The use of first-order predicate calculus in proving correctness and
other properties of programs is shown to be possible in practical
situations.

The necessary concepts and theory are explained, and some practical
examples worked through.

The application of formal logic to programs and programming
C. D. Allen

Considerable progress has recently been made in the application of
the methods of formal logic to the proof of properties of computer

programs. Starting from the work of McCarthy and Floyd,'*
formal methods have been developed by Manna, Ashcroft, and
others to the point where standard methods can be usefully applied
to a wide class of programs to prove their correctness and to discover
their limitations, if any. (By limitations, we mean restrictions on
the range of inputs for which they will produce correct results.)

The formalism used is that of mathematics and predicate calculus
of the first order, with occasional excursions into elementary set
theory.® Where necessary, we make use of other axiomatic theories,
particularly that of the natural numbers.?"*

In this paper, we attempt to show the kind of results that can be
obtained, the techniques required, and their application to practical
programs. Very little of the material presented is original with the
present author. Theorem 4 is believed to be so, and the examples
were constructed for this paper. The sources of the remainder are
listed in the References.

The theory is presented as necessary from the basic logical and set
theoretic ideas. These latter are summarized briefly in the first

ALLEN IBM SYST J

section to make the paper self-contained; however broader knowl-
edge of this basis such as given in References 3 and 4 is helpful. The
second section develops the techniques along the lines of Manna®~®
and Ashcroft’'® in as elementary a fashion as possible, while
retaining rigor.

The logical basis

Truth, falsehood, and propositions are the basic concepts of formal
(symbolic, mathematical) logic. The concept of a proposition may
be informally described as “any statement that is true or false.”
Thus, “2 is less than 3" and “twice 4 is 7" are propositions—the
first true, the second false."" In the formalism, propositions are
represented by lower-case letters, p, g, etc., and their truth-values,
“true” or “false,” by T and F, respectively.

Various operators are defined with propositions as operands, giving
new propositions. The truth-values of such constructed propositions
depend only on the truth-values of their constituents. We shall use
the following operators and notation:

2P not p, true if p is false and vice versa

p&gq p and g, true if and only if each of p and q is true

pVyg p or g, false if and only if each of p and ¢ is false

pOq p implies g, false if and only if p is true and g is false

p=gq p is equivalent to g, true if and only if p and ¢ are both
true or both false

The order of precedence of these operators in expressions is that
in which they are written above, with , highest. We may note that,
with these definitions:
(p &q)= wV ¢
WP Vag=p &g

pOqg =pVg
2D q) p & g

A syntactically correct expression (formula) formed from proposi-
tion symbols and these operators is called a well-formed formula
(wff) and itself stands for a proposition.

A tautology is a wff whose truth-value is T whatever truth-values
its constituents may have. For example

p&qgDp

is a tautology. We may evaluate its truth-value in all possible cases
as in Table 1.

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

truth,
falsehood, and
propositions

the combination
of propositions

Table 1 Truth-values of
p&q D p

P&y

p&qDyq

tautologies

propositional
calculus

A formal system called the propositional calculus may be set up with
a set of axioms (propositions assumed to be true) and a rule of
inference, which allows one to infer true propositions from other
propositions. Within such a system, a deduction of one proposition
from other propositions may be defined as follows. A proposition
g is deduced from a set P of propositions p,, p., - -+ in a deduction
step if one of the following holds:

1. Substitution: q is obtained from p, in P by substituting a wif for
all occurrences of one or more of the propositional variables in

P
. Modus ponens: propositions of the forms p and p O ¢ are each
in P.
A deduction of g, from a set P of propositions is a sequence of
propositions qi, 4., --- , ¢, such that each g; is obtained from

the propositions P and/or ¢, ¢», -+ , ¢;—; by one or more de-
duction steps.

If ¢ can be obtained from p,, p,, --- , p, by deduction, we write:

Dis Py sPaba

(Usually we omit the axioms from such a list of p’s. Thus if g is
deducible from the axioms and r, we write:

rta,

and if ¢ is deducible from the axioms alone:

Fa)

Given an appropriate set of axioms (see for example References 3
and 4), we may prove the following theorems.

The completeness theorem—If p is a tautology, then |- p
The deduction theorem—If P, p |- ¢, then P |- p O g and conversely.

Using these theorems, we may derive rules of inference more power-
ful than modus ponens. For example:

OO WWOnNnDW@Dq&ir)

is a tautology. Thus, by the completeness theorem

FoOaDWWwDODNnDW@Dq&r)

whence, by the deduction theorem:

pDaF@DOND @D g &y

ALLEN IBM SYST J

whence, by the deduction theorem again:

pDa.pDrkpDq&y

and this may be used in modus ponens to deduce p O g & 7 from
pOgandp Dr.

In developing a theory, we are interested in obtaining general re-
sults, such as:

X =1=Ex+Dx—-1

This, as it stands, is not a proposition, since its truth can only be
determined after substituting a value of x. With such a substitution,
the statement becomes a proposition. Such statements are called
predicates; they are usually written like functions, with their vari-
ables made explicit; thus p(x, y) may be a predicate with variables
x and y.

Propositions may be obtained from predicates by substitution for
their variables. However, the resulting statement usually is a mean-
ingful proposition only if the values substituted are chosen from
some restricted set. (Thus the predicate of x given above is meaning-
ful if the values of x are numbers.) Such sets are called domains

For choice of the variable from a given domain, there are three
possibilities for a predicate p(x):

1. It may be true for all values of x from the domain.
2. It may be true for some, but not all values from the domain.
3. It may be true for no values from the domain.

In case 1, the predicate is said to be valid in (or over) the domain;
in cases 1 and 2 it is said to be satisfiable in the domain; in case 3 it is
said to be unsatisfiable in the domain.

There is a second way in which a proposition may be obtained from
a predicate, namely quantification. For example, “p(x) is valid in the
domain D of x” is a proposition, since its truth does not depend
on any particular value of x being substituted. This proposition is
written

(Vx)p(x))

and usually read “for all x, p(x).” The part (V x) is called a universal
quantifier.

Again, “p(x) is satisfiable” is a proposition (we shall omit references
to a domain except where a particular domain is essential to the
argument). This is written

(3 x)(w(x))

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

predicates

quantifiers

and usually read “‘there exists an x such that p(x).” The part (3 x)
is called an existential quantifier.

Note that quantifiers refer to one specific variable. From a two-
variable predicate, p(x, y), we may form the eight propositions:
L (V)Y y)ox,) 2. (VyXVx)o(x, »)

(VY y)olx,) 4. (Vy)(Ix)(pCx, »)

(Vx)(I¥)olx, ¥) 6. (IrNV)((x, ¥))

(I3(I N, ¥) 8. (IN(Ix)p(x, »))

Note that successive quantifiers are applied from right to left; thus:

(1Y P, 1) = (3D WG,)]

Also note that | and 2 are equivalent, as are 7 and 8, but that the
other pairs are not equivalent to each other. (Consider p(x, y) to
be y = x”; then 3 is false but 4 is true in the domain of complex
numbers, while 5 is true and 6 false.)

We shall write

(Vx, »)plx,) for (VxXVy)plx,) and
(Ix, »(plx,) for (FxNI)plx, »)

With predicates of one variable, we have
AV x)p(x)) = (Fx)(+p(x)) and
(I X)@)) = (VX)px))

Note that the definition of wif is extended to allow the inclusion of
propositions formed in this way.

