This paper formulates as integer programming problems three methods
for assigning data items to registers in the compilation process—ithe
one-one, many-one, and many-few global assignment methods.

Three algorithms are described for obtaining feasible solutions to
the many-one and many-few global assignment problems. One pro-
vides an optimal solution. The others, which provide good approxi-
mations, appear to be sufficiently fast for inclusion in an optimizing
compiler.

Compiler assignment of data items to registers
by W. H. E. Day

The assignment of data items to registers is one of the functions
performed by a compiler during the preparation of a program for
execution. The way in which this function is performed affects the
execution characteristics of the program. A good register assignment
scheme can, for example, reduce the number of movements of
data items between main storage and registers and can allow use
of the faster register-to-register type instructions. In this paper,
we consider three related methods of assigning data items to reg-
isters.

After establishing some basic definitions and assumptions, and
distinguishing between global and local assignment, we discuss
the three methods of global assignment—one-one, many-one, and
many-few.

Global one-one assignment associates exactly one data item with
each register in the region of assignment. The method is interesting
because it is used in commercially available compilers. In this
paper, it is used as a standard for measuring the effectiveness of the
many-one and many-few global assignment methods.

Global many-one assignment associates at least one data item
with a single register in the region of assignment. We describe a

branch-and-bound procedure for obtaining optimal solutions to

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

programming
language

this assignment problem and prove that these solutions are indeed
optimal. This procedure is used as a standard for measuring the
effectiveness of assignment algorithms obtaining possibly nonoptimal
solutions.

Global many-few assignment associates at least one data item with
each of several registers in the region of assignment. The structure
of this problem is identical to that of the global many-one assign-
ment problem, so that the branch-and-bound procedure may be
used to obtain optimal solutions to both problems.

Two algorithms are described that obtain possibly nonoptimal
solutions to the many-one and many-few global assignment pro-
blems. For the problems analyzed, these algorithms seem fast
enough to be considered for inclusion in an optimizing compiler.
In addition, the solutions generally obtained by them are close to
the optimal solution and are significantly better than the correspond-
ing global one-one solution.

Finally, we discuss certain extensions in the use of the global many-
few assignment method that may increase the profitability of the
final assignments. In particular, ways in which this method may be
used to effect the assignment of a data item to more than one reg-
ister in the region of assignment are considered.

Terminology

In this section we define terms that are relevant to the compiler
global assignment of data items to registers. First we describe basic
features of a programming language L and consider the structure
of a program P written in L. We identify the basic block and the
region as structural units of a program and use these terms in
distinguishing between local and global assignment. We then define
the three global assignment methods: one-one, many-one, and
many-few.

Let L be a programming language. A statement in L is an ordered
sequence of delimiters, operators, constants, and identifiers. One
subset of identifiers in L contains elements that are used as names
of data items. Thus constants and data names are constructs in
L that represent data items. Statements in L may be classified as
descriptive or as executable, the latter serving to specify operations
to be performed on data items.

The occurrence of a constant or data name in an executable state-
ment may be characterized by its effect on the associated data item
during statement execution. A data item is defined when statement
execution causes a new value to become associated with the data
item. A data item is referred to when the current value of the data

DAY IBM SYST J

item is required for correct statement execution. Using the seman-
tical rules of L, one may associate with each executable statement
an ordered set of constants and data names specifying the temporal
sequence of data item definitions and references occurring in state-
ment execution.

Let P be a program written in L and expressed as a finite ordered
set of statements in L:

P = {Sl,Sz, ,Sn}
A basic block B, is an ordered subset of the statements in P:
B, = {Sa, Savis "7y So}
={s; |5, € P,
s, is executed before s, ,,
s, # $8, may not be branched to from s € P,
s, # s, may not branch to s & P}
P’ is a representation of P as an ordered set of basic blocks:

{Bl, B29 STt Bn}

{Bi \U B, = P, B.NB, =¢ for i#j}
i=1

P’ is a representation of P as a directed graph in which P’ is the

set of vertices and U is the set of directed arcs:

P = (P, V)

where:

U= {(x,9) | x,y € P, flow of control may pass from x to y}

A region R, is a strongly connected subgraph of P*:
R, = (P!, U)

where:

N

Ui={e, | x,yE P, (x,»E U
and there exists a path’ joining arbitrary x, y & P

P’ is a representation of P as an ordered set of regions:
P = {R,R,, - ,R,}
= {R, | R, # R; for i #J,
RNR, = or R, CR; for i </,
R, = P (1)
A digital computer C performs arithmetic and logical processing

of data items using two sets of individually addressable registers:

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

program
structure

types of
assignment

G* = lg, | g. is a general register|
G% = lg, | g, is a floating-point register}
In most instances where an arithmetic or logical operation requires

the use of a register from G*, any available g; © G* may be assigned.

One of many functions performed in the compilation of P is the
assignment of data items to appropriate registers, these assign-
ments being effective during the execution of P on C. Let d represent
an element of P, P’ or P’ in which the assignment of data items
to registers is to occur. Define the ordered sets:

G, =lg lg € G

g. is available for assignment everywhere in d}
N’ = {n; | n,is a data item in P,

n, may be assigned to registers in d}

The assignment of data items to registers is characterized first
in terms of d in the following definitions:

Definition 1: A local assignment is a (possibly multiple-valued)
mapping of N € N’ onto G, C G/ for d & P°’.

Definition 2: A global assignment is a (possibly multiple-valued)
mapping of N C N’ onto G, € G’ ford & P’.

The assignment of data items to registers may be characterized
next by the type of mapping that occurs.

Definition 3: A one-one assignment is a one-one mapping of N C N’
onto G; € G’. A one-one assignment defines a one-to-one cor-
respondence between N and G,.

Definition 4: A many-few assignment is a single-valued mapping
of N C N’ onto G, C G/, where’ ¢(N) > (G)).

Definition 5: A many-one assignment is a many-few assignment in
which ¢(G,) = 1.

Definitions 3 and 4 specifically exclude multiple-valued mappings
in which a data item is mapped into more than one register. Such
mappings may be desirable; this subject is discussed in the section
on extensions.

Many-few and many-one assignment methods require a knowledge
of the interference characteristics of data items. A data item is
active at a point in d if it may be referred to subsequent to that
point. Two data items interfere in d if they are both active at a point
in d. Total interference exists among data items in a set N if n; in-

DAY IBM SYST J

terferes with »; in d for every n,, n; € N, i ¥ j. A necessary condition
for the assignment of N € N’ to g & G, in d is that », must not
interfere with n, in d for every n,, n, & N, i # k.

Global assignment

This section discusses the relevance of the global assignment of
data items to registers as a machine-dependent optimization method.
It also describes the basic assumptions of the global assignment
methods considered in subsequent sections.

The proposed operating environments of a compiler and its compiled
programs generally have a significant influence on the compiler
design. For example, References 3 and 4 describe compiler designs
in which fast compile time is desirable; relatively little importance
is attached to the generation of compiled programs having desirable
execution characteristics. On the other hand, References 5 and 6
describe compiler designs in which great importance is attached
to the generation of compiled programs with desirable execution
characteristics, and a reasonable degradation in compile time is
tolerated to attain this result. The assignment methods we describe
in this paper are particularly relevant to the latter designs, for they
attempt to optimize certain of the compiled program’s execution
characteristics. Specifically we are interested in the compiled pro-
gram’s execution time and length,

Methods of optimizing’™’ execution characteristics may be classi-
fied by the extent of their dependence on the programming lan-
guage and the digital computer. Optimization methods effecting
the assignment of data items to registers are language-independent
because high-level programming languages do not usually provide
language facilities for manipulating registers. Such methods are
machine-dependent because registers are physical components of the
digital computer on which the compiled program is to be executed.
However, since registers are reasonably standard features of com-
mercially available digital computers, one may claim a degree of
machine-independence for register optimization methods not
depending on register characteristics unique to a particular digital
computer. Some register optimization methods are described in
References 6 and 8.

In this paper, we are concerned not only with the physical prop-
erties of registers, but also with the properties of the instructions
using registers. In executing most arithmetic and logical instruc-
tions, an operation is performed using two data items as operands.
The first data item must occupy a register and may be replaced by
the result of the operation. The second data item may occupy either
a register or a main storage location. An instruction is shorter,
and its execution is faster, when the second data item occupies
a register. It is of particular interest that the result of an operation

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

is usually left in a register. Thus, when a data item is defined, the
new value to be associated with the data item first appears in a
register; additional instructions are required if the value is to be
preserved in main storage. In addition, the value of a data item may
be preserved in a register between consecutive references so long
as the register is not otherwise required in the interval. In this
case, the register is used as if it were an extension to main storage.

