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Compiler  assignment of data items to registers 
by W. H. E. Day 

The  assignment of data  items  to  registers is one of the  functions 
performed by a  compiler  during  the  preparation of a  program  for 
execution.  The  way in which  this  function  is  performed  affects  the 
execution  characteristics of the  program.  A  good register assignment 
scheme  can,  for  example,  reduce  the  number of movements of 
data  items between main  storage  and  registers  and  can  allow use 
of  the  faster  register-to-register  type  instructions. I n  this  paper, 
we  consider  three  related  methods of assigning  data  items to reg- 
isters. 

After  establishing s a n e  basic  definitions  and  assumptions,  and 
distinguishing between global  and  local  assignment, we discuss 
the  three  methods of global  assignment-one-one,  many-one,  and 
many-few. 

Global  one-one  assignment  associates  exactly  one  data item with 
each  register in  the region of assignment.  The  method is interesting 
because  it is used i n  commercially  available  compilers.  In  this 
paper,  it is used as a standard  for  measuring  the effectiveness of the 
many-one  and  many-few  global  assignment  methods. 

Global  many-one  assignment  associates  at  least  one  data  item 
with  a  single  register in the  region of assignment.  We  describe  a 
branch-and-bound  procedure  for  obtaining  optimal  solutions  to 
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this  assignment  problem  and  prove  that  these  solutions  are  indeed 
optimal.  This  procedure is used as  a  standard  for  measuring  the 
effectiveness of assignment  algorithms  obtaining  possibly  nonoptimal 
solutions. 

Global  many-few  assignment  associates  at  least  one  data  item  with 
each of several  registers in the  region of assignment.  The  structure 
of this  problem is identical  to  that of the  global  many-one  assign- 
ment  problem, so that  the  branch-and-bound  procedure  may  be 
used to obtain  optinlal  solutions to both  problems. 

Two  algorithms  are  described  that  obtain  possibly  nonoptimal 
solutions  to  the  many-one  and  many-few  global  assignment  pro- 
blems. For  the  problems  analyzed,  these  algorithms  seem  fast 
enough to be considered  for  inclusion  in  an  optimizing  compiler. 
In  addition,  the  solutions  generally  obtained by them  are  close  to 
the  optimal  solution  and  are significantly better  than  the  correspond- 
ing global  one-one  solution. 

Finally, we discuss  certain  extensions in the use of the  global  many- 
few assignment  method  that  may  increase  the  profitability of the 
final  assignments.  In  particular,  ways in which  this  method  may  be 
used to effect the  assignment of a data item to  more  than  one  reg- 
ister i n  the region of assignment  are  considered. 

Terminology 

In  this  section we define  terms  that  are  relevant  to  the  compiler 
global  assignment of data  items  to  registers.  First  we  describe  basic 
features of a programming  language L and  consider  the  structure 
of a  program P written in L. We identify the  basic  block  and  the 
region  as  structural  units of a  program  and use these  terms  in 
distinguishing  between  local  and  global  assignment.  We  then  define 
the  three  global  assignment  methods:  one-one,  many-one,  and 
many-few. 

programming Let L be a programming  language. A statement in L is  an  ordered 
language sequence of delimiters,  operators,  constants,  and  identifiers.  One 

subset of identifiers in L contains  elements  that  are used as  names 
of data items.  Thus  constants  and  data  names  are  constructs  in 
L that  represent  data  items.  Statements  in L may  be classified as 
descriptive or as  executable,  the  latter  serving to specify operations 
to  be  performed  on  data  items. 

The occurrence of a constant  or  data  name in an  executable  state- 
ment  may  be  characterized  by  its effect on the  associated  data  item 
during  statement  execution. A data  item is defined when  statement 
execution  causes  a new value  to  become  associated  with  the  data 



item is required  for  correct  statement  execution. Using the  seman- 
tical rules of L ,  one may associate with each executable statement 
an ordered set of constants  and  data names specifying the  temporal 
sequence of data item definitions and references occurring in state- 
ment  execution. 

Let P be  a  program  written in L and expressed as a finite ordered program 
set of statements i n   L :  structure 

P = (81, s2, . . . , s,} 
A basic block B, is an ordered  subset of the  statements in P :  

B, = i s m ,  S a + l ,  . . ., .L) 
= {s* 1st E p ,  

s; is executed before s, +, , 

s, f s, may not be  branched to from s E P,  

s, # s, may not  branch  to s E P )  

pi' is a  representation of P as  an  ordered set of basic blocks: 

Pb = { B , ,  B,, . . .  , B,) 

I Pi' is a representation of P as a directed graph  in which P b  is the 
set of vertices and U is the set of directed arcs: 

~ P" = ( P h ,  U )  ! 
where : 

u = ( (x ,  y )  1 x,  y E P",  flow  of control  may pass from x to y )  

A region R ,  is a  strongly  connected  subgraph of P'; 

R ,  = (P:, U,> 

where; 

PI' c P b  

u, = {(x, Y )  I x, Y € e ,  (x, Y )  E u} 
and  there exists a path' joining  arbitrary x, y E P f .  

I P" is a  representation of P as a n  ordered set of regions: 

P' = { R , ,  R,, . . .  , R,) 

= { R ,  1 R ,  # Ri for i # j ,  

R ,  n R ,  = 0 or R ,  C R ,  for i < j ,  

R,, = P'] ( 1 )  

A digital  computer C performs  arithmetic  and logical processing 
of data items using two sets of individually addressable registers: 

I 
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G* , = I , g ,  1 g ,  is a general register} 

G*, = ( g ,  1 g ,  is a  floating-point register1 

In most instances where an  arithmetic  or logical operation  requires 
the use of a register from GT, any  available g,  E Gq may be assigned. 

One of many  functions  performed in the  compilation of P is the 
assignment of data items to appropriate registers, these assign- 
ments being effective during the execution of P on C. Let d represent 
an element of P ,  P " ,  or P' in which the assignment of data items 
to registers is to occur. Define the  ordered  sets: 

G: = k t  I g ,  E GT, 

g ,  is available  for assignment everywhere in d }  

N' = { n z  I n, is a data item in P, 

n ,  may be assigned to registers in dJ 

types of The assignment of data items to registers is characterized first 
assignment in  terms of d i n  the following definitions: 

Definition 1: A local  assignment is a (possibly multiple-valued) 
mapping of N C N' onto G, C G; for d E Pb.  

Definition 2:  A global  assignment is a (possibly multiple-valued) 
mapping of N G N' onto G, G G; for d E P'.  

The assignment of data items to registers may be characterized 
next by the type of mapping  that occurs. 

