
The problem of sharing information while protecting proprietary
data in large con7puter ji1e.s is reviewed.

The author suggests certain guidelines .for data protection in general-
purpose, time-sharing systems, and develops a model of a secured
shared file. Operation of the system based on these guidelines is
discussed.

Authorization involves the comparison of restrictions placed on
information-data and programs-in files with privileges of users
requesting access to this information. In the past, this requirement
did not arise because files were not shared; users exchanged informa-
tion only off line. Proprietary files were protected by being stored
on removable tapes or disks, which could be held under lock and
key when not in use. During runs, the entire computing center
could be made secure.

The true authorization problem arises when several users must
access a common file, subject to the constraint that not all users
are permitted access to all data. Such a requirement may arise in
police networks, government data centers, banking data centers,
management information systems, or credit bureaus. Conceivably,
some future computer center may simultaneously serve several of
these applications.

efficiency Authorization is not so much a theoretical problem as one of
effi~iency.~ The problem increases when there are large numbers
of data sets, protection categories, and users. Authorization may
then be considered as a mapping function of users to data. But
in some future computer systems, such a mapping function might
well become unmanageable. Imagine, for example, a system sup-
porting 20,000 users, 2,000 of whom may be on line simultaneously.
They may be processing data from a common bank containing
perhaps trillions of records. It would seem to be a formidable task
to screen each file access according to all restrictions that may have
been placed on the data versus all privileges that the user may hold.
Possibly the process could be shortened by consolidating the diverse
privileges and restrictions or assigning them to a hierarchy. Neverthe-
less such a scheme creates interdependencies of categories that make
later modifications cumbersome. A file that cannot be easily modified
is likely to suffer early obsolescence.

specialized There may be little need to make major modifications, however,
applications in files dedicated to various specialized applications. Many manage-

ment information systems are of this type in which all data is
maintained by a central administrator. Formats and data organiza-
tion in these systems are well-defined and relatively fixed, and the
classes of users are also restricted and easily described. All types
of protection and privileges can be determined in advance. The
authorization process may be organized in a straightforward manner
because only a small fixed number of protection categories are needed
for information in the file, and a fixed number of user classes with
their associated privileges are required.

A variety of techniques could serve to simplify authorization in
such systems. Because the format of data fields is fixed, the individual
fields need not be tagged. Protection could be provided by reference
to a single format descriptor. Sets of protections and privileges

260 FRIEDMAN IBM SYST J

could be combined, and specific combinations could be represented
in terms of such logical connectives as AND, OR, and NOT. Greater
convenience and efficiency could thereby be provided than is pos-
sible with exhaustive lists of protections or privileges. Protection
may also be defined in terms of the value of certain fields, such
as “Salaries over $10,000,’’ which could prove quite useful. Systems
of this type are gaining wide usage, and substantial activity is
currently devoted t o providing authorization for these applications.

This paper, however, is concerned with large systems of a less
centralized type intended to serve a variety of applications, such as
the MIT Compatible Time-sharing System (CTSS)’ and the IBM
System/360 Time-sharing System (TSS/360).“ A large number of
dissimilar data sets may be maintained within storage, and the
formats and organization of these data may not be known in
advance. Indeed, new data sets in entirely unpredictable formats
may be introduced by users at any time. In such systems, a more
flexible authorization mechanism is required, and the specialized
techniques previously discussed may, in these general systems,
cause difficulties and inefficiencies. For example, protection accord-
ing to value would require the authorization system t o retrieve
information about the formatting of records involved, which could
cause large delays. Instead, the techniques considered here are
intended for systems in which format, data organization, user
categories, and applications are not fixed in advance.

In a general shared file system, complex and unsystematic relation-
ships may develop between user privileges and data restrictions.
In management applications, for example, managers may possess
the right to see their employees’ pay records, but not, say, their
health records. Corporate officers should have access to information
within their provinces of authority. Since executive responsibilities
may in part be duplicated, the privileges may be neither disjoint
nor fall into a simple tree hierarchy, but instead may be overlapping.
Moreover, privileges may change more or less continuously as
users acquire or lose responsibilities in their assignments.

Thus, it may be shortsighted to base an authorization system on
anticipated user relationships. Authorization simply requires that
users be separated from information they lack privilege to access.
A test for protection violations must be performed; if a user does
not hold privilege to records he requests, access must be prevented.