The assignment methods we propose have three important features.
First, the assignment of a data item to a register in a region is effective
at all points in the region where the data item is active. Second,
more than one data item may be assigned to a register. Third, a
profit criterion is used to select from among alternative assignments
the one more likely to improve the program’s execution character-
istics. These assignment features, when considered with the pre-
viously described register characteristics, enable improvements in
program execution characteristics. First, this type of assignment
tends to decrease the number of instructions effecting register-
register and register-main storage movements of these data items.
Second, it tends to increase the number of instances in which both
instruction operands occupy registers, thus increasing the use
of shorter and faster instructions. Finally, it may be possible to
eliminate a data item’s main storage location if the data item has
been assigned to registers at all points in the program where it is
active.

Local and global assignment differ in the extent of the program over
which the assignment of data items to registers is effective: local
assighment occurs within a basic block, while global assignment
occurs within a region. Local assignment is attractive, in part,
because a compiler can easily partition a program into basic blocks
and derive necessary interference characteristics of data items defined
or referred to in the block. Thus, while it may be difficult and time-
consuming to assign data items in a region, it is comparatively easy
to make an assignment within each basic block in the region. Effi-
cient assignment methods may be developed for local assignment,
and may yield optimal register assignments for specific problems.
Reference 8, for example, describes an optimal assignment tech-
nique for the allocation of index registers.

A weakness in local assignment involves the disposition of data
items that are defined or referred to in a block and are active on
entry to or exit from the block. Local assignment cannot usually
retain assignment history across block boundaries, and so the values
of active data items must be moved to main storage for interblock
transfers of control. Global one-one assignment offers a partial
solution to this problem, for it assigns certain data items to registers,
in one-to-one correspondence, throughout the region. Precautions
for interblock transfers are unnecessary for these globally assigned
data items, although steps now become necessary to preserve the

DAY IBM SYST J

values of globally assigned data items that are active during inter-
region transfers of control. Global one-one assignment does not
in itself require knowledge of interference among data items, since
it assigns just one data item to a register. The use of the global one-
one assignment method in a compiler is described by Reference 6.

A weakness in global one-one assignment is that it is usually in-
capable of assigning more than one data item to a register in a
region. One approach to the solution of this problem is to consider
a set of data items for assignment to a register if no two data items
in the set interfere at any point in the region. Global many-few
assignment attempts to identify this situation and to make, if
possible, a more profitable assignment of several data items to the
register. This assignment method requires accurate program flow
information in the region to calculate the points at which each data
item is active and to determine the set of data items with which each
data item interferes. This information is used to obtain sets of data
items that may be assigned to a register.

A weakness in global many-few assignment is that situations may
arise in which precise program flow information is not available:
for example, the compiler may be unable to deduce from the pro-
gram the minimum set of labels to which control passes at a branch
statement. To ensure correct execution, the compiler must assume
that control may pass at this branch statement to any of a set of
labels sufficient to contain the minimum set. The global many-few
assignment in this case is usually less profitable than the assignment
that would be possible with precise program flow information. In
extreme cases, when precise program flow information is unavail-
able, the resulting global many-few assignment is identical to the
corresponding global one-one assignment.

Reference 5 describes an approach to compiler design that is based
on the representation of a program as an ordered set of regions
(see Equation 1). Optimization methods are applied sequentially
to the regions; in the absence of specific information describing
the frequency of execution of regions, regions R, are processed
in the index sequence: {1, 2, ---, n}. Now when one program loop
is nested within another and the two loops are assigned respectively
to R, and R;, the method of region identification ensures that / < J.
Thus nested loops are usually optimized before containing loops;
to the extent that depth of loop nesting and frequency of execution
are related, it also means that more frequently executed regions
are optimized before less frequently executed regions. The global
assignment methods described in this paper may be considered
machine-dependent optimization methods in a compiler having
this basic design.

The global assignment methods we describe require a profit to be
associated with each data item. This profit measures the improve-

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

ment in program execution that may occur if the data item is
globally assigned to a register in the region being processed. We
assume the profit of a particular global assignment to be the sum of
the profits of those data items therein assigned to registers. When
information is available concerning execution frequencies of blocks
in the region, it may be possible to assign data item profits so that the
global assignment profit measures with reasonable accuracy the
resulting improvement in program execution. When such informa-
tion is unavailable, it is probably satisfactory to define data item
profit to be a linear function of the numbers of definitions of and
references to the data item in the region. In this case, the values
assigned to the profit equation constants determine whether the
profit represents a projected improvement in program size or
execution time.

In this paper, we assume that the compiler is able to classify each
data item by the register type required to operate on it. Global
assignment methods are then used to obtain an assignment of data
items to individual registers for each class of registers.

The global assignment methods we describe in this paper assume
that the registers available for assignment have uniform charac-
teristics, so that any data item may be assigned to any available
register. Violations of this assumption occur in many commercially
available computers. In the section on extensions, we indicate how
these global assignment methods might be used to assign data
items to registers when such special requirements exist.

Global one-one assignment

In this section, we develop a formulation of the global one-one
assignment method as an integer programming problem and state
an optimal feasible solution to this problem. In this method, after
the profit of assigning each data item to a register has been computed,
those data items are chosen for assignment to available registers
(one data item per register) that maximize profit.

Stated in terms of Definitions 2 and 3, a global one-one assignment
is a one-one mapping of N C N’ onto G; C G/ ford &€ P’.
Now consider the following notation.

m is the number of registers available for assignment in d: m =
C(GY).

n is the number of data items available for assignment in d: n =
C(N).

p is a profit vector with dimension (1 X »n): p = (p,). p; is the profit
associated with the assignment of n; & N’ to a register. We adopt
the convention that p; > O for all n, & N’.

DAY IBM SYST J

x is a data item selection vector with dimension (n X 1): x = [x
x; = lwhenn, & N'is assigned to some g &€ G;; otherwise, x, =

J-
0.

z is the objective function, the value of which is to be optimized.
1 is a sum vector of appropriate dimension.

Using this notation, we see that the global one-one assignment
method has this formulation:

Maximize 2)
subject to < 3

where - 4)

Any x satisfying Equation 4 is a solution to P1. Any x satisfying
Equations 3 and 4 is a feasible solution to Pl. Any x satisfying
Equations 2-4 is an optimal feasible solution to Pl.

Assume (without loss of generality) the elements of N’ to be ordered Theorem 1
such that p, > p, forn,, n;, © N and i < j. Then

x* = {x; | x; 1 for 1 <j< m,
x; =0 for m < j < nj
is an optimal feasible solution to P1.

The method of indirect proof may be used to prove this theorem.

The ONEONE algorithm denotes a procedure using Theorem 1 Figure 1 Problem data
to obtain an optimal feasible solution to P1. As an example of its
use, let m = 3, n = 9, and use the profit vector represented by P
in Figure 1. The ONEONE algorithm obtains the optimal feasible
solution:

x=[100001010]

OrHBRoOROR
CH ORI e
cCoorocorme

for which z = 269. 4S 75 90 30 93 6

Global many-one assignment

In this section we develop a formulation of the global many-one
assignment method as an integer programming problem. This
problem is to select for assignment (with maximum profit) to a
single register in a region a set of data items in which no two data
items interfere. We describe two algorithms for obtaining feasible
solutions to this problem: one is a branch-and-bound procedure,

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

and we prove that it obtains an optimal feasible solution; the other
obtains a possibly nonoptimal feasible solution. APL functions
illustrating these algorithms are presented.

Stated in terms of Definitions 2 and 5, a global many-one assign-
ment is a single-valued mapping of N C N’ onto g & G} for d &
P", where @(N) > 1.

Now consider the following notation,

x is a data item selection vector with dimension (n X 1), where
n=€N):x=[x] x;, = 1 when n, € N’ is assigned to g; otherwise
x;, = 0.

N* C N'is a subset of data items among which there exists total in-
terference in d.

N** is a set of p subsets N* giving a complete description of the
data item interference in d: N** = {N%* N%, ... N#*}. It follows
that if n;, n, € N’ and n, interferes with n, in d, then there exists
N* & N** such that: {n;, n,} C N*.

A is a data item interference matrix with dimension (p X n): A =
(a;;). a;; = 1if n; € N*; otherwise a;; = 0.

Using this notation, the global many-one assignment method has
this formulation:

Maximize z = px

subject to Ax <1

x; & {0, 1}
where a;; € {0, 1}

pi >0

P2 is an integer programming problem that might be classified
(Reference 9) as a weighted set matching problem.

