Time-sharing has resulted in the development of methods to increase
the utilization of computers. In this paper, one such method employing
the concept of the virtual machine is discussed.

Described are the design objectives of CP-67/CMS, a multi-access
system that manages the resources of a computer set up for time-
sharing such that each user appears to have a complete, dedicated
computer at his disposal. Also discussed are the system operation
and some of its applications.

A virtual machine time-sharing system
by R. A. Meyer and L. H. Seawright

Time-sharing systems are now an important factor in the computer
industry. Because they allow a multiplicity of users to have access
to a computer by means of a terminal, they encourage increasing
numbers of people to utilize computers. Thus, various ways of
increasing the capability of a computer in this area are being sought.
One such system is the Control Program-67/Cambridge Monitor
System (CP-67/CMS), a multi-access system that manages the
resources of a computer set up for time-sharing such that each
(remote) user appears to have a complete, dedicated computer
at his disposal. This concept is known as a virtual machine and
allows each user to select the operating system he wishes to run
because concurrent operation of several operating systems is possible.

In this paper, the history and design objectives of the system are
discussed as well as its present capabilities and some of the applica-
tions for its use.

Development history

Development of CP-67/CMS was based on a research effort with
the following objectives: (1) research in various time-sharing

techniques and methods, (2) the examination of hardware require-

No. 3 - 1970 VIRTUAL TIME-SHARING




ments for time-sharing, (3) the development of a time-sharing
system for in-house use, and (4) the development of a method of
observing the dynamic interaction between operating systems and
their hardware environments.

The fourth objective led to the idea of simulating other computer
systems, namely configurations of the IBM System /360, to measure
various combinations of hardware and software. With simulta-
neous simulation of several terminal-oriented computers, the objec-
tive of providing a time-sharing capability could also be achieved.

Implementation of a virtual machine system was then begun, and a
specially modified System/360 Model 40 was designed and built.
This modification provided a memory address translation mechanism
in the form of a 64-register associative memory, thus allowing
the memory of 256K bytes to be divided into 64 pages of 4096
bytes each.'”

The software was composed of two independent components. The
first component, called the Virtual Machine Control Program,
provided the functions of time-sharing and resource allocation.
In this arrangement, the user interface and data and task manage-
ment are the responsibility of the operating system of the virtual ma-
chine. The second component, the Cambridge Monitor System
(CMS), was designed as a single-user, conversational monitor sys-
tem that provided the functions necessary to operate a computer
in a convenient manner from a console typewriter. It was to be
written such that it could also run on a standard System/360
without the virtual machine control program.

This functional division approach has several advantages. With
the responsibilities divided sharply between the control program
and CMS, each part is less complex and easier to implement. In
addition, development was able to proceed in parallel, since CMS
was to be capable of running by itself. Indeed, CMS was running
by itself on the Model 40 long before it ever “‘saw” a virtual machine
environment.

The feasibility of such a system was shown when the control pro-
gram for the Model 40 supported 14 virtual machines using CMS
and fulfilled its goal of providing a productive in-house time-sharing
system. Shortly afterward, development of a virtual machine system
for the System /360 Model 67 was begun, called CP-67. Since CP-67
and the control program for the Model 40 provided the same basic
interface, the same CMS was used on both systems. Thus, in the
present system, the control program (CP), which is CP-67, creates
the time-sharing part of the system that allows simultaneous opera-
tion of several virtual machines, and CMS is a conversational oper-
ating system for terminal operations.

MEYER AND SEAWRIGHT IBM SYST J




The virtual machine environment

The expression, virtual machine, is now generally accepted as a
software replica of a complete computer system such as System /360.
It consists of a data structure describing the memory size and the
input/output configuration of the simulated system. There is a
master control block in which are stored the registers, program
status words (PSW’s), status information, and appropriate pointers
to storage blocks describing the input/output devices and associated
segment and page tables concerned with management of virtual
memory. This “machine” appears to its user as a standard System/
360 and can execute any standard instruction except DIAGNOSE.

The virtual machine can support many operating systems (including
0S/360, DOS, RAX, DOS/APL) as long as they do not include any
rigid timing dependencies or dynamically modified channel pro-
grams. (Several operating systems can be used simultaneously if
we are considering the simultaneous operation of several virtual
machines.) The interval timer presented to the virtual machine
does not reflect true time-of-day, since the CP (and the time absorbed
by it) must be transparent to the virtual machine. Thus program
code which depends on precise operation times may not work.
Real time interruption conditions (such as the System /360 Program
Control Interruption) will not, in general, be reflected to the virtual
machine quickly enough to be used for the intended purpose due
to the competition for the computer by other virtual machines.
Dynamically modified channel programs are those that are changed
between the time the start input/output (SIO) instruction is issued
and the end of the input/output operation, i.e., changed by the

channel program or the central processing unit (CPU). A channel
program can modify itself by having a read operation use another
part of the channel program as an input buffer. However, certain
simple types of self-modifying channel command sequences can
be translated, such as those generated by the indexed sequential
access method of Operating System /360 (0S,/360).

