L1}

Discussed is the “‘syntax machine,” a program for automatically
generating syntactically correct programs (test cases) for checking
compiler front ends.

The notion of “‘dynamic grammar” is introduced and is used in a
syntax-defining notation that procides for context-sensitivity.

Examples demonstrate use of the syntax machine.

Automatic generation of test cases
by K. V. Hanford

The “syntax machine” discussed here automatically generates
random test cases for any suitably defined programming language.'
The test cases it produces are syntactically valid programs. But
they are not “‘meaningful,” and if an attempt is made to execute

them, the results are unpredictable and uncheckable. For this
reason, they are less valuable than handwritten test cases. However,
as an inexhaustible source of new test material, the syntax machine
has shown itself to be a valuable tool.

In the following sections, we characterize the use of this tool in
testing different types of language processors, introduce the concept
of “dynamic grammar” of a programming language, outline the
structure of the system, and show what the syntax machine does
by means of some examples.

Test cases

Test cases for a language processor are programs written following
the rules of the language, as documented. The test cases, when
processed, should give known results. If this does not happen, then
either the processor or its documentation is in error.

We can distinguish three categories of language processors and
assess the usefulness of the syntax machine for testing them. For
an interpreter, the syntax machine test cases are virtually useless,

HANFORD 1IBM SYST J

since the result of their execution is unpredictable, For a syntax
checker, the syntax machine can do a complete job, including the
testing of the diagnostic facilities. For a compiler, the syntax machine
can fully test the ability of the input phase to accept syntactically
valid input, but does not test the translation process. It can be used
to estimate the reliability of the compiler with respect to such
problems as getting into an infinite loop, abnormally ending, or
diagnosing nonexistent syntax errors.

Although as a writer of test cases, the syntax machine is certainly
unintelligent, it is also uninhibited. It can test a processor with
many combinations that would not be thought of by a human test
case writer. Also, test cases can be created at will, so that at any
time new material can be presented to a product under test. This
is particularly important for a product that has “learned” its test
case library.

In its standard mode, the syntax machine produces programs in
a pseudo-random manner. The system has a second mode in which
it systematically produces all the possible syntactic forms of certain
designated language features. The system can also be directed to
produce programs that contain syntactic errors, with annotations
giving the position of the errors,

Dynamic grammar

This section discusses how declarations can be considered to modify

syntax and how formal notation can be extended to account for this.

Consider a compiler for an algebraic programming language. Its
job is to manufacture sequences of elementary machine instructions
to simulate the evaluation of expressions in the language. To such
a compiler, 2 X (3 4 4) is acceptable for translation—the required
simulating sequence can be determined without difficulty. On the
other hand, 2 X) 3 4+ 4 and 2 X 3 (4 4 are not acceptable for
translation, since the compiler cannot confidently ascribe a meaning
to them. Thus we say that the first expression is “well-formed”
or “‘grammatically correct,” whereas the other two are not.

Let us define the “acceptable programs™ for a given compiler to
be those source programs whose compilation is trouble-free and
results in no diagnostic messages. Then we find that acceptance
depends on férm rather than meaning: a compiler would accept

x=0
y=1/x

on its form, although it is computationally meaningless. Thus,
the notion of “well-formed™ applies not only to algebraic expres-

No.4 - 1970 SYNTAX MACHINE

243

sions but to all the elements of a programming language, including
whole statements and whole programs. If we compare two compilers
for the same language, we find that the set of acceptable programs
for one is almost identical to the set of acceptable programs for
the other. There are usually some gray areas of difference, but these
serve only to emphasize the high level of agreement on what is
acceptable and what is not.

This leads us to ask whether the concept of grammar in programming
language can be formalized. Can we make a definition of “well-
formed” or ““‘grammatically correct’ that is a good, useful approxi-
mation to the pragmatic notion of “acceptable” programs or, alter-
natively, that could be used as an exact otficial specification of
those source programs that should be accepted without diagnostic
messages?

The first formal definition of the syntax of a programming language
was made by Backus® in a notation now known as BNF (Backus
normal or Backus-Naur form). A class of strings of a language is
given a name enclosed in brackets <>, and a class is defined by
one or more ““writing rules.” An example of a rule is:

<x> o <y> + (L<z>)

This says that if you write down any member of the class <y>,
followed by the mark +, followed by the mark (, followed by any
member of the class <z>, followed by the mark), then what you
have written down is some member of the class <x>. The classes
<y> and <z> must in their turn be defined by further writing
rules. The syntax of a language consists of a finite number of such
rules.

