
This pc~per form~dc11e.s as integer psogrumnling probIei??s three methods
f i) r assigning cluta items to registers in the con11)ilcrtion process-the
one-one, many-one, unrl muny-few global ussignment meth0d.s.

Three ~1gorithm.s use described .for obtaining feasible solutions to
the nluny-one and many-few global a.s.signment problems. One yro-
0ide.s an optimul solution. The otlwrs, which proL;icle good approxi-
mations, appeur to be suficienlly f k s t for inclusion in an optimizing
compiler.

Compiler assignment of data items to registers
by W. H. E. Day

The assignment of data items to registers is one of the functions
performed by a compiler during the preparation of a program for
execution. The way in which this function is performed affects the
execution characteristics of the program. A good register assignment
scheme can, for example, reduce the number of movements of
data items between main storage and registers and can allow use
of the faster register-to-register type instructions. I n this paper,
we consider three related methods of assigning data items to reg-
isters.

After establishing s a n e basic definitions and assumptions, and
distinguishing between global and local assignment, we discuss
the three methods of global assignment-one-one, many-one, and
many-few.

Global one-one assignment associates exactly one data item with
each register in the region of assignment. The method is interesting
because it is used i n commercially available compilers. In this
paper, it is used as a standard for measuring the effectiveness of the
many-one and many-few global assignment methods.

Global many-one assignment associates at least one data item
with a single register in the region of assignment. We describe a
branch-and-bound procedure for obtaining optimal solutions to

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 281

this assignment problem and prove that these solutions are indeed
optimal. This procedure is used as a standard for measuring the
effectiveness of assignment algorithms obtaining possibly nonoptimal
solutions.

Global many-few assignment associates at least one data item with
each of several registers in the region of assignment. The structure
of this problem is identical to that of the global many-one assign-
ment problem, so that the branch-and-bound procedure may be
used to obtain optinlal solutions to both problems.

Two algorithms are described that obtain possibly nonoptimal
solutions to the many-one and many-few global assignment pro-
blems. For the problems analyzed, these algorithms seem fast
enough to be considered for inclusion in an optimizing compiler.
In addition, the solutions generally obtained by them are close to
the optimal solution and are significantly better than the correspond-
ing global one-one solution.

Finally, we discuss certain extensions in the use of the global many-
few assignment method that may increase the profitability of the
final assignments. In particular, ways in which this method may be
used to effect the assignment of a data item to more than one reg-
ister i n the region of assignment are considered.

Terminology

In this section we define terms that are relevant to the compiler
global assignment of data items to registers. First we describe basic
features of a programming language L and consider the structure
of a program P written in L. We identify the basic block and the
region as structural units of a program and use these terms in
distinguishing between local and global assignment. We then define
the three global assignment methods: one-one, many-one, and
many-few.

programming Let L be a programming language. A statement in L is an ordered
language sequence of delimiters, operators, constants, and identifiers. One

subset of identifiers in L contains elements that are used as names
of data items. Thus constants and data names are constructs in
L that represent data items. Statements in L may be classified as
descriptive or as executable, the latter serving to specify operations
to be performed on data items.

The occurrence of a constant or data name in an executable state-
ment may be characterized by its effect on the associated data item
during statement execution. A data item is defined when statement
execution causes a new value to become associated with the data

item is required for correct statement execution. Using the seman-
tical rules of L , one may associate with each executable statement
an ordered set of constants and data names specifying the temporal
sequence of data item definitions and references occurring in state-
ment execution.

Let P be a program written in L and expressed as a finite ordered program
set of statements i n L : structure

P = (81, s2, . . . , s,}
A basic block B, is an ordered subset of the statements in P :

B, = i s m , S a + l , . . ., .L)
= {s* 1st E p ,

s; is executed before s, +, ,

s, f s, may not be branched to from s E P,

s, # s, may not branch to s E P)

pi' is a representation of P as an ordered set of basic blocks:

Pb = { B , , B,, . . . , B,)

I Pi' is a representation of P as a directed graph in which P b is the
set of vertices and U is the set of directed arcs:

~ P" = (P h , U) !
where :

u = ((x , y) 1 x, y E P", flow of control may pass from x to y)

A region R , is a strongly connected subgraph of P';

R , = (P:, U,>

where;

PI' c P b

u, = {(x, Y) I x, Y € e , (x, Y) E u}
and there exists a path' joining arbitrary x, y E P f .

I P" is a representation of P as a n ordered set of regions:

P' = { R , , R,, . . . , R,)

= { R , 1 R , # Ri for i # j ,

R , n R , = 0 or R , C R , for i < j ,

R,, = P'] (1)

A digital computer C performs arithmetic and logical processing
of data items using two sets of individually addressable registers:

I

NO. 4 ' 1970 ASSIGNING DATA ITEMS TO REGISTERS 283

G* , = I , g , 1 g , is a general register}

G*, = (g , 1 g , is a floating-point register1

In most instances where an arithmetic or logical operation requires
the use of a register from GT, any available g, E Gq may be assigned.

One of many functions performed in the compilation of P is the
assignment of data items to appropriate registers, these assign-
ments being effective during the execution of P on C. Let d represent
an element of P , P " , or P' in which the assignment of data items
to registers is to occur. Define the ordered sets:

G: = k t I g , E GT,

g , is available for assignment everywhere in d }

N' = { n z I n, is a data item in P,

n , may be assigned to registers in dJ

types of The assignment of data items to registers is characterized first
assignment in terms of d i n the following definitions:

Definition 1: A local assignment is a (possibly multiple-valued)
mapping of N C N' onto G, C G; for d E Pb.

Definition 2: A global assignment is a (possibly multiple-valued)
mapping of N G N' onto G, G G; for d E P'.

The assignment of data items to registers may be characterized
next by the type of mapping that occurs.

Definition 3: A one-one assignment is a one-one mapping of N N'
onto G, 5 G:. A one-one assignment defines a one-to-one cor-
respondence between N and G,.

Definition 4 : A many-jew assignment is a single-valued mapping
of N E N' onto G, G:, where' e(N) 2 e(G,).