Since the virtual machines are simulated, their configurations may
differ from each other and from the real machine in terms of virtual
memory size and number and type of input/output devices.

Like real machines, virtual machines will operate most efficiently
under operating systems. CMS is designed to allow control of a
System /360 through a simple command language entered at the
console. Since each user has his own virtual machine with his own
copy of an operating system residing in it, nothing he does should
affect any other user. If his operating system terminates abnormally
or destroys some part of itself, it will affect only that virtual machine
and no others. The affected user can simply re-initiate his virtual
system without disturbing other users. In particular, users cannot
-get outside their virtual machine. Due to the uniqueness of their

No.3 - 1970 VIRTUAL TIME-SHARING

operating
system
support




console
functions

virtual storage and their virtual input/output devices, not only are
the users protected from each other, but the CP-67 system itself is
protected from user error.

To run as a replica of a System/360, the virtual machine must
have counterparts to all the components of the real machine.
Therefore, a virtual System/360 is comprised of an operator’s
console represented by the remote terminal, a virtual memory, a
virtual CPU, and virtual input/output devices.

The remote terminal represents both the on-line terminal and the
entire console display of a System/360. By means of appropriate
terminal commands, the switches and lights of the console are
simulated, thus providing control of a virtual machine. These
console commands constitute the basic command language of CP-67
and are called console functions. There are three types of console
functions. The first type simulates the control panel and includes
such commands as DISPLAY—to examine the contents of virtual
memory and registers, EXTERNAL—to generate an external inter-
ruption, BEGIN—to start the virtual machine, and IPL—to load the
virtual machine. A second type is called extended console functions
because they go beyond the simulation of the console and include
commands such as DETACH—to remove input/output devices from
a virtual machine, MSG—to communicate with other users, QUERY—
to interrogate users and status of files, SET—to control the printing
of messages at the terminal, and LINK—to add a subset of a direct
access device to a virtual machine. A description of the first and
second types of console functions are presented later in the paper.
The third type provides the real system operator with special con-
trol features such as ATTACH a real device to a given user, SHUT-
DOWN the system, ENABLE telecommunication lines, and TERM
(terminate) output on the unit-record devices.

CP-67 uses the dynamic address translation feature’ of the IBM
System /360 Model 67 to provide up to 16 million bytes of virtual
memory for each user (the full range of 24 bit addressing); conse-
quently, the user’s effective memory space can be larger than the
real memory of the Model 67. Since inefficient use of very large
virtual memory can put an extremely heavy burden on the paging
facilities of the CP and seriously degrade system performance, vir-
tual memory is normally assigned in sizes ranging from 256K to
1024K bytes. It can be defined in 8K bytes and any multiple thereof.
The size of the virtual memory is defined for each user in a table
called the system user directory; thus virtual memory can differ
for each virtual machine. Virtual memory is normally completely
private to each machine, although certain areas of virtual memory,
such as in the nucleus of CMS, can be shared by different users.

The virtual CPU, of course, is just the real CPU of the Model 67
shared by the different virtual Systems/360 using time-slicing tech-

MEYER AND SEAWRIGHT IBM SYST J




Figure 1 Shared disk for permanent user files and CP-67 files

USER C'S VIRTUAL 191 USER B'S VIRTUAL 292
CONTAINS 25 CYLINDERS CONTAINS 53 CYLINDERS
BEGINNING AT 125 ON BEGINNING AT 150 ON
REAL 391 REAL 391

TEMPORARY SPACE FOR
PAGING AND SPOOLING

USER A'S VIRTUAL 191 USER D'S VIRTUAL 291
CONTAINS 10 CYLINDERS VOLID=ABCVOL CONTAINS 24 CYLINDERS
BEGINNING AT 25 ON BEGINNING AT 1 ON
REAL 391 REAL 391

niques. The present system provides a virtual CPU representing a
standard System/360. The concept could be extended to include
the relocation and paging hardware of a Model 67, but it is not
currently supported by the system.