Following the work of Backus (related to earlier work by Chomsky®),
a formal approach to syntax in the definition of programming
languages has become commonplace. Notations vary but the moti-
vation is always the same—to define as fully as possible the form
of a program.

The grammars found in language definitions are recipes for writing
down strings. The intention is that the recipe should yield precisely
the set of strings that will be considered to be well-formed and must
be accepted by a compiler. To meet this intention fully, the following
two conditions need to be satisfied:

1. All well-formed programs can be written down following the
recipe.

2. Only well-formed programs can be written down following the
recipe.

BNF meets the first condition but fails to meet the second. The set
of strings that it defines certainly contains all well-formed programs

HANFORD IBM SYST J

but contains other strings as well. In language definition documents,
to further restrict the set of defined strings, the BNF grammar is
accompanied by extra grammatical rules, stated in English. These
rules consist of statements like: ““The constituents of an arithmetic
expression must have been declared to be of type real or type in-
teger.” These extra rules are given in English because it is impossible
to express them in BNF.

The informal grammatical rule given above says that a variable
may occur in an arithmetic expression if and only if it also occurs
in some program element declaring it to be of type real or type
integer. Thus, what can be written at one place in a program depends
in general on what has been written down in other places. A gram-
matical rule of this kind, which requires relations to hold between
parts of a program, is called a “context sensitivity,” and languages
that have rules of this kind are “context-sensitive.” All present-day
high-level programming languages are context-sensitive.

The set of strings defined by a BNF grammar is termed a “context-
free” language. A BNF formulation for a high-level language defines
a context-free language that is a superset of the actual (context-
sensitive) language.

The context-sensitive nature of programming languages derives
from the fact that these languages allow declarations. The pro-
grammer uses a declaration to create an object, to give it a name,
and to describe what kind of object it is, e.g., an array, a function,
etc. Now, the contexts in which an object may occur in a program
depend on the kind of object it is. Thus, declarations ascribe certain
syntactic qualities to objects and the declarations in a program
influence the syntax of that particular program. For example, the
real and integer type declarations of a program determine what
arithmetic expressions can be written in that program.

The syntax machine involves a method for the description of
context-sensitive constraints. The basic idea in our formulation of
these constraints is that the effect of writing a declarative statement
in a program can be represented as a change to the context-free
grammar. The rules for writing down a program should, therefore,
not only specify what can be written down but also specify what
changes to the grammar result from what is written down. By this
means, the declarative statements construct the grammar for the
other statements. This concept can be stated as follows:

The programs of a declarative programming language can be pro-
duced from a context-free grammar that has the ability to modify

itself. A grammar of this form will be called a “dynamic grammar.”

As an example, consider the FORTRAN declaration

INTEGER XYZ

No. 4 - 1970 SYNTAX MACHINE

context-free
production
system

If this string is written down as a statement of a program, it causes
the grammar to be modified by the addition of a rule of the form

<integer variable> — XYZ

Initially, the grammar contains no rules for <integer variable>.
Each declaration of the above form causes a new rule for <integer
variable> to be added to the grammar. For example, the declarations

INTEGER AY
INTEGER BEE
INTEGER C

cause the dynamic grammar to be enriched by the rules:

<integer variable> — AY
<integer variable> —» BEE
<integer variable> — C

When subsequently an arithmetic expression is written, these rules
are available for use.

Production systems

In this section, we discuss first the requirements of a system for
producing the strings of a context-free language. We then consider
how this system can be extended to a context-sensitive production
system by using syntax generators with a rewriting algorithm. A
more detailed description of the rewriting procedure is then pre-
sented, which takes into account the contingencies that may be
encountered in rewriting a nonterminal.

Consider a context-free language defined by a BNF grammar. This
grammar consists of a set of rules such as

<x> = <y> 4 (<z>)

The left-hand side is a class-name or “nonterminal” and the right-
hand side is a sequence of symbols and nonterminals.

A process for obtaining a string of the class <x> is described by
the following “‘rewriting” scheme. Starting with the nonterminal
< x>, we rewrite it using one of the rules for <x>. Suppose we
choose the above rule. The right-hand side of the rule is a recipe.
It uses two methods for obtaining a sequence of symbols to form
a string of the <x> class. It directly contributes some symbols
(the symbols -+, (,) in the example). It obtains other symbols
indirectly by rewriting the nonterminals that occur in the recipe
(<y> , <z> in the example). In general, there is a choice of recipes
for the rewriting of a given nonterminal. When a subsidiary recipe
has done its job, it returns responsibility for symbol production
back to the recipe that called it. To obtain a complete string of the

HANFORD IBM SYST J

language, we start the process with the “language nonterminal”
(e.g., <program>), which names the class of complete strings.