The following terms, originating in Reference 10, are useful in
discussing solution techniques for P2. A (complete) solution S is
an assignment of binary values to the data items in N'. S is a partic-
ular representation of a solution x to P2 in which the elements of
S are ordered and each element represents a data item and its
assigned binary value:

S = {Siln\xﬂeN’7
(Sf > 0):>(xs,' = I),
5, < 0) = (x;,;, = 0)}

Explicit enumeration is the process of excluding a complete solution
from the set of possible optimal feasible solutions to P2. Implicit
enumeration is the process of excluding a set of complete solutions

DAY IBM SYST J

T from the set of possible optimal feasible solutions without the
explicit enumeration of each S & T. A partial solution S” is an
assignment of binary values to the data items in N € N’.

§" = {s; | ni.,;y € N,
(Si > O): (xx,' = 1)’
(s; < 0)=> (xy,;) = O}

A free variable set is the set of data items that have not been assigned
binary values in S”.

F={f|n &N,f& 8§, —f & s}
Let S° be an assignment of binary values to all »,, f &€ F.
s={s|ls| € F,

> 0=k, =1,

(s < 0)= (x,, = 0)}

Then a completion of S” is a complete solution determined by S”
and S°.

Let z’ be the objective function value of the most profitable feasible
solution to P2 yet obtained. To fathom S” is to determine that
among all completions of S” either there exists no feasible comple-
tion more profitable than 2/, or there exists a distinct most prof-
itable completion, with objective function value z”, such that z'/ >
z'. The set of completions of a fathomed partial solution is implicitly

enumerated.

Branch-and-bound procedures” '* form a distinctive subclass of
those enumerative methods obtaining optimal feasible solutions to
problems like P2. These procedures use a branching procedure
and a set of bounding rules to obtain the complete implicit enumera-
tion of solutions to the problem. The branching procedure generates
for analysis an ordered sequence of partial solutions and terminates
only when all solutions to the problem have been implicitly enumer-
ated. The set of bounding rules establishes a lower bound on the
value of the optimal objective function and an upper bound on
the objective function value of the most profitable feasible comple-
tion of a given partial solution. These bounds then determine if
the completions of the given partial solution may be implicitly
enumerated.

The OPTIMAL algorithm (Table 1) is a branch-and-bound pro-
cedure that obtains an optimal feasible solution to P2. It has three
basic components: a procedure obtaining an initial approximation
to the optimal feasible solution (Table 1, step 2); a fathoming
procedure (step 3); and a branching procedure (steps 4 and 5).
The final feasible solution is optimal if one can prove that:

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

the ESTIMATE
algorithm

292

Table 1 The OPTIMAL algorithm

1. Set: S=¢
i=0
. Obtain a complete feasible solution S’ with objective function value z’ that
approximates the optimal feasible solution.

. Try to fathom the partial solution S. If the process determines any complete
feasible solution S” with corresponding z” such that z// > z’, then set:
zl = zl/

Sl = S

. If the attempt to fathom S = {s;, ---, s;} fails, then use the free variable
set F associated with S to set:
Sip = jEF
i=i+1
where this expanded S is a feasible partial solution to P2. Go to step 3.

. Otherwise S is fathomed. If i > 0 and there exists & < i for which s, > 0,
locate the largest integer & for which s; > 0. Set:
S = f{s, -+,)
Sk = —58

i=k

and go to step 3.

. Otherwise the algorithm terminates with the optimal feasible solution to P2,
denoted by S* and z*:
S* =5

z* =7z

The branching procedure terminates only when all complete
solutions to P2 have been implicitly enumerated.
The bounding rules used to fathom a partial solution are valid.

In addition, the performance of the OPTIMAL algorithm is improved
if:

The branching procedure generates a sequence of fathomed
partial solutions in which each complete solution to P2 occurs
as the completion of exactly one fathomed partial solution.
Step 2 obtains a feasible solution with a profit that is close
to that of the optimal feasible solution.

These issues are addressed in the following sections. First we
describe the algorithm used in step 2 and give an implementation
of it as an APL function. (The effectiveness with which this algo-
rithm approximates the profit of the optimal feasible solution is
discussed in the section on test results.) We next prove the two
essential features of the branching procedure. Then we describe
the bounding rules used to fathom a partial solution and prove
their validity.

One may visualize the output of the OPTIMAL algorithm as an
ordered sequence of ordered pairs:

DAY IBM SYST J

> o= (Sl 2, e, (S)

where S’ is a complete feasible solution to P2, and z/ is the objec-
tive function value of S’. This sequence converges to an optimal
feasible solution, denoted by (S*, z*), so that

(8}, z,) = (8%, z%)

During its execution, the OPTIMAL algorithm uses the current
most profitable feasible solution, (S?, z7), in the fathoming process.
Usually when z/ < z*, the fathoming process is ineffective in
implicitly enumerating large sets of complete solutions. Step 2,
hereafter called the ESTIMATE algorithm, attempts to avoid this
situation by generating a feasible solution with an objective func-
tion value approximating that of the optimal feasible solution.
This initial feasible solution becomes (7, z}), the first element in

>

Now consider the following notation. The data item interference
matrix A is a particular representation of the interference existing
among data items n;, & N’ in d & P’. The data item interference
matrix C is an alternative representation of this interference in-
formation:

C=(c;;)) = (¢, ¢, """, ¢)

C is a symmetric matrix with order n = @(N’). ¢;; = ¢;; = | when
n., n; & N',i # j,and n, interferes with n; in d; otherwise ¢,; = 0.
¢, is the ith column vector in C and specifies the interference in d
between n, and each n; € N’, j = i. E is a matrix of order # de-
scribing n complete feasible solutions to P2:

E = (e;;) = (e, €, " ,€,)
e, is the ith column vector in E and describes the ith complete
feasible solution to P2. e¢;; = 1| when n, & N’ is assigned to the
register in the ith complete solution; otherwise e¢;; = 0. From e,,
one may obtain the complete solution S,, with objective function
value z,, by:
z;, = pe;
S,' = {S | Hyg| E N,,

e;; = DH=>0€& §),

(e;i = 0)= (—j € S

The ESTIMATE algorithm generates n = @(N') complete feasible
solutions, selecting the most profitable to become (S, z/) € > _:

4

z = pe; = max (pe,) ‘ (5)

S =S (6)

Two features of the ESTIMATE algorithm determine the method
by which the n complete feasible solutions are constructed. First,

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

Table 2 The ESTIMATE algorithm

1. Assign n; & N’ to the register in the partial solution represented by e;. This
is accomplished by setting:*

E=~C

. Calculate the sequence Q using Equations 7 and 9. Then execute step 3
once for each ¢; & Q in the index sequence:

iy — 1, -+, 1}
. Assign n,, to the register in every partial solution by calculating:
e, =¢e; N\ (Ncq,)
for each
i€ (ke =1}

. Each e; now represents a complete feasible solution. Calculate (S, z,")
using Equations 5 and 6.

* ~C is the complement of C, in which ~¢;; = 1 — ¢;;

n; is always the first data item assigned in the jth partial solution.
Second, a particular sequence, @, determines the order in which
data items subsequent to the first are selected for assignment in
each partial solution.

Q=g |n. EN,@, <v,)=0<) @)

where:

_ (n — lc,'). D (8)

i

" max (p;)
i

In this definition, r, is a dimensionless quantity that we interpret
as an indicator of the potential for obtaining a profitable complete
feasible solution when n, is assigned in a partial feasible solution.
The first term in r, is large if n, interferes with few other data items;
the second term is large when the profit of »n, approximates that of
the most profitable data item. It follows that the indices of profitable
data items interfering with few other data items should tend to
occur late in the sequence Q. The denominator of Equation 8 is
constant and does not affect the relative placement of data item
indices in Q. Thus one may construct Q using:

ri = (n — lc,)p, 9)

Table 2 describes the essential features of the ESTIMATE algorithm ;
these steps illustrate the transformation of E from an initial value
(step 1) to a final value (step 4). At any given instant in the iterative
execution of step 3, |x | e,, = 0} is the set of data items that will
not be assigned to the register, while {x | e,; = 1} is the set of data
items assigned, or still being considered for assignment, to the
register in the final complete feasible solution represented by e,.
When control passes to step 4, all outstanding data item candi-

IBM SYST J

Figure 2 The ESTIMATE APL function

VESTIMATE[(IV
V P ESTIMATE C;E;J;0:X
Je(pE+~C)[1]
Q«APx+/~C
LA:ET3X1+ET;XIaQ((pX«ELQLJ] 31/ 1pP),pP)o~CT;0[J1]
>LAX 1 0<J«d =1
Z2«[/P+.xE
S« (1pP)x1-2x~E[; (P+.xE)12]
v

Figure 3 Example using the
ESTIMATE APL
function

dates have been considered for assignment in each solution; each
e, represents at this point a complete feasible solution.

Figure 2 shows an implementation of ESTIMATE. The correspond-
ence between symbols used in the text and APL variables is: C «»
Cpe— P E—E Q« Q,zl Z and S < S. Pand C are
passed to ESTIMATE as arguments, while S and Z are returned as
global variables.