Frequently in deductions we shall omit universal quantifiers. An
expression such as:

0:1(x) D gs(x)

in which the x is not quantified we shall take to stand for the proposi-
tion:

(VY x)q.(x) D q2(x))

and similarly for expressions with more variables. Such unquantified
variables are called free in the expression and may be substituted
for in a deduction step. Note also that substitution for explicitly
quantified variables does not alter the meaning of the expression;
for example,

IBM SYST J

(Vx)(p(x)) = (V»)())

However, we do not allow quantification of predicate symbols,
although in the above sense they are free in expressions. Predicate
symbols are to be understood as “place holders,” into which partic-
ular predicate definitions are eventually to be inserted, and not as
variables. It is only under this condition that the completeness
theorem applies; the calculus restricted in this way is called first-
order predicate calculus. :

A predicate p(x) determines a set of values of x, namely those for
which p(x) is true. This set is written:

{x | pG)}

i.e., “the set of x’s such that p(x).” If p(x) is valid in a domain D,
then

{x|px)} = D and
x & DD plx)

If p(x) is unsatisfiable in a domain D, then

{x | px)} = {1} i.e., theempty set, and

x &€ DD qplx)

Note that for any set P'* of elements in a domain, there is a cor-
responding predicate; at worst we may write it as:

px)=x& P

but, in most cases of interest, we can give an alternative definition
of the predicate, not involving the set itself.

The empty set, { }, corresponds to the “constant” predicate F
(false), and the whole domain, D, to T (true).

If:
plx) =x & P, gx) = x € Q, and p(x) D glx),

then P is a subset of Q, and conversely. (Consider the truth-values
of p and g for elements of P.) Also, if

(Vx)(o(x) = q(x)), then
P=g

and conversely.

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

predicates
and sets

Figure 1

partial
functions
and
predicates

the basic
theory

Sample function box

Ii

L.

Figure 2 Sample test box

:

ol

If a variable x is restricted to a particular domain, D, a function
f(x) may or may not be defined for all values of x in the domain.
If it is, it is said to be total; if not, it is said to be partial, over or in
the domain D. Thus, for example, the reciprocal function, 1/y,
is partial over the real numbers, being undefined for y = 0. How-
ever, it is total over the natural numbers. Note that by defining

fOy=1/y if y =0
10 if y=0

we produce a function total over the real numbers, which may
serve the same purpose as 1/y in many circumstances. Predicates
are functions of their variables producing values of T or F. Thus
they too may be total or partial. (Consider: 1/y < 0.)

Proofs of program properties

In this section, we examine the application of logic to pro-

5-7,9,10
grams.

We first consider programs described by flow charts and/or func-
tional definitions. The units of a flow chart are of two types: function
boxes, as shown in Figure 1, and test boxes, as shown in Figure 2.

In Figure 1, ¢ is a collection of variables on which the program
acts and /or which may affect the program’s action. Thus, all quan-
tities, such as the contents of machine registers, control blocks,
etc., which can affect the results of program execution at any point
must be included, as must those stored values that may be changed
by execution of the program. This collection of values describes
completely that part of the system in which the program is being
executed that is relevant to the program. It must contain enough
information to determine the succeeding action of the program.
We refer to this set of values as “the state.” The function f takes
part or all of the state as argument and gives new values for the
state as result. It need not be defined for all possible values of its
argument, i.e., it may be partial over the domain of states.

In Figure 2, p is a predicate on states (assumed total), and exit
from the box is to node i + 1 if p(¢) is true for the state on entry
and to node i + 2 if p(¥) is false for this state.

(The test of a partial predicate, defined only over part of the domain
of states, can be replaced by evaluation of the predicate followed
by a test on its truth-value, stored as an extra variable in the state.)

We shall sometimes refer to paths in such a flow chart: a function
box provides a path from its entry node to its exit node; a test box

provides two paths from its entry node to its exit nodes.

IBM SYST J

Functions may be defined by conditional expressions in the manner
of McCarthy.' They may be nested, and their definitions may be
recursive. Such a definition indicates an algorithm for evaluation
of the function; e.g., the definition:

fm=m=0—-1,n#0—>nfn—1)

(consisting of two clauses each giving one case of the definition)
gives the value 1 for n = 0 directly. For other positive integral
values of n, it indicates how the value may be obtained by recursive
use of the definition. Thus, for n = 5, we calculate the sequence:

5./(4), 5.4./(3), 5.4.3.(2), 5.4.3.2.1(1),
5.4.3.2.1.f(0), 5.4.3.2.1.1

which terminates when the first clause of the definition is used.

We use the term point to mean a point in execution of a program
which control may be said to have reached. Thus it includes all
nodes of a flow chart program, and also the points where a function
definition such as that above is entered or left. There is a set of
identifiable values of program variables at each such point. The
term path is used to denote a possible flow of control between points,
including points within function definitions. Considering two adja-
cent points in a program, the operations on the state that take
place between them are designed to produce specific properties of
the state variables; e.g., a multiplication produces the property
that one variable is the product of two others. The operations
between particular points are chosen by the programmer on the
assumption that the state already has some properties; e.g., that
one of the variables is positive and another nonzero. These pro-
perties can be expressed formally as predicates, g(£), of the state.
The determinate action of the program between the nodes sets up a
relation between such properties: if the earlier state has the assumed
properties summarized in g.(£), then the latter will have the derived
properties summarized in ¢..,(§). This “if ... then” relation is
formalized as implication. Other conditions may be included in
this implication; in particular, the conditions that must hold in
order that a function evaluation shall succeed with a defined value
f(x) for input x may be summarized in a predicate #(x, f(x)) and
included with g,.

Thus we may set up wff’s of the predicate calculus giving general
expression to each such relation, and attempt to deduce formally
(and thus verifiably) from this basis the properties of the program.
Hence with each node of a program, we associate a predicate symbol
g: (with a distinct subscript), assumed to take a state as an argu-
ment. With each function that may be evaluated in the course of
execution, we associate a predicate symbol ¢; (with a distinct sub-
script) assumed to take two states as arguments. Using these symbols,

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

Figure 3 Function box
Ti
li+l

and free state variables &, ¢/, --- , £, we construct a set of wiff’s
of the first-order predicate calculus. The complete rules for such
constructions are very lengthy and detailed, and we do not attempt
to state them here. Later we shail make explicit the objectives of
the construction; when these are understood, the rules can be
easily generated for every specific case. We give some of the simpler
rules now. They may be intuitively justified by taking the predicate
g.(§¥) to mean “the associated node is reached during execution
with state £ and the predicate 7,(¢, £) to mean ““if the associated
function evaluation is started with state £, then it will terminate
with state £.”

Thus, for a function box of a flow chart, as shown in Figure 3, the
wit is:

q:) & t,;¢¢, &) D qini(®)

For a test box of a flow chart, as shown in Figure 2, two wif’s are
formed, one for each path:

7:(€) & p(®) O g:..())
q:(®) & p(&) O qisa(®)

For a function definition of the form:

f1(8) =
(&) — 12(8)
p3(§) — f5(8)

pu(&) = 1u(®)

the wif’s are:

(&) & px(€) O q:(5)
7:1(8) & p:(8) & pa(®) D qa())

7:1(€) & px(8) & ps(8) & -+ pu§) D ga(6)

and:

7:¢) & p:(®) & (¢, &) D 1., &)
1) & 02 & ps() & 1,8, E) D 0., &)

q:1(6) & p2(§) & () & -+ pu§) & 1.8, E) D 1, &)

ALLEN IBM SYST J

For a function definition of the form:

1) = faofamr 0 f2(8) = fulfua(c - (f(8)) ---))
the wff’s are:

a1(8) O q:(8)
q1(5) & 1,(¢, E,) D) 43(5/)

@) & ,¢E) & - "7, £ D i £

where, in the last two examples, the subscripts have been chosen
to match those of the function definition. In practice, all the ¢’s
and ¢’s in the W formulas for a complete program must be given
distinct subscripts.

In the last two cases, we have omitted some ¢ predicates, on the
grounds that the formulas as given are immediately deducible from
those including additional ¢’s. For example, for the function f, in
the last example, we could have written:

78 D a:(®
2:6) & 128, &) D g5
g:E) & (¢, E) D qut’’)

etc. From these we may deduce the formulas given; as we shall
see later, the set given is adequate for our purposes and somewhat
briefer.