Every computer, of course, must have input/output devices. A data
structure containing control blocks for each virtual channel, con-
trol unit, and device is maintained within the CP for each virtual
machine. These input/output devices are controlled by the virtual
system, not CP-67; therefore, the software which supports the virtual
input/output device must be present in the virtual machine’s operat-
ing system. An input/output device may exist on the virtual machine
with a different address than that existing on the real Model 67.
Such an input/output device can also be defined as having a size not
available in the real world, such as seven cylinders of a disk pack
or a subset of the lines on a transmission control unit. There may
be a virtual machine that contains only four lines of a transmission
control unit, whereas the real machine has a different transmission
control unit with 88 lines. Similarly, a disk pack of a large disk
storage facility such as the IBM 2314 may be suballocated into
“mini-disks”; for example, several virtual 10-cylinder IBM 2314
disk packs. In this way, many mini-disks can reside on the same
physical disk pack, allowing many more virtual machines (each
requiring one or more private disks) to be run at a given time
than there are real disk drives available. Figure 1 portrays the
arrangement of mini-disks on a disk pack, along with temporary
space provided for use by the CP. In the present implementation,
it is generally true, however, that the type of virtual device must
exist on the physical machine before it can exist on a virtual ma-
chine.

Figure 2 illustrates the virtual machine concept showing varying
configurations. Figure 3 shows multiple virtual machines running

different operating systems.

No.3 - 1970 VIRTUAL TIME-SHARING




Figure 2 Virtual machine concept using IBM System/360

SYSTEM/360
MODEL 67

VIRTUAL

SYSTEM/360

SYSTEM/360

2540
CARD-READER-
PUNCH

1403 SYSTEM/360 S|
PRINTER
FACILITY
1403 2540
1052 PRINTER CARD-READER-
TERMINAL PUNCH

2250
DISPLAY
2741 SYSTEM/360 CONSOLE
COMMUNICATIONS MODEL/20
TERMINAL

Hardware requirements

Implementation of a practical virtual machine system depends on
the host computer having certain hardware features to ensure proper
control by the supervisor and to avoid excessive overhead in the
translation or simulation process. These hardware features are as
follows:

& The virtual machine and host machine should have as nearly
identical an instruction set as possible so that nonprivileged
instructions can be executed directly by the virtual machine.
Nonidentical, nonprivileged instructions could be simulated by
the control program provided an interruption mechanism exists
to activate it at the proper time.

204 MEYER AND SEAWRIGHT IBM SYST J




Figure 3 Virtual System/360 computers created by CP-67

SYSTEM/360 SYSTEM/360 SYSTEM/360 SYSTEM/360 SYSTEM/360
512K 768K 256K 256K 512K

(0S/360) (0S/360) (CMS) {CMS) (DOS/APL)

2780 UNITS 2741
COMMUNICATION
TERMINALS

e The host computer must have ways of distinguishing between
privileged and nonprivileged instructions. The supervisor must
be made aware of any attempt by a virtual machine to execute
a privileged instruction, or change its mode of operation. This
requirement is satisfied on a System/360 by the *‘supervisor”
and “problem” states of operation. The virtual machine created
by CP-67 is always run in the problem state, and any attempt to
execute a privileged instruction causes a trap to the supervisor
state, or CP-67. The trap must not cause an unrecoverable error,
and the CP must then simulate the effect of the instruction.
The CP must be protected from the user programs (i.e., the
memory assigned to the CP must be protected in both read and
write mode).

The virtual machines must be protected or isolated from each
other. This means that the memory or input/output devices
assigned to one virtual machine must be inaccessible from any
other virtual machine, unless proper safeguards are provided.
Isolation and protection of memory areas can be accomplished
by some form of memory protection, as in a standard System /360
(up to 15 users), or an address translation scheme as in the
Model 67. However, the normal memory protection feature
does not adequately solve the problem of nonrelocatable pro-
grams and absolute addresses. All System /360 operating systems
contain absolute addresses, since the architecture of the Sys-

No. 3 - 1970 VIRTUAL TIME-SHARING




paging

tem /360 assigns certain memory locations in lower main storage
to particular functions such as the timer, channel status word,
channel address word, and new and old program status words.*
Relocatability of absolute memory addresses is provided by
the data address translation feature of the Model 67. Isolation
and protection of input/output devices and data sets residing
on input/output devices is accomplished by trapping input/out-
put instructions (which are privileged instructions in the System/
360) and simulating them within the Cp. Thus all actual input/
output instructions are executed by the CP.

The Model 67 meets the above hardware requirements without
any modification; therefore CP-67, with its virtual machine capa-
bilities, was implemented on the Model 67.

