

The virtual machine environment

The expression, virtual machine, is now generally accepted as a
software replica of a complete computer system such as System/360.
It consists of a data structure describing the memory size and the
input/output configuration of the simulated system. There is a
master control block in which are stored the registers, program
status words (PSW’S), status information, and appropriate pointers
to storage blocks describing the input/output devices and associated
segment and page tables concerned with management of virtual
memory. This “machine” appears to its user as a standard System/
360 and can execute any standard instruction except DIAGNOSE.

The virtual machine can support many operating systems (including
OS/360, DOS, RAX, DOS/APL) as long as they do not include any
rigid timing dependencies or dynamically modified channel pro-
grams. (Several operating systems can be used simultaneously if
we are considering the simultaneous operation of several virtual
machines.) The interval timer presented to the virtual machine
does not reflect true time-of-day, since the CP (and the time absorbed
by it) must be transparent to the virtual machine. Thus program
code which depends on precise operation times may not work.
Real time interruption conditions (such as the System/360 Program
Control Interruption) will not, in general, be reflected to the virtual
machine quickly enough to be used for the intended purpose due
to the competition for the computer by other virtual machines.
Dynamically modified channel programs are those that are changed
between the time the start input/output (SIO) instruction is issued
and the end of the input/output operation, i.e., changed by the
channel program or the central processing unit (C P ~) . A channel
program can modify itself by having a read operation use another
part of the channel program as an input buffer. However, certain
simple types of self-modifying channel command sequences can
be translated, such as those generated by the indexed sequential
access method of Operating System/360 (OS/360).

Since the virtual machines are simulated, their configurations may
differ from each other and from the real machine in terms of virtual
memory size and number and type of input/output devices.

Like real machines, virtual machines will operate most efficiently
under operating systems. CMS is designed to allow control of a
System/360 through a simple command language entered at the
console. Since each user has his own virtual machine with his own
copy of an operating system residing in it, nothing he does should
affect any other user. If his operating system terminates abnormally
or destroys some part of itself, it will affect only that virtual machine
and no others. The affected user can simply re-initiate his virtual
system without disturbing other users. In particular, users cannot
get outside their virtual machine. Due to the uniqueness of their

NO. 3 . 1970 VIRTUAL TIME-SHARING

virtual storage and their virtual input/output devices, not only are
the users protected from each other, but the CP-67 system itself is
protected from user error.

To run as a replica of a System/360, the virtual machine must
have counterparts to all the components of the real machine.
Therefore, a virtual System/360 is comprised of an operator’s
console represented by the remote terminal, a virtual memory, a
virtual CPU, and virtual input/output devices.

console The remote terminal represents both the on-line terminal and the
functions entire console display of a System/360. By means of appropriate

terminal commands, the switches and lights of the console are
simulated, thus providing control of a virtual machine. These
console commands constitute the basic command language of CP-67
and are called console functions. There are three types of console
functions. The first type simulates the control panel and includes
such commands as DISPLAY-to examine the contents of virtual
memory and registers, EXTERNAL-to generate an external inter-
ruption, BEGIN-to start the virtual machine, and IPL-to load the
virtual machine. A second type is called extended console functions
because they go beyond the simulation of the console and include
commands such as DETACH-to remove input/output devices from
a virtual machine, MSG-to communicate with other users, QUERY-
to interrogate users and status of files, SET-to control the printing
of messages at the terminal, and LTNK-to add a subset of a direct
access device to a virtual machine. A description of the first and
second types of console functions are presented later in the paper.
The third type provides the real system operator with special con-
trol features such as ATTACH a real device to a given user, SHUT-
DOWN the system, ENABLE telecommunication lines, and TERM
(terminate) output on the unit-record devices.

CP-67 uses the dynamic address translation feature3 of the IBM
System/360 Model 67 to provide up to 16 million bytes of virtual
memory for each user (the full range of 24 bit addressing); conse-
quently, the user’s effective memory space can be larger than the
real memory of the Model 67. Since inefficient use of very large
virtual memory can put an extremely heavy burden on the paging
facilities of the CP and seriously degrade system performance, vir-
tual memory is normally assigned in sizes ranging from 256K to
1024K bytes. I t can be defined in 8K bytes and any multiple thereof.
The size of the virtual memory is defined for each user in a table
called the system user directory ; thus virtual memory can differ
for each virtual machine. Virtual memory is normally completely
private to each machine, although certain areas of virtual memory,
such as in the nucleus of CMS, can be shared by different users.