Note that we must, in the process of definition, ultimately reach
“basic” functions, i.e., functions that are defined by axioms, or
left undefined. If f(£) is such a function, under the intuitive meaning
of the ¢ predicates given above, we have that

q€) DO ¢, 1)
which is the W formula for such functions. Thus the formation of
W formulas terminates when such functions are reached. If f is a

partial function, and the predicate p(§) is true if and only if ¢ is in
the domain of {, the formula is modified to

q() & p) D 1, &)

We call the full set of wif’s obtained in this way for a program
“the W formulas” for the program.

We claim that the formal system, based on appropriately constructed

No.1 - 1971 APPLICATION OF FORMAL LOGIC

W formulas as axioms, is related to execution of the program in a
specific and useful way.

In what follows, we shall be considering the use of specific pre-
dicates in place of the symbols ¢, and ¢,. To keep the description
general, we shall use ¢, and =, to denote specific predicates being
substituted for ¢, and ¢,, respectively.

We shall also be concerned with sets of executions of the program
determined as follows. We assume that, for the programs we are
considering, one execution is completely determined by the initial
state ¢ with which execution starts at node 1. Given a specific pre-
dicate, ¢,(£), this determines a set of states £ for which ¢,(£) is true;
each of these determines a single execution of the program. The
whole set of such executions we call “executions of the program
with initial condition ¢,.”

We now turn to the question of the properties we wish to consider
of the state at the various points. To determine exactly what is
happening in execution of a program, the properties one needs are
such as to distinguish between values that do arise in execution
and values that do not. Thus if the domain of x is the integers and x
has only the values 1, 2, 4, 5 when execution reaches point i, an
appropriate predicate would be:

g(x) =0<x<5&x#3

Such a predicate, true only of the values that do arise in execution,
is called a ‘“minimal valid” predicate, and tells only the truth.

However, we may need to know merely that at this point x is posi-
tive—e.g., to ensure success of the square root function that follows.
A predicate:

gx)=x2=0

would thus be adequate, even though it is true for values other than
those arising in execution. Such a predicate is called a “valid”
predicate, and tells us more than the truth. (Minimal valid pre-
dicates are minimal in the sense that they are satisfied by a smaller
set of values than valid predicates.)

More precise definitions of these terms follow.

Definition 1: The set ¢s, ¢s, -+, ¢u, by, 71, 72, - - of predicates is
called ““a set of valid (¢’s) and convergence (r’s) predicates™ or
“vC predicates” for the program for initial condition ¢, if they
satisfy the following criterion. In the set of executions of the program
with initial condition ¢,, ¢.(£) is true for all states with which the
associated node is reached, and 7.(¢, £) is true for all pairs of states

ALLEN IBM SYST J

£ and & with which an evaluation of the associated function starts
and finishes, respectively.

Note that VC predicates may be true for states other than those
mentioned in the definition.

Definition 2: The set ¢y, 3, -« -, dn, G0y T1, T2, - -+ Of predicates is
called ““a set of minimal valid (¢’s) and convergence (7’s) predicates”
or “MVC predicates” for the program with initial condition ¢, if
they satisfy the following criterion. In the set of executions of the
program with initial condition ¢,, ¢,(¥) is true if and only if the
associated node is reached with state ¢, and (¢, £') is true if and
only if an evaluation of the associated function starts and terminates
with states &, £, respectively.

Note that, under these definitions, a set of MVC predicates is a
set of VC predicates, but the converse may not be true.

Examples and theorems

A trivial example may help to make these ideas clear. Consider
the program shown in Figure 4, in which

fs(x) = 2x

The W formulas for this program are:

Wi: a:(x) & (x 2 5) D g2(x)

Ww2: a(x) & x < 5) D gix)

Ww3: g:(x) D qu(7)

W4: 25(x) D g5(x)

W5: gs(x) & t5(x, x') D q.(x")

Wé: 2:(x) D q,(20 — x)

W7: gs(x) D t5(x, 2x)

Here we have assumed that 20—x, and 2x are total functions of x,

so that no ¢ predicates for them are required. (For we have, for
example:

qi(x) D ta0(x, 20 — x)
a4(x) & tro(x, ¥) D q.(»)

from which we may deduce immediately:

24(x) D q,(20 — x)

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

example 1

Figure 4 Example 1

which we have used as W6. If there exist predicates ¢,, 7, and ¢,
that satisfy the first two equations, they also satisfy the third, since
it is deducible from them. Conversely, if ¢, and ¢, satisfy the third
equation, then

T20(x’ y) = ¢4(x) &¢o(y)

together with ¢, and ¢, satisfies the first two. Thus the elimination
of ¢ in this manner does not affect the following arguments.)

If we take as an initial condition
o1(x): x>0

then we note that, for such initial x’s, at node 4, x must be less
than 10. Thus,

da(x): X 5

Bs(x): 0<x<5

$a(x): 0<x<10

¢s5(x): 0<x<5

Po(x): 10 < x <20

T5(x, x’'): x' = 2x

is a set of VC predicates for initial condition ¢,. Note, for example,
that ¢,(x) is true for x = 3, a value that never arises in execution.
For the same initial condition:

ba(x): x2>5

@3(x): 0<x<5

Pa(x): x & {0,2,4,6,7, 8}

é5(x): 0<x<5

d.(x): x € {20, 18, 16, 14, 13, 12}

7s(x, x'): x=2x)&0<x<5

may be seen to be a set of MVC’s.

By the definitions, if {¢7, 77} is a set of MVC predicates and {¢,, 7}
a set of VC predicates, the set of states or pairs of states for
which ¢™ or 77 is true is included in the set of states or pairs of states
for which ¢, or 7, is true. Thus:

¢ D ¢:(®)

and

IBM SYST J

T'?(E’ 5’) D Ti(zs E,)

Further, all MVC sets are logically equivalent, since they determine
the same sets of states and state pairs.

In the example above, since only a finite number of states could arise
in execution, it is not difficult to verify that the predicates chosen
are VC and MVC sets (by notionally running all distinct cases).
Generally this is not possible; however, a test for VC sets is given
by Theorem 1 below. This test is sufficient, but not necessary; as
we shall see by example, some VC sets do not satisfy this test. How-
ever, Theorem 2 shows that the MVC set must satisfy this test, so
that the test is useful.

The basic results of Manna, as extended by Ashcroft, are the fol-
lowing theorems:

Theorem 1: 1If a set {¢,, 7.} of predicates and an initial predicate
¢, satisfy the W formulas for a program when substituted for the
g: and ¢, (i.e., the resuiting formulas are true), then the set is a
VC set for initial condition ¢,.

A sketch of a proof of this takes the following form. First we show
that, for a W formula, if the ¢’s and #’s on the left are replaced by
members of a VC set and if the formula is true, the g or ¢ on the
right must be in a VC set. For example, for the formula:

q:(¢) & p() O g:1:(®)

obtained from one leg of a test box, we argue as follows, If ¢,(£) is
in a VC set and if the test box is entered with a state £, (in any of the
set of executions), then

¢.(1)

is true. If p(%,) is true, then the T exit will be taken with state £,. Also
if
0.8 & p(§) D ¢:1 ()

is true, since both terms on the left are true for £,

¢i+1(81)

is true. Since this argument holds for all appropriate £’s, there
must be a VC set containing ¢, and ¢,.,.

Using a similar result for each W formula, we see that, since all the
W formulas are true, there must be a VC set containing all the ¢’s
and 7’s. The only exceptional cases are the formulas involving ¢,
for example,

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

a:1€) & 1, &) D q:.¢¢)

In such cases, the argument is modified to say that if

¢1(£) & 11§, El) D) ¢2(£I)

is true and r, is in a VC set for an execution such that ¢,(£,) is true,
then ¢, is in a VC set containing 7, for initial condition ¢,.