System usage

Before a user is authorized to use CP-67, he must be assigned a
USERID, which is a name that identifies him to the system, and
a password, which is checked when he ‘“logs in” to initiate use
of the system. Associated with each user identification is infor-
mation concerning accounting, privilege class, options desired, and
a table describing the virtual machine assigned to that user. When-
ever he logs in, CP-67 sets up this virtual machine for him. Although
all the virtual machines may be different, most are set up with
the configuration expected by CMS, which is the most commonly
used operating system. They include at least 256K bytes of main
storage, two disk drives, an operator’s console (the terminal), a
card-reader-punch unit, and a printer.

Because there is not room in real main storage for all users’ virtual
main storage, a technique called paging is used by the system.
Virtual main storage is divided into 4096-byte blocks of storage
called pages. All but currently active pages (i.e., those in current
use) are kept by the system on direct access secondary storage;
because active and inactive pages change status, they are “swapped”’
between real main storage and secondary storage on a demand
basis. While the swapping operation is being performed for one
virtual machine, the CP runs one or more virtual machine(s). The
paging operation, and resultant allocation of real main storage to
a given user’s pages, is transparent to the user. The dynamic address
translation feature of the Model 67 translates, at execution time,
the user’s (or user’s program’s) addresses into the current real
addresses of the relocated pages.

The implementation of the virtual machine concept employed by
this system requires that only the CP may operate in the supervisor
state on the real machine. All programs other than CP—i.e., all
programs being executed on virtual machines—operate in the prob-

MEYER AND SEAWRIGHT IBM SYST J




lem state on the real machine. However, the virtual machine operat-
ing system has to use privileged instructions; therefore CP supports a
virtual supervisor state in the virtual machine by intercepting and
simulating the privileged instructions. All user interruptions, in-
cluding those caused by attempted privileged operations, are handled
by CP, which then reflects to the-virtual machine the results to be
expected from a real machine. The user may expect his programs
to be executed on his virtual machine in a manner identical to their
execution on a real System/360, provided he has not violated the
basic restrictions concerning timing dependencies and channel pro-
grams.

Because the input/output instructions are privileged, all virtual
machine input/output operations are intercepted and handled by
CP, which must then translate them into real machine input/output
operations. This requires two translations, accomplished as follows:
CP intercepts all user input/output when a start input/output (S1I0)
instruction is issued. It translates virtual device addresses into real
device addresses, translates virtual main storage addresses into real
main storage addresses, ensures that all necessary pages are in
real main storage, builds a channel command word (CCW) string
for the user from his original CCW sequence, and starts the input/out-
put operation when the channel is free. The virtual machine is
not given control from the time it issues an SIO instruction until
the CP issues the real SIO instruction and delivers the condition
code to the virtual machine. In the meantime, one or more virtual
machine(s) may be operating. When CP receives an interruption
indicating completion of input/output activity, it saves information
to that effect in the user’s virtual machine status table; when con-

trol is returned to the virtual machine, the proper input/output
interruption is simulated.

Virtual machine unit record input/output activity is normally collec-
ted as a disk file (i.e., spooled) by CP. Thus, any card deck to be
“read” by a virtual machine would in the normal case have been read
by CP prior to the user’s call for it from his virtual machine, or trans-
ferred to that user from another user’s files via the XFER console
function in CP. The card deck in question must be preceded by a
card containing the user identification, so that CP can know by
whom the card-image file is to be read. Later, when the virtual
machine has ‘“‘read” the card deck, a card reader end-of-file inter-
ruption is simulated. Card-punch and printer output, similarly
spooled, is not queued for physical output until CP is “notified”
of an end-of-file interruption. Further output for a closed device is
assumed to start a new file. So that the system operator can separate
physical output, CP-67 precedes all printed and punched output
files with a record containing the user identification.

A virtual machine can have dedicated unit-record devices instead
of sharing the system’s unit-record devices. With these dedicated

No.3 - 1970 VIRTUAL TIME-SHARING

input/output
operations




error
conditions

devices, spooling is not performed by CP-67; the normal input/out-
put requests are issued by the virtual machine, intercepted and
translated by CP-67, and then the real input/output sequences are
issued. For example, if 0S/360 having multiprogramming with a
variable number of tasks (MVT) is run under CP-67, double spooling
will occur, once for 0S/360 and once for CP, if the unit record
devices are not dedicated to the 0S/360 MVT virtual machine.

Virtual machine input/output to the on-line terminal console is
simulated, because CP must translate that input/output into se-
quences for the remote terminal from which the user has logged in.