Definition 3: A one-one  assignment is a  one-one  mapping of N N' 
onto G, 5 G:. A one-one  assignment defines a  one-to-one cor- 
respondence between N and G,. 

Definition 4 :  A many-jew assignment is a single-valued mapping 
of N E N' onto G, G:, where' e(N) 2 e(G,). 

Definition 5 :  A many-one  assignment is a many-few assignment  in 
which e(G,) = 1. 

Definitions 3 and 4 specifically exclude multiple-valued mappings 
in which a data item is mapped into  more  than  one register.  Such 
mappings  may  be  desirable;  this  subject is discussed in the section 
on extensions. 

Many-few and  many-one assignment methods  require  a knowledge 
of the interference  characteristics of data items. A data item is 
actiue at a  point in d if it may be referred to subsequent to  that 
point.  Two  data items interfere in d if they are  both active at  a  point 
in d. Total  interference exists among  data items in  a  set N if ni in- 



terferes with n ,  in d for every n, ,  n,  E N ,  i # j .  A necessary condition 
for  the assignment of N C N' to g E G, in d is that n, must  not 
interfere with n k  in d for every a,, n ,  E N ,  i # k .  

Global assignment 

This section discusses the relevance of the  global  assignment of 
data items to registers as a  machine-dependent  optimization  method. 
It also describes the basic assumptions of the global assignment 
methods  considered  in  subsequent sections. 

The proposed  operating  environments of a compiler and  its compiled 
programs generally have a significant influence on the  compiler 
design. For example, References 3 and 4 describe compiler designs 
in which fast compile time is  desirable; relatively little  importance 
is  attached to  the generation  of compiled programs having desirable 
execution  characteristics. On the  other  hand, References 5 and 6 
describe  compiler designs in  which great  importance is attached 
to  the generation of compiled programs with desirable  execution 
characteristics,  and  a  reasonable  degradation in compile  time  is 
tolerated to  attain  this  result.  The assignment methods we describe 
in this  paper  are  particularly  relevant to  the  latter designs, for they 
attempt  to optimize  certain of the compiled program's  execution 
characteristics. Specifically we are  interested  in the compiled pro- 
gram's execution time  and  length. 

Methods of optimizing"' execution  characteristics  may be classi- 
1 fied by the  extent of their dependence on  the programming  lan- 

I guage  and  the digital computer.  Optimization  methods effecting 
the  assignment of data items to registers are language-independent 
because high-level programming  languages do not usually provide 
language facilities for  manipulating  registers.  Such  methods  are 
machine-dependent because registers are physical components of the 
digital  computer  on which the compiled program is to be  executed. 
However, since registers are  reasonably  standard  features of com- 
mercially available  digital  computers,  one  may claim a degree of 
machine-independence  for register optimization  methods not 
depending on register characteristics  unique to a  particular  digital 
computer. Some register optimization  methods  are described in 
References 6 and 8. 

In this  paper, we are  concerned  not only with the physical prop- 
erties of registers, but also with the  properties of the  instructions 
using registers. In executing most  arithmetic  and logical instruc- 
tions,  an  operation is performed using two data items as  operands. 
The first data item  must occupy a register and  may  be replaced by 
the result of the  operation.  The second data item may  occupy  either 
a register or a  main  storage  location.  An  instruction is shorter, 
and  its execution is faster, when the second data item occupies 
a register.  It is of particular  interest  that  the result of an  operation 
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values of globally  assigned  data  items  that  are  active  during  inter- 
region  transfers of control.  Global  one-one  assignment  does  not 
in  itself  require  knowledge of interference  among  data  items,  since 
it  assigns  just  one  data  item  to  a  register. The use of the  global one- 
one  assignment  method i n  a  compiler  is  described by Reference 6. 

A weakness in global  one-one  assignment is that  it is usually in- 
capable of assigning  more  than  one  data  item  to  a  register in a 
region.  One  approach  to  the  solution of this  problem is to  consider 
a  set of data  items  for  assignment  to  a  register if no  two  data  items 
in  the  set  interfere  at  any  point in  the  region.  Global  many-few 
assignment  attempts  to  identify  this  situation  and  to  make, if 
possible, a more  profitable  assignment  of  several  data i t em  to   the  
register.  This  assignment  method  requires  accurate  program flow 
information in the  region  to  calculate  the  points  at  which  each  data 
item  is  active  and to  determine  the  set of data  items  with  which  each 
data  item  interferes.  This  information is used to  obtain  sets  of  data 
items  that  may  be  assigned  to  a  register. 

A weakness i n  global  many-few  assignment is that  situations  may 
arise  in  which precise program flow information is not  available: 
for example,  the  compiler  may  be  unable to  deduce  from  the  pro- 
gram  the  minimum  set of labels  to which control  passes  at  a  branch 
statement. To ensure  correct  execution,  the  compiler  must  assume 
that  control  may  pass  at  this  branch  statement  to  any of a  set of 
labels sufficient to contain  the  minimum  set.  The  global  many-few 
assignment  in  this  case is usually  less  profitable  than  the  assignment 
that  would  be  possible  with  precise  program flow information.  In 
extreme  cases,  when  precise  program flow information is unavail- 
able,  the  resulting  global  many-few  assignment  is  identical  to  the 
corresponding  global  one-one  assignment. 

Reference 5 describes  an  approach  to  compiler  design  that  is  based 
on the  representation of a  program  as  an  ordered  set  of  regions 
(see Equation 1). Optimization  methods  are  applied  sequentially 
to  the  regions; in the  absence  of specific information  describing 
the  frequency of execution of regions,  regions R ,  are  processed 
in the  index  sequence: { I ,  2, . . . , IZ 1 .  Now  when  one  program loop 
is nested within  another  and  the  two loops are  assigned  respectively 
to R, and R,, the  method of region  identification  ensures  that i 5 j. 
Thus  nested loops are  usually  optimized  before  containing  loops; 
to  the  extent  that  depth of loop nesting  and  frequency of execution 
are  related,  it  also  means  that  more  frequently  executed  regions 
are  optimized  before less frequently  executed  regions.  The  global 
assignment  methods  described in this  paper  may  be  considered 
machine-dependent  optimization  methods in  a  compiler  having 
this  basic  design. 