Figure 3 shows the application of ESTIMATE to the problem de-

scribed in Figure 1. The final values of Z and S represent an opti-

mal feasible solution. We also show the value of Q and the initial
and final values of E calculated by ESTIMATE for this problem.

We now state two essential features of the OPTIMAL algorithm
branching procedure. Their proofs are in Appendices A and B
and stem from an analysis in Reference 10 of a problem more
general than P2.

The following notation and terms are used in the discussion. Y’
is the sequence of fathomed partial solutions generated by the
OPTIMAL algorithm branching procedure.

S = gst sl
A sequence of fathomed partial solutions is nonredundant if each
complete solution fathomed in the sequence occurs as the comple-
tion of exactly one fathomed partial solution. S” € Y.’ is non-
redundant if none of its completions are completions of any $? &
>/, j # i. A sufficient condition for S? & Y.’ to be nonredundant
is that it include the complement of an element s & S? for each

sTe > Al

>, the sequence of fathomed partial solutions generated by the
OPTIMAL algorithm branching procedure, is nonredundant. The
proof of this theorem is in Appendix A.

>, the sequence of fathomed partial solutions generated by the
OPTIMAL algorithm branching procedure, terminates when all
2" complete solutions to P2 have been implicitly enumerated. The
proof of this theorem is in Appendix B.

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

P ESTIMATE C

INITIAL VALUE OF E:

coooocor oo
rooOOORORO

VALUE OF E:

coocomroOrO
ooo0OOmOO
oroocooORrOo

the branching
procedure

Theorem 2

Theorem 3

the fathoming
procedure

Theorem 4

Theorem 5

Theorem 6

Consider the following notation.

F’ is a subset of F in which each element is a candidate for assign-
ment in a feasible completion of §*: F/ = {f; | f; E F, s € S,
s> 0,¢,, =0},

C* is a symmetric submatrix of C, with order ©(F’), describing
the interference among the data items n,, f; € F': C* = (¢¥). ¢¥, = 1
when ¢,,;, = 1 and f,, f; € F’; otherwise c¥ = 0.

x]

Theorems 4 and 5 identify two conditions in which it is possible
to determine an optimal feasible completion of a partial solution
S

If F/ = J then
S*=1Is||s|EF s <0}

determines S”/, an optimal feasible completion of S”, with objective
function value z”.

Proof: We use the method of indirect proof to obtain a contradiction.
Suppose there exists 7° determining 7T, a feasible completion of
S”, with objective function value z > z”. Since p;, > 0 for n, €
N’, T cannot be more profitable than S” unless there exists some
t & T°, t > 0. But since T is a feasible completion of S”, we must
have t & F’. This contradicts the hypothesis that F* = ¢f and proves
the theorem.

If F¥ # & and C* = 0 then
S=1Is|ls|EFGE F)y=(>0),(s| E Fy= (s < 0)}

determines S”, an optimal feasible completion of S?, with objective
function value 2.

Proof: We use the method of indirect proof to obtain a contradic-
tion. Suppose there exists 7° determining 7, a feasible completion
of S”, with objective function value z > z’’. Since p, > 0 for n;, &
N", T cannot be more profitable than S unless there exists some
t & Tt > 0 where t & S°. But since T is a feasible completion
of S7, we must have 1 & F’. However, if t & F’, then t € S° by the
method of constructing S°. This contradicts the requirement that
t € S° and proves the theorem.

Theorem 6 proves that it is possible to fathom a partial solution
when it satisfies the conditions of Theorem 4 or Theorem 5.

If Theorem 4 or Theorem 5 determines an optimal feasible com-
pletion of S”, then S” is fathomed.

Proof: Let S”, with objective function z'/, be the optimal feasible
completion of S” determined by Theorem 4 or Theorem 5. Let z’

DAY IBM SYST J

be the objective function value of the most profitable feasible
solution to P2 yet obtained. By definition, S” is fathomed when
there exists either no completion of S” more profitable than z’
or a distinct most profitable completion of S” that is more profitable
than z'. Either 2’/ > Z/ or z/< Z'. If 2”7 > Z’, then S” satisfies the
second condition and S* is fathomed. If z// < Zz/, S" ensures that
the first condition is satisfied, since no feasible completion of S*
can be more profitable than it. Thus S” is fathomed, and the theorem
is proved.

There exist criteria by which one may determine that certain n,,
i € F’ cannot be assigned in completions of S” more profitable than
the most profitable feasible solution yet obtained. Such data items
may be deleted immediately from the F” associated with S”. In turn,
these deletions may hasten the fathoming of S* addressed by Theorem
6. Theorem 7 states a basic criterion for the deletion of data items
from F’,

Z' is the objective function value of the most profitable feasible
solution to P2 yet obtained. n;, i € F”, is a candidate for assignment
in a completion of S¥, and has associated with it:

U, = {j|j€ Ffacii = 0}
If

EP:'SZ'— ZP»‘

i€Us ji€esy,

i>0
then n; cannot be assigned in completions of S” more profitable
than z’.

Proof: We prove the contrapositive, that if S° determines a com-
pletion of S” more profitable than z’ and i & S°, i > 0, then:

p>2 — 2 b (10)

iEUS i€sy,
>0

Since S° determines a completion of S” more profitable than z/,
we have:

2pi>2 — 2 p an

ievU i€S?,
i>0

where:

uU={jljie€ s§,j> 0}

Since S° determines a feasible completion of S”, we have:
¢;; =0 forall j&E U

From this and the definition of U,, it follows that U C U,. Since
p;: > 0 for n;, & N/, it then follows that:

ZP:'S ZP:'

€U €U

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

Theorem 8

Theorem 9

Substituting this result in Equation 11 yields Equation 10, which
we set out to prove.

Theorems 8 and 9 describe two characteristics exhibited by comple-
tions of S?. Theorem 8 states an upper bound on the maximum
number of data items that may be assigned in a completion of S”.
This may be used in the construction of rules governing the removal
of data items from F’. Theorem 9 states an upper bound on the
minimum number of separate feasible completions of S” necessary
to include the assignment of every f € F’. This theorem is of par-
ticular relevance in the consideration of many-few assignment
techniques: if S* = & and F/ = N’, then Theorem 9 states an upper
bound on ©(G,), the number of registers required as images in a
single-valued mapping of N’ onto G, € G'.

T is a set, with maximum cardinality, of data items f € F’, all of
which may be assigned in a single completion of S”. Assume the
elements of F’ to be ordered such that if m = ©(F”), then:

m

* *
Z ek < Cik
k=1 1

for fi, f; € Fland i < j.
Then:

D = max {i - Zc;‘;} > (1)
i=1

i=l,+*,m

The proof of this theorem is in Appendix C.

T is a set, with minimum cardinality, of elements S7 & T such that:
each S¢ determines a feasible completion of a given S”; and each
f € F’ is assigned in exactly one S; € 7. Assume the elements of
F’ to be ordered such that if m = ©(F’), then:

m
* *
Zcik < Cik

k=1 1
for fi, f; € Fland i < j.
Then:

R =1+ max {mz c,?’,‘-} > e

i=1,*°*,m

The proof of this theorem is in Appendix D.

Figure 4 shows two APL functions, D and R, which calculate the
upper bounds specified by Theorem 8 and Theorem 9. The APL
variable C corresponds to C* as defined in the text. C is passed to
each APL function as an argument, while the value of the upper
bound is returned as an explicit result. Given C as defined in Figure 1,
the upper bounds obtained by D and R have the values 3 and 6,

DAY IBM SYST J

Figure 4 The D and R APL functions

vplle
7«D €
Z«0/Z~+/(Z20.>Z«1(pCIT1])ACTA+/C34+/C]

VR{O1V
Z«R C
Z«147/+/ (20, <2+ (pC)[11)ACTA+/C 34+ /C]

Figure 5 The OPTIMAL APL function

VOPTIMALIL[I1V
V P OPTIMAL C3F3F38:5C;T
STEP1:8+«10
STEP2:P ESTIMATE C
STEP3 :F«F+~(1pP)e S
FL(v/[1]) CL(8>0)/831)/1pP1<«0
Te+/F
THEOREMT : E[((Z2-+/PT(8>0)/81)2(FxP)+.x~C)/1pP1+«0
>(T2+126)x1T2+/F
SC+1 0
>(2+126)x102+/F
THEOREM4Y :SC+-F/1pP
+(2+126)x1(0=+/F)v0=+/+/CTFE/1pP3;FE/10P]
THEOREMS :SC«(F/\pP),-(F-F)/1pP
+>(2+126)x1%2>+/P[(0<58,5C)/8,5C]
Z+«+/P[(5>0)/8+(S,5C)[41S,5C]]
+STEP5x10#pS5C
STEPY : S+8 , (YExPx+/~C)[1]
+STEP3
STEP5: S+(1-(9xS)r11)+§
STEP6:+0x10=pS
Slp8l«-5lpS]
+STEP3
v

respectively. For this problem, the least upper bounds have the
values 2 and 6, respectively.