To consider how access may be disabled, let us distinguish the
following four functional steps i n a read operation. (Analogous steps
exist in write or update operations.)

1. User establishes connection to the system and is logged on.
2. User requests information.
3. System responds by selecting the information.

NO. 4 . 1970 AUTHORIZATION

Methods for disabling (or enabling) access can thus be classified
according to the step that is affected. I

The highest degree of protection is provided by disabling the first
step; i.e., a user is prevented from logging on altogether if he lacks
privilege to any data on the system. This level of protection implies
that sets of data having distinct protection requirements must be
maintained on separate machines for different users. Such a scheme
eliminates a major part of the protection problem, but it also elimi-
nates the capability for time sharing. The result is unattractive
not only because the processor and file system must be duplicated
for each user group, but also because common updating operations
are prohibited. Even so, this scheme may be the only acceptable
approach to authorization where military security standards apply.

Alternatively, the user may be allowed to log on, but he is prevented
from issuing unauthorized requests. This can be accomplished by
restricting knowledge of the data names to persons privileged to
those data. By this scheme, if someone knows what to ask for, it
implies he has a right to see it.” This is a simple and easily realized
approach. However, anyone who, through accident or design,
acquires a secret name also acquires the ability to violate the pro-
tection. A refinement to this approach is not to conceal data names
but to require the requester to supply an additional secret password
for protected sets of data. The advantage of this scheme is that
passwords can be made longer and more difficult to discover than
would be convenient for data names. However, it burdens the
user with remembering and communicating more terms. Moreover,
the scheme still remains vulnerable to penetration by accidental
discovery of the secret terms.

In a third approach, the user is allowed to log on and to request
access. If he does not hold appropriate privilege, however, the
selection mechanism is inhibited. The data protection techniques
used in CTSS and TSS/360 fall into this category. Sensitive files
outside the user’s storage area can be selected only if he possesses
special internal pointers in his directory to those records. The distinc-
tion between the preceding method and the method suggested here
is that in this case the “passwords” (i.e., pointers) are supplied
and maintained by the system rather than by the user. Because
the user cannot change his own pointers, this system is more resistant
to mischief than the previous one. Nevertheless, even here the
test for violation is conducted on information specified in the request
rather than on the information that is actually selected. If a machine
error occurs after the test and during selection, then sensitive data
may be made available to unauthorized persons. This protection
method may thus fail in the event of a single error such as the altera-
tion of an address.

262 FRIEDMAN IBM SYST J I

Stronger protection is provided if the data transmission step rather
than the selection step is disabled on detection of a violation. Then
the test for violations may be conducted using the data that are
actually selected from storage, but before they are made available
to the user. In this case, protection failures would require at least
two independent but coincidental mishaps: (I) unauthorized data
are accessed i n storage, and (2) these data are not recognized as
unauthorized for the requester during the subsequent testing phase.

Rather than disabling the actual transmission of data, they could
always be made available. I f a violation occurs, however, the data
would be presented in an unusable form. For example, sensitive
records could be stored in crytographically enciphered form, and
be automatically deciphered during output using a key assigned
to the user. Cryptographic techniques provide impressive levels of
protection, ','" I:' although the security of any cipher is never certain.
Cryptography seems especially promising for protecting communica-
tion lines to remote terminals. Nevertheless, this approach may
prove unacceptable for routine file processing because of the re-
sulting delay i n channel access.

In contrast to full-scale cryptography, an elementary scrambling
proce~s'~ has attracted interest because of its economy and speed.
Scrambling consists of the replacement of characters in a record
according to a simple, fixed substitution rule. As scrambled records
are read from a file, they are simultaneously unscrambled according
to a user's key. Improperly retrieved records are scrambled according
to an unknown key and so are unreadable. Scrambling thus prevents
one user from directly browsing through another user's data. How-
ever, it is a relatively trivial (as well as an entertaining) challenge
to decipher such a code. Since scrambling does not offer significant
protection, it may actually constitute a danger by providing an
illusion of protection that does not exist.

Although these six methods do not exhaust the means of disabling
access, they illustrate the wide choice of techniques possible. A
combination of techniques may be stronger than any one alone,
but this would be more costly and is not considered further here.
Of the alternatives, protection by disabling the data transmission
appears most promising because failure would require the con-
currence of two independent mishaps.