Thus, the process of writing down a program of a context-free
programming language can be mechanized as a rewriting algorithm
that interprets a BNF grammar. A rule of the grammar is scanned
from left to right. When a nonterminal is met, a pseudo-random
choice is made from the rules for that nonterminal and a recursive
call to the rewriting algorithm is made. The context-free grammar
and the rewriting algorithm together constitute a ‘“production
system” for a context-free language.

A “dynamic production system” is a generalization of a context-free
production system and again consists of a set of production rules
and a rewriting algorithm. The generalizations concern:

e The “activation” during the production process of “‘syntax
generators” for the self-modication of the production system
e A cyclic rewriting algorithm using “delayed nonterminals”

The rewriting algorithm is an extension of the rewriting algorithm
for a context-free production system. As we have seen, context-
sensitivity constraints are considered to arise from declarations.
The effect of a declaration is represented by a change to the context-
free grammar. When a declaration is produced, the context-free
grammar is immediately modified. This modification is carried out
in the following fashion. Certain context-free production rules,
generally those concerned with declarations, have syntax generators
attached to them. The production algorithm, after using a production
rule for rewriting, activates anv syntax generator attached to that
rule. Syntax generators synthesize new rules and add them to the
context-free grammar.

Now a declaration may influence that part of the program that
comes before it. For example, we may bave a branch statement
with a forward reference to a label (the defining occurrence of a
label is considered to be an implicit declaration). This problem of
“use before declaration” is handled by giving the “delay” quali-
fication to any nonterminal whose rewriting may depend on the
rewritten form of nonterminals occurring to its right. When a
nonterminal with the delay qualification is met in the left-to-right
rewriting scheme, its delay qualification is removed, but it is not
rewriiten until the remaining nonterminals to its right have been
rewritten. Delayed nonterminals are indicated by the character
—; thus < —x> stands for the nonterminal <x> with the delay
qualification.

In the following more detailed description of the rewriting algorithm,
we discuss the conditions under which syntax generators are acti-
vated but not how they create rules. This topic is illustrated by

No. 4 - 1970 SYNTAX MACHINE

context-sensitive
production
system

recursive
rewriting

back-
tracking

example in the next section. “Not rules” mentioned in the de-
scription are of the same form as rules and mean that a string of
the class named by the left-hand nonterminal “cannot be’” a member
of the class defined by the right-hand expression.

The description of the rewriting algorithm is divided into discus-
sions of the recursive rewriting of a nonterminal, backtracking,
and the cyclic rewriting of a complete program.

Let <x> be a nonterminal element of an arbitrary string. The
recursive rewriting of <x> ought to replace <x> by a string.
However, several factors can affect this effort to rewrite <x>,
including the presence of the delay qualification mentioned above,
the possible existence of *‘not rules,” the absence of any rules for
< x>, and the possibility that a nonterminal in a rule chosen for
< x> can itself not be rewritten.

We suppose that < x> is not a delayed nonterminal. A rule for
< x> is chosen randomly, and <x>> is replaced by the right-hand
side of this rule with all its nonterminals recursively rewritten in
left-to-right sequence.

If there are no not rules for <x> and if the chosen rule for <x>
has a syntax generator, the generator is activated. This completes
the recursive rewriting of <x>.

Now suppose there exist not rules for <x>. Then the string that
has replaced <x> is tested for membership of the “not class”
for <x>. If the string is a member of the not class, it is rejected
(and the generator is not activated). The algorithm tries again to
rewrite < x>, using a new randomly chosen rule. Only when a
string is obtained that is not 2 member of the not class is it accepted.
The generator of the successful rule is then activated.

There are three possible ways in which the process described above
can fail to rewrite a given nonterminal <x>. This possibility of
failure leads to the need for a “backtracking™ facility in the rewriting
algorithm. These three possible ways are:

1. There are no rules for <x>.
2. The strings obtained for < x> are consistently members of the
not class for <x>.
. Some nonterminal in the chosen rule for <x> fails to be re-
written.

In order to explain what happens in these situations, let us suppose
that the writing of <x> was called for (directly) in the rewriting
of <p>. That is, the chosen rule for <y> is of the form

HANFORD IBM SYST J

In Case 1, the production algorithm backtracks. It abandons the
attempt to write <x> and goes back to the <y> level. With
respect to this level, Case 3 holds.