Figure 5 shows an implementation of the OPTIMAL algorithm as
an APL function. The correspondence between symbols used in
the text and APL variables is: C «» C,p < P, S < 8, 5° & SC,
Feo F,Fl o F,z <> Z,and §' < S. P and C are passed to the
OPTIMAL function as arguments, while S and Z are returned as
global variables. APL statement labels identify previously described
theorems in the fathoming procedure and show the correspondence
between the function statements and the OPTIMAL algorithm steps
in Table 1.

Our experience using the OPTIMAL algorithm for the solution of
nontrivial problems indicates that execution of the ESTIMATE
algorithm accounts for a negligible fraction of the total execution
time. We have also used the ESTIMATE algorithm, by itself, for
the solution of nontrivial problems. This approach is faster, but
it obtains a possibly nonoptimal solution.

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

implementation
of OPTIMAL

Global many-few assignment

In the section on global many-one assignment, we developed a
formulation of that assignment method. This may take the general
form:

Maximize (14)

subject to A*x* < 1
) xS } (15)

x¥ € {0, 1}
where o & {0, 1}
pf >0

(16)

in which we substitute:
pP*=1p
A* = A
x* = x

We also described the OPTIMAL algorithm for obtaining an optimal
feasible solution to P2 and the ESTIMATE algorithm for obtaining
a possibly nonoptimal feasible solution.

In this section, we develop a formulation of the global many-few
assignment method. Its structure is identical to that of P2, so
that the algorithms obtaining feasible solutions to P2 may also
be used for the global many-few assignment problem. The many-one
assignment problem is extended to assign multiple registers simul-
taneously. Additional constraints are introduced to limit the
assignment of each data item to no more than one register. We
describe three algorithms for obtaining feasible solutions to this prob-
lem: one obtains an optimal feasible solution; the other two obtain
possibly nonoptimal feasible solutions. APL functions illustrating
these three algorithms are presented.

Stated in terms of Definitions 2 and 4, a global many-few assign-
ment is a single-valued mapping of N © N’ onto G, C G’ for d &
P7, where C(N) > &(G)).

Now consider the following notation.

m is the number of registers available for assignment in d: m =
C(G9).

n is the number of data items available for assignment in d: n =
C(N).

p’, A", and C"Y’ represent the jth replications of p, A, and C,
respectively.

DAY IBM SYST J

x, is a data item selection vector with dimension (n X 1): x, =
[x:.:] x:.« = 1 when n; & N’ is assigned to g. & G,; otherwise
Xir = 0.

If we consider g, to be the single register in a global many-one

assignment problem, any feasible solution must satisfy the con-
straints:

Ax, <1

These constraints must also be satisfied when we consider g, to
be a register in a global many-few assignment problem. Thus, a
partial specification of the constraints for this latter problem is:

A(l) 0 0
0o A® ... 17

0 o A™ L x,
Since global many-few assignment is defined to be a single-valued
mapping, additional constraints are required to limit the assign-

ment of each data item to at most one register. Such constraints
have the form:

Ix; ' (18)

where I is the identity matrix. Merging Equation 18 with Equation
17, we obtain this formulation of the global many-few assignment
method:

X,

..) X
Maximize z = (pVp® --- p™) *

FI(n 1®

subject to

where 4,; € |0, 1}
X E {0’ 1}

P3 has the structure of P2 shown by Equations 14-16, where:

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS 301

Figure 7 Example using the
OPTSOL APL function

OPTSOL 1
PROFIT: 181
SOLUTION:

172 T3 Ty

OPTSOL
PROFIT: 278
SOLUTION:

172 73

1 2 73 4

0PTSOL
PROFIT: 368
SOLUTION:

Figure 6 The OPTSOL APL function

VOPTSOLII]V

vV OPTSOL Mi;L;N;S:2
r1l §<pP
[21] LeMx]
131 (LpP) OPTIMAL(L,L)p(1 3 2 8)O(M, M, N, N)p(,C),(LxB)p(1l)o.=1N
fu? YPROFIT: LA
sl 'SOLUTION: '3 (M, N)p(LprpP)xxS

\

p* = Vp® - p™)

I(l) 1(2)

Associated with A*, as defined by Equation 20, is the corresponding
data item interference matrix C*:

C(l) I - I

o — I c® ... I

I I C(m)

The following algorithm may be used to obtain feasible solutions
to P3. Assume the input to be p, A, and m. Derive C from A. Con-
struct p* and C*, as defined by Equations 19 and 21, and pass
them as arguments to the OPTIMAL or the ESTIMATE algorithm.
Either algorithm returns a feasible solution described by 2z’ and S’;
the data item assignments to each of the m registers are casily
derived from S'.

OPTSOL (Figure 6) obtains an optimal feasible solution to P3 in
the manner described above. The correspondence between symbols
used in the text and APL variablesis: C— C,p—> P, me M, 2« Z,
and S’ < S. M is passed to OPTSOL as an argument, whereas P and
C are considered global variables defined external to it. Statements
[1] and [2] provide notational conveniences. Statement [3] constructs
p* and C* and invokes the OPTIMAL function. Statements [4] and

DAY IBM SYST J

Figure 8 The ESTSOL1 APL function

VESTSOL11N]1v

FSTSOL1 M3LiN;iS32

N<pP

LeMxll

(LoP) ESTIMATE(L,L)p(1 3 2 4)IR(M M,V ,N)p(,C), (LxE)p(yN)o.=14
*PROFIT: .2

'SOLUTION: Ys(M,E)p(LorpP)xxS

[5] print a description of the optimal feasible solution. Statement
[4] prints the optimal objective function value. The kth row printed
by statement [5] represents an assignment S, of N € N’ to some
gr € G;, where:

Sk = {S | st E N,,
(s > 0)= (n, Iis assigned to g;),
(s < 0)= (n;,, isnot assigned to g;)}

Figure 7 shows the application of OPTSOL to the problem described
in Figure 1, for various values of m.

ESTSOL1 (Figure 8) is an APL function obtaining a possibly non-
optimal feasible solution to P3. ESTSOLI is identical to OPTSOL
except that the ESTIMATE function is invoked instead of the OPTIMAL
function. The application of ESTSOL1 to the problem described in
Figure 1 yields results equivalent to those shown in Figure 7.

An alternative algorithm is to consider the global many-few as-
signment problem as a sequence of m global many-one assignment
problems. In this approach, the ESTIMATE algorithm is invoked
to obtain an assignment of data items to a single register. Assigned
data items are immediately deleted from the problem to prevent
their subsequent assignment to other registers. The ESTIMATE
algorithm is invoked m times, or until no data items remain to be
assigned to registers.

ESTSOL2 (Figure 9) obtains a possibly nonoptimal feasible solution
to P3 in the manner described above. The correspondence between
symbols used in the text and APL variablesis: C «» C, p <> P, m <
M, 7 «> Z and S’ < S. M is passed to ESTSOL2 as an argument,
while P and C are considered global variables defined external to
it. The APL variable S describes the incomplete feasible solution
as it is determined by successive invocations of the ESTIMATE
function. The APL variable T deletes assigned data items from the
problem. Statements [3] and [5] bound the loop obtaining the
sequence of solutions to the global many-one assignment problem.
Statement [3] invokes the ESTIMATE function. Statement [4] updates
the incomplete solution with the partial solution just obtained.

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

Figure 9 The ESTSOL2 APL
function

rj
r21
73]
[4]
7s]
rs]

r71
v

vESTSOL2{01]v
v ESTSOL2 M;9:8:7;2

S+10
T+(pP)pl

LA:(P/P) ESTIMATE T/T¥¢C
S+8,{(1pP)x1-2x~P\0<5
SLAX L (O<MeM-1)A024 /T+T=T\O <5

"PROFIT:
1SOLUTION:

t3+/PL(0<g) /8]
T (((pZY:(pPY)ypPlpS

Figure 10

OPTIMAL average
execution times
required by OPTSOL

w
a
z
Q
O
wr
w
z

Statement [5] corrects the specification of data items already as-
signed in the problem; it also closes the loop when data items and
registers remain to be assigned. Statements [6] and [7] print a de-
scription of the final feasible solution in the format used by the
OPTSOL and ESTSOL! functions.

The application of ESTSOL2 to the problem described in Figure 1
yields results equivalent to those shown in Figure 7.

Although OPTSOL, ESTSOL1, and ESTSOL2 obtain feasible solutions
to P3 in the general case, they obtain feasible solutions to the global
one-one and many-one assignment problems as special cases.

