
Discussed is  the  “syntux muchine,”  a progrum f o r  uutomuticully 
generating  syntacticully  correct  progrums (test cusrs> for  checking 
compiler  front ends. 

The  notion of “clynumic  grammur” is introduced und is  used in a 
syntax-defining  notution thut procides f o r  context-sensitiuity. 

Exurnples  demonstrute use of the  syntax  machine. 

Automatic  generation of test  cases 
by K. V. Hanford 

The  “syntax  machine”  discussed  here  automatically  generates 
random  test  cases  for  any  suitably  defined  programming  language.’ 
The  test  cases  it  produces  are  syntactically  valid  programs.  But 
they  are  not  “meaningful,”  and if an  attempt  is  made to execute 
them,  the  results  are  unpredictable  and  uncheckable. For this 
reason,  they  are less valuable  than  handwritten  test  cases.  However, 
as  an  inexhaustible  source of new test  material,  the  syntax  machine 
has  shown itself to be a valuable  tool. 

In  the following  sections,  we  characterize  the  use of this tool in 
testing  different  types of language  processors,  introduce  the  concept 
of  “dynamic  grammar” of a programming  language,  outline  the 
structure  of  the  system,  and  show  what  the  syntax  machine  does 
by means  of  some  examples. 

Test cases 

Test  cases  for  a  language  processor  are  programs  written  following 
the  rules of the  language,  as  documented.  The  test  cases,  when 
processed,  should give known  results. I f  this  does  not  happen,  then 
either  the  processor  or  its  documentation  is  in  error. 

We  can  distinguish  three  categories  of  language  processors  and 
assess  the  usefulness of the  syntax  machine  for  testing  them.  For 
an  interpreter,  the  syntax  machine  test  cases  are  virtually useless, 
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since the result of their  execution is unpredictable. For a  syntax 
checker, the syntax  machine  can do a  complete job, including the 
testing of the  diagnostic facilities. For a  compiler,  the  syntax  machine 
can fully test  the ability of the  input phase to accept syntactically 
valid input,  but does  not  test the translation process. It can  be used 
to estimate the reliability of the compiler with respect to such 
problems  as getting into  an infinite loop, abnormally  ending, or 
diagnosing  nonexistent  syntax  errors. 

Although  as  a writer of test cases, the syntax  machine is certainly 
unintelligent, it is also  uninhibited. It can  test  a  processor with 
many  combinations  that would not  be  thought of by a  human  test 
case writer. Also, test cases can be created at will, so that  at  any 
time new material  can be presented to  a  product under  test.  This 
is  particularly important for  a  product  that  has  “learned”  its test 
case  library. 

In its  standard  mode,  the  syntax  machine  produces  programs  in 
a  pseudo-random  manner.  The system has  a  second  mode in  which 
it systematically produces all the possible syntactic  forms of certain 
designated  language  features. The system can  also  be directed to 
produce  programs  that  contain  syntactic  errors, with annotations 
giving the position of the  errors. 

Dynamic grammar 

This section discusses how  declarations  can  be  considered to modify 
syntax  and  how  formal  notation  can be extended to  account for this. 

Consider  a compiler for an algebraic  programming  language. Its 
job is to  manufacture sequences of elementary  machine  instructions 
to simulate the evaluation of expressions in the  language. To such 
a  compiler, 2 X (3 + 4) is acceptable for translation-the required 
simulating sequence can be determined  without difficulty. On  the 
other  hand, 2 x) 3 + 4 and 2 x 3 (+ 4 are  not  acceptable  for 
translation, since the compiler cannot confidently ascribe  a  meaning 
to  them.  Thus we say that  the first expression is “well-formed’’ 
or “grammatically  correct,” whereas the  other two are  not. 

Let us define the  “acceptable  programs” for a given compiler to 
be those  source  programs whose compilation is trouble-free  and 
results i n  no diagnostic messages. Then we find that acceptance 
depends  on f6rm rather  than  meaning:  a  compiler would accept 

x = o  

y = l/x 

on its  form,  although it is computationally meaningless. Thus, 
the  notion of “well-formed’’ applies  not only to algebraic expres- 
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sions but  to all the elements of a  programming  language,  including 
whole  statements  and  whole  programs. If we compare  two  compilers 
for  the  same  language, we find that  the set of acceptable  programs 
for  one is almost  identical to  the set of acceptable  programs  for 
the  other.  There  are usually some gray areas of difference, but these 
serve only to emphasize  the high level of agreement on what  is 
acceptable  and  what is not. 