The  global  assignment  methods  we  describe  require  a  profit  to be 
associated  with  each data  item.  This  profit  measures  the  improve- 
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ment in program execution that  may occur if the  data item is 
globally assigned to  a register  in the region being processed.  We 
assume  the profit of a  particular global  assignment to  be  the  sum of 
the profits of those  data  items  therein assigned to registers. When 
information is available  concerning  execution  frequencies of blocks 
in  the  region,  it  may be possible to assign data item  profits so that  the 
global  assignment profit measures with reasonable  accuracy  the 
resulting improvement in program execution.  When such  informa- 
tion is unavailable, it is probably satisfactory to define data item 
profit to  be  a linear function of the  numbers of definitions of and 
references to  the  data item  in the region. In  this case, the values 
assigned to  the profit equation  constants  determine  whether  the 
profit represents  a projected improvement in program size or 
execution  time. 

In this paper, we assume that  the compiler is able  to classify each 
data  item by the register type  required to  operate on it.  Global 
assignment methods  are  then used to  obtain  an assignment of data 
items  to individual  registers  for  each class of registers. 

The  global assignment methods we describe in this  paper  assume 
that  the registers available for assignment  have uniform  charac- 
teristics, so that  any  data item may be assigned to any  available 
register.  Violations of this  assumption occur in  many commercially 
available computers.  In  the section on extensions, we indicate how 
these  global  assignment methods might  be used to assign data 
items to registers  when  such special requirements exist. 

Global one-one assignment 

In  this  section, we develop  a  formulation of the  global  one-one 
assignment method  as  an integer programming problem and  state 
an  optimal feasible solution  to  this  problem. In this  method,  after 
the profit of assigning  each data item to a register has been computed, 
those  data items are chosen  for  assignment to available  registers 
(one  data item  per  register) that maximize profit. 

Stated in terms of Definitions 2 and 3, a global one-one assignment 
is a  one-one  mapping of N C N‘  onto G, S G; for d E P ’ .  

Now consider the following notation. 

nz is the  number of registers  available for  assignment in d: n 7  = 

e(G:). 

e( N’) .  
n is the  number of data  items  available  for assignment i n  GI: n = 

p is a profit vector with dimension (1 x n) :  p = (11,). p t  is the profit 



x is a data item selection vector with dimension ( n  X 1): x = [xt]. 
x i  = 1 when n ,  E N’ is assigned to some g E G, ; otherwise, x, = 0. 

z is the objective function,  the value of which is to be  optimized. 

1 is  a  sum vector of appropriate  dimension. 

Using this  notation, we see that  the  global  one-one  assignment 
method  has this formulation: 

Maximize z = px (2) 

subject to lx I YI? (3)  

where x ,  E ( 0 ,  11 (4) 

P t  > 0 

Any x satisfying Equation 4 is  a solution to PI. Any x satisfying 
Equations 3 and 4 is a feasible solution to P1. Any x satisfying 
Equations 2-4 is an optimalfeasible solution to P1. 

Assume (without loss of generality) the elements of N’ to be  ordered 
such that p , 2 p ,  for n L ,  n)  E N’ and i < j .  Then 

x* = ( x j  I x i  = 1 for 1 5 j 5 rn, 

x i  = O for rn < j 5 n )  

is an optimal feasible solution to  P1. 

The  method of indirect  proof may be used to  prove this theorem. 

The  ONEONE algorithm  denotes  a  procedure using Theorem 1 
to obtain  an  optimal feasible solution to PI. As an example of its 
use, let m = 3, n = 9, and use the profit vector represented by P 
in  Figure 1.  The  ONEONE algorithm  obtains  the  optimal feasible 
solution : 

x =  [ 1 0 0 0 0 1 0 1 0 ]  

for which z = 269. 

Global many-one assignment 

In this section we develop  a  formulation of  th le global mE my-one 
assignment  method  as an integer programming  problem.  This 
problem is to select for  assignment (with maximum  profit) to a 
single register in a region a set of data items in which no two  data 
items  interfere. We describe two algorithms  for  obtaining feasible 
solutions to this  problem:  one is a  branch-and-bound  procedure, 

P1 

Theorem 1 

Figure 1 Problem data 

C 

0 1 1 1 0 1 1 1 1  
1 0 1 0 0 1 1 0 1  
1 1 0 1 1 1 1 1 1  

o o 1 1 0 1 1 1 0  
1 0 1 0 1 1 1 1 0  

1 1 1 1 1 0 1 1 1  
1 1 1 1 1 1 0 1 0  
1 0 1 1 1 1 1 0 0  
1 1 1 0 0 1 0 0 0  

P 
8 6  24 5 3  9 5  7 5  90 30 93 6 
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and we prove that it obtains an optimal feasible solution;  the  other 
obtains  a possibly nonoptimal feasible solution. APL functions 
illustrating these algorithms are presented. 

Stated  in  terms of Definitions 2 and 5 ,  a  global  many-one assign- 
ment is a single-valued mapping of N C N’ onto g E G; for d E 
P‘, where e(N) > 1 .  

Now consider the following notation. 

x is a data item selection vector with dimension (n  x l), where 
n = e(N’): x = [x$]. x, = 1 when n, E N’ is assigned tog; otherwise 
x ;  = 0. 

N :  C N’ is a  subset of data items  among which there exists total  in- 
terference i n  d. 

N** is a set of p subsets NT giving a  complete  description of the 
data item interference in d :  N** = {NT,  N: ,  . . ., N : } .  It follows 
that if n I ,  nk E N’ and n, interferes with nk in d,  then  there exists 
Nf E N** such that: {n , ,   n , )  5 N: .  

A is a data item interference matrix with dimension ( p  X n): A = 

(ai j) .   a, , = 1 if n, E N :  ; otherwise a,, = 0. 

Using this notation,  the  global  many-one assignment method  has 
this  formulation : 

’2 Maximize z = px 
subject to Ax 5 1 

xi E ( 0 ,  1 )  
where a,i E ( 0 ,  1)  

Pi > 0 

P2 is an integer programming  problem that might be classified 
(Reference 9) as a weighted set matching  problem. 

The following terms,  originating  in Reference 10, are useful in 
discussing solution  techniques  for P2. A (complete) solution S is 
an assignment of binary values to the  data items in N’.  S is a  partic- 
ular  representation of a  solution x to P2 in which the elements of 
S are ordered and each element represents a data item  and its 
assigned binary  value: 

S = { X ,  I ~ I , , I  E N ’ ,  

(Si > 0 )  3 ( X S i  = I ) ,  

(3;  < 0 )  ==+ (XISil  = 0 ) )  

Explicit  enumeration is the process of excluding a  complete  solution 
from  the set of possible optimal feasible solutions to P2. Implicit 
enumeration is the process of excluding a set of complete  solutions 



T from the set of possible optimal feasible solutions  without  the 
explicit enumeration  of  each S E T. A partial  solution S” is an 
assignment of binary values to the  data items in N C N’. 