If input/output errors occur as a result of input/output activity
initiated by the virtual machine, the error conditions are reflected
back to the virtual machine. The error recovery procedures pro-
vided by the virtual machine’s operating system will then handle
the error conditions as they would on a real System/360. Errors
occurring during CP-initiated input/output operations (such as
spooling and paging) are handled by CP itself.

The CP console functions allow the user to control his virtual ma-
chine from the terminal much as an operator controls a real machine.
To perform an initial program load, for instance, the user types
TPL and a device address or the name of a “named” operating
system, such as CMS. The user can stop his virtual machine at any
time by depressing the ATTN key on his console and request dis-
play of any portion of his storage. To start his virtual machine
running again, the user can issue the BEGIN console function of CP.
Each of the CP-67 console functions that can be issued by any
user from a terminal is described in Table 1. The privileged operator
commands are not included in this list.

As well as running single-user systems, CP-67 can run multi-access
systems. The multi-access systems being run under CP can have
high-speed and/or low-speed communication lines. In the case of
low-speed lines, once the multi-access system has been loaded into
a virtual machine and the communication lines prepared, users
at remote terminals can become connected to this virtual machine
by issuing the CP console function DIAL. When the remote terminal
is connected to that system, it is treated by CP-67 as an attached
transmission line. The existence of a terminal is then known only
by the virtual machine, and thus CP-67 console functions are not
available. Only when that multi-access system disables the com-
munication line will CP regain normal control of the terminal.

Some of the multi-access systems that have run under CP-67 are
DOS/APL, RAX, and CPS. Additional operating systems that have
run under CP-67, in addition to CMS and the CMS Batch Monitor,
are 0S/360 (with its options such as MvVT, PCP), DOS, and many
diagnostic programs. Note that although the basic operating sys-

MEYER AND SEAWRIGHT IBM. SYST J




Table 1

User console functions

Function

Definition

BEGIN

CLOSE

DETACH

DIAL

DISCONN

DISPLAY

DUMP

EXTERNAL

IPL

LINK

LOGOUT

begins execution at the specified address or, if no address
is given, at the location at which execution was interrupted

releases the disk areas (spooling areas) containing input
from the card reader or output to the printer or card punch

removes the specified device from the user’s virtual machine
configuration

is used in place of LOGIN to connect a user’s terminal
with a virtual telecommunications operating system or a
virtual time-sharing system

allows a user to disable the terminal and leave his virtual
machine running

types at the terminal the contents of the specified register(s),
main storage location(s), or program status word

prints the contents of the specified register(s), main storage
location(s), or program status word on the off-line printer

simulates an external interruption to the virtual machine

simulates the initial program load sequence on the specified
unit

attaches (after log in) virtual disks in accordance with infor-
mation contained in the system user directory

releases the user’s virtual machine, including input/output
devices, and closes any spooling areas which have not been
released

types the specified message at the terminal of the person
whose user identification is specified

erases spooled input or output files by device

types out status information concerning active users, spooled
files, and time used

simulates a device end for the specified unit
simulates the system reset key on the System/360 console

controls the saving of virtual card-reader files and the typing
of messages at the terminal

invokes a special console function mode to facilitate recep-
tion of messages; the virtual machine is in a dormant state

directs spooled output and controls the reading of spooled
input

replaces the contents of the specified register(s), main storage
location(s), or program status word with the specified infor-
mation

establishes a logical connection between a user’s spooled
output device and another user’s spooled input device

VIRTUAL TIME-SHARING




system
performance

tems have been run successfully, particular applications may violate
the timing and input/output restrictions described earlier and can-
not be used.

CP-67 is currently totally main-storage resident and is approximately
80K bytes in size. Additional main storage is assigned as CP free
storage areas depending on real memory size. The remaining main
storage is made available for paging the users’ virtual memory.

The minimum configuration required to run CP-67/CMS is a Sys-
tem /360, Model 67, simplex or half-duplex, 256K memory, three
1BM 2311 disk drives or two IBM 2314 storage modules, a nine-track,
1800 bpi tape drive, a card-reader-punch, and a printer. Typical
configurations also have storage drums plus additional memory
and disk storage module capacity.

Running an operating system under CP-67 will, of course, add
additional overhead, thus increasing the elapsed time in comparison
to stand-alone elapsed time. The primary source of overhead for
a single virtual machine is in the input/output processing function.
As far as degradation is concerned, an input/output bound task
will suffer the most.