In Case 2, 25 attempts are made to find a string that is not a member
of the not class of <x>. At each attempt, a new random choice
of a rule is made. After 25 unsuccessful attempts, the attempt to
rewrite <x> is abandoned and the algorithm behaves as if there
are no rules for <x> (Case 1).

In Case 3, the production algorithm makes a new random choice
of a rewriting rule for < x>, but debars the abortive rule from being
chosen. If Case 3 also arises for the new rule, it in turn is debarred
from being chosen at the next attempt. If all the rules for <x>
are eventually debarred in this way, the attempt to rewrite <x>
is abandoned and the algorithm behaves as if there are no rules
for <x> (Case 1).

There are two situations in which backtracking can give erroneous
results. First, suppose that backtracking goes back to a nonterminal
<z>, say, whose rewriting involved the activation of a generator,
e.g., the chosen rule for <z> was of the form

<Z>_._)...<x>...<y>...
where the chosen rule for <x> had a generator and <y> could

not be written. The effect of the generator is irreversible, so that
an invalid change has probably occurred in the grammar. In this

situation, a diagnostic message is given, but the production continues.
Second, suppose the production process fails to rewrite a non-
terminal that was delayed in the previous pass. Then backtracking
will not occur and the attempted production is terminated; the
syntax machine is unable to backtrack past the start of its current
rewriting pass.

Let <x> be a nonterminal. The “cyclic rewriting” of <x> re-
places <x> with a string of symbols, as follows. <x> is recur-
sively rewritten. If the string that replaces <x>> consists only of
symbols, the process is complete. Otherwise, the remaining non-
terminals are recursively rewritten, in left-to-right sequence. This
step is iterated until no nonterminals remain,

A language string is obtained by cyclically rewriting the language
nonterminal.

The syntax machine is such a generalized production system. The
actual program consists of two parts: a grammar loader and a
production algorithm. The loader stores the grammar in main
storage in a form convenient for use by the production algorithm
in creating programs.

No. 4 - 1970 SYNTAX MACHINE

cyclic
rewriting

Table 1 Syntax of Little PL/}

Symbols, identifiers and numbers
<letter > o

<digit >

<identifier >

<unsigned integer >

Fixed-point variables and expressions
<fixed-point variable >
<primary >

<relational operator >
< boolean expression >
<arithmetic operator >
<arithmetic expression >

Labels and label variables
<label >
<label variable >

Statements
< arithmetic assign statement >
<label assign statement >

< go to statement >
<if statement >

< nondeclare statement >

<declare statement >
<statement >

Programs
<statement sequence >
<pl/i program>

alb]- -z
Oft}---19

<letter> | <identifier> <letter >
<digit> | <unsigned integer > <digit>

ij[kilim|n| <fixed-point variable > <letter>
<unsigned integer > | <fixed-point variable> |

(<arithmetic expression>)

<|=1|>

<primary> <relational operator> <primary>
+I=1*1/

<prima|ry> | <arithmetic expression> <arithmetic
operator > < primary >

<identifier > 11.
<identifier > 12.

<fixed-point variable > = <arithmetic expression> ; 13.
<label variable> = <label>; | <label variable >

= <label variable> ; 14.
go to <label>; | go to <label variable>; 15.
if <boolean expression> then <nondeclare

statement > 16.
<arithmetic assign statement> | <label assign

statement> | <go to statement> | <if statement> 17.
declare <label variable > label; 18.
<nondeclare statement > | <label> : <nondeclare
statement > | <declare statement> | <label > : <declare
statement > 19.

<statement > | <statement sequence> <statement> 20.
<label > : procedure; <statement sequence> end
<label > ; 21.

notation

Table 2 Llittle PL/I program due
to Donovan and Ledgard

PROCEDURE;
DECLARE LX LABEL;
L: I=I4+1IAXIB-IC;
LX=1;
GO TO CHECK;
M: I=1+1;
LX=M;
CHECK: IF I< LIMIT
THEN GO TO LX;
END Q;

Using the system

To illustrate the use of the syntax machine, we now develop a
definition for the syntax of a subset of PL/I. This subset has been
taken from a paper by Donovan and Ledgard," who call it Little
PL/1. It includes limited forms of the following types of statements:
GOTO, IF, label declaration, label assignment, and arithmetic
assignment. A BNF definition for the context-free syntax of this
language is given in Table 1. The mark | is used to separate the
alternatives for a given class.

The following quotation is taken from the Donovan and Ledgard
paper. The quotation refers to the example of a Little PL/I program
shown in Table 2.