Consider now a test to detect protection violations. The test deter-
mines whether the requested access falls within the allowed privileges
of the user. A straightforward approach is to scan a list of codes
delegated to the user until a code is found that authorizes the re-
quested access. More sophisticated approaches could involve the
derivation of protection and privilege values indirectly by some

Protection codes may be stored with the data, or alter-
natively, they may be held in separate attribute tables. Protection

NO. 4 . 1970 AUTHORIZATION

Planning for authorization should begin during the preliminary
development of a system. It may not be sufficient to “patch up” an
existing system by the addition of checking and monitoring features.
Checking and monitoring, even when used extensively, do not
necessarily make safe a vulnerable system. For example, if there
are many access paths to certain sensitive data, a checking process
could be introduced into each path. Nevertheless, unforeseen
combinations of paths may provide “trap door” entrances, allowing
resourceful human infiltrators to circumvent the protection.2 In-
stead, it seems preferable to redesign such a system so that only
one fully protected access path exists to the sensitive data.

Although it is clear that protection is mandatory for shared-file
systems, it is not evident how extensive it should be. Commercial
users, for example, do tolerate occasional disclosures under batch
processing conditions. Occasionally, a user discovers that he has
received someone else’s output or that someone else has received
his. On the other hand, extreme military levels of security” are
more than appropriate for most non-military application^.'^ Indeed,
if a reasonably secure system could be realized, it might in time be
accepted for certain military applications.

But what is reasonable? Application studies and user surveys could
help to indicate the degrees of protection that customers will demand,
the costs they will pay, and the penalties in processing speed and
convenience they will tolerate. In the absence of this information,
the discussion must be speculative.

An ideal system

At this point, let us consider features that would characterize an
ideal authorization mechanism for a general-purpose, time-sharing
system.

Users should be assured that protected data, programs, or
messages will not be disclosed to unauthorized parties, even
in case of major hardware failure or loss of the operating system.
On the other hand, users should never be denied access to
information for which they are authorized.
It should not be possible for any user to “break” the protection
mechansim so as to discover secret data, even if he understands
how the mechanism operates.
Users should be able to enter data freely into a protected file,
and they should be able to specify the individuals who are
allowed access to those data, and the type of access permitted.
All common types of file updating and processing should be
permitted. Users should be able to create, modify, and delete
data within their areas of responsibility.
Response time for processes in the secure shared file should

NO. 4 . 1970 AUTHORIZATION 265

processing.
The authorization system should impose as few restrictions as
possible on the operating system, file structure, time-sharing
system, and hardware.
I t would be undesirable for users who have already been logged
on and identified to be expected to remember long lists of pass-
words, secret keys, or special commands. People are inclined to
write lists down, thereby compromising secrecy. Forgetful users
may at length attempt to disable the protection mechanisms
altogether in order to continue using the machine.
The system should not depend upon continuous attention of a
human security officer for its normal operation, since a human
is likely to be overwhelmed during periods of high activity.
However, a human authority should be notified in the event
of irregularities, and he should be able to suspend any job on
command.

Although we have indicated that a protection mechanism should,
where possible, be independent of the hardware, operating system,
and environment, a practical protection mechanism must reflect
characteristics of the entire system including the file organization,
channel switching, and record identification methods. Whereas
some general recommendations may be advanced on the basis of
the ideal system, those recommendations are suggested only if they
can be provided compatibly with the specific system architecture.
Possible difficulties resulting from these recommendations are
pointed out later in this paper.

To discuss authorization, a basic unit of protected information is
necessary. Accordingly, we define a protectedjeld as a section of
data or program in storage that is subjected to a uniform degree
of protection, i.e., all bits of the field receive exactly the same
protection. This unit should be distinguished from a physicul
record, which is defined as a separately retrievable unit of informa-
tion from a given storage device. Protected fields in certain cases
should also be distinguished from a logicul record, which is con-
sidered a unit in terms of its content, function, or use.

This concept implies the existence of field handling within the data
management system. However, it should be noted that field handling,
which consists of identifying and extracting fields from larger
physical or logical records, involves formidable design problems
that may exceed the difficulties of the authorization system itself.

System guidelines

On the basis of the preceding considerations, the following guidelines
are suggested by the author:

266 FRIEDMAN I B M SYST J

Isolation of the authorization mechanism
Access limitation.
Adjacent tagging
Single-tag rule
Compartmentalization

Although functions of authorization and the operating system
often overlap, the authorization system should be organized as an
isolated program module distinct from the remainder of the operat-
ing system. Protection would then be distinguished from other
data management functions. The authorization system would be
invoked as an independent task whenever access to data in the
secured shared file is requested. This would allow the authorization
system to be programmed as a limited, self-contained package so
that it could be subjected to unusually thorough debugging and
check-out.