The number of virtual machines supported by CP-67 must
be considered in the context of the type of operating sys-
tems being run from each virtual machine, as different op-
erating systems put different loads on CP. The simpler the
structure of the virtual operating system, the lighter the load
imposed on the CP. 0S8/360 job streams, for example, may suffer

a degradation in the range of 30 to 100 percent. The way to
maximize total throughput under the CP is to exploit its capa-
bility of efficiently multiprogramming a virtual machine. In
cases where job streams can be run from two virtual machines,
running multiple 0S/360 systems can provide under the best
conditions more 0S/360 throughput under CP-67 than a single
0S/360 system.

As far as CMS under CP-67 is concerned, CMS is designed to com-
municate with a single user at the console; it knows nothing about
multiprogramming or muitiple users. Therefore, because of its
simple design, CMS does not place a heavy load on CP-67. There
are installations currently running 30 to 40 CMS virtual machines
on a 512K Model 67.

The monitor configuration
The Cambridge Monitor System is a single-user, conversational
operating system, capable of running on a real machine as well

as on a virtual machine. It interprets a simple command language

MEYER AND SEAWRIGHT IBM SYST J




Table 2 Machine configuration for CMS

Device type Detice name

1052 console

2311 or 2314 system disk (read-only)

2311 or 2314 permanent disk (user files)
*2311 or 2314 temporary disk (work space)

1403 line printer

2540 card-reader-punch

*2400 tape drives

at least 256K bytes of main storage.

*optional devices

typed in at the operator’s console (when used with CP, the user’s
remote terminal).

Whether running on a real or a virtual machine, CMS expects the
machine configuration to be as shown in Table 2. Under CP, of
course, these devices are simulated and mapped to different devices.
For instance, CMS expects an 1BM 1052 printer-keyboard operator’s
console, but most remote terminals are different; CP handles all

channel program modifications necessary for this simulation.

CMS takes advantage of the CP environment by executing all pro-
grams in the “pseudo-supervisor™ state; thus the user is free to
use all System /360 instructions. This also allows the user to add
his own programs for input/output devices not supported by the
standard system.

Each CMS user is assigned two disks (a third disk is optional),
one of which is shared with other CMS users. These disks, under
CP, are seldom complete disk packs. At the time a user is authorized
to use CP-67/CMS, the size of each disk area is set by the system
administrator, according to the needs of the user and the total
amount of disk space available.

The shared disk contains the CMS nucleus, which is loaded into the
virtual machine by the IPL console function. Also on this disk,
referred to as the “‘system disk’ are disk-resident programs and
system macro and program libraries. The CP prevents any user
from writing on this disk as it is read-only. Any attempt to modify
the system files results in an error message.

NO. 3 + 1970 VIRTUAL TIME-SHARING

file management
under CMS




CMS commands

The two other disks are known as the “‘permanent’ and “temporary”
disks. The user does not normally share these disks with any other
user, as they are accessible only to him after he has logged in with
the correct user identification and password. The permanent disk
is used for files that are to be saved from one terminal session
to the next. The temporary disk, which is optional, provides space
for work files which need not be retained between sessions. This
disk is erased whenever the user logs out.

All cMS disk files are written in 829-byte physical records. The
system input/output routines place logical records into this format,
and the records are allocated only as needed. CMS maintains chains
of disk addresses to keep track of the files. These chains are linked
to the user file directory, which CMS maintains on each disk to record
information on the file formats, sizes, and locations. The user file
directory is brought into storage when the user logs in and is updated
whenever files are modified. Periodically, and if the files have been
modified, the updated directory is written onto disk, so that the
permanent copy is as current as possible. This ensures an accurate
directory if it is necessary to reload CMS during a terminal session.

The directory handles files up to 25.24 million bytes in length,
which is 203 cylinders of an IBM 2314 disk pack and is beyond the
capacity of a smaller storage unit such as an entire 1BM 2311 disk
pack. In practice, the user’s disk will not normally require files of
that length, since the typical user needs less than 25 cylinders.
Whenever CMS detects that only a few tracks are left on the user’s
disk(s), a warning message is typed, and the files currently open
are closed. A program or command in execution is halted, so the
user may create more free space on the disk by erasing some files,
or by copying them from disk to other media.

Although most of the CMS commands operate on disk-resident
files, the user also has access to the card-reader-punch, printer,
and tape drives. The commands, in general, create sequential files
of fixed-length logical records; however, the programmer using
the CMS disk and tape input/output support routines is able to
use any logical record format with either fixed-length or variable-
length records. Fixed-length record files may also be read or written
by direct access.

Files are automatically “opened” for reading or writing when the
first read or write command is issued. CMS routines automatically

close files after every command. Files must be closed between
writing and reading within the same program.