“We define the syntax of a language as the set of rules for specifying
the strings that can be recognized by a translator and translated

HANFORD IBM SYST J

into some other language. The set of rules excludes strings that
the translator would reject solely on their form. The syntax of
Little PL/1 has the following restrictions, which for all practical
purposes make Little PL/I context-sensitive and therefore impos-
sible to completely characterize in Backus-Naur Form:

1. Different declarations of the same identifier are in error, i.e.,

a. The lists of fix-pt variables, statement labels, and declared

label variables for a program must be mutually disjoint;

b. The label before PROCEDURE must not occur within the
procedure block.

. The label after END must be identical to the label before
PROCEDURE.

. All statement labels must be different,

. The identifier in a GOTO statement must refer to an existing
statement label or a declared label variable.

. The identifier on the left side of the = in a label assignment
statement must refer to a declared label variable; the identifier
on the right side of the = must refer to an existing statement label
or a declared label variable.”

Figure 1 gives a basic grammar for Little PL/T in the notation of
the syntax machine. Upper case characters have been listed as
lower case characters.

The input is composed of system statements.” Each statement
begins on a new card and starts with a “master phrase.” The end
of the statement is indicated by the appearance of the next master
phrase (this requires that the master phrases be distinct from all
other character sequences at the start of a card). There are two
classes of system statement, syntax statements and control state-
ments. Syntax statements are used in defining a grammar. The
only control statements in Figure 1 are job and comment state-
ments, with obvious meaning. Further control statements will
be introduced in the course of our development of the Little PL/I
definition.

Blanks are ignored. Class names are enclosed in brackets <>.
Basic symbols are represented by themselves except for the blank
and the bracket <, which are represented by the pseudo class
names <blank> and <less than>, respectively. This is necessary
because these two marks have a special use, viz., blank is ignored
and the bracket < introduces a class name. The notation also con-
tains three nongraphic pseudo class names: <eor> terminates
a punched card, <eol> terminates a printed line, and <nil>
represents the empty string.

The section numbers of Table | and Figure 1 correspond. For
most sections, Figure 1 is merely a transliteration of the BNF of
Table 1. However, for certain sections, the syntax machine defini-

No.4 - 1970 SYNTAX MACHINE

Figure 1 Basic gammar of Little PL/I

:job: 1rule: <digit> -> 9
: comment little pisi
E T LY iTule: <identifier> -> <letter>
tbegin: 1begins
:commenc: Symbols, jdentifiers and numbers sonlyrule: <<lambda>> -> <<1>>
L e A Y A L L send:
: <identifier> -> <identifier> <letter>
sxules <letter> -> a 1veging
rpegin: ionlyrule: <<lambda>> ->» <<lambda>> <<1>>
ionlyrule: <<A>> -> tend:

<letter> -> b sruls <declaration identifier> -> <identifier>
<<1>> -> <declared identifier> -> <<lambda>>
<letter> -> ¢ 1notrule: <jeclaration idencifier> -> <declared identifier>

sonlyrule: <<1>> -> srales <unsigned integer> -> <digit>
srule: <unsigned integer> -> <unsigned integer> <digit>
<letter> -> 4 .
tcomment: faixed-point variables and expressions
D T Y P PRI

trule: identificr> ->
1rule: i identifier> -> j
mlyrule: <<1>> -> 1rules identifier> k
snds 2 zrule: identifiex> 1
<letter> -> f srule: identifier> m
ixule: identifier> n
onlyrule: <<1>> ~> sTules i identifier> <
-nd:

i_n identifier> <letter>

<letter> -> g 1rules <fixed point variable> -> <i_n identifier>
snotrule: <tixed_point variable> -> <daclared identifier>
<<1>> ->
srules <primary> -> <unsigned integer>
srula: <primary> -> <fixed_point variable>
:srules <primery> -> (<arithmetic expression> }

onlyrule: <<L1>> =>
d:

irule: <relational operator> ~-> <less than>
<letter> -> i rrules <relational operator> -> =
ocgin: trule: <relational operator> -> >
onlyrulo: <LKU>> =>
33 <boolean cxpression> -> <primary>
<letter> -> j <relational operator>
tougin: <primary>
onlyrules <<L>> ->
E <arithmetic operator>
trule <letter> => k « <arithmetic overator> ->
Cgin: <arithmetic operator>
onlyrule: <<1>> => : <arithmetic operator> =>
rund:
1rule: <letter> -> 1 <arithmetic expression> -> <primary>
gin: <arithm:tic expression> -> <arithmetic exvression>
sulyrule: <<1>> -> <arithmetic operator>
4. <primary>
<letter> => m
heging scompenc: lavels and label varianles
onlyrule: <<1>> -> T e P P TP T2 Y
Az
srule <letter> -> n rcomment: Statements
1egins AENEEEEOER
sonlypule:s <<K1>> ->
sond: <arithmetic assign statement> -> <fixed point varianle> =
trule: <letter> => o <arithmetic expression> ;
1begin:
ronlyrule: <<KI>> => <label assign statement> -> <label variable> =
E <label assign statemeat> ~> <lapel variable> =
<letter> -> p <label variable>