The package should reside in a separate protected region of storage
in order to eliminate “trap door” entrances into the routines.
Attempts to branch into those programs, even when made by the
operating system, would then be rejected automatically as violations
of the storage bounds. Instead, the routines should be invocable
only in response to a limited set of explicit requests.

The designer, however, should not disregard possible difficulties
that isolation may impose. Separate “packaging” might increase the
program size, and delays could also occur. Housekeeping and other
utilities might have to be duplicated in such a package. Extra
programming may also be required for routines to be made invocable
functions, i.e., prologues, epilogues, or argument-passing mech-
anisms might be needed. Interruption handling and failure-recovery
routines may present particular problems for such a package.

The shared file itself must be isolated so that it will be impossible
to access it except by means of the authorization system. One way
to meet this requirement is t o dedicate certain channels to the
authorization system. That is, channels would be assigned per-
manently to the authorization programs. No way should be provided
to reassign these channels by program control. I t is possible, how-
ever, that a satisfactory level of security can be obtained as well
by programmed access methods, without dedicated channels.

Some form of tagging is needed to designate data as “protected.”
The tags ought to be kept adjacent to the data themselves, provided
this is consistent with the file organization. It is often convenient
t o car,y. data attributes i n lists separated from the data. However,
every interval separating a protected field from its protection presents
a slight but real opportunity for errors of reference to arise. Since
the goal is to minimize risk, physical separation should be avoided.
A possible disadvantage is that the arrangement may make the

NO. 4 . 1970 AUTHORIZATION

isolation of
the authorization
system

access
limitation

adjacent
tagging

267

formance.

single-tag If protection tags are carried along with data, the tags will consume
rule file space. Such space% likely to be costly because of the exceptional

treatment given this file. Also, since each tag increases the quantity
of information contained in fhe file, additional time may be required
to locate a given protected field.

To conserve file space no more than a single protection tag should
be attached to any such field. Thus if further protection is desired
for a field that is already protected, instead of adding a second tag
to the field, a single new tag must replace the old one. The new tag
will signify the combination of the old and the new protections.
This procedure prevents long lists of tags from being attached to
data in the file.

The single-tag rule may, however, prove to be impracticable if the
length of the average protected field does not greatly exceed the
the length of the tag, A major part of the file space would then be
allotted to the protection tags, a requirement that is undesirable.
If this is the case, it may be necessary to limit protected fields to
larger units, or alternatively, to impose restrictions on format. As a
third possibility, the number of protected categories could be
restricted.

compartmentalization However, if the single-tag rule is followed, each distinctly protected
segment of data will possess one tag, and that tag alone must serve
to identify all specific restrictions placed upon the segment. It is
convenient to make use of the tagging system to organize the protec-
tion classification scheme, so that each tag itself constitutes a
protection category. All data that are similarly restricted to certain
users are assigned a common protection tag. Therefore, those data
are assigned to a common protection category.

For convenience, such a category of data is called a group, which
we define as the most elementary, atomic protection category.
There are no subcategories within groups with respect to protection.
Privilege to any information within a group implies privilege to all
information in that group.

Protection groups are discrete and compartmentalized. Any item
of protected data is assigned to one and only one group. Every
group is an independently existing entity, and is not affected by
changes in other groups. This strategy is similar to the scheme
devised by Hsiao," except that in our case protection applies to
individual records rather than to files as a whole.

The compartmentalized scheme contrasts with the concept of a
stratified or multilevel security classification scheme." There can

I 268 FRIEDMAN 1BM SYST J

those same data may be released to the clique of payroll clerks
on a read-write basis. Incidentally, that second clique might consist
of only one individual.

Compartmentalized data would be partitioned into a multitude
of dkjoint groups, thereby providing complete freedom to associate
individuals with protected data. Changes could be readily made.
An individual would be delegated privilege to a specific set of data
by adding the explicit protection code for that data group to his
security profile. Privilege is revoked by divesting his profile of that
protection code. Such operations do not affect the individual's
privileges to any data except those explicitly delegated or revoked.
If a subset of some previously defined group of data is to be altered
in respect to its restrictions to users, the original protection group
must be redefined as two groups according to this distinction.