Figure 4 illustrates the CMS input/output devices and their use.

CMS commands fall naturally into five categories: file manipula-
tion, compilation, execution control, debugging aids, and utilities.

MEYER AND SEAWRIGHT . IBM SYST J




Figure 4 CMS structure and input/output devices

COMMAND
RESIDENCE

USER
PERMANENT
FILES

CMS
NUCLEUS

COMMANDS

USER
DATA I/O
PROGRAM RESULTS - 'I!_'IELV\SSORARY

2540 1403
CARD-READER- PRINTER
PUNCH

*THIS CMS DISK 1S NORMALLY A SUBSET OF A PHYSICAL DISK

The file-handling commands allow the user to create, copy, move,
combine, update, print, and erase disk files: Other commands pro-
vide access to the tape units, printer, and card-reader-punch. The
editor provided with CMS for creating and maintaining disk files is
a context editor; it allows the user to utilize character strings for
locating and changing records in addition to working with entire
logical records. Under the CMS linkage scheme, all of these com-
mands are available to programs being executed as well as to the
user at the terminal.

The 0S/360 language processors, Assembler (F), FORTRAN IV (G),
and PL/I (F), are used by CMS, and the object programs produced
may be executed under either CMS or 0S/360 depending on the
operating system facilities requested. Diagnostics from the com-
pilers are printed at the terminal unless suppressed by the user or
directed to disk. Because the CMS file system does not provide as
many access methods as 0S/360, some features of PL/I are not
supported at program execution time.

Three other processors are also included: SNOBOL, a string process-
ing language; BRUIN, an interpretive language; and SCRIPT, a
text processor. BRUIN (Brown University Interpreter) was adapted

No. 3 + 1970 VIRTUAL TIME-SHARING




from the 0S/360 version of BRUIN developed at Brown University,
Providence, Rhode Island. BRUIN provides both immediate (desk-
calculator-like) and deferred (stored-program) modes. The SCRIPT
processor is designed for text-formatting functions,

The execution control commands allow the user to load his pro-
grams from single object decks or from a library of programs.
He can pass a list of parameters to his program from the terminal
and specify the point at which execution is to begin. To avoid
using the relocating loader for each execution of the program, he
can create a file consisting of an image of the portion of main
storage containing his program and load that nonrelocatable copy
back at any time. Since the loading commands can be accessed
by programs being executed, overlay structures may be set up,
and dynamic loading can occur. There is full interactive execution
capability in CMS.

The user can also create a file containing a command structure
ranging from a simple series of consecutive commands to a complex
logical structure and then execute these commands by typing a
single line. This capability is called EXEC and allows a user to
develop his own command language as well as to automate com-
plex tasks.

The debugging command in CMS is called DEBUG. [t allows the
user to stop his programs at predetermined points and examine
his registers, program status word, and storage, and modify these
if he so desires. This information may be typed out at his terminal
or printed off-line. A program interruption also gives control to
DEBUG, as does the external interruption caused by the EXTERNAL
console function. The user may invoke routines to trace SVC calls,
as well as the FORTRAN debugging package.

The utility functions in CMS provide tape-copying facilities, disk
file comparing, a disk file sort, and the dumping of files either by
name onto the console or by cylinder locations onto the off-line
printer. There are commands also for converting files of fixed
length records to variable length records and for converting files
in BCDIC code to EBCDIC code.

Other miscellaneous commands give the user the facility to suppress
the typeout at his terminal, to restore typing at his terminal once
the typeout is suppressed, and to terminate program execution.
The user can also obtain statistics on his file space.

System applications

Following are some of the ways to utilize the virtual machine
capabilities to take advantage of the features of CP-67.

MEYER AND SEAWRIGHT IBM SYST J




Virtual storage can provide up to 16 million bytes of addressable
main storage for those who have the need to run large programs or
store large structures of data in storage.

Virtual Systems,;/360 can be utilized with varying configurations.
The ability to define virtual device addresses differing from the
real addresses on the Model 67 gives CP-67 the ability to serve as
backup for other Systems/360, even though the software may be
address dependent. Combined with the concept of mini-disks, a
large data base system requiring 100 disk drives might be developed
and tested with only one large disk storage unit.

The hardware can be checked on-line by running diagnostic pro-
grams from a virtual machine along with the other time-sharing
users.