<label> ;

<«1>> -> <go to statement> -> goto <blank> <label> ;
<yo to Statem:nt> -> goto <blank> <label variable> ;
<letter> -> q
<it statement> -> if <blank> <poolean expression> <blank>
onlyrule: <<1>> -> chon <blank> <non_declare statement>
sends E
irule: <letter> > r E <non_fleclare statement> -> <arithmetic ascign statement>
1oegin: H <non_declare statement> ~> <label assign statement>
ionlyrule: <<1>> > <non_declare statsment> -> <jgo tO statement>
<non_declare statement> -> <if statement>
<letter> -> s
<label variable Jdeclaration> -> <declaration identifier>
sonlyrule: <<1>> ->
sends <label variable> => <<lambda>>
trule: <letter> -> t
1pegin: .
sonlyrule: <<1>> -> <declare statement> -> leclare <blank> <label variable
declaration> <blank> label ;
<letter> -> u
srules <label declaration> -> <declaration identifier>
tonlyrule: <<1>> -> ibegins
send: srule: <label> -> <<lambda>>
srule: <letter> -> v
ibeging
sonlyrule: <<1>> -> : <statement> -> <- nnn_declare statement> <eor> <eol>
: <statement> -> <label declaration> :
<letter> -> w <~ non_declares statement> <eor> <eold>
<statement> -> <declare statement> <eor> <gol>
onlyrute: <<I>> => H 3 <statement> -> <declaration ideatifier> 1
ends <declare statement> <eor> <eol>
srule: <letter> -> x
tbeging srule: <statement seyuence> ~> <statement>
tonlyrule: <<1>> -> srules <statement sequence> -> <3tatement sequence> <statement>

<letter> -> y srule: <procedure name declaration> -> <declaration identifier>
:begin: i

:on(]iyzule: <L1>> -> <procedure name> -> <<lambda>>

sends
1rule: <letter> -> z

jbeging B <pls/i program> -> <set up> <procedure name declaration>

sonlyrule: <&<1>> -> procedure ; <eor> <eol>

1end: <+ statement sequence> end <blank>

<procedure name> ;

trule: <digit> ->
1rule: <digit>» ->
irule: <digit> ->
trule: <digit> ->
<digit> ->
<digit> ->»
<digit> ->
<digit> ->
<digitd> ~>

truls: <set up> -> <nil>
:vegin:
serases <declared identifier>
rerase: <label>
:2rase: <label variable>
ierase: <procedure name>
12nd:

send:

TNORELWNRO

HANFORD IBM SYST J

tion is an elaboration of the BNF definition, where the new material
concerns the context-sensitive constraints of Little PL/I. Note also
that, in Figure 1, sections 11 and 12 are empty—originally there
are no rules for <label> and <label variable>.

The concept of dynamic syntax is implemented in the syntax machine
by allowing “‘syntax generators” to be attached to the rules of
a BNF grammar. These generators require an “‘environment”
for use as a working store. An environment consists of “metaclasses”
whose names are written between double pointed brackets < <,>>.
When a rule has a syntax generator attached to it, this is given
following the rule and is bracketed by begin and end statements.
An example of a generator occurs in section 19:

irule: <label declaration> — < declaration identifier >
:begin:
;rule: <label> — < <lambda> >
:end:

The first line is a rule of the context-free grammar, and the following
lines are the associated syntax generator. When the rule is used
and produces the label declaration abc (say), the syntax generator
is “activated,” causing the new rule <label> — abc to be added
to the context-free grammar.

In the grammar for identifiers, sections 1 and 3, the generators are
designed to place a copy of a produced identifier in the metaclass
< <lambda>>. Consider, for example, the production of the
identifier abc. The rules for <identifier> use left recursion, and
abc is formed piecemeal as a, ab, abc. This results in the activation
of the sequence of generators.

only rule: < <1>> —a

:only rule: < <lambda>> — <<1>>

ronly rule: <<1>> —b

only tule: < <lambda> > — < <lambda>> <<I>>
only rule: < <I>> —¢

ronly rule: < <lambda>> — < <lambda>> <<1>>

An ““only rule” for the metaclasses < <I1>> or < <lambda> >
erases the old values before assigning the new values. At the end
of the above sequence of generator activations, < <lambda> >
has the single value abc.