The compartmentalized protection scheme has the disadvantage
that it might lead to the proliferation of protection groups, which
may impose an administrative burden on the authorization system.'
However, this burden may be tolerable, as will be described later in
this paper. To aid processing, an auxiliary table of the interrelations
of protection groups may be maintained in addition to the primary
classification system. Such a table would serve as a convenience
and would be distinct from the primary system.

The primary directory of the authorization system is a matrix of
profiles, in which data group privileges are listed with respect to
each user. Of course, such a matrix could be represented as well in
transposed form, whereby all privileged users would be listed with
respect to each data group. In the latter case, when access is re-
quested, the list of privileged users for the requested data group
would be searched for the user who issued the request. If there are
many more data groups than users, searching a row of the transposed
matrix would usually be shorter than searching the untransposed
matrix. However, there would be more rows in the transposed
matrix, so that it might take longer to locate the appropriate row.

A system model

The foregoing guidelines are now expanded into an illustrative
model of an authorization system. This system is necessarily hypo-
thetical, because any implementation must take account of specific
hardware, software, applications, load considerations, and file
organization. The organization of the system is shown in Figure 1.

We assume that the computer runs under an operating system
that supports several remote-terminal users who carry on separate
jobs simultaneously. For work space, each user is allocated a private

Y

"""""" """" ~~ """""""- -1 _" L-L"-??L r

I

I

USER
I G R O U P I PRIVILEGE

USER
CONTROL
BLOCKS

I GK I PR GR I PR
I

GR ~ PR GR 1 PR GK ~ PH ,

CLIQUC
DlRtCTORY

USER GR 1 PR GR j PK GR
I m USER GR I PR GR I PR

protection scheme must be effective in preventing intrusions into
the authorization program region.

The secured shared file resides in an auxiliary storage medium, or
possibly a set of auxiliary media, which are accessible only to the
authorization system. These media (indicated in Figure 1 as a disk
storage) and their associated channels should be protected against
invasion, bugging, or physical removal. It must not be possible
for a user to switch the secured shared file to normal channels
so as to circumvent the authorization system.

group tags There may be normal, freely accessible channels for files that are
and ID neither secured nor shared. These files are not under control of

the authorization system. To avoid overburdening secured shared
files, users could be directed to use them only for data they expect
to share selectively. However, in an actual system it may be more
economical to use the secured shared-file mechanism for all secon-
dary files even though the mechanism is not required i n each case.
According to the suggested guidelines, protection information is
carried adjacent to the data in the file. This protection information,
shown in the figure as GROUP and GR, is termed the “group tags.”
All data that are to be sinlilarly restricted to a comnlon set of users
should be assigned the same unique group tag. As the the system
is used, it may happen that more than one group of data may be
defined that are similarly restricted to the same users. The authoriza-
tion system searches the files periodically to discover such equivalent
groups, and then adjusts those group tags to be identical.

As suggested, each protected field possesses a single group tag.
Again these fields need not correspond to physical records of the
storage medium. They may be of different length from physical
records, nor need the protected fields be of fixed length. Means
must be provided, however, to identify these fields. The identification,
ID, serves to distinguish protected fields within a single group or
within distinct groups. Precise identification conventions are more
properly a topic of file organization and accessing, and are not
considered in this discussion. The I D could be carried along with the
field, as shown in Figure 1 , or alternatively, the I D could be held
in a separate directory. It is, however, desirable to keep the group
tag distinct from the ID, since the ID provides the name of a protected
field in the files, whereas the group tag serves to protect the field.
By means of this distinction, a protected field that had been im-
properly selected through an error of identification can, nevertheless,
still be detected, and then withheld during the testing period.

public Testing may sometimes be omitted by the use of special public status
status categories of the tag. A public status tag indicates that normal

protection is not required. The categories could be indicated when
a tag value falls within certain numeric ranges, as shown by the
following table:

272 FRIEDMAN IBM SYST J I

requester has full privilege for the data group referred to; then the
system attaches or removes the group tag from the profile of the
specified user. Privilege at any level can be delegated. Although
operations on user profiles should be executed rapidly, they need
not be accomplished as quickly as operations on the secured shared
file.

The READ, EXECUTE, READ FOR UPDATING, UPDATE, CREATE,
and DELETE commands involve operations on the file that are each
composed of the four steps: request, search, confirmation, and
release.