Definition 5 : A many-one assignment is a many-few assignment in
which e(G,) = 1.

Definitions 3 and 4 specifically exclude multiple-valued mappings
in which a data item is mapped into more than one register. Such
mappings may be desirable; this subject is discussed in the section
on extensions.

Many-few and many-one assignment methods require a knowledge
of the interference characteristics of data items. A data item is
actiue at a point in d if it may be referred to subsequent to that
point. Two data items interfere in d if they are both active at a point
in d. Total interference exists among data items in a set N if ni in-

terferes with n , in d for every n, , n, E N , i # j . A necessary condition
for the assignment of N C N' to g E G, in d is that n, must not
interfere with n k in d for every a,, n , E N , i # k .

Global assignment

This section discusses the relevance of the global assignment of
data items to registers as a machine-dependent optimization method.
It also describes the basic assumptions of the global assignment
methods considered in subsequent sections.

The proposed operating environments of a compiler and its compiled
programs generally have a significant influence on the compiler
design. For example, References 3 and 4 describe compiler designs
in which fast compile time is desirable; relatively little importance
is attached to the generation of compiled programs having desirable
execution characteristics. On the other hand, References 5 and 6
describe compiler designs in which great importance is attached
to the generation of compiled programs with desirable execution
characteristics, and a reasonable degradation in compile time is
tolerated to attain this result. The assignment methods we describe
in this paper are particularly relevant to the latter designs, for they
attempt to optimize certain of the compiled program's execution
characteristics. Specifically we are interested in the compiled pro-
gram's execution time and length.

Methods of optimizing"' execution characteristics may be classi-
1 fied by the extent of their dependence on the programming lan-

I guage and the digital computer. Optimization methods effecting
the assignment of data items to registers are language-independent
because high-level programming languages do not usually provide
language facilities for manipulating registers. Such methods are
machine-dependent because registers are physical components of the
digital computer on which the compiled program is to be executed.
However, since registers are reasonably standard features of com-
mercially available digital computers, one may claim a degree of
machine-independence for register optimization methods not
depending on register characteristics unique to a particular digital
computer. Some register optimization methods are described in
References 6 and 8.

In this paper, we are concerned not only with the physical prop-
erties of registers, but also with the properties of the instructions
using registers. In executing most arithmetic and logical instruc-
tions, an operation is performed using two data items as operands.
The first data item must occupy a register and may be replaced by
the result of the operation. The second data item may occupy either
a register or a main storage location. An instruction is shorter,
and its execution is faster, when the second data item occupies
a register. It is of particular interest that the result of an operation

N O . 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 285

values of globally assigned data items that are active during inter-
region transfers of control. Global one-one assignment does not
in itself require knowledge of interference among data items, since
it assigns just one data item to a register. The use of the global one-
one assignment method i n a compiler is described by Reference 6.

A weakness in global one-one assignment is that it is usually in-
capable of assigning more than one data item to a register in a
region. One approach to the solution of this problem is to consider
a set of data items for assignment to a register if no two data items
in the set interfere at any point in the region. Global many-few
assignment attempts to identify this situation and to make, if
possible, a more profitable assignment of several data i t em to the
register. This assignment method requires accurate program flow
information in the region to calculate the points at which each data
item is active and to determine the set of data items with which each
data item interferes. This information is used to obtain sets of data
items that may be assigned to a register.

A weakness i n global many-few assignment is that situations may
arise in which precise program flow information is not available:
for example, the compiler may be unable to deduce from the pro-
gram the minimum set of labels to which control passes at a branch
statement. To ensure correct execution, the compiler must assume
that control may pass at this branch statement to any of a set of
labels sufficient to contain the minimum set. The global many-few
assignment in this case is usually less profitable than the assignment
that would be possible with precise program flow information. In
extreme cases, when precise program flow information is unavail-
able, the resulting global many-few assignment is identical to the
corresponding global one-one assignment.

Reference 5 describes an approach to compiler design that is based
on the representation of a program as an ordered set of regions
(see Equation 1). Optimization methods are applied sequentially
to the regions; in the absence of specific information describing
the frequency of execution of regions, regions R , are processed
in the index sequence: { I , 2, . . . , IZ 1 . Now when one program loop
is nested within another and the two loops are assigned respectively
to R, and R,, the method of region identification ensures that i 5 j.
Thus nested loops are usually optimized before containing loops;
to the extent that depth of loop nesting and frequency of execution
are related, it also means that more frequently executed regions
are optimized before less frequently executed regions. The global
assignment methods described in this paper may be considered
machine-dependent optimization methods in a compiler having
this basic design.

The global assignment methods we describe require a profit to be
associated with each data item. This profit measures the improve-

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 287

ment in program execution that may occur if the data item is
globally assigned to a register in the region being processed. We
assume the profit of a particular global assignment to be the sum of
the profits of those data items therein assigned to registers. When
information is available concerning execution frequencies of blocks
in the region, it may be possible to assign data item profits so that the
global assignment profit measures with reasonable accuracy the
resulting improvement in program execution. When such informa-
tion is unavailable, it is probably satisfactory to define data item
profit to be a linear function of the numbers of definitions of and
references to the data item in the region. In this case, the values
assigned to the profit equation constants determine whether the
profit represents a projected improvement in program size or
execution time.

In this paper, we assume that the compiler is able to classify each
data item by the register type required to operate on it. Global
assignment methods are then used to obtain an assignment of data
items to individual registers for each class of registers.

The global assignment methods we describe in this paper assume
that the registers available for assignment have uniform charac-
teristics, so that any data item may be assigned to any available
register. Violations of this assumption occur in many commercially
available computers. In the section on extensions, we indicate how
these global assignment methods might be used to assign data
items to registers when such special requirements exist.

Global one-one assignment

In this section, we develop a formulation of the global one-one
assignment method as an integer programming problem and state
an optimal feasible solution to this problem. In this method, after
the profit of assigning each data item to a register has been computed,
those data items are chosen for assignment to available registers
(one data item per register) that maximize profit.

Stated in terms of Definitions 2 and 3, a global one-one assignment
is a one-one mapping of N C N‘ onto G, S G; for d E P ’ .