This  leads us to ask  whether  the  concept of grammar  in  programming 
language  can be formalized. Can we make a  definition of “well- 
formed”  or  “grammatically  correct” that is  a  good, useful approxi- 
mation  to  the pragmatic  notion of “acceptable”  programs or, alter- 
natively, that could be used as  an exact oficial specification of 
those  source  programs that  should  be accepted  without  diagnostic 
messages? 

The first  formal definition of the syntax of a  programming  language 
was made by Backus2 in  a  notation now known as BNF (Backus 
normal  or  Backus-Naur  form). A class of strings of a  language  is 
given a  name enclosed in  brackets < >, and a class is defined by 
one  or  more  “writing  rules.” An example of a  rule is: 

< x >  -+ <y> + ( < z > )  

This says that if you  write  down any member of the class <y>, 
followed by the  mark +, followed by the  mark (, followed by any 
member of the class <z>, followed by  the  mark ), then  what  you 
have  written  down  is  some  member of the class <x>. The classes 
<y> and <z> must in their turn  be defined by further  writing 
rules. The syntax of a  language  consists of a finite number of such 
r ules . 

Following the work of Backus (related to earlier  work by Chomsky‘)), 
a formal  approach  to syntax in  the definition of programming 
languages  has  become  commonplace. Notations vary but  the  moti- 
vation is always the same-to define as fully as possible the  form 
of a  program. 

The  grammars found in language  definitions are recipes for writing 
down  strings. The  intention is that  the recipe should yield precisely 
the  set of strings that will be considered to  be well-formed and  must 
be accepted by a  compiler. To meet  this  intention fully, the following 
two  conditions need to be  satisfied: 

1 .  All well-formed programs  can  be  written  down following the 

2 .  Only well-formed programs  can  be  written down following the 
recipe. 

recipe. 

BNF meets  the first condition  but fails to meet  the  second. The set 
of strings that  it defines certainly contains all well-formed programs 
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but  contains  other strings as well. In  language  definition  documents, 
to further  restrict the set of defined strings, the BNF grammar is 
accompanied by extra  grammatical  rules,  stated  in English. These 
rules  consist of statements  like:  “The  constituents of an  arithmetic 
expression must have been declared to be  of type real or type in- 
teger.” These  extra rules are given in English because it is impossible 
to express them in BNF. 

The  informal grammatical  rule given above says that  a variable 
may occur in  an  arithmetic expression if and only if it  also  occurs 
in  some  program element declaring  it to be of type  real or type 
integer.  Thus,  what  can  be  written at  one place in  a  program  depends 
in general on what  has been written  down in other places. A gram- 
matical  rule of this  kind, which requires  relations to hold between 
parts of a  program, is called a  “context sensitivity,” and  languages 
that  have rules of this  kind are “context-sensitive.’’ All present-day 
high-level programming  languages are context-sensitive. 

The set of strings defined by a BNF grammar is termed  a  “context- 
free” language. A BNF formulation  for  a high-level language defines 
a  context-free  language that is a  superset of the  actual (context- 
sensitive) language. 

The context-sensitive  nature of programming  languages derives 
from  the fact that these  languages allow declurutions. The  pro- 
grammer uses a  declaration to create an object, to give i t  a  name, 
and to describe what  kind of object  it is, e.g., an  array,  a  function, 
etc.  Now, the contexts  in which an object may occur in  a  program 
depend on the kind of object it is. Thus, declarations ascribe certain 
syntactic  qualities to objects  and  the  declarations in  a  program 
influence the  syntax of that particular  program. For example,  the 
real  and integer type declarations of a  program  determine  what 
arithmetic expressions can be written in that  program. 

The  syntax  machine involves a  method  for the description of 
context-sensitive  constraints. The basic idea in our  formulation of 
these constraints is that  the effect of writing a  declarative  statement 
in a  program  can be represented as  a chunge to the  context-free 
gruvnmur. The rules  for writing down  a  program  should,  therefore, 
not only specify what  can be written  down  but also specify what 
changes  to  the grammar result from what is written down. By this 
means, the declarative  statements  construct  the  grammar  for  the 
other  statements.  This  concept  can be stated  as  follows: 

The  programs of a  declarative  programming  language  can be pro- 
duced  from  a  context-free  grammar that  has  the ability to modify 
itself. A grammar of this form will be called a  “dynamic  grammar.” 