R E A D

Request. The user calls the authorization system (heavy arrows
between user and main storage on the left side of the figure), and
he, or a program he calls, issues a read request that identifies a
record in the secured file. Record identification is an aspect of file
management, and could be accomplished by such methods as I D
field, displacement from base, address, indirect reference, or struc-
ture. Optionally, the requester may supply the group name, so
that a search of his profile for that group is initiated at the same
time.

Search. The file accessing system initiates a search for the record.
If group has been specified in the request, a simultaneous search
for group privilege is initiated in the user control block.

Conjrmation. When the record has been located in the secured
file, the authorization system holds it in a protected buffer for
confirmation, as indicated at the top of the figure. There may be
several such buffers. If a record has public-read status, confirmation
is omitted. Otherwise, the group name i n the file entry is compared
with group privileges listed for the user in the user control block
(light arrow to the right of the figure). I f confirmation is not achieved,
the request may constitute an attempted violation, and should be
recorded for audit.

Release. I f confirmation is achieved, the portion of the buffer
containing the field is copied into the user’s space.

EXECUTE is similar t o READ, except for the following factors.
Confirmation may be omitted if the protected field has public-
execute-only status. The authorization system loads the field into
a special protected region of main storage rather than into the
user’s region. When an entire program-linkages, arguments, and
pointers to data-has been loaded, the program is executed. If
the user wants the program to process his protected files, he delegates
privilege for those files to the program when he calls it.

NO. 4 . 1970 AUTHORlZATION 215

The R E A D FOR UPDATING command is similar to READ except
for the following provisions. An interlock must be provided so
that no other user may update the field." The original record is
retained after release in the authorization system buffer to await
the updated version. User confirmation is waived only if the field
has public-updatable status. Otherwise, the user must have at least
update privilege for this group. Finally, if the user logs off before
completing an update, the field must have its interlock removed.

UPDATE

Request. This command is executable only if a READ FOR UPDATING
command had previously been executed for the same field by the
user during the current run-otherwise the request is rejected.
The same I D should be used as had been used previously in the
READ FOR UPDATING. The authorization system compares this
I D with the copy of the original record held in its protected buffer.
If a match occurs, the user's updated data are copied into the buffer
in place of the original data.

Search. As an added precaution, the original protected record
must be read from the file again just prior to updating. Therefore,
for certain storage media, a search may be initiated.

Conjrmation. The same confirmation is required when rereading
the entry from the file as was required in the R E A D FOR UPDATING;
namely, the field should be public updatable or the user must have
privilege for this group of at least update level. Also, the protected
field's J D , status, and group must match those of the updated
version held in the authorization system buffer.

Release. When confirmation is complete, the authorization system
writes the updated entry into the file. I f record sizes are fixed,
writing could be acconlplished by overwriting the space of the
original record. Otherwise, the original record is deleted, and the
updated record is added. The interlock is removed.

CREATE

Request. Any user may create an entry in the file. If a user issues a
CREATE command, but does not specify group and status, a default
group is automatically assigned to the field with private status.
The default group name is taken directly from the user's own
identification, thereby defining a group unique to that user. Of
course, the user may also request the creation of a protected field
with another group name or status. At request time, the desired
entry is copied from the user space into the system buffer.

Conjrnw~tion. I f the user has indicated his own name for his group,
either explicitly or by default, confirmation is directly provided.

216 FRIEDMAN I B M SYST J

Release. After confirmation, the entry is copied into the secured
shared file from the protected buffer.

The DELETE command is similar to CREATE in that identifications
must match, and the user must have full privilege.

We now outline the background mode which includes the DEFINE background
GROUP and IDENTIFY CLIQUE commands. The DEFINE GROUP mode
establishes a category of data, and the IDENTIFY CLIQUE command
establishes a category of users. The background mode also includes
regular inspections to determine that each group has an owner
with full privilege, that equivalent groups are merged, and that
privileges delegated to cliques of users are granted to each member
of the clique.

The DEFINE GROUP command affects both the secured shared
file and user profiles. By means of this command, an existing group
can be fragmented into several groups, or several groups can be
merged into one. A group may also be defined as being “public,”
in which case the tag value is assigned within the range of one of the
special public categories.

Protected fields that have been filed under a user’s private default
group tag can be shared if the user explicitly delegates privilege
for that group to other users. Alternatively, the sharing of protected
fields may also be accomplished by designating certain fields to be
in a group for which other users already possess privilege.