When total interference exists among all data items being considered
for assignment, A is a matrix with dimension (1 X #) in which
a,; = 1,1 < i < n. The corresponding data item interference matrix
is;: C = ~1. In this case, OPTSOL, ESTSOLI1, and ESTSOL2 obtain
an optimal feasible solution to P3 that is equivalent to the ONEONE
optimal feasible solution to PI.

When m = 1, OPTSOL obtains an optimal feasible solution to P2.
When m = 1, ESTSOL! and ESTSOL2 obtain the same result, a
possibly nonoptimal feasible solution to P2.

Test results

In this section, we use results of the ONEONE and OPTSOL algorithms
as standards in comparing the execution characteristics of the
ESTSOL1 and ESTSOL2 algorithms. These four algorithms were used
to obtain solutions to 400 assignment problems generated for use
in the comparison. The ESTSOL1, ESTSOL2, and OPTSOL problem
solutions were obtained by executing programs on an IBM System/
360 Model 65. Execution time required to obtain the final feasible
solution, and final feasible solution profit, are the criteria used to
measure the execution characteristics of these algorithms.

The APL functions in this paper are documentation and were not
used with the APL\360 System to obtain the results reported here.
Instead, versions of ESTSOL1, ESTSOL2, OPTSOL, ESTIMATE, and
OPTIMAL were written in an experimental programming language
and were then compiled into IBM System/360 Operating System
assembler language programs. The ONEONE algorithm was not
implemented in this way, since its optimal feasible solution is
easily derived from the assignment problem specification. The
OPTIMAL program was used experimentally and differs in certain
respects from the OPTIMAL function in Figure 5. For example,
it uses a different procedure to obtain the initial feasible solution,
and in the fathoming procedure, it uses rules in addition to that
specified by Theorem 7 to hasten the fathoming of a partial solution.

DAY IBM SYST J

In comparing the interference characteristics and profits of two Figure 11 ESTIMATE average
data items, these rules identify conditions under which the assign- execution times
ment of one data item in an optimal feasible solution either cannot required by ESTSOL2
occur or can occur and is sufficient to ensure the assignment of
the second data item.

t IN MILLISECONDS

A profit vector p and a data item interference matrix C are required
to describe each assignment problem used in the comparison. One
profit vector was constructed for use in all assignment problems;
each element was effectively selected, with replacement, from a set
of integers {i | 1 < i < 99} with which there is associated a discrete
uniform probability distribution. Four hundred C matrices were
constructed for use in the comparison. Each C matrix is character-
ized by the matrix order, n, and the density, p, of nonzero matrix
elements occuring off the main diagonal. The coordinates of each
nonzero element were effectively selected, with replacement, from
a set of integers {i | 1 < i < n} with which there is associated a
discrete uniform probability distribution. Five C matrices were
constructed in this way for each (n, p) ordered pair, where n & {16,
24} and p € {0.05, 0.15, ---, 0.95}. Ten C matrices were con-
structed for each (n, p) ordered pair, where n & {32, 48, 64} and
p & {0.05,0.15, - -+, 0.95}.

Figure 10 shows the OPTIMAL program average execution times
required by OPTSOL to obtain optimal feasible solutions to the 400
assignment problems. The OPTIMAL program average execution
time, 7, depends not only on matrix order, but on matrix density
and problem structure. When # is fixed, 7 varies greatly as a function
of p; t usually decreases in value as p increases. For example, extreme
values of ¢ exhibited by OPTIMAL for n = 64, m = | are: t = 358

seconds at p = 0.15; and ¢ = 0.2 seconds at p = 0.95. Figure 12 ESTIMATE average
execution times

required by ESTSOL1

When m > 1, the assignment problems passed by OPTSOL to OP-
TIMAL have the structure defined by Equations 19 and 21. The OPTI-
MAL program execution times for such problems are highly variable
and considerably exceed the execution times required by unstructured
problems having the same order.

t IN MILLISECONDS

Figures 11 and 12 show the ESTIMATE program average execution
times required by ESTSOL2 and ESTSOL! to obtain final feasible
solutions to the 400 assignment problems. Since ESTSOL2 and
ESTSOL1 generate the same input to ESTIMATE when m = 1, the
curves in Figures 11 and 12 for m = | are identical. The average
execution time for a single invocation of ESTIMATE depends on
matrix order, but is reasonably insensitive to matrix density and
problem structure. For example, extreme values of 7 exhibited by
ESTIMATE for unstructured problems with m = 1, n = 64 are:
t = 118 milliseconds at p = 0.05 and t = 97 milliseconds at p =
0.55. When m = 2, n = 32, the assignment problem input by
ESTSOL! to ESTIMATE has the structure defined by Equations 19

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

Figure 13 ESTSOL1 and ESTSOL2 profit comparisons

m=4 m=3 m=2 m=1 m=2 m=3 m=4

[L R e M”Mm mew

LLLL LT

Ligd i) LLIL il LIt g PP IR LLir 11
5 5 5 95 5 95 95 5 95 5 95

95

95

T R I e e

b |~ - —

LILLpIlly IO I Lttt Ll NN N]
5 95 5 95 5 95 5 95 5 95

T [T T

NN Lt NN RN]
5 5

95 5 95

R

RN
5 95

95

and 21 with a matrix order of 64. In this case, the extreme values of ¢
exhibited by ESTIMATE are: ¢ = 123 milliseconds at p = 0.15 and
t = 102 milliseconds at p = 0.85, 0.95.

Curves closely approximating those in Figure 12 for m > 1 may
be derived from the curve for m = 1. Let «(n’, m’) denote the ESTI-
MATE average execution time required by ESTSOL1 to obtain feasible
solutions to assignment problems with n = #n’, m = m’. Using
Equations 19 and 21, ESTSOL! converts this problem into a new
one, with a matrix order of m'n’, which is then input to ESTIMATE.
It follows that: #(n’, m') =~ #(m'n’, 1); this relationship may then
be used to derive approximate curves for m > 1.

Figure 13A shows a comparison of the final feasible solution pro-
fits obtained by the ESTSOLi1 and OPTSOL programs. The 400
assignment problems were partitioned into groups, each group
corresponding to a distinct (n, p) ordered pair. For each problem
in an (n, p) group, the ESTSOL1 final feasible solution profit was
expressed as a percent of the OPTSOL optimal feasible solution
profit. Figure 13A shows the high, low, and average percents ob-
tained in each (n, p) group, for appropriate values of m. In the same

DAY IBM SYST J

way, Figure 13B shows a comparison of the final feasible solution
profits obtained by the ESTSOL2 and OPTSOL programs.

In these profit comparisons, ESTSOL1 and ESTSOL2 performance
tends to degrade as either n or m increases. Nevertheless, the deg-
radation is not severe for the type of assignment problems con-
sidered. The lowest percent obtained for a single assignment problem
is: 78.5 percent by ESTSOLI in the (24, 0.95) group when m = 3,
and 88.3 percent by ESTSOL2 in the (16, 0.35) group when m = 2.
The lowest average percent obtained for a group is: 92.5 percent
by ESTSOL1 for the (24, 0.95) group when m = 3, and 94.5 percent
by ESTSOL? for the (24, 0.35) group when m = 3. In comparing
ESTSOL1 with ESTSOL2, ESTSOLI1 typically exhibits the superior
profit performance when p < 0.75, while ESTSOL2 excels when
p > 0.75.

Figure 14 shows a comparison of the final feasible solution profits
obtained by the ONEONE, ESTSOL! and OPTIMAL algorithms. The
ESTSOL! points are the (n, p) group average percents also shown
in Figure 13A. The ONEONE points are (1, p) group average per-
cents calculated using the ONEONE feasible solution profits. In
addition, the ONEONE (n, 0) group average percent is easily cal-
culated from the profit vector and is included in Figure 14 as a
reference point. The OPTSOL feasible solution profit usually decreases
as p increases, thus bringing about the characteristic improvement
observed in the ONEONE group average percent as p increases.
In the limit, when p = 1, the final feasible solutions obtained by
ESTSOL1, ONEONE, and OPTSOL have identical profits.

One might attribute the superior performance of ESTSOL!, with
respect to ONEONE, to two factors:

1. The use of the C matrix by ESTIMATE to assign more than one
data item in a feasible solution

. The use of Equations 7 and 8 by ESTIMATE to determine the
particular sequence in which data items should be assigned in
a feasible solution

The RANDEST algorithm was implemented to determine the relative
importance of these two factors. RANDEST differs from ESTSOLI
in the single respect that during ESTIMATE execution, a random
permutation of integers is used to determine the particular sequence
in which data items should be assigned in a feasible solution. For
each of the 400 assignment problems, RANDEST was used to obtain
eight final feasible solutions. The average profit of these eight solu-
tions was expressed as a percent of the OPTSOL optimal feasible
solution profit. Using these percents, the (n, p) group average per-
cents were calculated ; these are also shown in Figure 14. Factor 1
is dominant in assignment problems having low-density matrices
and relatively large numbers of data items assigned in the final

No. 4 - 1970 . ASSIGNING DATA ITEMS TO REGISTERS

solution. On the other hand, factor 2 is dominant in problems having
high-density matrices; here, data item profit becomes important
since relatively few data items are assigned in the final solution.