If this  string is written  down  as a statement of a program,  it  causes 
the  grammar  to be modified by the  addition of a  rule of the  form 

(integer  variable> --f X Y Z  

Initially,  the  grammar  contains no rules  for  <integer  variable>. 
Each  declaration of the  above  form  causes a new rule  for  <integer 
variable>  to  be  added to the  grammar. For example,  the  declarations 

INTEGER AY 
INTEGER BEE 
INTEGER C 

cause  the  dynamic  grammar  to  be  enriched by the  rules: 

(integer  variable> -+ AY 
<integer  variable> ”-f BEE 
<integer  variable> -+ c 
When  subsequently  an  arithmetic  expression is written,  these  rules 
are  available  for  use. 

Production systems 

In this  section, we discuss  first  the  requirements  of a system  for 
producing  the  strings of a  context-free  language.  We  then  consider 
how  this  system  can  be  extended  to  a  context-sensitive  production 
system  by  using  syntax  generators  with  a  rewriting  algorithm. A 
more  detailed  description of the  rewriting  procedure is then  pre- 
sented,  which  takes into account  the  contingencies  that  may  be 
encountered  in  rewriting  a  nonterminal. 

:ontext-free Consider a context-free  language defined by a BNF grammar.  This 
production grammar  consists of a  set of rules  such  as 

system 
<x> -+ <y> + ( < z > )  
The  left-hand  side is a class-name  or  “nonterminal”  and  the  right- 
hand  side  is  a  sequence of symbols  and  nonterminals. 

A process for obtaining a string of the  class <x> is described by 
the  following  “rewriting”  scheme.  Starting  with  the  nonterminal 
<x>, we  rewrite  it  using  one of the  rules  for <x>. Suppose  we 
choose  the  above  rule.  The  right-hand  side of the  rule is a  recipe. 
I t  uses two  methods  for  obtaining  a  sequence of symbols to form 
a string of the <x> class.  It  directly  contributes  some  symbols 
(the  symbols +, (, ) in  the  example).  It  obtains  other  symbols 
indirectly by rewriting  the  nonterminals  that  occur  in  the  recipe 
(<y> , <z> i n  the  example). In  general,  there  is a choice of recipes 
for the  rewriting of a given nonterminal.  When a subsidiary  recipe 
has  done  its  job,  it  returns  responsibility  for  symbol  production 



language, we start  the process with the  “language  nonterminal” 
(e.g., <program>), which names  the class of complete  strings. 

Thus,  the process of writing  down a program of a  context-free 
programming  language Can be mechanized as a rewriting algorithm 
that  interprets a BNF grammar. A rule of the  grammar is scanned 
from left to right.  When  a  nonterminal is met,  a  pseudo-random 
choice is made  from  the rules  for that  nonterminal and  a recursive 
call to  the rewriting  algorithm  is  made. The context-free  grammar 
and  the rewriting  algorithm  together  constitute  a  “production 
system” for  a  context-free  language. 

A “dynamic  production system” is a generalization of a  context-free 
production system and  again  consists of a set of production  rules 
and  a  rewriting  algorithm. The generalizations  concern: 

The “activation”  during  the  production process of “syntax 
generators”  for  the self-modicdtion of the  production system 
A cyclic rewriting algorithm using “delayed nonterminals” 

The  rewriting  algorithm is an extension of the rewriting  algorithm 
for  a  context-free  production system. As we have seen, context- 
sensitivity constraints  are  considered to arise  from  declarations. 
The effect of a  declaration  is  represented by a  change to  the context- 
free grammar.  When  a  declaration is produced,  the  context-free 
grammar is immediately modified. This  modification  is  carried out 
in the following fashion.  Certain  context-free  production  rules, 
generally those  concerned with declarations,  have  syntax  generators 
attached to them.  The  production  algorithm,  after using a  production 
rule  for  rewriting,  activates  any  syntax  generator  attached to  that 
rule.  Syntax  generators synthesize new rules  and  add  them to the 
context-free  grammar. 

Now a  declaration  may influence that  part of the  program  that 
comes before it.  For example, we may  have  a  branch  statement 
with a  forward reference to a  label  (the defining occurrence of a 
label  is  considered to be an implicit declaration).  This  problem of 
“use before declaration” is handled by giving the  “delay”  quali- 
fication to any nonterminal whose rewriting  may  depend on the 
rewritten  form of nonterminals  occurring  to  its  right.  When  a 
nonterminal with the delay qualification is met  in  the left-to-right 
rewriting scheme, its delay qualification is removed. but  it is not 
rewritten  until  the  remaining  nonterminals to its  right  have been 
rewritten. Delayed nonterminals are indicated by the  character 
- ; thus < -x> stands  for  the  nontelminal <x> with the delay 
qualification. 