Now consider the following notation.

nz is the number of registers available for assignment in d: n 7 =

e(G:).

e(N’) .
n is the number of data items available for assignment i n GI: n =

p is a profit vector with dimension (1 x n) : p = (11,). p t is the profit

x is a data item selection vector with dimension (n X 1): x = [xt].
x i = 1 when n , E N’ is assigned to some g E G, ; otherwise, x, = 0.

z is the objective function, the value of which is to be optimized.

1 is a sum vector of appropriate dimension.

Using this notation, we see that the global one-one assignment
method has this formulation:

Maximize z = px (2)

subject to lx I YI? (3)

where x , E (0 , 11 (4)

P t > 0

Any x satisfying Equation 4 is a solution to PI. Any x satisfying
Equations 3 and 4 is a feasible solution to P1. Any x satisfying
Equations 2-4 is an optimalfeasible solution to P1.

Assume (without loss of generality) the elements of N’ to be ordered
such that p , 2 p , for n L , n) E N’ and i < j . Then

x* = (x j I x i = 1 for 1 5 j 5 rn,

x i = O for rn < j 5 n)

is an optimal feasible solution to P1.

The method of indirect proof may be used to prove this theorem.

The ONEONE algorithm denotes a procedure using Theorem 1
to obtain an optimal feasible solution to PI. As an example of its
use, let m = 3, n = 9, and use the profit vector represented by P
in Figure 1. The ONEONE algorithm obtains the optimal feasible
solution :

x = [1 0 0 0 0 1 0 1 0]

for which z = 269.

Global many-one assignment

In this section we develop a formulation of th le global mE my-one
assignment method as an integer programming problem. This
problem is to select for assignment (with maximum profit) to a
single register in a region a set of data items in which no two data
items interfere. We describe two algorithms for obtaining feasible
solutions to this problem: one is a branch-and-bound procedure,

P1

Theorem 1

Figure 1 Problem data

C

0 1 1 1 0 1 1 1 1
1 0 1 0 0 1 1 0 1
1 1 0 1 1 1 1 1 1

o o 1 1 0 1 1 1 0
1 0 1 0 1 1 1 1 0

1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 0
1 0 1 1 1 1 1 0 0
1 1 1 0 0 1 0 0 0

P
8 6 24 5 3 9 5 7 5 90 30 93 6

289 NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS

and we prove that it obtains an optimal feasible solution; the other
obtains a possibly nonoptimal feasible solution. APL functions
illustrating these algorithms are presented.

Stated in terms of Definitions 2 and 5 , a global many-one assign-
ment is a single-valued mapping of N C N’ onto g E G; for d E
P‘, where e(N) > 1 .

Now consider the following notation.

x is a data item selection vector with dimension (n x l), where
n = e(N’): x = [x$]. x, = 1 when n, E N’ is assigned tog; otherwise
x ; = 0.

N : C N’ is a subset of data items among which there exists total in-
terference i n d.

N** is a set of p subsets NT giving a complete description of the
data item interference in d : N** = {NT, N: , . . ., N : } . It follows
that if n I , nk E N’ and n, interferes with nk in d, then there exists
Nf E N** such that: {n , , n ,) 5 N: .

A is a data item interference matrix with dimension (p X n): A =

(ai j) . a, , = 1 if n, E N : ; otherwise a,, = 0.

Using this notation, the global many-one assignment method has
this formulation :

’2 Maximize z = px
subject to Ax 5 1

xi E (0 , 1)
where a,i E (0 , 1)

Pi > 0

P2 is an integer programming problem that might be classified
(Reference 9) as a weighted set matching problem.

The following terms, originating in Reference 10, are useful in
discussing solution techniques for P2. A (complete) solution S is
an assignment of binary values to the data items in N’. S is a partic-
ular representation of a solution x to P2 in which the elements of
S are ordered and each element represents a data item and its
assigned binary value:

S = { X , I ~ I , , I E N ’ ,

(Si > 0) 3 (X S i = I) ,

(3; < 0) ==+ (XISil = 0))

Explicit enumeration is the process of excluding a complete solution
from the set of possible optimal feasible solutions to P2. Implicit
enumeration is the process of excluding a set of complete solutions

T from the set of possible optimal feasible solutions without the
explicit enumeration of each S E T. A partial solution S” is an
assignment of binary values to the data items in N C N’.

Sn z= {si I ~ I , , I E N ,

(Si > 0) ==+ (xai = l) ,

6 ; < 0) ==+ (XI.,l = 011

A free variable set is the set of data ifems that have not been assigned
binary values in s”. I

F { f I ny E N ’ , f 6 x”, -f @ S p J
~

Let S“ be an assignment of binary values to all n,, .f E F.

Sc = { s I Is1 E F ,

(s > 0) * (x, = l) ,

(s < O)* (XIS = O)}

Then a completion of S” is a complete solution determined by S”
and s’.

Let z’ be the objective function value of the most profitable feasible
solution to P2 yet obtained. To fathom S” is to determine that
among all completions of s’’ either there exists no feasible comple-
tion more profitable than z’, or there exists a distinct most prof-
itable completion, with objective function value z”, such that z” >
2’. The set of completions of a fathomed partial solution is implicitly
enumerated.

Branch-and-bound procedures” . I 2 form a distinctive subclass of
those enumerative methods obtaining optimal feasible solutions to
problems like P2. These procedures use a branching procedure
and a set of bounding rules to obtain the complete implicit enumera-
tion of solutions to the problem. The branching procedure generates
for analysis an ordered sequence of partial solutions and terminates
only when all solutions to the problem have been implicitly enumer-
ated. The set of bounding rules establishes a lower bound on the
value of the optimal objective function and an upper bound on
the objective function value of the most profitable feasible comple-
tion of a given partial solution. These bounds then determine if
the completions of the given partial solution may be implicitly
enumerated.