Sn z= {si I ~ I , , I  E N ,  

(Si > 0 )  ==+ (xai = l ) ,  

6 ;  < 0 )  ==+ (XI.,l = 011 

A free variable  set is the set of data ifems that have not been assigned 
binary values in s”. I 

F { f  I ny E N ’ ,  f 6 x”, -f @ S p J  
~ 

Let S“ be  an assignment of binary values to all n,, .f E F. 

Sc = { s  I Is1 E F ,  

(s > 0 )  * (x, = l ) ,  

(s < O)* (XIS = O)} 

Then  a completion of S” is a  complete  solution  determined by S” 
and s’. 

Let z’ be  the objective function value of the  most  profitable feasible 
solution to P2 yet obtained. To  fathom S” is to determine that 
among all completions of s’’ either there exists no feasible comple- 
tion  more  profitable  than z’, or there exists a  distinct  most  prof- 
itable  completion,  with objective function value z”, such that z” > 
2’. The set of completions of a  fathomed  partial  solution is implicitly 
enumerated. 

Branch-and-bound procedures” . I 2  form  a distinctive subclass of 
those  enumerative  methods  obtaining  optimal feasible solutions to 
problems  like P2. These  procedures use a  branching  procedure 
and  a set of bounding  rules to  obtain  the complete implicit enumera- 
tion of solutions to the  problem. The branching  procedure  generates 
for analysis an  ordered sequence of partial  solutions  and  terminates 
only when all solutions to the problem have been implicitly enumer- 
ated.  The set of bounding rules establishes a lower bound on the 
value of the  optimal objective function  and an upper  bound on 
the objective function value of the  most  profitable feasible comple- 
tion of a given partial  solution. These bounds  then  determine if 
the  completions of the given partial  solution  may be implicitly 
enumerated. 

The OPTIMAL algorithm  (Table I )  is a  branch-and-bound  pro- 
cedure that obtains  an  optimal feasible solution to  P2. It has  three 
basic components:  a  procedure  obtaining  an initial approximation 
to  the optimal feasible solution  (Table 1,  step 2); a  fathoming 
procedure  (step 3); and a branching  procedure  (steps 4 and 5) .  
The final feasible solution is optimal if one can prove that: 
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Figure 2 The E S T I M A T E   A P L  function 

V P E S T I M A T E   C ; E ; J ; Q ; X  
V E S T I M A T E C f l I V  

C11 J + ( p E + - C ) r l J  
r 2 1  Q + ~ P x + / - c  
C S J  L ~ : ~ ~ ; x I + E ~ ; x I A ~ ( ( P x + E ~ ~ ~ J I ; J / ~ ~ P ) , ~ P ) ~ - ~ ~ ~ ~ ~ J I ~  

c 5 I z+r / P + .  X E  
r 6 1  . ~ + ( ~ p P ) x l - z x - g r ; ( P + . ~ ~ ) ~ z l  

C41 + L A x t O < J + J - l  

V 

dates have been considered for assignment in each solution:  each 
e, represents at this point  a  complete feasible solution. 

Figure 2 shows an implementation of ESTIMATE. The  correspond- 
ence between symbols used in the text and APL variables is: C f-f 

C, p tf P ,  E H E, Q tf Q, z: 4+ 2, and Si H S. P and C are 
passed to  ESTIMATE as arguments, while S and Z are  returned  as 
global variables. 

Figure 3 shows the  application of ESTIMATE to the  problem de- 
scribed in  Figure l .  The final values of Z and S represent an  opti- 
mal feasible solution. We also show the value of Q and  the  initial 
and final values of E calculated by ESTIMATE for  this  problem. 

We  now state  two essential features of the OPTIMAL algorithm 
branching  procedure. Their proofs  are in Appendices A and B 
and stem from an analysis in  Reference 10 of a problem more 
general than P2. 

The following notation  and  terms  are used in the discussion. x’ 
is the sequence of fathomed  partial  solutions generated by the 
OPTIMAL algorithm  branching  procedure. 

E’= {S?, . * .  , SL] 

A sequence of fathomed  partial  solutions is nonredundunt if each 
complete  solution  fathomed in the sequence occurs  as  the  comple- 
tion of exactly one  fathomed  partial  solution. Sy E x’ is non- 
redundant if none of its  completions  are  completions of any Sp E E’, ,j # i. A sufficient condition for Sf E x’ to be nonredundant 
is that it include the  complement of an element s E Sp for each 
s: E E’, j # i. 

E’, the sequence of fathomed  partial  solutions generated by the 
OPTIMAL algorithm  branching  procedure, is nonredundant.  The 
proof of this  theorem is in Appendix A.  

E’, the sequence of fathomed  partial  solutions generated by the 
OPTIMAL algorithm  branching  procedure,  terminates when all 
2“ complete  solutions to P2 have been implicitly enumerated.  The 
proof of this theorem is in Appendix B. 
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the  fathoming Consider  the following notation. 
procedure 

F’ is  a  subset of F in which each element is a  candidate  for assign- 
ment  in  a feasible completion of s”: F’ = i f i  I fi E F, s E s”, 
s > 0, cJla o}.  
C* is a symmetric submatrix of C ,  with order c?(F’), describing 
the  interference  among the  data items n,,J, E F’: C* = (cTi). c:j = 1 
when c J i  ,, = 1 and f,, fi E F’; otherwise cTi = 0. 

Theorems 4 and 5 identify two  conditions  in which it is possible 
to determine an optimal feasible completion of a  partial  solution 
P I ]  
3 .  

Theorem 4 If F’ = ,@ then 

sc = (s I Is/ E F, s < 01 
determines S”, an optimal feasible completion of S”, with objective 
function value z”. 

Proof: We use the  method of indirect  proof to obtain a contradiction. 
Suppose  there exists T‘ determining T,  a feasible completion of 
S”, with objective function value z > z”. Since pt > 0 for a, E 
N’ ,  T cannot  be  more  profitable  than S” unless there exists some 
t E T“,  t > 0. But since T is a feasible completion of S”, we must 
have t E F’. This  contradicts  the  hypothesis  that F’ = ,@ and  proves 
the  theorem. 

Theorem 5 If F’ # ,@ and C* = 0 then 

Proof: We  use the  method of indirect  proof to obtain  a  contradic- 
tion.  Suppose  there exists T” determining T,  a feasible completion 
of S7’, with objective function value z > z”. Since pt > 0 for n, E 
N ” ,  T cannot  be  more  profitable  than S” unless there exists some 
t E T‘, t > 0 where t @ S“. But since T is a feasible completion 
of S”, we must  have t E F J .  However, if t E F’, then t E S‘ by the 
method of constructing S‘. This  contradicts  the  requirement  that 
t @ S‘ and  proves  the  theorem. 