In  the following more detailed  description of the rewriting algorithm, 
we discuss the  conditions  under which syntax  generators  are  acti- 
vated but  not how they create  rules.  This  topic is illustrated by 
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recursive 
rewriting 

back- 
tracking 

example  in  the next section. “Not rules” mentioned  in  the  de- 
scription  are of the  same  form  as  rules  and  mean  that  a  string of 
the class named by the  left-hand  nonterminal  “cannot be” a  member 
of the class defined by the  right-hand expression. 

The description of the rewriting algorithm is divided into discus- 
sions of the recursive rewriting of a  nonterminal,  backtracking, 
and  the cyclic rewriting of a  complete  program. 

L,et <x> be  a  nonterminal element of an  arbitrary  string.  The 
recursive rewriting of <x> ought  to replace <x> by a  string. 
However, several factors  can affect this effort to  rewrite <x>, 
including the presence of the delay qualification  mentioned  above, 
the possible existence of “not  rules,”  the absence of any  rules for 
<x>, and  the possibility that  a nonterminal in a  rule  chosen  for 
<x> can itself not be  rewritten. 

We suppose  that <x> is not  a delayed nonterminal. A rule  for 
<x> is chosen randomly,  and <x> is replaced by the  right-hand 
side of this  rule with all  its  nonterminals recursively rewritten in 
left-to-right sequence. 

If there  are no not  rules for <x> and if the chosen rule  for <x> 
has  a syntax generator,  the  generator  is  activated.  This  completes 
the recursive rewriting of <x>. 

Now  suppose  there exist not rules for <x>. Then  the string that 
has replaced <x> is tested for  membership of the “not class” 
for <x>. If the  string is a member of the not class, it is rejected 
(and  the  generator is not  activated). The algorithm tries again to 
rewrite <x>, using a new randomly  chosen  rule. Only when a 
string is obtained  that is not  a member of the  not class is it accepted. 
The generator of the successful rule is then  activated. 

There  are three possible ways in which the process described above 
can fail to rewrite a given nonterminal <x>. This possibility of 
failure  leads to  the need for a “backtracking” facility in the rewriting 
algorithm.  These  three possible ways are: 

1 . There  are no rules for <x>. 
2.  The strings  obtained for <x> are consistently members of the 

3.  Some  nonterminal in  the chosen  rule  for <x> fails to be  re- 
not class for <x>. 

written. 

In order to explain what  happens in these situations, let LIS suppose 
that  the writing of <x> was called for (directly) i n  the rewriting 



In  Case 2,25 attempts  are  made  to find a  string  that  is  not  a  member 
of the  not  class of <x>. At  each  attempt,  a new random  choice 
of  a  rule is made.  After 25 unsuccessful  attempts,  the  attempt  to 
rewrite <x> is  abandoned  and  the  algorithm  behaves  as if there 
are no rules  for <x> (Case I ) .  

In  Case 3, the  production  algorithm  makes  a new random  choice 
of a  rewriting  rule  for <x>, but  debars  the  abortive  rule  from  being 
chosen. If Case 3 also  arises  for  the new rule,  it in turn  is  debarred 
from  being  chosen  at  the  next  attempt.  If  all  the  rules  for <x> 
are  eventually  debarred  in  this  way,  the  attempt  to  rewrite <x> 
is abandoned  and  the  algorithm  behaves as if there  are no rules 
for <x> (Case 1). 

There  are  two  situations  in  which  backtracking  can give erroneous 
results.  First,  suppose  that  backtracking  goes  back to  a  nonterminal 
<z>,  say,  whose  rewriting  involved  the  activation of a generator, 
e.g.,  the  chosen  rule  for <z> was  of  the  form 

<z> -+. . . <x> . ’ . <y> ’ . ’ 

where  the  chosen  rule  for <x> had  a  generator  and <y> could 
not  be  written.  The effect of the  generator is irreversible, so that 
a n  invalid  change  has  probably  occurred in the  grammar.  In  this 
situation, a diagnostic  message is given,  but  the  production  continues. 
Second,  suppose  the  production  process  fails to rewrite  a  non- 
terminal  that  was  delayed in the  previous  pass.  Then  backtracking 
will not  occur  and  the  attempted  production  is  terminated;  the 
syntax  machine is unable  to  backtrack  past  the  start of its  current 
rewriting  pass. 

Let <x>  be  a  nonterminal.  The “cyclic rewriting”  of <x> re- cyclic 
places <x> with  a  string  of  symbols,  as  follows. <x> is  recur- rewriting 
sively rewritten. I f  the  string  that  replaces <x> consists  only of 
symbols,  the  process is complete.  Otherwise,  the  remaining  non- 
terminals  are recursively rewritten, in  left-to-right  sequence.  This 
step  is  iterated  until no nonterminals  remain. 