The OPTIMAL algorithm (Table I) is a branch-and-bound pro-
cedure that obtains an optimal feasible solution to P2. It has three
basic components: a procedure obtaining an initial approximation
to the optimal feasible solution (Table 1, step 2); a fathoming
procedure (step 3); and a branching procedure (steps 4 and 5) .
The final feasible solution is optimal if one can prove that:

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 291

Figure 2 The E S T I M A T E A P L function

V P E S T I M A T E C ; E ; J ; Q ; X
V E S T I M A T E C f l I V

C11 J + (p E + - C) r l J
r 2 1 Q + ~ P x + / - c
C S J L ~ : ~ ~ ; x I + E ~ ; x I A ~ ((P x + E ~ ~ ~ J I ; J / ~ ~ P) , ~ P) ~ - ~ ~ ~ ~ ~ J I ~

c 5 I z+r / P + . X E
r 6 1 . ~ + (~ p P) x l - z x - g r ; (P + . ~ ~) ~ z l

C41 + L A x t O < J + J - l

V

dates have been considered for assignment in each solution: each
e, represents at this point a complete feasible solution.

Figure 2 shows an implementation of ESTIMATE. The correspond-
ence between symbols used in the text and APL variables is: C f-f

C, p tf P , E H E, Q tf Q, z: 4+ 2, and Si H S. P and C are
passed to ESTIMATE as arguments, while S and Z are returned as
global variables.

Figure 3 shows the application of ESTIMATE to the problem de-
scribed in Figure l . The final values of Z and S represent an opti-
mal feasible solution. We also show the value of Q and the initial
and final values of E calculated by ESTIMATE for this problem.

We now state two essential features of the OPTIMAL algorithm
branching procedure. Their proofs are in Appendices A and B
and stem from an analysis in Reference 10 of a problem more
general than P2.

The following notation and terms are used in the discussion. x’
is the sequence of fathomed partial solutions generated by the
OPTIMAL algorithm branching procedure.

E’= {S?, . * . , SL]

A sequence of fathomed partial solutions is nonredundunt if each
complete solution fathomed in the sequence occurs as the comple-
tion of exactly one fathomed partial solution. Sy E x’ is non-
redundant if none of its completions are completions of any Sp E E’, ,j # i. A sufficient condition for Sf E x’ to be nonredundant
is that it include the complement of an element s E Sp for each
s: E E’, j # i.

E’, the sequence of fathomed partial solutions generated by the
OPTIMAL algorithm branching procedure, is nonredundant. The
proof of this theorem is in Appendix A.

E’, the sequence of fathomed partial solutions generated by the
OPTIMAL algorithm branching procedure, terminates when all
2“ complete solutions to P2 have been implicitly enumerated. The
proof of this theorem is in Appendix B.

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS

the fathoming Consider the following notation.
procedure

F’ is a subset of F in which each element is a candidate for assign-
ment in a feasible completion of s”: F’ = i f i I fi E F, s E s”,
s > 0, cJla o}.
C* is a symmetric submatrix of C , with order c?(F’), describing
the interference among the data items n,,J, E F’: C* = (cTi). c:j = 1
when c J i ,, = 1 and f,, fi E F’; otherwise cTi = 0.

Theorems 4 and 5 identify two conditions in which it is possible
to determine an optimal feasible completion of a partial solution
P I]
3 .

Theorem 4 If F’ = ,@ then

sc = (s I Is/ E F, s < 01
determines S”, an optimal feasible completion of S”, with objective
function value z”.

Proof: We use the method of indirect proof to obtain a contradiction.
Suppose there exists T‘ determining T, a feasible completion of
S”, with objective function value z > z”. Since pt > 0 for a, E
N’ , T cannot be more profitable than S” unless there exists some
t E T“, t > 0. But since T is a feasible completion of S”, we must
have t E F’. This contradicts the hypothesis that F’ = ,@ and proves
the theorem.

Theorem 5 If F’ # ,@ and C* = 0 then

Proof: We use the method of indirect proof to obtain a contradic-
tion. Suppose there exists T” determining T, a feasible completion
of S7’, with objective function value z > z”. Since pt > 0 for n, E
N ” , T cannot be more profitable than S” unless there exists some
t E T‘, t > 0 where t @ S“. But since T is a feasible completion
of S”, we must have t E F J . However, if t E F’, then t E S‘ by the
method of constructing S‘. This contradicts the requirement that
t @ S‘ and proves the theorem.

Theorem 6 proves that it is possible to fathom a partial solution
when it satisfies the conditions of Theorem 4 or Theorem 5.

Theorem 6 If Theorem 4 or Theorem 5 determines an optimal feasible com-
pletion of S”, then S” is fathomed.

Proof: Let S”, with objective function z”, be the optimal feasible
completion of S” determined by Theorem 4 or Theorem 5 . Let z’ I

be the objective function value of the most profitable feasible
solution to P2 yet obtained. By definition, S” is fathomed when
there exists either no completion of S” more profitable than z’
or a distinct most profitable completion of S” that is more profitable
than z’. Either z” > z’ or z”< z’. If z” > z’, then S” satisfies the
second condition and S” is fathomed. If z” 5 z’, St’ ensures that
the first condition is satisfied, since no feasible completion of S”
can be more profitable than it. Thus S” is fathomed, and the theorem
is proved.

There exist criteria by which one may determine that certain ni,
i E F’ cannot be assigned in completions of S” more profitable than
the most profitable feasible solution yet obtained. Such data items
may be deleted immediately from the F’ associated with S”. In turn,
these deletions may hasten the fathoming of S” addressed by Theorem
6 . Theorem 7 states a basic criterion for the deletion of data items
from F’.

z’ is the objective function value of the most profitable feasible
solution to P2 yet obtained. ni, i E Ff, is a candidate for assignment
in a completion of s”, and has associated with it:

Ui = { j I j E F’, c i i = O]

If

i > O

then ni cannot be assigned in completions of S” more profitable
than z’.

Proof: We prove the contrapositive, that if S“ determines a com-
pletion of S” more profitable than z’ and i E S“, i > 0, then:

Since S“ determines a campletion of S” more profitable than z’,
we have:

i>O

where :

u = (i l j E s ” , j > o)
Since S” determines a feasible completion of S”, we have:

cii = 0 for all j E U
From this and the definition of U,, it follows that U 2 Ui. Since
p i > 0 for n, E N’, it then follows that:

NO. 4 * 1970 ASSIGNING DATA ITEMS TO REGISTERS

Substituting this result in Equation 11 yields Equation 10, which
we set out to prove.