Theorem 2: The set of minimal valid and convergence predicates
for the program for initial condition ¢, satisfies the W formulas
when substituted for the ¢’s and ¢’s with ¢, substituted for ¢,. A
similar sketch of a proof may be given. For example, for the formula

7:8) & t;¢5, &) D @)

(corresponding to nodes and k being connected through an evalua-
tion of a function f,), if ¢,(£) and 7,(¢, &) are in an MVC set, then by
definition ¢ (%) and 7;(, &) are only true if execution reached
node i with state £ and if the function evaluated with £ produced
£. In such cases, execution must reach node & with state &,; hence,
since ¢,(£) is in the MVC set, ¢,(£,) must be true. Thus

¢:(8) & 7,6, &) D ulE)

Again, the argument for formulas involving ¢, depend on ¢, being
true rather than being in the MVC set. But the set is for initial con-
dition ¢,, i.e., it is an MVC set for executions for which ¢,(£) is true
for the states at node 1, which gives us what we require.

Returning to Example 1, consider again the W formulas and the set
of predicates stated to be a VC set for initial condition x > 0. Sub-
stituting in the W formulas, we have:

Wi: x>0&x2>5Dx25

W2 X 0&x <5250 x<5

W3: x 5500L7<10

W4 x<5270<x<S5
W6: x<10D10 <20 —x<20

x < 5D 2x = 2x

0

W5: 05 x<5&x=2xD0L x" <10
0
0

W7:

and these are all true. Thus, by Theorem 1, the predicates are indeed
a VC set for initial condition x > 0.

Note that there may well be VC sets that do not satisfy the W for-
mulas. For example, if we take the above set but change ¢4(x) to

ALLEN IBM SYST J

x > 0, the set is still a VC set, but does not satisfy W4. Note also
that in checking that these predicates satisfy the W formulas, we
have used properties of the operators <, =, etc., between states,
i.e., we are using results from the theory of the domain of states.

The objectives of the specific construction of the W formulas from
specific paths in the program is that the proofs of Theorem 1 and
Theorem 2 can be carried through with them.

In the light of the above theorems, we consider the cases in which F
is a member of an MVC set, for some node i. Since a minimal valid
predicate is true for precisely those states with which this node is
reached, if F is in an MVC set, the node can never be reached. In
particular, if F is the predicate associated with the exit node, the
program does not terminate. Conversely, if a program does not
terminate, F is the minimal valid predicate for the exit node. F is
also valid for this node (as indeed is any predicate). Thus we can
prove termination by proving that the minimal valid predicate for
node 0 cannot be F. By Theorem 2, this will be so if there is no set of
predicates satisfying the W formulas with F substituted for gq,, ¢,
for ¢,, and the initial condition ¢, assumed to be true. Since these
formulas (with substitution for ¢, and g, only) are wif’s of the first-
order predicate calculus, and since this theory is both complete
and consistent, this is so if the formulas are not consistent; i.e.,
from them one can deduce a contradiction.

Theorem 3: 1f the W formulas, with ¢, substituted for ¢, and F
substituted for ¢,, are inconsistent with the truth of ¢,, then the
program terminates for initial condition ¢, (Manna, extended by
Ashcroft).

Continuing with our trivial example, with the required substitutions
we obtain:

x2>20&x 2> 5D g,(x)
x> 0&x <50 gyx)
a:(x) O g4(7)

qs(x) D gq5(x)

ga(x) & t5(x, x") D qu(x")
qx) O F

a5(x) D ts(x, 2x)

and from 6 we obtain immediately:

194(x)

and deduce (from the expressions identified at the right) as follows:

No.1 - 1971 APPLICATION OF FORMAL LOGIC

17

Figure 5 Example 2

:

=10

e=1.0

I

example 2

9. ~1g2(x) 8,3
10, x<O0Vx<<S3$ 9,1
11, gs(x) V +t5(x, x7) 8,5
12, 4g5(x) V +g5(x) 11,7
13, qgs(x) 12, 4
14, x <0V x2>5 13,2
15. x <0 14, 10

which contradicts ¢,(x), i.e., x > 0 in this case. Hence, the program
terminates for x > 0.

As a more significant example, we take the program in Figure 5.

Without further specification of the functions involved, this rep-
resents the general case of a single loop, with f,(£) being the initializa-
tion operations and f;(£) the computations in the loop. From this
information alone, we can prove that, under some specific assump-
tions on f,, f;, and p, the program will terminate for any input state.
We thus obtain a very general result concerning loops. We have
formulas as follows:

Wi: a:1(6) D a.(®)

w2: a:(®) & 1,8, £) D g.(E)
W3: 2:() & p(®) D q5(¢)
W4: g:(8) & () D 4.(8)
W5: a:(&) O a5%)

W6: a:&) & t;¢, &) D q.(F)
W17: a4(&) O ta(E, 145)

w8§: a5(&) O 5, [5(€)

where we have assumed that the functions involved always terminate.

If we substitute ¢, for g, and F for ¢, in W1, W2, and W4, we obtain:

1. $16) D q.(®)
2. $1(§) & tul, £) D qu(t)
3. 192(8) V p(§)

From these and the remaining W formulas, we deduce:

4. 7:(8) & p(&) D g5(&) w3, W5
5. D (&, 15(6) 4, W8

IBM SYST J

6. D gs(8) & ts(&, f:(E)
7. D q.(fsE)

and by repeated use of 7:
8. 2:¢) & (0 < r < 1D p(:E))) O a:.(5(®)

where we write {5(£) for f; o f; o - - - o fs(£) with r applications of the
function, and 7 (§) = &.

Now suppose that, for some k:

A9. 1P(f§(£1))
A10. 0 < r < k D p(fs))

then

11. q:6) D %(fg(gl))
12. 1‘]2(}’2(51))

13. 1q2(1)

14. (&) O 1, f.8)

15. D 2:(fs(&)

Hence by 13 with £ = f.(§)

16. @:1(8)

Thus, under assumptions A9, A10, with £ = f,(£), this program
terminates for input condition ¢,(£). Since this holds for all ¢,,
assumptions A9 and A10 ensure termination of the program for
all inputs. As a simple application of this result, consider the program
in which

£=(n, X)

n being an integer variable and X the remainder of the state variables.
Let:

f4(n, X) = (nl’ X)

where n, 1s a constant value > 0,

fs(n, X) = (n — 1, X)

p(n, X) = (n % 0)
Then with:

No.1 - 1971 APPLICATION OF FORMAL LOGIC

19

Figure 6 Example 3

ENTRY
1

Y="

2

—

5
LENGTH () = | ———————®Y=Y X
F
3
Y=Y || SUBSTR (X, LENGTH (X), 1);
l “
X=SUBSTR (X, 1, LENGTH (X) = 1);

I

example 3

& = f4(”; X) = (n, X)
&) = (o — k, X)

and A9 and A10 become:

n —k=20
0<r<kDOn —r#0

Remembering that n, > 0, each of these is satisfied by k = #,.
Hence the loop terminates.

The functions f, and f; could include other operations on X that
do not alter n without affecting the above argument. Thus we have
shown that setting a counter positive or zero, testing for zero at
the head of the loop, and counting down within the loop will ensure
termination.

Practical applications

As another practical example, consider the (PL/I) program shown
in Table 2 written to reverse a string. The flow chart for this program
is shown in Figure 6.

This program uses variables X, Y, which are varying length character
strings, the constants ’ and 1, functions LENGTH, SUBSTR, and
operations || (concatenation), <, —, and assignment. We use
the following notations:

N for 7 (the null string)

b(A) for LENGTH (A), where A is a string

X[p:q] for SUBSTR (X, p, g—p+1), where X is a string and p and ¢
are such that SUBSTR is defined for these arguments

Table 2 Example 3 listing

REVERSE: PROC(X);
DCL X CHAR(*) VARYING,
Y CHAR(LENGTH(X)) VARYING;
Y = I/;
IF LENGTH (X) < = 1
THEN GO TO L5;
Y = Y || SUBSTR (X, LENGTH(X), 1);
X = SUBSTR (X, 1, LENGTH (X) ~1);
GO TO L2;
Y=Y X;
END;

IBM SYST J

X[p:q] = S, an arbitrary string, when p and g are outside the ranges
for which SUBSTR (X, p, g—p+1) is defined

Xlp] for X[p: p]
Note that LENGTH, and hence b, are total functions over strings.

