  formula  for  the output  state 
is the least such k .  

For  the string reverser in Example 3 ,  we may deduce  from  the 
W formulas  a  formula of the  required  form  as below. Noting that 
there is a  loop from node 2, we start  there  and  deduce  the  function 
computed  around  the  loop. 

0 .  J ,  * v u  

7. b ( X )  > 1 3 1 I 1 I b ( X )  

& O  5 b ( X )  - 1 I b ( X ) & b ( X ) -  1 I b ( X )  

8.  q p ( X ,  1 ,  b ( X )  - 1) & b ( X )  > 1 

3 f F ( X ,  1, b ( X )  - 1,  X[1: b ( X )  - 11) 7 ,  w 9  
~ 

9 .  q 2 (  x, Y )  & b ( X )  > 1 

5, 6 ,  8 ,  W7 





20. b ( X )  = 0 3 rev (X) = N 

and allow N [  11 = N ,  then 16 and 18 give 

21. ql(X, Y )  3 q o ( X [ l l ,  rev (X)) 

Thus  the program  terminates with Y = rev(x> for all inputs. 
(Since there is no p ( X )  term on the  right,  there is no restriction on 
the  inputs.) 

Some  further techniques 

As our final example, to demonstrate  some  techniques in producing 
the required deductions, we take  the PL/I program shown in Table 3. 

We shall use the following abbreviations  throughout  this  section: 

g ,  = LBOUND (A, 1) h, = HBOUND (A, 1) 
g ,  = LBOUND (A, 2) h, = HBOUND (A, 2) 
g 3  = LBOUND (B, 1) h,  = HBOUND (B, 1) 
gl  = LBOUND (B, 2) hq = HBOUND (B, 2) 
g ,  = LBOUND (c, 1) h, = HBOUND (c, 1) 
go = LBOUND (c, 2) h, = HBOUND (c, 2 )  
A’ = the  transpose of the  matrix A 
A ,  = the  ith rqw of A (a vector) 
A: = the  ith  column of A 
ut i  = the element of A in the ith row and j th  column of A and 

similar notations for B and C .  

The flow chart  for  the  program is shown in Figure 7. 

The DECLARE statements tell us  the  domain of the respective 
variables. We shall treat FIXED  BINARY as integers, and FLOAT 
DECIMAL as real  numbers, ignoring the differences from these 
domains. In PL/I,  LBOUND and HBOUND are defined for  the 
uses  we make of them, so we treat  them  as  total  functions. 

We first treat  the section of program between nodes 5 and 10, 
noting that this section has one  entry  and  one exit. Thus we attempt 
to derive the equivalent function, so that we may replace it by a 
single function  box. The variables on which it operates are c i j  
and k ;  i, j and A and B are  parameters that  are unchanged.  Thus 
we take  the “state” to be ci and k ,  and write W  formulas as follows: 

w1: qs(Cti, k )  3 qa(0, k )  

w2: qS(c,i9 k ,  3 q 7 ( c t i ,  gZ) 

w3: 97(cij, k )  k > hz 3 q10(cii9 k )  

w4:  qdcil, k )  & k 5 hz 3 qe.(cii, k )  
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Figure 7 Example 4 

ENTRY 

1=g 

1‘ 
I = B 6  

IF 
c =o 

4 

, = , + I  c-” 
11 

3 1  



I note 1 (In W5, we use the  point to indicate multiplication.) 

In constructing these formulas, we have ignored any possibility 
that references to elements of A, B, and C may fail because sub- 
scripts are outside of the declared range. 

From  the W  formulas, we deduce the  initial  state at q7 as follows: 

1 .  4 d C i i ,  k )  3 47(0, gz> w1, w 2  

and  the general function  around  the loop: 

Thus, once around  the  loop  adds aik.bki to cii and 1 to k .  From 1 
and 3, it is evident that  the general form of cii will be 

for Some s. However, 0 (in formula 1) is not  of this  form, SO we 
deduce one more  turn  around  the  loop: 

4.  45(Cii, k )  g ,  I h, 3 47(aio2.bo2i9 gz + 1) 1 ,  3 

and  this gives the case s = gz. From 3 we now deduce the recurrence 
relation : 

1 & s  + 1 I h, 3 47( 2 ai,.bl;, s + 2 3 
r = o a  

whence, by induction  from 4 and 5: r 
We come out of the  loop, by W3, when the second argument 
of q7 is > h,. Hence, in 6 we put s = h, - 1 and use W3 to get: 
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The exit from  this loop is taken, by W8, if the second argument 
to q4 is > h,. Thus in 18 we put Y = h6 - g6 - 1 and  obtain: 

18 

19,  W8 

This is of the  form required for Theorem 4, so we get: 

We now treat  the whole program,  substituting  a  function, with W the 
formula 21 above, for the section between nodes 3 and 11. The complete 
W formulas  are as follows: program 

and  from 21 in the previous section: 

Here we have introduced  the  function G(C, Di, i )  to  denote the 
result of substituting D, for  the  ith row of C. From these formulas 
we may  deduce: 



24. '> q,(G(C, P,(h,), i )#  i + 1, h, + 1, hz + 1 )  23,  W17 

Now define: 

25 .  Q(gs)  = G(C,  Po,(he), g5) 

26. Q(g5  + r )  = G(Q(g, + r - l), P,,+,(h6), g5 + r )  

then : 

and by induction from 28 and 29: 

The exit from  this loop occurs, by W14, when the second argument 
of q2 is > h,. Thus we put r = h,5 - gs  and  get: 

Thus by Theorem 4, the  program  terminates if 

and  computes Q(h,). 



and the functions f and G were defined informally as follows: 

f(C,, x, j )  = Ci with x substituted  for  its jth element 
G(C, D ; ,  i) = C with D, substituted for its  ith  row. 

Thus  from 14 and 15, P,(h6) is a vector whose elements indexed 
by j = g6 to h, are A , . B ; ;  these elements are exactly those of C, .  

Similarly, by 25 and 26, Q(h,) is a  matrix whose rows, indexed 
by i = gs to hs, are P,(h,). These are exactly the rows of C.  Thus 
the elements of Q(h,) are A, .B;  for 

and these are precisely the elements of A . B  if 

3 3 .  g, = g ,  & h,  = h5 & g4 = g, & h, = h, 

so we have that  the  program  computes A.B under  the  conditions 
(from 32 and 33): 

Summary comment 

The techniques required and results obtainable when applying 
logic to programs  are well illustrated by Example 4. Firstly, it 
demonstrates  the possibility of treating program segments in 
isolation,  and using the results obtained directly in their condensed 
forms in a  treatment of the  containing  program.  With  this technique, 
the  amount of formalism involved at any one stage in the proof 
can be kept within reasonable bounds. It also shows that any 
program  computing  the dot product  under  the  appropriate  con- 
ditions  may be substituted  for  the inner loop. 

The use of recursive function definitions, such as those of P ,  and Q,  
to define a function computed by a program parallels the  treatment 
by McCarthy.' The example shows that, where desirable, deductions 
from such definitions may be  postponed  until  later in the  proof. 

Again, we may note  that the  conditions  under which the  program 
computes the required result arose in the  proof. In this example, 
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these are  not  just the  termination  conditions,  but  the  conditions 
that guarantee that  the required function is computed. These 
arose partially from  our insistence that  the inner loop  computed 
Ai.13-i.e., to  obtain these correctly, we had  to know what  inter- 
mediate results were required. However, had we chosen wrongly 
here, the overall proof would not have succeeded, so that we have 
a check that  the choice was in fact correct. 
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