Theorems 8 and 9 describe two characteristics exhibited by comple-
tions of S”. Theorem 8 states an upper bound on the maximum
number of data items that may be assigned in a completion of S”.
This may be used in the construction of rules governing the removal
of data items from F’. Theorem 9 states an upper bound on the
minimum number of separate feasible completions of S” necessary
to include the assignment of every f E F’. This theorem is of par-
ticular relevance in the consideration of many-few assignment
techniques: if S” = j25 and Ff = N’, then Theorem 9 states an upper
bound on e(G,), the number of registers required as images in a
single-valued mapping of N‘ onto G, C Gi‘.

Theorem 8 T is a set, with maximum cardinality, of data items f E F’, all of
which may be assigned in a single completion of S”. Assume the
elements of F’ to be ordered such that if m = e(F’), then:

I
~

The proof of this theorem is in Appendix C . I
Theorem 9 T is a set, with minimum cardinality, of elements x E T such that:

each S; determines a feasible completion of a given S”; and each
f E F’ is assigned in exactly one E T. Assume the elements of
Ff to be ordered such that if m = e(Ff), then:

for fi,fi E F’ and i < j .

Then : I
The proof of this theorem is in Appendix D. I
Figure 4 shows two APL functions, D and R, which calculate the
upper bounds specified by Theorem 8 and Theorem 9. The APL
variable C corresponds to C* as defined in the text. C is passed to
each APL function as an argument, while the value of the upper
bound is returned as an explicit result. Given C as defined in Figure 1,
the upper bounds obtained by D and R have the values 3 and 6 ,

298 DAY IBM SYST J I

Figure 4 The D and R APL functions

V D C n l V

C l l Z+r/Z-+/(Z~.>Z+t(pC)rll)ACrAt/C;At/Cl
V Z+D C

V

~~ ~ ~~~~

Figure 5 The OPTIMAL APL function

respectively. For this problem, the least upper bounds have the
values 2 and 6, respectively.

Figure 5 shows an implementation of the OPTIMAL algorithm as
an APL function. The correspondence between symbols used in
the text and APL variables is: C u C, p ts P , S 8, s” ++ SC,
F t) F, F’ t) F , z’ u Z , and S’ u S. P and C are passed to the
OPTIMAL function as arguments, while S and 2 are returned as
global variables. APL statement labels identify previously described
theorems in the fathoming procedure and show the correspondence
between the function statements and the OPTIMAL algorithm steps
in Table 1.

Our experience using the OPTIMAL algorithm for the solution of
nontrivial problems indicates that execution of the ESTIMATE
algorithm accounts for a negligible fraction of the total execution
time. We have also used the ESTIMATE algorithm, by itself, for
the solution of nontrivial problems. This approach is faster, but
it obtains a possibly nonoptimal solution.

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS

Global many-few assignment

In the section on global many-one assignment, we developed a
formulation of that assignment method. This may take the general
form :

Maximize z = p*x* (14)

subject to A*x* 5 1

x: E 10, 11

where E 1 0 , 1]

P t > 0

in which we substitute:

p* = P

A* = A

x* = x

We also described the OPTIMAL algorithm for obtaining an optimal
feasible solution to P2 and the ESTIMATE algorithm for obtaining
a possibly nonoptimal feasible solution.

In this section, we develop a formulation of the global many-few
assignment method. Its structure is identical to that of P2, so
that the algorithms obtaining feasible solutions to P2 may also
be used for the global many-few assignment problem. The many-one
assignment problem is extended to assign multiple registers simul-
taneously. Additional constraints are introduced to limit the
assignment of each data item to no more than one register. We
describe three algorithms for obtaining feasible solutions to this prob-
lem: one obtains an optimal feasible solution; the other two obtain
possibly nonoptimal feasible solutions. APL functions illustrating
these three algorithms are presented.

Stated in terms of Definitions 2 and 4, a global many-few assign-
ment is a single-valued mapping of N s N' onto G, C G; for d E
P', where e(N) 2 e(G,).

Now consider the following notation.

m is the number of registers available for assignment in d: m =

e(G;).

e(N').
n is the number of data items available for assignment in d: n =

p (i J , A(;] , and C (i > represent the jth replications of p, A, and C,

respectively.

300 DAY IBM SYST J

0 0

P3

Figure 8 The ESTSOLl APL function

V P S T S O L I M ; I , ; N ; S ; Z
VESTSOLlrfllV

[5] print a description of the optimal feasible solution. Statement
[4] prints the optimal objective function value. The kth row printed
by statement [5] represents an assignment S, of N C N’ to some
gA. E Gj , where:

sk zz (S I ~ I S I E N ’ ,

(s > 0) =+ (n, is assigned to gk),

(s < 0) =+ (n , is not assigned to 8,))

Figure 7 shows the application of OPTSOL to the problem described
in Figure 1, for various values of m.

ESTSOLl (Figure 8) is an APL function obtaining a possibly non-
optimal feasible solution to P3. ESTSOLl is identical to OPTSOL
except that the ESTIMATE function is invoked instead of the OPTIMAL
function. The application of ESTSOLI to the problem described in
Figure 1 yields results equivalent to those shown in Figure 7.

An alternative algorithm is to consider the global many-few as-
signment problem as a sequence of m global many-one assignment
problems. In this approach, the ESTIMATE algorithm is invoked
to obtain an assignment of data items to a single register. Assigned
data items are immediately deleted from the problem to prevent
their subsequent assignment to other registers. The ESTIMATE
algorithm is invoked m times, or until no data items remain to be
assigned to registers.

ESTSOL2 (Figure 9) obtains a possibly nonoptimal feasible solution
to P3 in the manner described above. The correspondence between
symbols used in the text and APL variables is: C H C, p ++ P , m c-f
M , z’ H Z, and S’ tf S. M is passed to ESTSOL2 as an argument,
while P and C are considered global variables defined external to
it. The AI’L variable 8 describes the incomplete feasible solution
as it is determined by successive invocations of the ESTIMATE
function. The APL variable T deletes assigned data items from the
problem. Statements [3] and [5] bound the loop obtaining the
sequence of solutions to the global many-one assignment problem.
Statement [3] invokes the ESTIMATE function. Statement [4] updates
the incomplete solution with the partial solution just obtained.