A  language  string  is  obtained by  cyclically rewriting  the  language 
nonterminal. 

The  syntax  machine  is  such  a  generalized  production  system.  The 
actual  program  consists of two  parts:  a  grammar  loader  and a 
production  algorithm.  The  loader  stores  the  grammar i n  main 
storage  in  a  form  convenient  for use by the  production  algorithm 
in creating  programs. 



Table 1 Syntax of tittle  Pt/I 

Symbols, idet?@rs atld trurnher:~ 
<letter > 
<digit > 
<identifier > 
<unsigned integer > 
Fixell-point  cariables md e.upressiom 
<fixed-point variable> 
<primary > 

<relational  operator > 
<boolean expression > 
<arithmetic  operator > 
<arithmetic expression > 

Labels m d  lnhel curiuhles 
<label > 
<label  variable> 

Statements 
<arithmetic assign statement> 
<label assign statement > 
<go to statement > 
<if  statement > 

<nondeclare  statement > 
<declare  statement > 
<statement > 

Progrums 
<statement sequence > 
<pl/i  program> 

+ a lb l . .  . Iz 1. 

"-f <letter> 1 <identifier > <letter> 3 .  
4 <digit > I <unsigned integer > <digit > 4. 

+ 0(11...19 2.  

+ iIjIkjllnl/nl  (fixed-point variable > <letter> 5 .  
4 tunsigned  integer> 1 (fixed-point variable> 1 

(<arithmetic  expression>) 6.  

"-f <primary > <relational  operator > <primary > 8. 

-+ <primary > 1 <arithmetic expression > <arithmetic 

"-f < I  = I >  I .  

+ + l - l * l /  9. 

operator > <primary > 10. 

"-f <identifier>  11. 
+ (identifier > 12. 

+ <fixed-point variable> = <arithmetic  expression> ; 13. 
<label  variable> = <label > ; I <label variable > 
= <label  variable> ; 14. 

--f go to  <label > ; I go to <label  variable> ; 15. 
-+ if <boolean expression. then <nondeclare 

statement > 16. 
"-f <arithmetic assign statement> 1 <label assign 

statement> I <go to statement > 1 < i f  statement> 17. 
4 declare  <label  variable>  label; 18. 
"-f <nondeclare  statement> I <label> : <nondeclare 

statement> I <declare  statement> i <label> : <declare 
statement > 19. 

+ <statement> I <statement  sequence>  <statement> 20. 
-+ <label > : procedure;  (statement  sequence>  end 

<label > : 21. 

notation 

Table 2 Little Pt/I  program  due 
to Donovan  and  Ledgard 

Q: PROCEDURE; 
DECLARE LX LABEL; 
L: I=I+IAXIB-IC;  

LX = L; 
GO TO CHECK ; 

M: 1=1+1; 
L X = M ;  

CHECK:  IF I <  LIMIT 
THEN GO TO  LX; 

END Q; 

Using the system 

To illustrate  the  use  of  the  syntax  machine,  we  now  develop a 
definition  for  the  syntax of a  subset of P L / I .  This  subset  has  been 
taken  from a paper by Donovan  and  Ledgard,'  who call it  Little 
PL/I.  It includes limited forms o f  the  following  types of statements: 
GOTO, IF, label  declaration,  label  assignment,  and  arithmetic 
assignment. A RNF definition  for  the  context-free  syntax of this 
language  is given in  Table 1. The mark 1 is  used to  separate  the 
alternatives  for a given class. 

The  following  quotation is taken  from  the  Donovan  and  Ledgard 
paper.  The  quotation  refers  to  the  example  of a Little PL/I program 
shown i n  Table 2. 

"We  define  the  syntax of a language  as  the  set of rules  for  specifying 
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Little PL/I has  the following restrictions, which for all practical 
purposes  make  Little PL/I context-sensitive  and  therefore  impos- 
sible to completely characterize in  Backus-Naur Form: 

1 .  Different declarations of the same identifier are in error, i.e., 
a .  The lists of fix-pt variables,  statement  labels,  and declared 

label variables for a program  must be mutually  disjoint; 
b.  The label before PROCEDURE must  not  occur within the 

procedure  block. 
2 .  The label  after END must be identical to  the label  before 

3 .  All statement  labels  must  be different. 
4 .  The identifier in a GOT0 statement  must refer to  an existing 

statement  label or a declared label  variable. 
5. The identifier on  the left side of the = in  a label  assignment 

statement  must refer to a declared label  variable;  the identifier 
on  the right  side of the = must refer to  an existing statement  label 
or  a declared label  variable.” 