The grammar for <declaration identifier>> also contains the “not
rule’:

:not rule: <declaration identifier> — <declared identifier>

The definition of a class <x>> is that it consists of all those strings
that are allowed by the rules for <x> and are not disallowed

NOo. 4 - 1970 SYNTAX MACHINE

by the not rules for <x>. (The class of strings defined by the not
rules for <x> is called the “not class” for <x>.) By the use of
not rules, we can arrange that the same identifier cannot be declared
twice.

We saw above how section 19 arranges that the implicit declaration
of a label «, say, causes the rule <label> — « to be added to the
grammar. Similarly sections 18 and 21 arrange that the declaration
of a label variable and the procedure name cause rules for <label
variable> and <procedure name> to be added to the grammar.
Initially there are no rules for <label>, <«label variable>, and
< procedure name> ; rules for these are created as a result of
declarations.

In section 99, the “set-up generator” attached to a dummy rule
ensures that the dynamic part of the grammar is initialized to be
empty at the start of a program production.

Examples

We now describe the effect of providing to the syntax machine a
number of variations on the definition of Little PL/I given in Figure 1.
Updates to the definition are given card sequence numbers to show
where they are to be inserted.

:rewrite: < +pl/i program> 10 4000

The system will produce 10 programs. (If the + were omitted, only
one rewrite cycle would be performed for each production, so that
the output strings would contain some nonterminals that had not
been rewritten.)

:weight: 1 1685
:weight: 10 1715

The first of these statements assigns “weights” of 1 to the second,
third, and fourth rules for < arithmetic operator>. The second
statement resets the “‘weight register” to its default value of 10.
The current value of the weight register is used in assigning a weight
to each new rule. In the 10 produced programs, the operators
+,—,*,/ will occur with relative frequences of approximately
10/13, 1/13, 1/13, and 1/13, respectively.

:rule: <statement sequence> — <# 10,20,25> <statement> 2220
remove this statement 2230

In the 10 produced program, the procedure body will consist of
from 10 to 25 statements, with a mean of 20.

<#10,20,25> is an “iteration nonterminal”; these may be used

HANFORD IBM SYST J

Table 3 Example of output obtained with Little PL/I

SCS:PROCEDURE;

DECLARE fAK LABEL:

H:I=1155;

IF 255 (1T THEN TF (3139 THEN Ju=03+26+K+K;

ESIDLCLARE [MQ/W LABEL;

XN:GCCLARE £ LABIL;

IF 5>27 THEN J={;

DECLARE EG LABEL;

OECLARE J LAntL;

HMKKHEPAVVC: 1= (K)/ 27415

MKBP:DFCLARE JK LABEL

TE (dran [+(1620 +nekd o115 COT4IL/LH 03T/ (2354 T/ CINSAI D 11D) THel TF 53> THEN IF IKh THEN <= (11473
CIDECLARE 12LTVY LABEL;

DECLARE T LABEL;

FiDFULARE M LABELS

GOTO HHKKHEPAYVC

ITV:DECLARE Z LABEL:

X:IF ((11)>1 THEN TAK=RMKKHEPAVVCS

IF (JT/US#{L+(T)1+1B20}11<0276 THIN b=

K=1;

ADM: JECLARE OP LASFL;

X8J:IF ((N)‘(KO(‘M(((E)f(7~‘/Ou)D—(:)&lkl/l(153))0ﬁM‘h})‘aa\(N‘(RHOZ?OOI/KVIi/O’((Ib THEN GOTD JK;
TF 2532 THEN IF (KY)<Q THE 4 1€ 2=4 THEN IE [>(IXR01 TiN IF KDL THEN [VH={K}x{3+L}3
END SCS;

IJIVIAE: PROCEDUPF;
EsCECLARE N LAJEL;
GOTO 255
GOTH wEVLS
{06461>T THEN DSW=ND;
7 Qs

RIGI:DECLARE QWi LARFL;
10D:PECLARE B LAnELy
IF 6<iL) THEN OWE=8;
TO:DECLARE T LABEL;

IF 6<15 THEN [F 5=ML Thi 1 GOTQ OWE;
DECLARE (SW LABEL;

T=R;

X:IF 1>3 THEN £OTO T;
B=x;

MiK=6}

GOTO OSHW;

WEVL:GOTO M;

J:DECLARE R LABEL;

END 1JIVIAE;

X3 PROCEDUKE;