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS

execution times
required by OPTSOL

24 n-

3 04

Statement [5] corrects the specification of data items already as-
signed in the problem ; it also closes the loop when data items and
registers remain to be assigned. Statements [6] and [7] print a de-
scription of the final feasible solution in the format used by the
OPTSOL and ESTSOLl functions.

The application of ESTSOLZ to the problem described in Figure 1
yields results equivalent to those shown in Figure 7.

Although OPTSOL, ESTSOL1, and ESTSOLZ obtain feasible solutions
to P3 in the general case, they obtain feasible solutions to the global
one-one and many-one assignment problems as special cases.

When total interference exists among all data items being considered
for assignment, A is a matrix with dimension (1 x n) in which
a, = 1 , 1 5 i 5 n. The corresponding data item interference matrix
is: C = "I. In this case, OPTSOL, ESTSOLI, and ESTSOLZ obtain
an optimal feasible solution to P3 that is equivalent to the ONEONE
optimal feasible solution to P1.

When m = 1, OPTSOL obtains an optimal feasible solution to P2.
When m = 1, ESTSOLI and ESTSOLZ obtain the same result, a
possibly nonoptimal feasible solution to P2.

Test results

In this section, we use results of the ONEONE and OPTSOL algorithms
as standards in comparing the execution characteristics of the
ESTSOLl and ESTSOLZ algorithms. These four algorithms were used
to obtain solutions to 400 assignment problems generated for use
in the comparison. The ESTSOLI, ESTSOLZ, and OPTSOL problem
solutions were obtained by executing programs on an IBM System/
360 Model 65. Execution time required to obtain the final feasible
solutjon, and final feasible solution profit, are the criteria used to
measure the execution characteristics of these algorithms.

The APL functions in this paper are documentation and were not
used with the APL\360 System to obtain the results reported here.
Instead, versions of ESTSOLI, ESTSOLZ, OPTSOL, ESTIMATE, and
OPTIMAL were written in an experimental programming language
and were then compiled into IBM System/360 Operating System
assembler language programs. The ONEONE algorithm was not
implemented in this way, since its optimal feasible solution is
easily derived from the assignment problem specification. The
OPTIMAL program was used experimentally and differs in certain
respects from the OPTIMAL function in Figure 5. For example,
it uses a different procedure to obtain the initial feasible solution,
and in the fathoming procedure, it uses rules in addition to that
specified by Theorem 7 to hasten the fathoming of a partial solution.

DAY I B M SYST J

In comparing the interference characteristics and profits of two
data items, these rules identify conditions under which the assign-
ment of one data item in an optimal feasible solution either cannot
occur or can occur and is sufficient to ensure the assignment of
the second data item.

A profit vector p and a data item interference matrix C are required
to describe each assignment problem used in the comparison. One
profit vector was constructed for use in all assignment problems;
each element was effectively selected, with replacement, from a set
of integers { i 1 1 5 i 5 99) with which there is associated a discrete
uniform probability distribution. Four hundred C matrices were
constructed for use in the comparison. Each C matrix is character-
ized by the matrix order, n, and the density, p , of nonzero matrix
elements occuring off the main diagonal. The coordinates of each
nonzero element were effectively selected, with replacement, from
a set of integers { i 1 1 5 i 5 n) with which there is associated a
discrete uniform probability distribution. Five C matrices were
constructed in this way for each (n, p) ordered pair, where n E { 16,
24) and p E (0.05, 0.15, . . . , 0.95). Ten C matrices were con-
structed for each (n, p) ordered pair, where n E { 32, 48, 64) and
p E {0.05,0.15, . . . , 0.95).

Figure I O shows the OPTIMAL program average execution times
required by OPTSOL to obtain optimal feasible solutions to the 400
assignment problems. The OPTIMAL program average execution
time, t , depends not only on matrix order, but on matrix density
and problem structure. When n is fixed, t varies greatly as a function
of p ; t usually decreases in value as p increases. For example, extreme
values of t exhibited by OPTIMAL for n = 64, m = 1 are: t = 358
seconds at p = 0.15; and t = 0.2 seconds at p = 0.95.

When m > I , the assignment problems passed by OPTSOL to OP-
TIMAL have the structure defined by Equations 19 and 21. The OPTI-
MAL program execution times for such problems are highly variable
and considerably exceed the execution times required by unstructured
problems having the same order.

Figures 1 1 and 12 show the ESTIMATE program average execution
times required by ESTSOL2 and ESTSOLI to obtain final feasible
solutions to the 400 assignment problems. Since ESTSOL2 and
ESTSOLI generate the same input to ESTIMATE when m = I , the
curves in Figures 1 1 and 12 for m = I are identical. The average
execution time for a single invocation of ESTIMATE depends on
matrix order, but is reasonably insensitive to matrix density and
problem structure. For example, extreme values of t exhibited by
ESTIMATE for unstructured problems with m = I , n = 64 are:
t = I18 milliseconds at p = 0.05 and t = 97 milliseconds at p =

0.55. When n? = 2, n = 32, the assignment problem input by
ESTSOLl to ESTIMATE has the structure defined by Equations 19

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS

Figure 1 1 ESTIMATE average

execution times

required by ESTSQL2

24 rl-

Figure 1 2 E S T I M A T E average

execution times

required by ESTSOLl

24 n-

I solution. On the other hand. factor 2 is dominant in nrnhlemc hnvino

I since relatively few data items are assigned in the final solution.

I In Drevious sections. we discussed assignment methods hRcerl nn

involving local and global assignment; that global assignment may
be considered a single-valued mapping; and that members of each
class of registers subiect to assignment have uniform characteristics

I be weakened

mapping of data items to registers in a region. These methods may
also be used for local assignment to effect a single-valued mapping
of data items to registers in a basic block. However, this approach
does not recognize the considerable difference in the structural
properties of the basic block and the region. It may be preferable
to develop for local assignment a method using the distinctive
structural properties of the basic block to effect in it a multiple-
valued mapping of data items to registers.