PROCEDURE. 

Figure 1 gives a basic  grammar  for  Little PL/r in  the  notation of 
the  syntax  machine.  Upper case characters  have been listed as 
lower case  characters. 

The  input is composed of system  statement^.^ Each  statement 
begins on a new card  and  starts with a “master  phrase.” The end 
of the  statement is indicated by the  appearance of the next master 
phrase  (this  requires that  the master  phrases be distinct  from all 
other  character sequences at  the  start of a card).  There  are  two 
classes of system statement,  syntax  statements  and  control  state- 
ments.  Syntax  statements are used in defining a grammar.  The 
only control  statements  in  Figure 1 are job and  comment  state- 
ments,  with  obvious  meaning.  Further  control  statements will 
be  introduced in the  course of our development of the  Little PL/I 
definition. 

Blanks  are  ignored. Class names are enclosed in  brackets < >. 
Basic symbols  are  represented by themselves except for  the  blank 
and  the  bracket <, which are represented by the  pseudo class 
names <blank> and  <less than>, respectively. This  is necessary 
because  these  two marks have a special use, viz., blank is ignored 
and  the bracket < introduces a class name. The  notation also con- 
tains  three  nongraphic  pseudo class names: <eor> terminates 
a punched card,  <eol>  terminates a printed  line,  and <nil> 
represents  the  empty  string. 

The section  numbers of Table 1 and  Figure 1 correspond. For 
most  sections,  Figure 1 is merely a transliteration of the BNF of 
Table 1. However,  for  certain sections, the syntax  machine defini- 
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Figure 1 Basic g a m m a r  of little PL/I 

:job: 
: Commeni: little pili ...... t..tt 
:beyin:  
i c m n c :  symbols, i l e n t l f i e r s  a n 1  numbers .*.. t.*tf.*.......**..*,....**~* 

iry1.2: < l e t t e r >  -> Y 
ioegln: 

:end8 

i h e g i n l  

:end: 
:on1yruir: <<I>> -> x 

:beqi": 
:o"lyruler ((1)) -> y 
:cna: 

iOegLnl 
:Onlyr"le: <<I>> -> z 
:end: 

:on1yrure: < a > >  -> w 

:rule: <letter> -> x 

:="le: < l e t t e r >  -> y 

:="le: <letter> -> z 

10 
20 

40 
30 

50 
60 

1. 80 
70 

1. 90 
1. 100 
1. 110 
1. 120 
1. 130 
1. 140 
1. 150 
1. 160 
1. 110 
1. 180 
1. 190 
1. 200 
1. 210 
1. 226 
1. 230 
1. 240 

1. 260 
1. 250 

1. 280 
1. 1 1 0  

1. 290 
1. 300 
1. 310 
1. 320 
1. 330 
1. 340 
1. 350 
1. 360 
1. 370 
1. 380 
1. 390 
1. uoo 
1. 410 
1. 420 
1. 430 
1. 440 
1. 450 
1. U60 
1. 410 
1. 480 

1. 500 

1. 520 

1. 540 
1. 530 

1. 550 

1. 490 

I. 510 

1. 560 
1. 510 
1. 580 
1. 590 
1. 600 
1. 610 
1. 620 
1. 630 
I. 640 
1. 650 

1. 670 
1. 660 

I. 680 
1. 690 

1. 710 
1. 700 

1. 120 
1. 730 
1. 7u0 

1. 710 
1. 760 

1. 780 
1. 190 
1. 800 

1. 830 
1. 820 

1. 840 
1. 8 5 0  

1. 870 
1. 860 

1. 890 
1. 880 

1. 900 
1. 910 

1. 930 
1. 920 

1. 950 
1. 960 
1. 910 
1. 980 
1. 990 
1. 1000 
1. 1010 

1. 1030 
1. 1020 

1. 1050 
1. 1040 

1. 1010 
1. 1060 

1. 1090 
1. 1080 

1. 1100 
1. 1110 

1120 
2. 1130 
2. llU0 
2. 1150 
2. 1160 

2. 1180 
2. 1170 

2. 1190 

2. 1210 

I. 750 

I. 810 

1. 9'10 

2. 1200 

:C"l?: 

: r"ld: 
:ru1*: 

:rule:  
:rule: 

:rule: 
:rule:  

i r Y I C :  
:notrule: 

: ru1-: 
i Z " l C i  

: r u i c :  

:rille: 
i 1 " l P i  
:rule: 

iI"l"i 

:end: 
: 2nd: 