The W formulas for this program are as follows:

Wi: (X, Y) D g:(X, N)

w2: g X, ¥) & b(X) < 1D qs(X, V)

W3: @ X, V) &B(X)> 1D q(X, Y)

w4 as(X, Y) D gr(X, b(X), 1)

WSs: as(X, ¥) & tp(X, b(X), 1,2) D qu(X, Y || 2)
W6: (X, ¥) D gr(X, 1, b(X) — 1)

W7 g(X, ¥) & te(X, 1, 6(X) — 1,2) D q.(Z, V)
w8: a:(X, ¥) D q(X, Y || X)

and, from the definition of SUBSTR in PL/I:

w9: gr(X, 1,) & (1 <1 < 8(X) & (0 < j < b(X))
&(i+/j—1Z56(X)D el X, 4, j, X[iz i+ j— 1])

To prove termination, we take the domains of X, Y, Z to be strings,
and of i, j to be integers. We set:

L. a(X, Y)=¢)(X, Y) and
a(X, Y) = ¢,(X, Y) = F

and deduce as follows:

g:(X, Y) & b(X) > 1 D qr(X, b(X), 1)
ar(X, b(X), 1)
& (1 < b(X) < b(X) &0 < 1L b(X))
& (b(X) < (X)) D te(X, b(X), 1, X[b(X): b(X)]) w9
ar(X, b(X), 1) & b(X) 2> 1
D te(X, b(X), 1, X[b(X)]) 4
(X, V) & b(X) > 1D tp(X, 5(X), 1, X[b(X)]) 3,5
D gl X, Y| X[(B(X)]) W3, 6, W5
Dogr(X, 1,6(X) — 1) w6

APPLICATION OF FORMAL LOGIC

ar(X, 1, 5(X) — 1) & (1 £ 1 < b(X))
& (0 < b(X) — 1 < b(X)) & (B(X) — 1 < b(X))
D te(X, 1, b(X) — 1, X[1: b(X) — 1])
ar(X, 1, 5(X) — 1) & b(X) > 1
D tp(X, 1, b(X) — 1, X[1: b(X) — 1])
7:(X, ¥) & b(X) > 1
D q(X[1: b(X) — 1], Y || X[b(X)]) 7,10, W7

We now prove by induction

go(X, Y)&B(X)>r+12Dpr—+1, X, Y), where
12. p@r, X, V)
= q(X[L: B(X)—r], Y|| X[B(O1|] - -+ || X[B(X)—r4 1]

as follows:

13, g.(X[1: b(X) — r],
Y[XI(O1 || -+ || X[6(X) —r 4+ 1] &
b(X) — r > 1D g(X[1: b(X) — r — 1],
Y| XI6(OL |} -+ || X[6(X) — D)

by 11, noting that:

b(X[1: n]) = n, and if

Z = X[l: b(X) — r] then

Z[1: b(Z) — 1] = Z[1: b(X) — r — 1]

= X[1: (X) — r — 1] and

Z[b(2)] = Z[b(X) — r] = X[b(X) — 1]
4. p(r, X, N &B(X)>r+1Dpr+1, X, 7)
15. q(X, ¥) &b(X)>1Dp(l, X, Y)
16, g(X, VV&BWX)>r+1Dpr+1, X, 7)

by induction from 14 and 15.

17. q(X, Y) & b(X) > b(X) — 1 D p(b(X) — 1, X, Y)
18. g(X, Y¥) D qo(X[1: 1], Y || X[6(O] || --- || X[2D

19. ¢(X, ¥) D q:(X, N) Wi, 1
20. D aq(X[1], N || X[6(X)] || - || XI2D)

21, gx(X[1]; Z) & B(X[1D) < 1D g5(X[1], 2) w2

ALLEN IBM SYST J

22, $u(X, ¥) D qs(X11, N || XI6(O1 || --- || XI2D 20,21
23, gs(X, V) W8, 2
24, (X, V) 22,23
Thus we have a contradiction with ¢,(X, Y), and by Theorem 3
the program therefore terminates for initial condition ¢,. In partic-

ular, it terminates for ¢, = T, i.e., for all inputs (restricted only
to the domain of X, Y, i.e., strings).

The program was constructed to produce the reverse of an input

string X (in Y on termination). In our notation, the reverse of 4
may be written as:

A[b(A || Alb(A) — 11] -+ [] 4[1]

Thus, to show that the program is correct, we need to show that:

1. Y= AB(] || AIb(A) — 11| -+ || Al1]

is a valid predicate for the exit node, where A4 is the initial value
of X, i.e., the initial condition ¢,(X, Y) is:

2. X =4

Thus we require to show that a complete set of predicates, including
those above for ¢, and ¢,, respectively, when substituted for the
¢’s and r’s in the W formulas for the program, make them true.
From an examination of the program, we make intelligent guesses
for the remaining predicates of the set as follows.

Firstly, we define some notational abbreviations:

3. a= b(4)

4. p(X, V)= (In)X = A[l: n]
&Y= dlal |l Ala— 111 -~ || Aln+ 11 &1 < n < a)
p(X, Y) = (In)(X = All: n]
& Y = Alal|| Ala— 111 --- || Aln+ 11 &1 < n < a)
po(X, ¥) = (In)}(X = All: n]

& Y = Alal || Ala — 1] || -+ || A1l &1 < n < a)
Then take:

(X, V) =p(X, V)V X = A4 &Y N
(X, Y)=p(X,)V X = A4 &Y N&a>1

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

the
function
computed

23

(X, ¥)=pi(X, V)V X = A& Y = Ala]l &a > 1
¢s(X, Y) = (X = A[l]
& Y = Ala] || dla — 11| --- || 4[2]
VX=A&Y=N&a<1
$s(X, Y) = (Y = Alal || Ala — 11| --- || 4[1]
VY=N®&a=0)
(X, ¥) = 1< i< b(X)
&0 ji<b(X)&i+j—1Lb(X)
14, 7o(X, 1, /, Y)=(Y = X[i:i+4+j— 1]
Then, substituting in the W formulas, we show that we obtain
true fornmulas. For example, for W5 we have:
15. (n(X, V)V X = A& Y= N&a>1)&Z = Z[b(X)]
ODp(X, Y||Z)V X=A&Y||Z= Alal &a > 1

Proof: Assume that p,(X, Y) is true, i.e.,

16. (In)X = All: n]
& Y = Alall|| Ala— 11| - || AIn+ 11 &1 < n < a)

and let n, be such an n, then:

17. X All: ny]
18. Y = Alal || Ala — 11]] --- || Aln, + 11
19. 1 < n < a, whence:
20. Z = X[b(X)]

D Z = Alml 17
21, D Y||Z= Alal || Ala — 11| --- || Aln] 18, 20
22, DpX, Y| 2) 17, 21, 19

n, being such an n. Thus

23, pX, V) & Z = X[b(X)]
DnX, Y| 2 22
24, DpX, Y||Z2)V X = A& Y||Z= Alal &a>1 23

Also we have:
25. Y=N&Z= Xb(X)]D Y||Z= X[b(X)]

IBM SYST J

26. X=A&Y=N&Z= X[b(X)]
D Y| Z= Alb(4)]
D Y| Z= Ald
X=A4A&Y=N&a>1&Z= X[b(X)]
DX=A4A&Y||Z= Adlal &a> 1
(Ps(X,)V X=A&Y=N&a>1)
&Z = XX DpX, Y||2)V X = 4
&Y||Z= Alal &a > 1

Q.E.D.
Again, taking W2 we have:

30. (2(X, V)V X=A4&Y=N)
& b(X) < 1D X = All]
& Y = Alal || Ala — 17][-+~ [[4I2]
VX=A4&Y=N&a<l

Proof: Assume that p (X, Y) is true, i.e.