Although global many-few assignment effects a single-valued map-
ping of data items to registers, it nevertheless may be used to effect
a certain type of multiple-valued mapping. The concept motivating

decomposed into a number of logically distinct data items. This
set of nondecomposable data items may then replace the original
data item as input to a global many-few assignment method. The
resulting assignment is a single-valued mapping with respect to
the nondecomposable data items, but it may be a multiple-valued
mapping with respect to the original data item. Associated'with
each nondecomposable data item is a set of definitions of and
references to the decomposable data item having the property that
flow of control passes neither from a definition in the set to a ref-
erence not in the set, nor from a definition not in the set to a ref-
erence in the set. The identification of nondecomposable data
items requires no information that is not already necessary in pre-
paring input for global many-few assignment.

item might itself be subdivided to provide still smaller input
units for global assignment. If the data item were subdivided into
n parts, the resulting (2" - 1) distinct partial assignments might
then replace it as input to a global many-few assignment method.
The corresponding interference matrix must be initialized to ensure
that each of the n parts is assigned, at most, once to, at most, one

308 DAY IBM SYST J

Figure 14 ESTSOLI, ONEONE, and RANDEST profit comparisons

m = l

n=16

m=2

Ob"------

4 0 1 . .."
20 t

1

1970

7
n=24

.. .= . .
I

I
1

" - 0 .
-

A 4

.. ..

n=32

A
A A

..
I.

1

\..==.
I
0

r--"
n=64

0 ESTSOL 1

A RANDEST

ONEONE

items into a set of registers. We developed a formulation of each
method as an integer programming problem, and showed the one-
one and many-one global assignment problems to be special cases
of the global many-few assignment problem.

Next we described three algorithms for obtaining feasible solutions
to the many-one and many-few global assignment problems. The
OPTSOL algorithm uses a branch-and-bound procedure to obtain
optimal feasible solutions to these problems, and we proved that
these branch-and-bound solutions are indeed optimal. The ESTSOLl
and ESTSOL2 algorithms obtain possibly nonoptimal feasible solu-
tions to these problems.

The ESTSOLl and ESTSOL2 algorithms have identical execution
times for global many-one assignment problems; however, ESTSOL2

registers. In the range of problems analyzed, both alogrithms seem

piler. Also, the solution profits of both algorithms are almost always
within ten percent of the optimal profit and are significantly better
than that of the corresponding global one-one assignment problem.

Certain extensions in the use of the global many-few assignment
method may increase the profitability of the final assignments.

i
I has the shorter execution time for assignment problems with multiple

I fast enough to be considered for inclusion in an optimizing com-

Appendix A: Proof of Theorem 2

If e (r) = 1, then satisfies the definition of sequence non-
redundancy since each complete solution fathomed in c' clearly
occurs as the completion of exactly one fathomed partial solution.
This completes the proof for the case when e (Z) = 1.

Now assume that e (Z) > 1. The proof is by mathematical in-
duction. First we show that { Sy) is nonredundant. Then, assuming
that { S;, . . . , ST} is nonredundant, we show that { Sy, . . . , S:+l]
must be nonredundant. The Principle of Mathematical Induction
then assures us that r itself must be nonredundant.

The proof that {Sf} is nonredundant is identical to that used for
the case when e (2) = 1.

Now assume that the sequence ;Sf, . . . , S;} is nonredundant.
S;,, is constructed from S; by application of step 5 in Table I ,
optionally followed by (repetitive) application of step 4. The struc-
ture of these consecutive fathomed partial solutions may be rep-
resented as the four cases shown in Table 3.

In Cases 1 and 2, S;+l is nonredundant with respect to Sp because
s, E S:+l is the complement of si E S:. S: is itself nonredundant

NO. 4 * 1970 ASSIGNING DATA ITEMS TO REGISTERS 31 1

Table 3 Structure of consecutive fathomed partial solutions

with respect to all previous Sf, 1 5 n < i, because of the presence of
complemented elements in Sy in the element sequence (s:, . . . , s;-,) .
Since this element sequence also appears in S:+,, Sy+, is nonredun-
dant with respect to all previous S:, 1 5 n 5 i. Since, in addition,
{ Sy, . . . , q} is a nonredundant sequence, it follows that { S:, . . . ,
SY,,} is a nonredundant sequence in Cases 1 and 2 .

In Cases 3 and 4, Sp+, is nonredundant with respect to S: because
s, E Sp,, is the complement of s i E Sp. Since s; first occurs in
S;, is also nonredundant with respect to all previous S:,
g 5 w2 < i. S: is itself nonredundant with respect to all previous
S:, 1 5 n < g , because of the presence of complemented elements
in S: in the element sequence {$, . . . , s - ,) . Since this element
sequence also appears in Sp,,, S:+, is nonredundant with respect
to all previous S:, 1 5 n 5 i. Since, in addition, {S : , . . . , S:}
is a nonredundant sequence, it follows that {S : , . . . , Sp,,} is a
nonredundant sequence in Cases 3 and 4. This completes the proof.

Appendix B: Proof of Theorem 3

Step 5 of Table 1 is entered only when a partial solution has been
fathomed, and it is the only step that creates the negative elements
found in the Sf E E. The negative elements in S:, suitably in-

terpreted, provide a record of the complete solutions implictly
enumerated by the fathoming process in previous steps. The inter-
pretation is this. If:

s: = (SI, . . . , S I , * . . , S k J

and s, < 0, then the 2'"-j) completions of

s" = (SI, . . . , -SI]

have been implicitly enumerated in the fathoming of SL, 1 5 m < i.
In this context, to prove the theorem it is sufficient to prove that:

1. Every S: E exhibits a complete record of the complete
solutions implicitly enumerated in the fathoming of all previous
S:, 1 I j < i;

2. The OPTIMAL algorithm termination criterion is satisfied only
when the record indicates that all 2" complete solutions have
been implicitly enumerated.