Extensions

In previous sections, we discussed assignment methods based on
the assumptions: that assignment may be considered a process
involving local and global assignment; that global assignment may
be considered a single-valued mapping; and that members of each
class of registers subject to assignment have uniform characteristics.
Here we indicate certain ways in which these assumptions might
be weakened.

The global assignment methods described here effect a single-valued
mapping of data items to registers in a region. These methods may
also be used for local assignment to effect a single-valued mapping
of data items to registers in a basic block. However, this approach
does not recognize the considerable difference in the structural
properties of the basic block and the region. It may be preferable
to develop for local assignment a method using the distinctive
structural properties of the basic block to effect in it a multiple-
valued mapping of data items to registers.

Although global many-few assignment effects a single-valued map-
ping of data items to registers, it nevertheless may be used to effect
a certain type of multiple-valued mapping. The concept motivating
this extension is that in certain situations a given data item may be
decomposed into a number of logically distinct data items. This
set of nondecomposable data items may then replace the original
data item as input to a global many-few assignment method. The
resulting assignment is a single-valued mapping with respect to
the nondecomposable data items, but it may be a multiple-valued
mapping with respect to the original data item. Associated with
each nondecomposable data item is a set of definitions of and
references to the decomposable data item having the property that
flow of control passes neither from a definition in the set to a ref-
erence not in the set, nor from a definition not in the set to a ref-
erence in the set. The identification of nondecomposable data
items requires no information that is not already necessary in pre-
paring input for global many-few assignment.

It seems natural to consider next whether a nondecomposable data
item might itself be subdivided to provide still smaller input
units for global assignment. 1If the data item were subdivided into
n parts, the resulting (2" — 1) distinct partial assignments might
then replace it as input to a global many-few assignment method.
The corresponding interference matrix must be initialized to ensure
that each of the n parts is assigned, at most, once to, at most, one

DAY IBM SYST J

Figure 14 ESTSOL1, ONEONE, and RANDEST profit comparisons

n=16 n=24

Py

® ESTSOL1
A RANDEST

W ONEONE

ASSIGNING DATA ITEMS TO REGISTERS 309

register. With this approach, the challenge is to develop a method
of subdividing nondecomposable data items that will keep the total
number of partial assignments within reasonable bounds, and yet
will make possible a reasonable improvement in the profit of the
resulting assignment.

It may happen that members of a class of registers do not have
uniform characteristics in a region of the program subject to global
many-few assignment. Particular registers may be required during
the execution of certain instructions. Requirements imposed by the
programmer, the operating system, or the compiler itself may re-
strict the availability of particular registers to specific parts of the
region. If the use of a register is so restricted, an artificial data
item corresponding to the register may be added to the problem
to permit assignment of data items to the register while its use is
unrestricted. This artificial data item interferes with all other arti-
ficial data items and with data items that are active while the use
of the register is restricted. Its profit is set high enough to ensure
its selection in any final feasible solution to the global many-few
assignment problem.

It may also happen that adjacent registers are coupled together
during the execution of certain instructions. In this case, it may be
desirable to perform global assignment in two steps. First, use the
global many-few assignment method to map data items into the
coupled registers. Then, use the technique described in the previous
paragraph with the global many-few assignment method to map
remaining data items into available parts of the uncoupled registers.

Global many-few assignment may also be a useful point of departure
in studying the assignment of data items to main storage. Let the
entire program be the region of interest. Consider for assignment
data items having the same length, and associate with each data
item a unit profit. Then global many-one assignment effects a
mapping of many data items into a single main storage area.
However, repeated assignments of this type do not necessarily
minimize the length of the total main storage area into which the
data items are mapped. The general problem, in which data items
have varying lengths, is to find an assignment of data items to a
main storage area of minimum length. It seems likely that efficient
assignment methods, using the interference matrix and the data
item lengths, can be developed to obtain close approximations to
the optimal solution to this problem.

Summary

In this paper, we described three methods of globally assigning
data items to registers: one-one, many-one, and many-few. Each
method is a particular single-valued mapping of a set of data

DAY IBM SYST J

items into a set of registers. We developed a formulation of each
method as an integer programming problem, and showed the one-
one and many-one global assignment problems to be special cases
of the global many-few assignment problem.

Next we described three algorithms for obtaining feasible solutions
to the many-one and many-few global assignment problems. The
OPTSOL algorithm uses a branch-and-bound procedure to obtain
optimal feasible solutions to these problems, and we proved that
these branch-and-bound solutions are indeed optimal. The ESTSOL1
and ESTSOL2 algorithms obtain possibly nonoptimal feasible solu-
tions to these problems.

The ESTSOL1 and ESTSOL2 algorithms have identical execution
times for global many-one assignment problems; however, ESTSOL2
has the shorter execution time for assignment problems with multiple
registers. In the range of problems analyzed, both alogrithms seem
fast enough to be considered for inclusion in an optimizing com-
piler. Also, the solution profits of both algorithms are almost always
within ten percent of the optimal profit and are significantly better
than that of the corresponding global one-one assignment problem.

Certain extensions in the use of the global many-few assignment
method may increase the profitability of the final assignments.

Appendix A: Proof of Theorem 2

If e(X') = I, then D satisfies the definition of sequence non-
redundancy since each complete solution fathomed in D’ clearly
occurs as the completion of exactly one fathomed partial solution.
This completes the proof for the case when e(3)) = 1.

Now assume that G(Z’) > 1. The proof is by mathematical in-
duction. First we show that {S?} is nonredundant. Then, assuming
that {S?, --. , S} is nonredundant, we show that {S7, ... | S? |
must be nonredundant. The Principle of Mathematical Induction
then assures us that D itself must be nonredundant.

The proof that {S?} is nonredundant is identical to that used for
the case when ¢(2.) = 1.

Now assume that the sequence {S}, --- , S%} is nonredundant.
S?,, is constructed from S? by application of step 5 in Table 1,
optionally followed by (repetitive) application of step 4. The struc-
ture of these consecutive fathomed partial solutions may be rep-
resented as the four cases shown in Table 3.

In Cases 1 and 2, S?,, is nonredundant with respect to S? because
s; € 87, is the complement of s/ & S?. 87 is itself nonredundant

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

Table 3 Structure of consecutive fathomed partial solutions

In every case:
Sw =8, for 1 <m<j
s/ >0
$; = —8
Case 1: S7 = {s/, -, s/}
ST = s, oo, 85
ST = {5, -, 87}
STy = s, ", 85 0, Sk
where s, > 0 for j<m<k
S:ﬁ i {S{’, ...,S]_” ...’Sk/}
STa={s 8
where s,’ < 0 j<m<k
S? = ‘S]l, "',S]',, ...’sk’}
8%, = {s, R PR T
where s, <0 for j<m<k
sm >0 for j<m<I

with respect to all previous 5?2, 1 < n < i, because of the presence of
complemented elements in S7 in the element sequence {sf, - - - , s/_,}.

Since this element sequence also appears in S7,,, S7,, is nonredun-
dant with respect to all previous S, | < n < i. Since, in addition,
{SP, -+, 8%} is a nonredundant sequence, it follows that {S?, --- ,

S?.,} 18 a nonredundant sequence in Cases 1 and 2.

In Cases 3 and 4, S?,, is nonredundant with respect to S? because
s; & 8?., is the complement of s & S?. Since s/ first occurs in
S?, S?,, is also nonredundant with respect to all previous S2,
g < m < i. S?is itself nonredundant with respect to all previous
S, 1 < n < g, because of the presence of complemented elements
in S? in the element sequence {s{, --- , s/_,}. Since this element
sequence also appears in S?,,, S?,, is nonredundant with respect
to all previous S}, 1 < n < i Since, in addition, {S?, --- , S?%}
is a nonredundant sequence, it follows that {S7, -.. , S?,,} is a
nonredundant sequence in Cases 3 and 4. This completes the proof.