Theorem 6 proves that it is possible to  fathom  a partial  solution 
when it satisfies the  conditions of Theorem 4 or  Theorem 5.  

Theorem 6 If Theorem 4 or  Theorem 5 determines an optimal feasible com- 
pletion of S”, then S” is fathomed. 

Proof: Let S”, with objective function z”, be the  optimal feasible 
completion of S” determined by Theorem 4 or  Theorem 5 .  Let z’ I 



be the objective function value of the most profitable feasible 
solution to P2 yet obtained. By definition, S” is fathomed when 
there exists either no completion of S” more profitable than z’ 
or a distinct most profitable completion of S” that is more profitable 
than z’. Either z” > z’ or z”< z’. If z” > z’, then S” satisfies the 
second condition and S” is fathomed. If z” 5 z’, St’ ensures that 
the first condition is  satisfied,  since no feasible completion of S” 
can be more profitable than  it.  Thus S” is fathomed, and the theorem 
is proved. 

There exist criteria by  which one may determine that certain ni, 
i E F’ cannot  be assigned  in completions of S” more profitable than 
the most profitable feasible solution yet obtained. Such data items 
may be deleted  immediately from the F’ associated  with S”. In turn, 
these deletions may hasten the fathoming of S” addressed by Theorem 
6 .  Theorem 7 states a basic criterion for the deletion of data items 
from F’. 

z’ is the objective function value of the most profitable feasible 
solution to P2 yet obtained. ni, i E Ff, is a candidate for  assignment 
in a completion of s”, and has associated  with it: 

Ui = { j  I j E F’, c i i  = O ]  

If 

i > O  

then ni cannot be assigned in completions of S” more profitable 
than z’. 

Proof: We prove the contrapositive, that if S“ determines a com- 
pletion of S” more profitable than z’ and i E S“,  i > 0, then: 

Since S“ determines a campletion of S” more profitable than z’, 
we have: 

i>O 

where : 

u =  ( i l j E s ” , j > o )  
Since S” determines a feasible completion of S”, we have: 

cii = 0 for all j E U 
From this and the definition of U,, it follows that U 2 Ui. Since 
p i  > 0 for n, E N’, it then follows that: 
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Substituting this result in Equation 11 yields Equation 10, which 
we set out to prove. 

Theorems 8 and 9 describe two characteristics exhibited by comple- 
tions of S”. Theorem 8 states an upper bound on the maximum 
number of data items that may be assigned in  a completion of S”. 
This may be used  in the construction of rules governing the removal 
of data items from F’. Theorem 9 states an upper bound on the 
minimum number of separate feasible completions of S” necessary 
to include the assignment of every f E F’. This theorem is of par- 
ticular relevance in the consideration of many-few assignment 
techniques: if S” = j25 and Ff = N’,  then Theorem 9 states an upper 
bound on e(G,), the number of registers required as images in a 
single-valued mapping of N‘ onto G, C Gi‘. 

Theorem 8 T is a set, with  maximum cardinality, of data items f E F’, all of 
which  may be assigned in a single completion of S”. Assume the 
elements of F’ to be ordered such that if m = e(F’), then: 

I 
~ 

The proof of this theorem is in Appendix C .  I 
Theorem 9 T is a set, with  minimum cardinality, of elements x E T such that: 

each S; determines a feasible completion of a given S”; and each 
f E F’ is  assigned  in  exactly one E T. Assume the elements of 
Ff to be ordered such that if m = e(Ff), then: 

for fi,fi E F’ and i < j .  

Then : I 
The proof of this theorem is  in  Appendix D. I 
Figure 4 shows two APL functions, D and R, which calculate the 
upper bounds specified  by Theorem 8 and Theorem 9. The APL 
variable C corresponds to C* as  defined in the text. C is passed to 
each APL function as an argument, while the value of the upper 
bound is returned as  an explicit result. Given C as defined in Figure 1, 
the upper bounds obtained by D and R have the values 3 and 6 ,  
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Figure 4 The D and R APL functions 
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Figure 5 The OPTIMAL APL function 

respectively. For this problem, the least upper  bounds have the 
values 2 and 6, respectively. 

Figure 5 shows an implementation of the OPTIMAL algorithm as 
an APL function. The correspondence between symbols used in 
the text and APL variables is: C u C, p ts P ,  S 8, s” ++ SC, 
F t) F, F’ t) F ,  z’ u Z ,  and S’ u S.  P and C are passed to  the 
OPTIMAL function as arguments, while S and 2 are returned as 
global variables. APL statement labels identify previously described 
theorems in  the  fathoming procedure and show the correspondence 
between the function statements and  the OPTIMAL algorithm steps 
in Table 1. 

Our experience using the OPTIMAL algorithm for the solution of 
nontrivial problems indicates that execution of the ESTIMATE 
algorithm accounts  for  a negligible fraction of the  total execution 
time. We have also used the ESTIMATE algorithm, by itself, for 
the  solution  of nontrivial problems. This approach is faster, but 
it  obtains  a possibly nonoptimal  solution. 
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Global many-few assignment 

In  the section on global  many-one  assignment, we developed a 
formulation of that assignment method.  This  may  take  the  general 
form : 

Maximize z = p*x* (14) 

subject to A*x* 5 1 

x: E 10, 11 

where E 1 0 ,  1 ] 

P t  > 0 

in which we substitute: 

p* = P 

A* = A 

x* = x 

We also described the OPTIMAL algorithm  for  obtaining an  optimal 
feasible solution to P2 and  the ESTIMATE algorithm  for  obtaining 
a possibly nonoptimal feasible solution. 

In this  section, we develop a  formulation of the global many-few 
assignment  method. Its  structure is identical to  that of P2, so 
that  the algorithms  obtaining feasible solutions to P2 may  also 
be used for  the global many-few assignment  problem. The many-one 
assignment  problem is extended to assign multiple registers simul- 
taneously.  Additional  constraints  are  introduced to limit  the 
assignment of each data item to  no  more  than  one register. We 
describe  three  algorithms  for  obtaining feasible solutions to this prob- 
lem:  one  obtains an optimal feasible solution;  the  other two obtain 
possibly nonoptimal feasible solutions. APL functions  illustrating 
these three  algorithms  are  presented. 