The proof of part 1 is by mathematical induction. First we show
that Sy exhibits a valid record. Then, assuming that Sy exhibits
a valid record, we show that SP,, must exhibit a valid record. The
Principle of Mathematical Induction then assures us that every
Sy E c' must exhibit a valid record.

Step 5 is entered for the first time when S; is fathomed. Sf contains
no negative elements because such elements are created only by
step 5, and this step has not been entered previously. The absence
of negative elements implies that no complete solutions have been
previously enumerated. This is a valid record for Sy, since it is the
first fathomed partial solution.

Now assume that S: exhibits a valid record. Sp,, is constructed
from S: by application of step 5, optionally followed by (repetitive)
application of step 4. The structure of these consecutive fathomed
partial solutions may be represented as the four cases shown in
Table 3.

In Cases I and 2, all negative elements in Sf appear in q,, by con-
struction, so that the valid record of Sp is propagated to S:+l. It
remains only to record in S:+, the fact that S: itself has been
fathomed ; step 5 does this by making s, E S:+, the complement of s: E S:. It follows that S;,, exhibits a valid record in Cases 1 and 2 .

In Cases 3 and 4, all s: E SF, .j < m 5 k are negative. Sy has been
fathomed so that all completions of

{.si, . . . , s:, . . . , SL) (2 2)

have been implicitly enumerated. In addition, s: < 0 indicates that
all completions of

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 3 13

of the (i - I) data items already assigned to sets F, E F*. In the
worst case, these m, data items would be ~

sets; in this case,

sets would be sufficient to accomplish the assignment off, to some
F , E F*. It follows that for the partitioning algorithm described,

sets would be sufficient for the complete partitioning of F' into F*.
Thus

Now let S" determine a feasible completion of S7', and suppose that
f E F, is assigned in S". No g E F, , g # may be assigned in S"
because of the existence of total interference among the data items
in F,. On the other hand, there may exist as many as e(F*) data
items, each i n a distinct F, that may be assigned in S". From this
and the definition of T, it follows that:

e(F*) 2 e(v
Substituting this result in Equation 25 yields Equation 12, which
we set out to prove.

Appendix D: Proof of Theorem 9

Let F* be a partition of F':

F* z (. . . , F , , . . .)

where :

F, = (J I J E F', g E F , , c l a = 0)

It is possible to construct the partition F* with the following al-
gorithm. For f m E F', we define F, = {fm\. The remaining f , E
F', i < m, are to be assigned to F, E F* in the index sequence:
(m - 1 , m - 2, . . ., I } . Each f,, 1 5 i < m, is assigned to an
existing nonempty F,, 1 5 j 5 t , if it does not interfere with any
f E F, ; otherwise we define a new subset, F , , , = If, 1.

R is an upper bound on the cardinality of F*. The proof follows.
Any given f , in the sequence: {fm, . . . ,fi \ interferes with

NO. 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 315

of the (m - i) data items already assigned to sets F, E F*. In the
worst case, these m, data items would be assigned to mi distinct
sets; in this case,

m , + 1 = 1 + x c ?

sets would be sufficient to accomplish the assignment off, to some
F, E F*. It follows that for the partitioning algorithm described,

m

j = i

sets would be sufficient for the complete partitioning of F’ into F*.
Thus

R = 1 + max { 2 c:} 2 e(F*)

Now let T’ be a set of elements Sf E T’ where:
i = l , . . * , m ? = I

I

and :

e(T’) = e(F*) (28)

Each f E F’ is assigned in exactly one E T’; this follows from
Equation 27 and the fact that F* is a partition of F’. In addition,
each S; E T’ determines a feasible completion of S” since F, g F’
and, by construction, there exists no interference among the data
items in F,. On the other hand, since there is no reason to suppose
that the cardinality of T’ is a minimum, it follows that:

2. e (n
From this, Equation 28, and Equation 26 we obtain Equation 13,
which we set out to prove.

CITED REFERENCES AND FOOTNOTES

1 . A path is a sequence of arcs of a graph such that the terminal vertex

2. e (N) represents the cardinality of the set N.
3. S. Rosen, R. A. Spurgeon, and J. K. Donnelly, “PUFFT-The Purdue

University fast FORTRAN translator,” Communications of the ACM
8, No. 1 1 , 661-666 (November 1965).

4. P. W. Shantz, R. A. German, J. G. Mitchell, R. S. K. Shirley, and
C . R. Zarnke, “WATFOR-The University of Waterloo FORTRAN
IV compiler,” Communications of the A C M 10, No. 1, 41-44 (January
1967).

5. F. E. Allen, “Program optimization,” M. I. Halpern and C. J . Shaw
(editors), Annual Review in Automatic Programming 5, 239-307, Per-
gamon Press, New York, New York (1969).

6. E. S. Lowry and C. W. Medlock, “Object code optimization,” Com-
munications of the ACM 12, No. 1, 13-22 (January 1969).

7. J. Cocke and J. T. Schwartz, Programming Languages and Their Com-

of each arc coincides with the initial vertex of the succeeding arc.

8.

9.

10.

1 1 .

12.

pilers, Courant Institute of Mathematical Sciences, New York Univer-
sity, New York, New York (1969).
L. P. Horwitz, R. M. Karp, R. E. Miller, and S . Winograd, “Index
register allocation,” Journal of the Association for Computing Machin-
ery 1,3, No. 1, 43-61 (January 1966).
M. L. Balinski, “Integer programming: methods, uses, computation,”
Management Science 12, No. 3, 253-313 (November 1965).
A. M. Geoffrion, “Integer programming by implicit enumeration and
Balas’ method,” SZAM Review 9, No. 2, 178-190 (April 1967).
L. G. Mitten, “Branch-and-bound methods: general formulation and
properties,” Operations Research 8, No. 1 , 24-34 (January-February
1970).
M. L. Balinski and K. Spielberg, “Methods for integer programming:
algebraic, combinatorial, and enumerative,” Progress in Operations Re-
search: Relationship Between Operations Research and the Computer
3, 197-292, J. S. Aronofsky (editor), John Wiley and Sons, Inc., New
York, New York (1969).

N O . 4 . 1970 ASSIGNING DATA ITEMS TO REGISTERS 317