31. (In)X = A[l: n]
& Y = Alal || Ala — 1] || -+ || Aln + 1]
&1 < n<a

and let n, be such an n. Then:

32. X = All:n]
33. Y = Alall| Ala — 11|[-+ [| Aln, + 1]
3. 1 <n <a
35. (X)<1Dnm <1
36. On =1
37. D Y= Alal|| 4la — 11]] --- || 4l2]
38. D X = A[l]
39. D X = A[l]
& Y = Ala] || Ala — 11| --- || 4I2]
(X, Y) & b(X) < 1
D X = Ad[l]
& Y = Ala] || Ala — 11| --- || 4[2] 31, 39

.1 - 1971 APPLICATION OF FORMAL LOGIC

minimal
valid
predicate

41. ocC
where C is the right-hand side of 30.

42, X= A& Y= N&bX)<1

Da<l
43, D X=A&Y=N&a<1 42
4. DcC 43
45. (p(X, V)V X = A& Y=N)&X)L1DC 41,44

Q.E.D.

Similarly, we may prove that the remaining W formulas, when
the ¢ and r are substituted for the g and ¢, are true. Thus, by
Theorem 1, ¢,(X, Y) is a valid predicate for the exit node for input
¢(X, Y). Hence for inputs X = A (and any Y), the program com-
putes the reverse of 4, in Y on termination.

So far, it appears that the proof of termination can tell us nothing
concerning the function actually computed when and if the program
terminates. We are interested particularly in discovering a minimal
valid predicate for the output point, since it is this that excludes
all values that are not computed. However, the methods presented
so far only tell us whether a given predicate is valid, not whether
it is minimal, and they only do this if we can construct a whole
set of predicates for the program.

If a program successfully computes j(¢,) from an input state £,
the minimal predicate for the output point is:

(b) = (¢ = f(¢)
for input condition:

) = (¢ = &)

In this section, we show how a proof of termination may be con-
structed that gives f(¢) explicitly if the construction succeeds,
without any need to guess predicates for the intermediate points.

We now consider in more detail the sets of states corresponding
to the predicates in a VC or MVC set, and the relations within and
between VC sets and MVC sets.

Firstly, a given input condition ¢,(¢¥) determines a set:

1. S, = {E [4’1(5)}

IBM SYST J

of input states; each of these determines a single execution of the
program. The set of executions so determined gives rise to a set
of states at each point of the program; the minimal valid predicates
for input condition ¢,(¢) correspond precisely with these sets.
The minimal convergence (f) predicates determine sets of pairs
of states (¢,) such that the corresponding function is entered
with state ¢ at least once in the set of executions, and then terminates
with state ¢. If T is the set of pairs for some function and if S;
and S,;,; are the minimal valid sets for the nodes on either side of
the function, then we have:

tE S &EEET.DE E Sin

which is the set-theoretic form of the W formula:

q:(€) & t:(£,£) D qin®)

Thus the minimal convergence predicates express the mapping
between the input and output states of a function; the W formulas
relating the g predicates express the mapping between the minimal
valid sets at the appropriate nodes, set up by execution of the
function or the program between the nodes. It is this property
that ensures that the W formulas reflect the action of the program.

The sets corresponding to a VC set of predicates are supersets of
those for the MVC set, that is, they contain the minimal valid sets,
but more states besides. The fact that a set of predicates satisfies
the W formulas corresponds to the correct mappings holding
between these enlarged sets. Since implication corresponds to the
inclusion relation between sets, the relations expressed by the W
formulas allow the sets to become larger (become valid rather
than minimal) but never to get smaller—thus they must always
contain the minimal sets.

These relations between sets of states are the fundamental features
of a program. By appealing directly to them, we may obtain some

rather deeper results concerning the logic.

Thus, suppose that we can deduce from the W formulas a formula
of the form:

4. q:.® & p) O q.(fE)

where p is some predicate and f some function. (The deduction
may involve properties of the states and the functions and operations
used in the program.) Consider an input condition ¢ = §,, where
£, is a single state such that:

5. r&)

No.1 - 1971 APPLICATION OF FORMAL LOGIC

the examples
concluded

and let ¢7%(£) be the member of the MVC set for the output node
and this input condition. Then, by Theorem 2, the MVC set satisfies
the W formulas; hence it satisfies 4 above, since this is deducible
from the W formulas.

Thus:

6. t=1£& &pE) D (&) i.e.,

7. k) D ¢(f(61)), whence

8. ¢L(ft)

since p(%) is true. Now the set S, of inputs we are considering
contains just the state £,. We assume that the program is determinate,
i.e., that for a single input state, there is not more than one possible

output state. By 8 above, since ¢% is minimal, there is one output
state, f(&), hence

9. S, = {{¢&)}

Thus we have Theorem 4.

Theorem 4: If q.(&) & p(&) O q,(f(¥)) can be deduced from the
W formulas, then for any input £ satisfying p, the program terminates
and computes f(£).

If the whole program, regarded as a single function, is embedded

in a larger program, it would be useful to have a single W formula
for it. Theorem 4 shows that an appropriate formula is:

10, ¢:) & p€) D (&, 1€)

where p(¢) is that appearing in 4. This derivation allows us to treat
programs piecemeal and to prove properties of parts independently,
later carrying through a study of the whole program.

Continuing with Example 2, from the W formulas for the loop
program, we may deduce as before:

1. g &0 < r < nD p(fsE)) D a.(f5)

Also:

a:1®) D talt, f48) Wi, W7
D q:(f+(®) 2, W2
a:1(8) & (0 < r < n D p(fs © f18))) D a(fs © f4(§)) L3
@.(8) & 0 < r < 1D p(fs © [1£)
& p(fs © f4£)) O ao(fs ° f.(£) 4, W4

IBM SYST J

and this formula has the required form. Hence, for initial states
satisfying:

(0 < r < nDp(fs © fu))) & 05 © fu£1)

the program terminates with state

f5 © ful&1).

Note that if for some k

p(fs © faE)

then the least number principle® applied to

P(r) = p(f5 © fu61)

guarantees that there exists an n such that the condition for termina-
tion is true. Hence, a wider condition for termination is

(k)23 © &)

for the input state £,, and the » in the formula for the output state
is the least such k.

For the string reverser in Example 3, we may deduce from the
W formulas a formula of the required form as below. Noting that
there is a loop from node 2, we start there and deduce the function
computed around the loop.
g:(X, Y) & b(X) > 1D qpr(X, b(X), 1) W3, w4
b(X) > 1D 1 < b6(X) < 8(X)
&0<1S<B(X)&B(X)+ 1~ 1L b(X)
b(X) > 1 & qr(X, b(X), 1)
D te(X, b(X), 1, X[B(X): b(X)]D) 2, W9
g@:(X, V) &(X)> 1D tr(X, b(X), 1, X[B(X)]) 1,3
g X, Y) &b(X) > 1D qX, Y || XIB(X)]D W3, 4, W5
Dgp(X, 1,b6(X) — 1) 5, W6
(xX)>1D01<51L58(X)
&0 < B(X)— 1< B(X)&B(X)— 1L B(X)
gr(X, 1,6(X) — 1) & (X)) > 1
Dte(X, 1, (X)) — 1, X[1: b(X) — 1]} 7, W9
g:(X, ¥) & b(X) > 1
D go(X[1: b(X) — 1], Y || X[6(X)]D) 5,6, 8, W7

No. 1 - 1971 APPLICATION OF FORMAL LOGIC

10, go(X[1: b(X) — 1],
Y || X[6(X)] || X(6(X) — 11 || - -+ || X[B(X) —r+ 1]
&b(X)y—r>12 q(X[1: (X)) — r — 1],
Y || X[6(X)] || X[6(X) — 11| - -~ || X[6(X) — r])

By induction from 9 (» = 1) and 10:

11. q(X, Y¥) & b(X) > 1
& b(X) > r+ 1D q(X[1: b(X) — r — 1],
Y || X(6(X)] || XI6(X) — r1 || --- || X[6(X) — r])

With r = B(X) —2 this gives:

12. g(X, ¥) & b(X) > 1
D ax(X[1], Y [| XI6(XO1 || --- || X[2D
g(X[11, Y || X[B(XO1 || --- || X[2]) & b(X[1]) < 1
D a(X111, Y || X[a(XO1 (| --- || XI[2D
g:(X, ¥) & b(X) > 1
D gs(X111, Y || X[6(XO1 (] --- || X[2D
(X, ¥) & b(X) > 1
D gs(X[1], X[6(XO1 || -~ || X[2D)
16. D q(X[11, X[6(X)1 (] -~ || X[1D
17. q(X, Y) &b(X) £ 1D gs(X, N)
18. D q.(X, X)

If we now define rev(X) by

19. b(X) 2 1 Drev(X) = X(O]|| --- || X[1]

Table 3 Example 4 listing

MMULT: PROCEDURE (A, B, C);
DECLARE (A(*, *), B(*, *), C(*, *)) FLOAT DECIMAL,
(1, J, K) FIXED BINARY (31, 0);
DO I = LBOUND (C, 1) TO HBOUND (C, 1);
DO J = LBOUND (C, 2) TO HBOUND (C, 2);
C@) =0;
DO K = LBOUND (A, 2) TO HBOUND (A, 2);
CILMN=CLIJ + A(K) * BK, J);
END;
END;
END;
END MMULT;

IBM SYST J

20, (X)) =0Drev(X)= N
and allow N[1] = N, then 16 and 18 give
21, qi(X, Y) D g (X[1], rev (X))

Thus the program terminates with ¥ = rev(X) for all inputs.
(Since there is no p(X) term on the right, there is no restriction on
the inputs.)

Some further techniques

As our final example, to demonstrate some techniques in producing
the required deductions, we take the PL/I program shown in Table 3.

shall use the following abbreviations throughout this section:

= LBOUND (A, 1)
LBOUND (A, 2)

= HBOUND (A, 1)
HBOUND (A, 2)
LBOUND (B, 1) HBOUND (B, 1)
LBOUND (B, 2) HBOUND (B, 2)
LBOUND (C, 1) = HBOUND (C, 1)
LBOUND (C, 2) = HBOUND (C, 2)
the transpose of the matrix A
the ith row of A (a vector)
the ith column of A

= the element of A in the ith row and jth column of A and
similar notations for B and C.

The flow chart for the program is shown in Figure 7.

The DECLARE statements tell us the domain of the respective
variables. We shall treat FIXED BINARY as integers, and FLOAT
DECIMAL as real numbers, ignoring the differences from these
domains. In PL/I, LBOUND and HBOUND are defined for the
uses we make of them, so we treat them as total functions.

We first treat the section of program between nodes 5 and 10,
noting that this section has one entry and one exit. Thus we attempt
to derive the equivalent function, so that we may replace it by a
single function box. The variables on which it operates are ¢,
and k; i, j and A and B are parameters that are unchanged. Thus
we take the ‘“‘state” to be c¢,; and k, and write W formulas as follows:

Wi: gs(c.i, k) O q6(0, k)

w2: as(c:is k) D gi(ci;, g2)

W3 qg:(c.i, k) & k > hy D qiolcs;, k)
W4 grciis k) &k < hy D gsleqis k)

+ 1971 APPLICATION OF FORMAL LOGIC

example 4

Figure 7 Example 4

ENTRY
1

i=g5

W5 as(ciir k) D qolci; + air.bri, k)

W6: as(ciir k) O qqfcijs k + 1)

(In W5, we use the point to indicate multiplication.)

In constructing these formulas, we have ignored any possibility
that references to elements of A, B, and C may fail because sub-
scripts are outside of the declared range.

From the W formulas, we deduce the initial state at ¢, as follows:
1. gsleii, k) O a:(0, g2) Wi, W2

and the general function around the loop:

2. a:(ci;, k) & k <h D qo(ci; + Qir.byj, k) W4, W5
3. D) q:(ci; + aip.biis k+ 1) 2, W6

Thus, once around the loop adds a,,.b; to ¢;; and 1 to k. From 1
and 3, it is evident that the general form of ¢,; will be

s
Z a;, .b”'

r=gz

for some s. However, 0 (in formula 1) is not of this form, so we
deduce one more turn around the loop:

as(cii, k) & g2 < hy D giai,,.by,i, 82 + 1) 1,3

and this gives the case s = g,. From 3 we now deduce the recurrence
relation:

5. q,(Z a;..b, s + 1>

T=g2

s+1
&s+1sm3q42mwms+ﬂ

r=g2

whence, by induction from 4 and 5:

s+1
6. qs(ci;, k) & g» <h &s+ 1< D 47< Z a;..b.;i, s + 2)

r=g2

We come out of the loop, by W3, when the second argument
of g, is > h,. Hence, in 6 we put s = h, — 1 and use W3 to get:

ha
7.qwmm&&sm3m42mwmm+0 6, W3

r=gz

IBM SYST J

.We now have a formula of the desired form. To simplify it, we
may recognize that the sum on the right-hand side is the dot product
A;.B.if g, = gsand by, = hs, ie.

ko
82 = &3 &hz = h3 D Z ai,-.b”- = A,B;

r=g2

as(cii k) & g < hy & gy = g5
& hy = hy D qu(Ai-B;’ hy + 1)

and by Theorem 4 we may write:

10, gs(cij, h) & g < hy &g = g
& hy = hy DO ts_10(Ciis K, Ai-BL hy + 1)

as a single W formula for this section of the program.

The termination of this section of the program is given by 7, subject
only to the condition g, < h,. The additional conditions in 10 are

required so that it will compute the function 4,.B/ and not some
other function. (Remembering Note 1, a deeper treatment of the
logic of the statement:

C(I, J)=C{, J)+ AU, K) * B(K,)

would bring out in the logic that if, for example, #, were less than #,,
we would get an undefined result.)

The choice of a formula for the general form of ¢,; while looping
is essential to the success of this deduction. It is the problem of
selecting a suitable form, which depends greatly on a knowledge
of the program’s intended operation and the properties of various
forms in mathematics generally, which is to date almost impossible
to do automatically in any sufficiently general fashion.

We now treat the section of program between nodes 3 and 11,
replacing the section between nodes 5 and 10 by a function. The W
formulas are:
W7: a3(Ci, j, k) O q4(C, gs, k)
w8: qi(Ci, j, k) & j > hs D qu(Ci, j, k)
W9: q:(Ci, j, k) & j < ke D gscij, k)

94(C:, j, k) & j < b

& t5-y0(Cis, ks x, 1) O aiolf(Cs,s x, J), J, 1)

Wi1l: @1(Ci, J, k) O qu(C;, j + 1, k)

and 10 of the last section:

No. 1 « 1971 APPLICATION OF FORMAL LOGIC

the
intermedi-
ate loop

gs(cii k) & g2 < hy & gy = g
& by = hy D ts_10lcii, k, A; B}, by + 1)

where we have used

f(Ci; X, .])

for a function that gives the new C; resulting from the substitution
of x for its jth element.

Again we have written as arguments to the g predicates only those
things that will be altered by this section of the program. In the
case of ¢;, we know from the previous section that only ¢,; and &
are altered between nodes 5 and 10, so we retain only these argu-
ments. Their altered values are fitted back into the remainder
by W10, using a function defined for this purpose.