2. 1220 
1230 

3. 1240 
3. 1250 
3. 1260 
3.  1270 
3. 1280 

3. 1100 
3. 1290 

3 .  1320 
3. 1310 

3 .  l l U 0  
3. 1330 

3 .  1360 
3 .  1350 

3. 1370 

4. 1390 
4. lU00 

1'410 
1420 
1 430 

5 .  IUS0 
1440 

5. 1U60 

5. 1480 
5. 1 " l O  

5. 1490 
5. 1500 

5. 1520 
5. 1530 
5. 1540 

1550 
6. 15bU 

6. 1580 
1 5 9 0  

7. 1600 
7. 1610 

1b30 
X .  lbU0 

8. 1660 
1610 

9. 170" 
1. 1690 

9. 1710 

10. 1730 
1120 

10. 17u0 

l ? n o  

5 .  1510 

6 .  1570 

7 .  I b J n  

a. 1650 

9. lbno 

10. 1750 
10. 1760 

1770 
1780 
1190 

1 8 1 0  
11100 

1820 
1a30 

1 3 .  I R U O  
: 13. 1850 

1u .  1870 
1860 

1 U .  1R90 

15. 1910 
1y00 

15. 1920 
1910 

1u. 1880 

16. 1940 

17. 1970 
1960 

17. 1980 
17. 1990 
17. 2000 

18. 2020 
18. 2010 

18. 2050 
18. 2040 

18. 2060 
18. 2010 

1 6 .  1950 

2010 

i n .  2080 

19. 2100 
2090 

19. 2110 
19. 2120 
19. 2130 

19. 2150 
19. 2140 

19. 2170 
19. 2160 

19. 2180 
19. 2190 
19. 2200 

2210 
20. 2220 

22u0 
21. 2250 
21. 2260 
21. 2210 
21. 2280 
a l .  2290 
21. 2300 

20. 2230 

21. 2310 
21. 2320 
21. 2330 

2140 
99. 2350 
99. 2360 
99. 2370 
99. 2380 
99. 2390 
99. 2400 
99. 2410 

2420 
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tion  is  an  elaboration  of  the BNF definition,  where  the new material 
concerns  the  context-sensitive  constraints of Little pL/t. Note  also 
that, in Figure I ,  sections 1 1  and 12 are empty-originally there 
are no rules  for  <label>  and  <label  variable>. 

The  concept of dynamic  syntax is implemented in the  syntax  machine 
by allowing  “syntax  generators” to be attached  to  the  rules of 
a BNF grammar.  These  generators  require  an  “environment” 
for use as  a  working  store. An environment  consists of “metaclasses” 
whose  names  are  written  between  double  pointed  brackets < < ,> > . 
When  a  rule  has  a  syntax  generator  attached  to  it,  this is given 
following  the  rule  and is bracketed by begin and  end  statements. 
An example of a  generator  occurs in  section 19: 

:rule:  <label  declaration> -+ <declaration  identifier> 
:begin : 
:rule:  <label> -+ < < l a m b d a > >  
:end : 

The  first  line is a  rule of the  context-free  grammar,  and  the  following 
lines  are  the  associated  syntax  generator.  When  the  rule is used 
and  produces  the  label  declaration  abc (say), the  syntax  generator 
is “activated,”  causing  the new rule  <label> -+ abc  to  be  added 
to the  context-free  grammar. 

In  the  gramnlar  for  identifiers,  sections 1 and 3, the  generators  are 
designed to place  a  copy of a  produced  identifier  in  the  metaclass 
<< lambda>  >. Consider,  for  example,  the  production of the 
identifier  abc.  The  rules  for  <identifier>  use left recursion,  and 
abc is formed piecemeal as  a,  ab,  abc.  This  results in  the  activation 
of the  sequence of generators. 

1.  :only  rule: < < I > >  -+ a 
2 .  :only  rule: < <lambda> > -+ < < 1 > > 
3.  :only  rule: < < I > >  -+ b 
4.  :only  rule: < <lambda> > -+ <<lambda>  > < < 1 > > 
5. :only  rule: < < I  > > -+ c 
6.  :only  rule: << lambda>  > -+ <<lambda>  > < < 1 >  > 

An  “only  rule”  for  the  metaclasses < < 1 > > or < <lambda> > 
erases  the  old  values  before  assigning  the new values.  At  the  end 
of the  above  sequence of generator  activations, << lambda>  > 
has  the  single  value  abc. 