The DEFINE GROUP command is relatively slow in execution
because it requires that the secured shared file be thoroughly searched
for all fields tagged with the old group categories. These categories
must be redesignated with the new categories. Also, all user profiles
that include privilege to the obsolete group categories must be
revised before regular processing proceeds. The DEFINE GROUP
command, therefore, halts file processing, and should be preformed
only in a low priority mode. When issuing this command, the user
must hold full privilege for the old groups and, if the new group
categories already exist, he must hold full privilege for these groups
as well.

Besides the secured shared file and user profile list, a table of user
cliques may be provided. Privilege for a data group could thereby
be delegated to a clique as a whole. Then when the IDENTIFY
CLIQUE command is issued, the authorization system, i n the back-
ground mode, goes through the list of clique members and attaches
the privilege to each member’s profile. Incidentally, the existing
protection systenl can be used to protect this clique membership

NO. 4 . 1970 AUTHORIZATION 277

list. The list may simply be maintained as a secured shared file
group. As a consequence, the list will then have explicit sets of
users authorized to refer to it and change it.

quantitative The system model is used for illustrative purposes and is not in-
projections tended for inclusion in an existing or future shared computer without

change. Performance of an authorization system can only be
evaluated if it is a component of an actual time-sharing system.
Although studies and experiments may in time provide empirical
information on compqrative authorization systems, it may be
instructive to consider some projections based on our model.

Assume that the hypothetical system supports 20,000 recognized
users from various independent organizations and that 2,000
terminals may be simultaneously connected on-line. If such a large
general-purpose, secured shared file system becomes operational, a
demand for an extensive exchanging and trading of data and pro-
grams may result. For our projections, let us assume that the average
user holds privileges for 200 groups of protected data. (There may,
of course, be a few users with privileges to all or almost all data
groups.) The average user will originate perhaps ten groups of
secured data. From these assumptions, it follows that there are 10
times 20,000 (or 200,000) data groups. To distinguish that number
of groups, an 18-bit tag is required for each protected field. If we
assume that an average entry is 50 bytes (400 bits), it follows that
the proportion of information in the secured shared file devoted
to protection is 18 bits divided by 400 bits, or 4.5 percent of the
total file. (Parity bits or error correction bits, of course, are not
included in these figures.) However, if the average protected field
is considerably smaller than 50 bytes, the proportion of storage
required for protection will grow, which may make the system
unacceptable.

Each user’s security profile consists of his personal identification
field and a list of group privileges and privilege levels. Assume
that each user’s identification field consists of 15 bytes (120 bits).
Of these, 18 bits are needed for each group code, and 2 bits for
the privilege level indicator. A n 18-bit field is also required to report
the number of groups in the profile because the maximum is
200,000. Since the average user is assumed to hold privileges for
200 groups, storage for an average profile is 120 + 200 (18 + 2) +
18 (or 4,138) bits. Since 20,000 users are recognized, 82,760,000
bits or 10,345,000 bytes of storage are required for a complete
set of profiles.

The authorization system will impose a delay, which is expected to
be small in comparison with the file search delay. The most com-
monly used file commands are expected to be READ, READ FOR
UPDATING, and UPDATE. In execution, delays will result from

8

8

8

It
so

Calling the authorization system.
Copying the field into the buffer.
Comparing the group tag with the user profile.

is hoped that the authorization system can be programmed
that system calls involve only a few instructions. Copying a field

into the buffer may involve only a single start-input/output instruc-
tion. Comparison of the group with the user profile involves execut-
ing a short program loop to scan the profile. Since the average
user is assumed to hold privilege for 200 groups, an average of 100
loop iterations is expected. The average delay could be reduced by
listing the more frequently used groups at the beginning of the
profile. Iteration delay could be avoided by the user’s supplying
the group tag in his request, so that his profile is scanned while the
file is searched.

The vulnerability of the hypothetical system should be considered.
Only users who hold full privilege for groups can alter security
profiles, and they may alter only references to those groups for
which their full privilege applies. Otherwise people cannot affect
their own or anyone else’s profile. Users should not be able to
interfere with the authorization system except by a rather unlikely
combination of accidents. Even catastrophic system failures do not
appear to provide opportunities for such lapses in protection.