From these formulas, we may deduce:

11, guiC;, j k) & j < he & go < hy &gy = g3 & hy = By

D tso1olcii, ky A;.Bl, by + 1) W9, W12
12. D qf(C., A;.B, j), jo hs + 1) 11, W10
13. D alf(Ciy, A, B), j+ 1,k + 1) 12, Wil

The initial condition at ¢, is given directly by W7; thus we see

that the general term in the first argument position of ¢, is going
to be C; with its first s (say) elements replaced by 4,.B/, for g <
r < s. Thus we define a function, P;, to represent this, as:

14. Pi(gs) = {(C,, Ai'B;s’ gs)
15. Pi(ge + 1) = f(P(gs +7r— 1), Ai-B4’75+r’ g +r)

Then we have:

16. q3(C;, j, k) & g6 S hi &g, X h &g, = g3
& h, = hy D qu(Pi(gs), g6 + 1, hy + 1) W7, 13, 14

and

17. Q4(Pi(g6+r)ag6+r+l,k)&g6+r+1Shﬁ
&g, < h, &g, = g3 &hy = by
DquPlgs+r+ 1, g+r+2,+1)

Thus, by induction from 16 and 17:

IBM SYST J

18. 43(Ci,j,k)&g6+"+1§h6 &gesha
&g, < hy &gy = g3 & hy = by
Dq4(Pi(g6+r+l)ag6+r+2;h2+1)

The exit from this loop is taken, by W8, if the second argument
to g, is > he. Thus in 18 we put r = h, — g, — 1 and obtain:

19. qi(C;, j, k) & g5 < b
&g, < h, &g, = gs &hy = hy
D qul(Plhs), hs + 1, by + 1)
20. D qu(Pi(he), he + 1, by + 1)

This is of the form required for Theorem 4, so we get:

21, qs(Ci, j k) & g6 < he & g, S hy & gy = g3 & hy = by

D t3.11(Ci, Jy k, Pi(he)y e + 1, by + 1)
We now treat the whole program, substituting a function, with W
formula 21 above, for the section between nodes 3 and 11. The
W formulas are as follows:
W13: a:.(C, i, j, k) D q.(C, g5, J, k)
W14: q:(C, i, j, k) & i > hy D q,(C, i, j, k)
Wi15: q:(C, i, j, k) & i < hs D qs(Cs, j, k)
W16: q.(C,i,j, k) &i < hy & t;_,,(C;, j, k, D;, m, n)

O qu(G(C, D, i), i, m, n)

WI17: g (C, i, j, k) D q.(C, i+ 1, j, k)

and from 21 in the previous section:

W18: a:(C., J, k)
& g3 < hy &g, < hy & g, = g5 & hy = by
D t3-n(Cy, j, k, Pi(hg), he + 1, by 4+ 1)
Here we have introduced the function G(C, D,, i) to denote the
result of substituting D, for the ith row of C. From these formulas
we may deduce:
22, g (C, i, j, k) &i < hs & g6 < b
& g, K hy &gy, = g3 & hy = by
D ts11(Cis jo ky Phg), he + 1, hy + 1) W15, W18
23, D qu(G(C, Pi(he), D), i, he + 1, 1, + 1) 22, W16

No. 1 « 1971 APPLICATION OF FORMAL LOGIC

the
complete
program

24, D qx(G(C, Pihe), D), i + 1, he + 1, b, + 1) 23, W17

Now define:

25. Q(gs) = G(C, P, (he), g5)
26. Q(gs + 1 =GQgs+r — 1), P,.,(he), 85 + 1)

then:

27. qi(C, i, j, k) & g5 < hs

& g6 S he &g, X hy & g = g5 & hy = by

D q,(G(C, P, (he), 85)s 85 + 1, hsg + 1, b, + 1) W13, 24
28. D q.(0(gs), g5 + 1, he + 1,5, + 1) 27, 25
29. ¢, Qg +r— 1,8 +r.jk)&g +r<hs

& g6 < hy &g, = gs & hy, = by

a0 +r)eg+r+1Lh+1,h+1) 24, 26
and by induction from 28 and 29:

30' ql(C9 i’j’k)&g5+rsh5&g5gh5
&geghs&gzghz&gzzga&;h:ha
D q(0(gs + 1), 85 +r-+ 1, ks + Lh + 1)

The exit from this loop occurs, by W14, when the second argument
of ¢, is > hs;. Thus we put r = h; — g; and get:

31. g (C, i, j, k) &gs < hs & g < kg
&g < h, &g =g &h =h
D qu(QChs), hs + 1, he + 1, by + 1)
32. D q.(Qhs), hs + 1, ke + 1, by + 1)

Thus by Theorem 4, the program terminates if
g5Sh5&geShs&g2Shz & g, = g3 & hy = b3

and computes Q(4;).

To see the significance of this, we must investigate the nature of
Q(h;) in detail.

The relevant function definitions are collected below (with their
original numbers):

25 Q(gS) = G(Cr Pﬂs(h6)9 g5)

IBM SYST J

26. O(gs +1r) =G +r— 1), P, (h), g5 + 1)
14. P;(gs) = {(Ci, Ai-B{m g6)
15. P(gs +1r) = f(P:(gs +r — 1), Ai'B(,Js+r9 g + 1)

and the functions f and G were defined informally as follows:

f(C,, x, j) = C, with x substituted for its jth element
G(C, D,, i) = C with D, substituted for its ith row.

Thus from 14 and 15, P.(h;) is a vector whose elements indexed
by j = g to h, are A,.B]; these elements are exactly those of C,.

Similarly, by 25 and 26, Q(%;) is a matrix whose rows, indexed
by i = g, to h;, are P,(h;). These are exactly the rows of C. Thus
the elements of Q(h;) are A, B! for

g S i S hy &g S i< b
and these are precisely the elements of A.B if
33. sn =8 &~ = h; &gy = gs & hy = by

So we have that the program computes A.B under the conditions
(from 32 and 33):

8 X hs &g S hs &g S by &gy = ga &by = My
& g =8 &h = h; &g, = gs & hy = hy

Summary comment

The techniques required and results obtainable when applying
logic to programs are well illustrated by Example 4. Firstly, it
demonstrates the possibility of treating program segments in
isolation, and using the results obtained directly in their condensed
forms in a treatment of the containing program. With this technique,
the amount of formalism involved at any one stage in the proof
can be kept within reasonable bounds. It also shows that any
program computing the dot product under the appropriate con-
ditions may be substituted for the inner loop.

The use of recursive function definitions, such as those of P, and Q,
to define a function computed by a program parallels the treatment
by McCarthy.' The example shows that, where desirable, deductions
from such definitions may be postponed until later in the proof.

Again, we may note that the conditions under which the program
computes the required result arose in the proof. In this example,

No. 1 « 1971 APPLICATION OF FORMAL LOGIC

these are not just the termination conditions, but the conditions
that guarantee that the required function is computed. These
arose partially from our insistence that the inner loop computed

Ai.

B!—i.e., to obtain these correctly, we had to know what inter-

mediate results were required. However, had we chosen wrongly
here, the overall proof would not have succeeded, so that we have
a check that the choice was in fact correct.

REFERENCES

1.

2.

11.

12,

McCarthy, J., “Towards a mathematical science of computation,”
Proceedings 1.F.I.P. Congress, 1962, North-Holland, Amsterdam.
Floyd, R. W., “Assigning meaning to programs,” Proc. Symposium on
Applied Maths., American Math. Soc. 19 (1967).

. Mendelson, E., Introduction to mathematical logic, D. Van Nostrand,

Princeton (1963).

. Kleene, S. C., Introduction to metamathematics, North-Holland, Am-

sterdam (1952).

. Manna, Z., “Termination of algorithms,” Thesis, Carnegie Mellon

University (April 1968).

. Manna, Z., “The correctness of programs,” Journal of Computer and

Systems Sciences, No. 3 (1969).

. Manna, Z., “Properties of programs and the first-order predicate cal-

culus,” Journal of the Association for Computing Machinery, 16, No.
2, April, 1969.

. Manna, Z., Pneuli, A., “Formalization of properties of recursively

defined functions,” A.C.M. Symposium on Theory of Computation,
Marina del Rey, California, May 1969.

. Ashcroft, E. A., “Functional programs as axiomatic theories,” Report

No. 9, Centre for Computing and Automation, Imperial College,
London.

. Ashcroft, E. A., “Mathematical logic applied to the semantics of com-

puter programs,” thesis submitted to Imperial College.

Although “x® 4 y” = z" has no solution in integers unless n = 2” is a
proposition, whether it is true or false is not known.

We generally use capital letters to stand for sets.

GENERAL REFERENCES

1.

2.

Cooper, D. C., “Program schema equivalences and second order logic,”
Machine Intelligence 4, Edinburgh University Press, Edinburgh (1969).
Park, D., “Fixpoint induction and proofs of program properties,” Ma-
chine Intelligence 5, Edinburgh University Press, Edinburgh (1970).

IBM SYST J