Stated  in  terms of Definitions 2 and 4, a  global many-few assign- 
ment  is  a single-valued mapping of N s N' onto G, C G; for d E 
P', where e(N) 2 e(G,). 

Now consider the following notation. 

m is the number of registers available for assignment in d: m = 

e(G;). 

e(N'). 
n is the  number of data items  available  for assignment in d: n = 

p ( i J ,  A(;] ,  and C ( i >  represent the  jth replications of p, A, and C, 

respectively. 
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Figure 8 The ESTSOLl APL function 
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[5] print  a  description of the  optimal feasible solution.  Statement 
[4] prints  the  optimal objective function value. The  kth row  printed 
by statement [5] represents an assignment S,  of N C N’ to some 
gA. E Gj ,  where: 

sk zz ( S  I ~ I S I  E N ’ ,  

(s > 0 )  =+ (n, is assigned to gk), 

(s < 0) =+ ( n ,  is not assigned to 8,)) 

Figure 7 shows the  application of OPTSOL to the  problem described 
in Figure 1, for various values of m. 

ESTSOLl (Figure 8) is an APL function  obtaining  a possibly non- 
optimal feasible solution  to P3. ESTSOLl is identical to OPTSOL 
except that  the ESTIMATE function is invoked instead of the OPTIMAL 
function. The application of ESTSOLI to  the problem described in 
Figure  1 yields results  equivalent to those  shown  in  Figure 7. 

An alternative  algorithm is to consider the  global many-few as- 
signment problem  as  a sequence of m global  many-one  assignment 
problems. In this  approach,  the ESTIMATE algorithm is invoked 
to  obtain  an assignment of data items to a single register. Assigned 
data items are immediately deleted from the problem to prevent 
their subsequent  assignment to other registers. The ESTIMATE 
algorithm  is invoked m times, or until no  data items remain  to  be 
assigned to registers. 

ESTSOL2 (Figure 9) obtains  a possibly nonoptimal feasible solution 
to P3 in the  manner described above. The correspondence between 
symbols used in the text and APL variables is: C H C, p ++ P ,  m c-f 
M ,  z’ H Z,  and S’ tf S. M is passed to ESTSOL2 as an argument, 
while P and C are considered global variables defined external to 
it.  The AI’L variable 8 describes the incomplete feasible solution 
as it is determined by successive invocations of the ESTIMATE 
function. The APL variable T deletes assigned data items from  the 
problem.  Statements [3] and [5] bound  the loop  obtaining  the 
sequence of solutions to  the global  many-one assignment problem. 
Statement [3] invokes  the ESTIMATE function.  Statement [4] updates 
the incomplete solution with the  partial  solution  just  obtained. 
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Statement [5] corrects  the specification of data items already as- 
signed in the problem ; it also closes the loop when data items and 
registers remain to be assigned. Statements [6] and [7] print  a  de- 
scription of the final feasible solution  in the  format used  by the 
OPTSOL and ESTSOLl functions. 

The application of ESTSOLZ to  the problem described in  Figure 1 
yields results  equivalent to those shown in  Figure 7. 

Although OPTSOL,  ESTSOL1, and ESTSOLZ obtain feasible solutions 
to P3 in  the general case, they obtain feasible solutions to  the global 
one-one  and  many-one assignment problems as special cases. 

When total  interference exists among all data items being considered 
for assignment, A is a  matrix with dimension (1 x n) in which 
a, = 1 ,  1 5 i 5 n. The corresponding data item  interference  matrix 
is: C = "I. In  this case, OPTSOL, ESTSOLI, and ESTSOLZ obtain 
an optimal feasible solution to P3 that is equivalent to  the ONEONE 
optimal feasible solution to P1. 

When m = 1, OPTSOL obtains an optimal feasible solution to P2. 
When m = 1, ESTSOLI and ESTSOLZ obtain  the  same  result,  a 
possibly nonoptimal feasible solution  to P2. 

Test results 

In this section, we use results of the ONEONE and OPTSOL algorithms 
as  standards in comparing  the execution characteristics of the 
ESTSOLl and ESTSOLZ algorithms. These four  algorithms were used 
to  obtain solutions to 400 assignment problems  generated for use 
in  the  comparison.  The ESTSOLI, ESTSOLZ, and OPTSOL problem 
solutions were obtained by executing programs on an IBM System/ 
360 Model 65. Execution time required to  obtain  the final feasible 
solutjon,  and final feasible solution profit, are  the criteria used to 
measure  the execution characteristics of these algorithms. 

The APL functions in this  paper are  documentation  and were not 
used with the APL\360 System to  obtain  the results  reported here. 
Instead, versions of ESTSOLI, ESTSOLZ, OPTSOL, ESTIMATE, and 
OPTIMAL were written in an experimental  programming  language 
and were then compiled into IBM System/360 Operating System 
assembler language  programs. The ONEONE algorithm was not 
implemented in this way, since its  optimal feasible solution is 
easily derived from  the assignment problem specification. The 
OPTIMAL program was used experimentally and differs in  certain 
respects from the OPTIMAL function in Figure 5. For example, 
it uses a different procedure to obtain the initial feasible solution, 
and in the  fathoming  procedure,  it uses rules in  addition to  that 
specified by Theorem 7 to hasten the  fathoming of a  partial  solution. 
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In  comparing  the interference characteristics  and profits of two 
data items, these rules identify conditions  under which the assign- 
ment of one  data item  in an  optimal feasible solution  either  cannot 
occur  or can occur  and is sufficient to ensure  the assignment of 
the second data item. 

A profit vector p and  a  data item interference  matrix C are  required 
to describe  each assignment problem used in the  comparison.  One 
profit vector was constructed  for use in  all assignment problems; 
each element was effectively selected, with replacement,  from  a set 
of integers { i 1 1 5 i 5 99) with which there is associated a  discrete 
uniform  probability  distribution. Four  hundred C matrices were 
constructed for use in  the  comparison.  Each C matrix is character- 
ized  by the matrix  order, n, and  the  density, p ,  of nonzero  matrix 
elements occuring off the main  diagonal. The  coordinates of each 
nonzero element were effectively selected, with replacement,  from 
a set of integers { i  1 1 5 i 5 n )  with which there is associated a 
discrete uniform  probability  distribution. Five C matrices were 
constructed in this way for  each (n,  p )  ordered  pair, where n E { 16, 
24)  and p E (0.05, 0.15, . . . , 0.95). Ten C matrices were con- 
structed  for each (n, p )  ordered  pair, where n E { 32, 48, 64) and 
p E {0.05,0.15, . . . ,  0.95). 