Running multiple operating systems concurrently provides the in-
stallation a choice of features and eliminates scheduling conflicts.
Such variations are: utilizing multiple protected copies of a given
system; operating with different versions of releases as well as with
specially modified operating systems; training operators and pro-
grammers on-line; and allowing each user to control his own sys-
tem and effectively debug a program from his operator’s console.
System development work, including testing of “privileged” code
can be performed during regular production hours since virtual
machines can execute any privileged instructions, and users are
protected from each other’s mistakes. An example is generation
of 0S/360 during the prime shift without stopping regular 0S/360
service.

Running multiple CMS machines provides a powerful general pur-
pose time-sharing system with its context editor, language processors,
interactive execution, and on-line debugging facilities. Languages
and services not available in CMS, such as APL, RAX, and CPS,
are available under CP-67. To provide such services normally re-
quires a computer and all its resources to be dedicated to the partic-
ular service, whereas under CP-67 such a system could be provided
by dedicating just one disk drive and a terminal. Figure 5 shows
a mix of systems which were demonstrated simultaneously under
CP-67 during the 1969 Spring Joint Computer Conference.

The virtual machine environment can also be utilized in the devel-
opment of computer-to-computer communications. Figure 6 illus-
trates the technique used to test a computer network system. Each
virtual 0$/360 system contains a program controlling an attached
data adapter unit line. The two adapter unit lines have been con-
nected externally via the telephone system. In this case, the two
operator consoles can actually be physically adjacent for control
by a single programmer. Figure 7 shows the use of the resulting
program between two CP-67 systems. The only effective difference

No. 3 -+ 1970 VIRTUAL TIME-SHARING




Figure 5 CP-67 as set up at 1969 Spring Joint Computer Conference

TERMINALS

08/360

APL
TERMINALS

SYSTEM/360
MODEL 67

DOS/APL 2702
VIRTUAL
CONTROL UNIT

0S/360 MVT

2701
DATA
ADAPTER UNIT

i
|
I

40.8 K BYTES
OR 2400 BAUD

DM2

IBM 1130

2250 IV
COMPUTER DISPLAY

CONSOLE

PRINTER CARD-READER-
PUNCH

PLOTTER

Figure 6 Testing teleprocessing on one machine under CP-67

REAL DATA
ADAPTER UNIT

VIRTUAL DATA
ADAPTER UNIT

VIRTUAL DATA
ADAPTER UNIT

VM=VIRTUAL MACHINE

216 MEYER AND SEAWRIGHT IBM SYST J




Figure 7 Teleprocessing checkout during normal operation of CP-67

MODEL 67 #1 0S/360 PCP

05/360 PCP

VM, 0S/360 MFT

VIRTUAL DATA

ADAPTER UNIT

VIRTUAL DATA
ADAPTER UNIT

M, 0$/360 MFT

MODEL 67 #2

-

VM=VIRTUAL MACHINE APL

APL

VIRTUAL
TRANSMISSION APL > TERMINALS
CONTROL UNIT

between Figures 6 and 7 is the different telephone lines used in
the connection. The final communications package, based on 0S/360
can, of course, be used under normal System /360 operating con-
ditions without CP-67.

CITED REFERENCES

1. L. W. Comeau, A. B. Lindquist, and R. R. Seeber, “A time-sharing
system using an associative memory,” Proceedings of the IEEE, 54,

. No. 12, 1774-1779 (December 1966).

. R. J. Adair, R. U. Bayles, L. W. Comeau, and R. J. Creasy, 4 Virtual
Machine System for the 360/40, Cambridge Scientific Center Report
320-2007, International Business Machines Corporation, Cambridge,
Massachusetts (May 1966).

. System/360 Model 67 Functional Characteristics, A27-2719, Interna-
tional Business Machines Corporation, Data Processing Division, White
Plains, New York.

. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of
the IBM System/360,” IBM Journal of Research and Development 8,
No. 2, 87-101 (April 1964).

No. 3 ¢ 1970 VIRTUAL TIME-SHARING




GENERAL REFERENCES

1. J. N. Bairstow, “Many from one: the ‘virtual machine’ arrives,” Com-
puter Decisions 2, No. 1, 28-31 (January 1970).

M. S. Field, Multi Access Systems—The Virtual Machine Approach,

Cambridge Scientific Center Report 320-2033, International Business

Machines Corporation, Cambridge, Massachusetts (September 1968).

. D. D. Keefe, “Hierarchical control program for systems evaluation,”
IBM Systems Journal 7, No. 2, 123-133 (1968).

. CP-67/CMS, Program 360D-05.2.005, International Business Machines

Corporation, Program Information Department, Hawthorne, New Ycrk
(June 1969).

2.

218 MEYER AND SEAWRIGHT IBM SYST J