The  grammar  for  <declaration  identifier>  also  contains  the  “not 
rule” : 

:not  rule:  <declaration  identifier> -+ <declared  identifier> 

The  definition of a class <x> is that  it  consists of all  those  strings 
that  are  allowed  by  the  rules  for <x> and  are  not  disallowed 
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by the  not  rules  for <x>. (The class of strings defined by the  not 
rules for <x> is called the  “not class” for < x >  .) By the use of 
not rules, we can  arrange  that  the  same identifier cannot be declared 
twice. 

We saw above  how section 19 arranges  that  the implicit declaration 
of a  label a ,  say,  causes  the  rule <label> 3 O( to  be  added to the 
grammar.  Similarly  sections 18 and 21 arrange  that  the  declaration 
of a  label  variable  and  the  procedure  name  cause  rules  for <label 
variable>  and  <procedure  name> to be added to the  grammar. 
Initially there are no rules  for <label>,  <label  variable>, and 
<procedure  name> ; rules  for these are  created as  a result of 
declarations. 

In  section 99, the  “set-up  generator”  attached to  a  dummy  rule 
ensures that  the dynamic part of the  grammar is initialized to be 
empty at the  start of a  program  production. 

Examples 

We now describe the effect  of providing to  the syntax  machine  a 
number of variations on  the definition of Little PL/I given in Figure 1. 
Updates  to  the definition are given card  sequence  numbers to show 
where they are  to  be inserted. 

:rewrite: <+pl/i  program> 10 4000 

The system will produce 10 programs.  (If  the + were omitted,  only 
one  rewrite cycle would be performed  for  each  production, so that 
the  output strings would contain  some  nonterminals  that  had  not 
been rewritten.) 

:weight: 1 1685 
:weight: 10 1715 

The first of these  statements assigns “weights” of 1 to the  second, 
third,  and  fourth  rules  for  <arithmetic  operator>.  The second 
statement resets the “weight register” to  its default  value of  10. 
The  current value of the weight register is used in assigning a weight 
to each new rule. In  the IO produced  programs,  the  operators 
+,- ,*,/ will occur with relative  frequences of approximately 
10/13, 1/13, 1/13, and  1/13, respectively. 

:rule:  <statement sequence> -+ <# 10,20,25> <statement> 2220 
remove  this  statement 2230 

In the 10 produced  program,  the  procedure  body will consist of 
from 10 to 25 statements, with a  mean of 20. 

<#10,20,25> is an  “iteration  nonterminal”; these may  be used 
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:backtrack  trace: 300 1 

The  system will “trace  backtracking” by printing  all  nonterminals 
whose  rewriting  directly  causes  backtracking,  with  the  reason  for 
this  backtracking. 

:expansion  depth: 2 300 1 
:expansion  dictionary:  each  <boolean  expression> 3002 
:rewrite  systematic: <+ pl/i  program> 10 4000 

The  system will be  put  into  the  “systematic  mode”  and will produce 
a  set of a t  most I O  programs in which  every  possible  form of Boolean 
expression  occurs in every  possible  context.  The  expansion  depth 
statement  (together  with  the  language  definition)  defines  when  two 
Boolean  expressions  are  to  be  considered to have  different  form. 

:error  group:  <arithmetic  expression > , <boolean  expression> 
300 1 

:error  percent: 50 3002 
:error  dictionary: all <boolean  expression>  3003 
:rewrite: <+ pl/i  program> 10 4000 

In  the I O  produced  programs,  some  Boolean  expressions will be 
invalidly  rewritten  as  arithmetic  expressions.  The first statement  says 
that  arithmetic  expressions and Boolean  expressions  are to be 
considered invalid forms of each  other.  The  second  statement  says 
that fifty percent of Boolean  expressions  are to be  invalid,  and  the 
third  statement  says  that  invalid  Boolean  expressions  may  occur 
in  all  possible  contexts. The  produced  programs  could  be used as 
diagnostic  test  cases. 

Conclusion 

The  machine  production of programs  for  testing  certain  aspects 
of  programming  products has been achieved.  The  system  has  been 
successfully used on a number  of  products  to  establish  their  re- 
liability i n  accepting new test  cases  without  error.  The  input to 
the  system is a  syntax  definition in  a  formal  notation.  The  con- 
struction of such a definition  for a high-level language is an  exacting 
task.  It yields important  bonuses by deepening  knowledge of the 
structure of the  language  and  showing  up  obscurities  or  ambiguities 
i n  the  existing  documentation,  Definitions exist for ECMA Algol, 
FORTRAN I V ,  and a major  subset of I’L; I .  The  future  effort  required 
to adapt  the  definitions  to  particular  versions of these  languages 
should  be  small. 
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