Figure I O  shows the OPTIMAL program  average  execution times 
required by OPTSOL to  obtain  optimal feasible solutions to  the 400 
assignment  problems. The OPTIMAL program average execution 
time, t ,  depends not only on matrix  order, but  on matrix density 
and  problem  structure. When n is fixed, t varies greatly as a  function 
of p ;  t usually decreases in value as p increases. For example, extreme 
values of t exhibited by OPTIMAL for n = 64, m = 1 are: t = 358 
seconds at p = 0.15; and t = 0.2 seconds at p = 0.95. 

When m > I ,  the assignment problems passed by OPTSOL to OP- 
TIMAL have  the  structure defined by Equations 19 and 21. The OPTI- 
MAL program  execution times for such problems are highly variable 
and  considerably exceed the execution times required by unstructured 
problems having the  same  order. 

Figures 1 1  and 12 show the ESTIMATE program average execution 
times required by ESTSOL2 and ESTSOLI to  obtain final feasible 
solutions to the 400 assignment problems. Since ESTSOL2 and 
ESTSOLI generate  the same input to ESTIMATE when m = I ,  the 
curves in  Figures 1 1  and 12 for m = I are  identical. The average 
execution time for  a single invocation of ESTIMATE depends  on 
matrix order,  but is reasonably insensitive to  matrix density and 
problem  structure.  For  example,  extreme values of t exhibited by 
ESTIMATE for unstructured  problems with m = I ,  n = 64 are: 
t = I18 milliseconds at p = 0.05 and t = 97 milliseconds at p = 

0.55. When n? = 2, n = 32, the assignment problem  input by 
ESTSOLl to ESTIMATE has  the  structure defined by Equations 19 

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 

Figure 1 1  ESTIMATE average 

execution times 

required by ESTSQL2 

24 rl- 

Figure 1 2   E S T I M A T E  average 

execution times 

required by ESTSOLl  

24 n- 







I solution. On the  other  hand.  factor 2 is dominant in nrnhlemc hnvino 

I since relatively few data items are assigned in  the final solution. 

I In Drevious sections. we discussed assignment methods hRcerl nn 

involving local  and  global  assignment; that global assignment may 
be considered a single-valued mapping;  and  that members of each 
class of registers subiect to assignment have uniform  characteristics 

I be weakened 

mapping of data items to registers in  a  region. These methods may 
also  be used for  local assignment to effect a single-valued mapping 
of data items to registers in  a basic block.  However,  this  approach 
does not recognize the considerable difference in the  structural 
properties of the basic block and  the  region.  It may be  preferable 
to develop for local assignment a  method using the distinctive 
structural  properties of the  basic block to effect in  it  a  multiple- 
valued mapping of data items to registers. 

Although  global many-few assignment effects a single-valued map- 
ping of data items to registers, it nevertheless may be  used to effect 
a  certain type of multiple-valued mapping. The concept  motivating 

decomposed  into  a  number of logically distinct data items. This 
set of nondecomposable data items may then replace the  original 
data item as  input  to a  global many-few assignment method.  The 
resulting assignment is a single-valued mapping with respect to 
the  nondecomposable data items, but it  may be a multiple-valued 
mapping with respect to  the original data item.  Associated'with 
each  nondecomposable data item is  a set of definitions of and 
references to the  decomposable data item  having  the  property that 
flow  of control passes neither from  a definition in the set to a ref- 
erence not in  the  set,  nor  from  a definition not  in  the set to a ref- 
erence in  the  set.  The identification of nondecomposable data 
items requires no information  that is not already necessary in pre- 
paring  input  for  global many-few assignment. 

item might itself  be subdivided to provide still smaller input 
units for global assignment. If the  data item were subdivided into 
n parts,  the resulting (2" - 1) distinct  partial  assignments  might 
then  replace it as  input  to a  global many-few assignment method. 
The corresponding interference matrix  must be initialized to ensure 
that each of the n parts is assigned, at most, once to,  at  most,  one 
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Figure 14 ESTSOLI,  ONEONE, and RANDEST profit comparisons 
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items into a set of registers. We developed a  formulation of each 
method as an integer programming  problem,  and showed the  one- 
one  and  many-one  global assignment problems to be special cases 
of the  global many-few assignment problem. 

Next we described three  algorithms for obtaining feasible solutions 
to the  many-one  and many-few global assignment problems.  The 
OPTSOL algorithm uses a  branch-and-bound  procedure to  obtain 
optimal feasible solutions to these problems, and we proved that 
these branch-and-bound  solutions  are indeed optimal.  The ESTSOLl 
and ESTSOL2 algorithms  obtain possibly nonoptimal feasible solu- 
tions to these problems. 

The ESTSOLl and ESTSOL2 algorithms have identical execution 
times for global many-one assignment problems; however, ESTSOL2 

registers. In the  range of problems analyzed, both  alogrithms seem 

piler. Also, the solution profits of both  algorithms  are  almost always 
within ten percent of the  optimal profit and  are significantly better 
than  that of the corresponding global one-one assignment problem. 

Certain extensions in the use of the global many-few assignment 
method may increase the profitability of the final assignments. 

i 
I has  the  shorter execution time for assignment problems with multiple 

I fast enough to be considered for inclusion in  an optimizing com- 

Appendix A: Proof of Theorem 2 

If e ( r )  = 1, then satisfies the definition of sequence non- 
redundancy since each complete solution  fathomed in c' clearly 
occurs as  the  completion of exactly one  fathomed  partial  solution. 
This completes the  proof  for  the case when e (Z)  = 1. 

Now assume that e ( Z )  > 1. The proof is  by mathematical in- 
duction.  First we show  that { Sy) is nonredundant.  Then, assuming 
that { S;, . . . , ST} is nonredundant, we show that { Sy, . . . , S:+l] 
must  be  nonredundant.  The Principle of Mathematical  Induction 
then assures us that r itself must  be  nonredundant. 

The proof that {Sf} is nonredundant is identical to  that used for 
the case when e ( 2 )  = 1. 

Now assume that  the sequence ;Sf, . . . , S;} is nonredundant. 
S;,, is constructed  from S; by application of step 5 in Table I ,  
optionally followed by (repetitive) application of step 4. The struc- 
ture of these consecutive fathomed  partial  solutions may be  rep- 
resented as  the  four cases shown in  Table 3. 