Appendix B: Proof of Theorem 3

Step 5 of Table 1 is entered only when a partial solution has been
fathomed, and it is the only step that creates the negative elements
found in the $? € >’ The negative elements in S?, suitably in-

DAY IBM SYST J

terpreted, provide a record of the complete solutions implictly
enumerated by the fathoming process in previous steps. The inter-
pretation is this. If:

Sf = {S], e 9Sja et ’Slc}
and s, < 0, then the 2" completions of
S = {5y, -+, —s8;}

have been implicitly enumerated in the fathoming of S, | <m < i.
In this context, to prove the theorem it is sufficient to prove that:

1. Every S” € Y7 exhibits a complete record of the complete
solutions implicitly enumerated in the fathoming of all previous
S <j<i;

. The OPTIMAL algorithm termination criterion is satisfied only
when the record indicates that all 2" complete solutions have
been implicitly enumerated.

The proof of part 1 is by mathematical induction. First we show
that S? exhibits a valid record. Then, assuming that S? exhibits
a valid record, we show that S7. , must exhibit a valid record. The

Principle of Mathematical Induction then assures us that every
S? € >/ must exhibit a valid record.

Step 5 is entered for the first time when S? is fathomed. S? contains
no negative elements because such elements are created only by
step 5, and this step has not been entered previously. The absence
of negative elements implies that no complete solutions have been
previously enumerated. This is a valid record for S7, since it is the
first fathomed partial solution.

Now assume that S” exhibits a valid record. S?,, is constructed
from S? by application of step 5, optionally followed by (repetitive)
application of step 4. The structure of these consecutive fathomed
partial solutions may be represented as the four cases shown in
Table 3.

In Cases | and 2, all negative elements in S? appear in S?,, by con-
struction, so that the valid record of S? is propagated to S%,,. Tt
remains only to record in S7,, the fact that S7 itself has been
fathomed; step 5 does this by making s; & S7,, the complement of
st & S7. 1t follows that S7,, exhibits a valid record in Cases 1 and 2.
In Cases 3 and 4, all s/ & S, j < m < k are negative. S? has been
fathomed so that all completions of

{SI,,"',S;,"‘,S,(} (22)

have been implicitly enumerated. In addition, s, < 0 indicates that
all completions of

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS

{s{, R R ,—'Sk} (23)
have been previously implicitly enumerated. Equations 22 and 23
comprise all completions of

. ,S:,,‘, ttt ’skl'ﬁl} (24)

so that, with no loss of information, we may delete s, from S?.
This argument applies in turn to each right-hand s! € 5%, j < m <
(k — 1) so that S? assumes the form:

87 = {sf, -+, s}

Cases 3 and 4 now have the form of Cases 1 and 2, to which the
previous arguments apply. This completes the proof of part 1.

The OPTIMAL algorithm terminates when a partial solution S? has
been fathomed that has either of the forms:

Si’: {sls"' 3sj}
where s, < Ofor 1 < k < j, or:
=4

In the former case, the argument of Equations 22 through 24 is
applied in turn to delete each right-hand negative element, so that
S7? assumes the form of the latter case. Since a fathomed partial
solution containing no elements has 2" completions, we conclude
that in either case all 2" complete solutions have been implicitly
enumerated when termination occurs. This completes the proof
of part 2.

Appendix C: Proof of Theorem 8

Let F* be a partition of F’:
F* = { , F,;, }
where:

F,-={f|f€Ff,gEF,»,C/g=l fOI‘ g;éf}

It is possible to construct the partition F* with the following al-
gorithm. For f, € F’, we define F, = {f;}. The remaining f; & F’,
i > 1, are to be assigned to F; € F* in the index sequence: {2, 3,

-, m}. Each f;, 2 < i < m, is assigned to an existing nonempty
F;, 1 < j < 1, if it interferes with all f € F;; otherwise we define
a new subset, F,,, = {f.}.

D is an upper bound on the cardinality of F*. The proof follows.
Any given f; in the sequence: {f;, ---, f..} does not interfere with

M= (= 1) — ek
is1

IBM SYST J

of the (i — 1) data items already assigned to sets F; & F*. In the
worst case, these m; data items would be assigned to m, distinct
sets; in this case,

i

m, +1=1i— Zc,,-*j

i=1

sets would be sufficient to accomplish the assignment of f; to some
F; € F*. Tt follows that for the partitioning algorithm described,

1
D = max {i - Zc,»"i}
i=1,-m i=1

sets would be sufficient for the complete partitioning of F” into F*.
Thus

D = max {i — zl:(‘ﬁ} > C(F*) (25)

i=1,"+,m

Now let S° determine a feasible completion of S”, and suppose that
f & F, is assigned in S°. No g & F,, g # f, may be assigned in S°
because of the existence of total interference among the data items
in F,. On the other hand, there may exist as many as C(F*) data
items, each in a distinct F, that may be assigned in S°. From this
and the definition of 7, it follows that:

C(F*) 2 e(T)

Substituting this result in Equation 25 yields Equation 12, which
we set out to prove.

Appendix D: Proof of Theorem 9

Let F* be a partition of F';
F* = {... s F'_, ...}

where:

Fo=1{[|/EF,g& F,c;, = 0}

It is possible to construct the partition F* with the following al-
gorithm. For f,, € F', we define F, = {f,,}. The remaining f, €
F', i < m, are to be assigned to F; € F* in the index sequence:
im—1,m—2,---,1}. Each f;, 1 < i < m, is assigned to an
existing nonempty F;, 1 < j < ¢, if it does not interfere with any
S & F;; otherwise we define a new subset, F,,, = {f.}].

R is an upper bound on the cardinality of F*. The proof follows.
Any given f; in the sequence: {f,, -- -, fi} interferes with

m

_— *

m, = E c
i=i

No. 4 - 1970 ASSIGNING DATA ITEMS TO REGISTERS 315

of the (m — i) data items already assigned to seéts F;, & F*. In the
worst case, these m, data items would be assigned to m; distinct
sets; in this case,

m,-+1=1+2c;';

sets would be sufficient to accomplish the assighment of f; to some
F; € F*. It follows that for the partitioning algorithm described,

R =1+ max {Zc;‘,‘}
i=1,+"*,m i=1

sets would be sufficient for the complete partitioning of F' into F*.
Thus

R =1+ max {icf‘;} > C(F*) (26)

Now let T’ be a set of elements S; & T’ where:
§i=Is|Isl € F,
CEF)=(>0),
(s] & Fy= (s < 0)}
and:
C(T") = C(F*) 28

Fach f € F’ is assigned in exactly one S & T; this follows from
Equation 27 and the fact that F* is a partition of F’. In addition,
each S¢ € T’ determines a feasible completion of S” since F, C F’
and, by construction, there exists no interference among the data
items in F,. On the other hand, since there is no reason to suppose
that the cardinality of 77 is a minimum, it follows that:

e(1’) 2 (1)

From this, Equation 28, and Equation 26 we obtain Equation 13,
which we set out to prove.

CITED REFERENCES AND FOOTNOTES

1. A path is a sequence of arcs of a graph such that the terminal vertex
of each arc coincides with the initial vertex of the succeeding arc.

2. @ (N) represents the cardinality of the set N.

3. S. Rosen, R. A. Spurgeon, and J. K. Donnelly, “PUFFT—The Purdue
University fast FORTRAN translator,” Communications of the ACM
8, No. 11, 661-666 (November 1965).

. P. W. Shantz, R. A. German, J. G. Mitchell, R. S. K. Shirley, and
C. R. Zarnke, “WATFOR—The University of Waterloo FORTRAN
1V compiler,” Communications of the ACM 10, No. 1, 41-44 (January
1967).

. F. E. Allen, “Program optimization,” M. 1. Halpern and C. J. Shaw
(editors), Annual Review in Automatic Programming 5, 239-307, Per-
gamon Press, New York, New York (1969).

6. E. S. Lowry and C. W. Medlock, “Object code optimization,” Com-
munications of the ACM 12, No. 1, 13-22 (January 1969).

7. J. Cocke and J. T. Schwartz, Programming Languages and Their Com-

IBM SYST J

pilers, Courant Institute of Mathematical Sciences, New York Univer-
sity, New York, New York (1969).

. L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd, “Index
register allocation,” Journal of the Association for Computing Machin-
ery 13, No. 1, 43-61 (January 1966).

. M. L. Balinski, “Integer programming: methods, uses, computation,”
Management Science 12, No. 3, 253-313 (Novembér 1965).

. A. M. Geoffrion, “Integer programming by implicit enumeration and
Balas’ method,” SIAM Review 9, No. 2, 178-190 (April 1967).

. L. G. Mitten, “Branch-and-bound methods: general formulation and
properties,” Operations Research 8, No. 1, 24-34 (January-February
1970).

. M. L. Balinski and K. Spielberg, “Methods for integer programming:
algebraic, combinatorial, and enumerative,” Progress in Operations Re-
search: Relationship Between Operations Research and the Computer
3, 197-292, J. S. Aronofsky (editor), John Wiley and Sons, Inc,, New
York, New York (1969). ’

NO. 4 - ASSIGNING DATA ITEMS TO REGISTERS 317