Concluding remarks

Selective sharing of information has been considered in this paper
only with regard to auxiliary storage in a certain general type of
time-sharing system. Further study is needed to provide an efficient
authorization system within the central processor’s main storage.
Effort is also required to enable programs to pass privileges selec-
tively when calling other programs.

ACKNOWLEDGMENT

The author wishes to thank P. S. Dauber for suggesting this study.
He also acknowledges the aid of P. R. Schneider, C. J. Stephenson,
M. A. Auslander, and M. E. Hopkins; of R. Courtney and L. Moss,
who established the conceptual groundwork on which this paper is
based; and of A. M. Pfaff for much constructive criticism.

CITED REFERENCES

1. The Cotlsideraiion of Dutn Security in u Computer Environmerlt,
520-2169, International Business Machines Corporation, Data Pro-
cessing Division, White Plains, New York.

2. H. E. Petersen and R . Turn, “System implications of information

NO. 4 . 1970 AUTHORlZATION 279

1

privacy,” A FIPS Confcretlcc, Proceedi,rgs, Spr i~rg Joirrt Cor?rputc,r COIL-
fcrence 30, Thompson Book Company, Washington, D. C., 291-300
(1967).

3. J. B. Dennis and E. C. van Horn, “Programming semantics for multi-
programmed computation,” Cor?lrl?rr/zicntiolrs of the Associcrtion f o r
Computing Machinery 9, No. 3, 143-155 (March 1966).

4. L. J. Hoffman, “Computers and privacy: a survey,” Complrting Slrr-
veys 1, No. 2, 85-103 (1969).

5 . W. H. Ware, “Security and privacy in computer systems,” AFIPS
Confererrce Proc,cvdings, Sprirq Joint Cornputcr Conference. 30, Thomp-
son Book Company, Washington, D. C., 279-282 (1967).

6 . C. Weissman, “Security controls in the ADEPT-SO,” AFIPS Conference
ProceedinAv, Full Joint Computer Confercnce 35, I 19-133, AFIPS
Press, Montvale, New Jersey (1969).

7. R. M. Graham, “Protection in an information processing utility,” Conl-
municafions of the Association for Computing Machinery 11, No.
5, 365-369 (May 1968).

8. P. A. Crisman, Editor, Tlrc Compatible Time-Sharing System-A Pro-
grammer’s Guide, MIT Press, Cambridge, Massachusetts (1965).

9. Systeml360 Tin~e-Sharirr,g Sys t em, Concept.s and Futilities, C28-2003,
International Business Machines Corporation, Data Processing Division,
White Plains, New York.

0. B. W. Lampson, “Dynamic protection structures,” AFIPS Conference
Prowedings, Fall Joint Cornpl/fer Conferetrcc 35, 27-38, AFIPS Press,
Montvale, New Jersey (1 969).

1. W. F. Friedman, “Cryptology,” Encyclopaedia Britunnica 6, 844-851,
Chicago. Illinois (1967).

2. C. E. Shannon, “Communication theory of secrecy systems,” Bpll
System Tecknicul Jour~rul 28, No. 4, 656-715 (October 1949).

3. R. 0. Skatrud, “A consideration of the application of cryptographic
techniques to data processing,” AFIPS Conference Proceedings, Full
Joint Computer Conference 35, 11 1-1 17, AFIPS Press, Montvale, New
Jersey (1969).

4. P. Baran, “Communications, computers and people,” A F I P S Confer-
ence Proceedings, Fall Joint Compu/er Conference 27, Part 2, Thomp-
son Book Company, Washington, D. C., 45-49 (1965).

15. R. C . Daley and P. G. Neumann, “A general-purpose file system for
secondary storage,” AFIPS Conference Proceedin,qs, For/ Joint Com-
puter Conference 27, Part 1 , Spartan Hooks, New York, New York,
213-229 (1965).

16. B. Peters, “Security considerations in a multiprogrammed computer
system,” AFIPS Conference ProceedinRs, Spring Joint Computer. Con-
ference 30, Thompson Book Company, Washington, D. C., 283-286
(1967).

17. W. H. Ware, “Security and privacy: simularities and differences,”
A F I P S Conference Proceedings, S p r i ~ g Joint Comprrter Conference
30, Thompson Book Company, Washington, D. C., 287-290 (1967).

18. D. K. Hsiao, “A file system for a problem solving facility,” Ph.D.
Dissertation (Electrical Engineering), University of Pennsylvania,
Philadelphia, Pennsylvania (1968).