IF 915=3 THEN XD=§V;
MQD: GOTO F3

AIFF=A;

U:DECLARE F LABEL:
Zi1F 98<900274 THEN TF (67+(M-{((KNY)44+ 1+T)-1+N¢39776))< 1 Tt 5070
RJHB:DECLARE JFEQ LABEL:
DECLARE C LABEL;
SVIMQ=N+ [{L4MI*4) 3
GT:DECLARE K LABEL;
N=MK+6:

C=K;

PRLD: DECLARE FF LABEL;
E:IF O>MCWC THEN L=N;
GIV:DECLARPE S LABEL;
J:DECLARE WYKEL LABEL;
UVGTI:NECLARE H LABELS
EYIFF=SY;

KS:DECLARE XD LABEL:
DE:DECLARE 1C LABEL;
END X3

in place of formulations with direct recursion (e.g., the original
statements 2220, 2230).

Table 3 gives part of the output obtained from running the system
with Little PL/1 updated by the above statements.

-recursion limit: <arithmetic expression> 2 3000
In the 10 produced programs, the nesting of arithmetic expressions
within arithmetic expressions will be limited to a depth of 2.

rewrite trace: 3001

The system will “trace rewriting” by printing each nonterminal
that is rewritten and the rule selected for it.

:print generated rules: 3001

The system will “trace rule generation™ by printing all rules that
are dynamically created.

No. 4 - 1970 SYNTAX MACHINE

:backtrack trace: 3001

The system will “trace backtracking™ by printing all nonterminals
whose rewriting directly causes backtracking, with the reason for
this backtracking.

:expansion depth: 2 3001
:expansion dictionary: each <boolean expression> 3002
:rewrite systematic: <+ pl/i program> 10 4000

The system will be put into the “‘systematic mode” and will produce
a set of at most 10 programs in which every possible form of Boolean
expression occurs in every possible context. The expansion depth
statement (together with the language definition) defines when two
Boolean expressions are to be considered to have different form.

:error group: <arithmetic expression>, < boolean expression>
3001
:error percent: 50 3002
:error dictionary: all <boolean expression> 3003
:rewrite: <+ pl/i program> 10 4000

In the 10 produced programs, some Boolean expressions will be
invalidly rewritten as arithmetic expressions. The first statement says
that arithmetic expressions and Boolean expressions are to be
considered invalid forms of each other. The second statement says
that fifty percent of Boolean expressions are to be invalid, and the
third statement says that invalid Boolean expressions may occur
in all possible contexts. The produced programs could be used as
diagnostic test cases.

Conclusion

The machine production of programs for testing certain aspects
of programming products has been achieved. The system has been
successfully used on a number of products to establish their re-
liability in accepting new test cases without error. The input to
the system is a syntax definition in a formal notation. The con-
struction of such a definition for a high-level language is an exacting
task. It yields important bonuses by deepening knowledge of the
structure of the language and showing up obscurities or ambiguities
in the existing documentation. Definitions exist for ECMA Algol,
FORTRAN 1V, and a major subset of PL/1. The future effort required
to adapt the definitions to particular versions of these languages
should be small.

ACKNOWLEDGEMENTS

The PL/1 implementation of the syntax machine was designed and
programmed by S. M. Glassover, K. V. Hanford, and C. B. Jones.

HANFORD IBM SYST J

The systematic and error modes were added by P. D. Wright.
P. D. Wright was also responsible for the design and implementa-
tion of the assembler version, with the assistance of Miss B. Conyers,
a vacation student from Brighton College of Technology, and Mrs.
J. Moss.

FOOTNOTES AND CITED REFERENCES

1. The syntax machine was implemented for use on System/360 computers.

2. J. W. Backus, “The syntax and semantics of the proposed international
algebraic language of the Ziirich ACM-GAMM Conference,” Proceed-
ings of the International Conference on Information Processing, 125-132
(June 1959).

. N. Chomsky, “Three models for the description of language,” [.R.E.
Transactions on Information Theory IT-2, Proceedings of the Symposium
on Information Theory (September 1956).

. J.J. Donovan and H. F. Ledgard, “A formal system for the specification
of the syntax and translation of computer languages,” AFIPS Conference
Proceedings, Fall Joint Computer Conference 31, 553-580 (1967).

. The input philosophy and the structure of grammars in memory were
influenced by the compiler-compiler of Brooker et al.t

. R. A. Brooker et al., “The compiler-compiler,” R, Goodman, editor,
Annual Review in Automatic Programming 3, Pergamon Press, New
York (1963).

SYNTAX MACHINE

257