In Cases 1 and 2, S;+l is nonredundant with respect to Sp because 
s, E S:+l is the complement of si  E S:. S: is  itself nonredundant 
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Table 3 Structure of consecutive fathomed  partial solutions 

with respect to all previous Sf, 1 5 n < i, because of the presence of 
complemented elements in  Sy in the element sequence (s:, . . . , s;-, ) . 
Since this element sequence also  appears in  S:+,, Sy+, is nonredun- 
dant with respect to all previous S:, 1 5 n 5 i. Since, in addition, 
{ Sy, . . . , q} is a  nonredundant sequence, it follows that { S:, . . . , 
SY,,} is a nonredundant sequence in Cases 1 and 2 .  

In Cases 3 and 4, Sp+, is nonredundant with respect to S: because 
s, E Sp,, is the  complement of s i  E Sp. Since s; first occurs in 
S;, is also nonredundant with respect to all previous S:, 
g 5 w2 < i. S: is  itself nonredundant with respect to all previous 
S:, 1 5 n < g ,  because of the presence of complemented elements 
in S: in  the element sequence {$, . . . , s - , ) .  Since this element 
sequence also  appears in Sp,,, S:+, is nonredundant with respect 
to  all previous S:, 1 5 n 5 i. Since, in addition, {S : ,  . . . , S:} 
is a nonredundant sequence, it follows that {S : ,  . . . , Sp,,} is a 
nonredundant sequence in Cases 3 and 4. This completes the  proof. 

Appendix B: Proof of Theorem 3 

Step 5 of Table 1 is entered only when a  partial  solution  has been 
fathomed,  and  it is the only step that creates the negative elements 
found in the Sf E E. The negative elements in S:, suitably in- 



terpreted,  provide  a  record of the  complete  solutions implictly 
enumerated by the  fathoming process in previous steps. The inter- 
pretation  is  this.  If: 

s: = (SI, . . .  , S I ,  * . .  , S k J  

and s, < 0, then the 2'"-j) completions of 

s" = (SI, . . .  , -SI] 

have been implicitly enumerated in the  fathoming of SL, 1 5 m < i. 
In this  context, to prove  the  theorem  it is sufficient to prove that: 

1. Every S: E exhibits a  complete record of the  complete 
solutions implicitly enumerated in  the  fathoming of all previous 
S:, 1 I j < i; 

2. The OPTIMAL algorithm  termination  criterion is satisfied only 
when the record indicates that all 2" complete  solutions  have 
been implicitly enumerated. 

The proof of part 1 is by mathematical  induction.  First we show 
that Sy exhibits  a valid record.  Then, assuming that Sy exhibits 
a valid record, we show that SP,, must exhibit a valid record. The 
Principle of Mathematical  Induction  then  assures us that every 
Sy E c' must  exhibit  a valid record. 

Step 5 is entered  for  the first time when S; is fathomed. Sf contains 
no negative elements because such elements are created only by 
step 5, and this step  has not been entered previously. The absence 
of negative elements implies that  no complete  solutions  have been 
previously enumerated.  This is a valid record  for Sy, since it  is  the 
first fathomed  partial  solution. 

Now assume that S: exhibits a valid record. Sp,, is constructed 
from S: by application of step 5, optionally followed by (repetitive) 
application of step 4. The  structure of these consecutive fathomed 
partial  solutions  may  be  represented  as the four cases shown  in 
Table 3. 

In Cases I and 2, all negative elements in Sf appear in q,, by con- 
struction, so that  the valid record of Sp is  propagated to S:+l. It 
remains only to record in S:+, the  fact that S: itself has been 
fathomed ; step 5 does  this by making s, E S:+, the  complement of s: E S:. It follows that S;,, exhibits a valid record in  Cases 1 and 2 .  

In Cases 3 and 4, all s: E SF, .j < m 5 k are negative. Sy has been 
fathomed so that all completions of 

{.si, . . . , s:, . . . , SL) ( 2 2 )  

have been implicitly enumerated. In addition, s: < 0 indicates that 
all  completions of 
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of  the ( i  - I )  data items  already assigned to sets F,  E F*. In  the 
worst  case, these m,  data items would be ~ 

sets; in this case, 

sets would be sufficient to accomplish the  assignment off,  to some 
F ,  E F*. It follows that for the  partitioning  algorithm  described, 

sets would be sufficient for the  complete  partitioning of F' into F*. 
Thus 

Now  let S" determine a feasible completion of S7', and  suppose that 
f E F,  is assigned in S".  No g E F, ,  g # may be assigned in S" 
because of  the existence of total  interference  among  the data items 
in F,. On  the  other hand, there may exist as many as e(F*) data 
items, each i n  a  distinct F,  that may be assigned in S".  From this 
and  the definition of T, it follows that: 

e(F*) 2 e(v 
Substituting  this result in  Equation 25 yields Equation 12, which 
we set out  to prove. 

Appendix D: Proof of Theorem 9 

Let F* be  a  partition of F': 

F* z ( . . .  , F , ,  . . . )  

where : 

F,  = ( J  I J E F',  g E F , , c l a  = 0 )  

It is possible to construct  the  partition F* with the following al- 
gorithm. For f m  E F', we define F, = {fm\. The remaining f ,  E 
F', i < m, are  to be assigned to F, E F* in the index sequence: 
( m  - 1 ,  m - 2, . . ., I } .  Each f,, 1 5 i < m, is assigned to  an 
existing nonempty F,,  1 5 j 5 t ,  if it does not interfere with any 
f E F,  ; otherwise we define a new subset, F , ,  , = If, 1. 

R is an upper  bound on the  cardinality of F*. The proof follows. 
Any given f ,  in the  sequence: {fm, . . . ,fi \ interferes with 
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of the (m - i) data items already assigned to sets F, E F*. In the 
worst case, these m, data items would be assigned to mi distinct 
sets; in this case, 

m ,  + 1 = 1 + x c ?  

sets would be sufficient to accomplish the assignment off,   to some 
F, E F*. It follows that for the  partitioning  algorithm  described, 

m 

j = i  

sets would be sufficient for the complete partitioning of F’ into F*. 
Thus 

R = 1 + max { 2 c:} 2 e(F*) 

Now let T’ be a set of elements Sf E T’ where: 
i = l , . . * , m  ? = I  

I 

and : 

e(T’) = e(F*) (28) 

Each f E F’ is assigned in exactly one E T’; this follows from 
Equation 27 and  the fact that F* is a  partition of F’. In addition, 
each S; E T’ determines  a feasible completion of S” since F,  g F’ 
and, by construction,  there exists no interference among  the data 
items in F,. On the  other  hand, since there is no reason to suppose 
that  the cardinality of T’ is a  minimum,  it follows that: 

2. e ( n  
From this,  Equation 28, and  Equation 26 we obtain  Equation 13, 
which we set out  to prove. 
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