The virtual CPU, of course, is just the real CPU of the Model 67
shared by the different virtual Systems/360 using time-slicing tech-

202 MEYER AND SEAWRIGHT IBM SYST J

Figure 2 Virtual machine concept using IBM System/360

REAL I VIRTUAL

DRIVE STORAGE DRIVE DRIVE DRIVE

TERMINAL

I r""""""""""""""""

MODEL 67 CONTROL

DRIVE DRIVE DISPLAY

SYSTEM/BBO
DRIVE DRIVE

"

[;;:H 1 CARD-READER-

I ~""""""_ -""----------

STORAGE
DRIVE DRIVE FACILITY

CONTROL
UNIT PUNCH

I

TERMINAL
MODEL/ZO

Hardware requirements

Implementation of a practical virtual machine system depends on
the host computer having certain hardware features to ensure proper
control by the supervisor and to avoid excessive overhead in the
translation or simulation process. These hardware features are as
follows:

The virtual machine and host machine should have as nearly
identical an instruction set as possible so that nonprivileged
instructions can be executed directly by the virtual machine.
Nonidentical, nonprivileged instructions could be simulated by
the control program provided an interruption mechanism exists
to activate it at the proper time.

204 MEYER AND SEAWRIGHT IBM SYST J

SYSTEM/36O

(OS/360)

tem/360 assigns certain memory locations in lower main storage
to particular functions such as the timer, channel status word,
channel address word, and new and old program status
Relocatability of absolute memory addresses is provided by
the data address translation feature of the Model 67. Isolation
and protection of input/output devices and data sets residing
on input/output devices is accomplished by trapping input/out-
put instructions (which are privileged instructions in the System,’
360) and simulating them within the CP. Thus all actual input/
output instructions are executed by the CP.

The Model 67 meets the above hardware requirements without
any modification; therefore CP-67, with its virtual machine capa-
bilities, was implemented on the Model 67.

System usage

Before a user is authorized to use CP-67, he must be assigned a
USERID, which is a name that identifies him to the system, and
a password, which is checked when he “logs in” to initiate use
of the system. Associated with each user identification is infor-
mation concerning accounting, privilege class, options desired, and
a table describing the virtual machine assigned to that user. When-
ever he logs in, CP-67 sets up this virtual machine for him. Although
all the virtual machines may be different, most are set up with
the configuration expected by cMS, which is the most commonly
used operating system. They include at least 256K bytes of main
storage, two disk drives, an operator’s console (the terminal), a
card-reader-punch unit, and a printer.

paging Because there is not room in real main storage for all users’ virtual
main storage, a technique called paging is used by the system.
Virtual main storage is divided into 4096-byte blocks of storage
called pages. All but currently active pages (i.e., those in current ~

use) are kept by the system on direct access secondary storage;
because active and inactive pages change status, they are “swapped”
between real main storage and secondary storage on a demand
basis. While the swapping operation is being performed for one
virtual machine, the CP runs one or more virtual machine(s). The
paging operation, and resultant allocation of real main storage to
a given user’s pages, is transparent to the user. The dynamic address
translation feature of the Model 67 translates, at execution time,
the user’s (or user’s program’s) addresses into the current real
addresses of the relocated pages.

The implementation of the virtual machine concept employed by
this system requires that only the CP may operate in the supervisor
state on the real machine. All programs other than CP-i.e., all
programs being executed on virtual machines-operate in the prob-

206 MEYER AND SEAWRIGHT IBM SYST J

lem state on the real machine. However, the virtual machine operat-
ing system has to use privileged instructions; therefore CP supports a
virtual supervisor state in the virtual machine by intercepting and
simulating the privileged instructions. All user interruptions, in-
cluding those caused by attempted privileged operations, are handled
by CP, which then reflects to the.virtua1 machine the results to be
expected from a real machine. The user may expect his programs
to be executed on his virtual machine i n a manner identical to their
execution on a real System/360, provided he has not violated the
basic restrictions concerning timing dependencies and channel pro-
grams.

Because the input/output instructions are privileged, all virtual
machine input/output operations are intercepted and handled by
CP, which must then translate them into real machine input/output
operations. This requires two translations, accomplished as follows:
CP intercepts all user input/output when a start input/output (SIO)
instruction is issued. It translates virtual device addresses into real
device addresses, translates virtual main storage addresses into real
main storage addresses, ensures that all necessary pages are in
real main storage, builds a channel command word (CCw) string
for the user from his original CCw sequence, and starts the input/out-
put operation when the channel is free. The virtual machine is
not given control from the time it issues an SIO instruction until
the CP issues the real s10 instruction and delivers the condition
code to the virtual machine. In the meantime, one or more virtual
machine(s) may be operating. When CP receives an interruption
indicating completion of input/output activity, it saves information
to that effect in the user’s virtual machine status table; when con-
trol is returned to the virtual machine, the proper input/output
interruption is simulated.

Virtual machine unit record input/output activity is normally collec-
ted as a disk file (i.e., spooled) by CP. Thus, any card deck to be
“read” by a virtual machine would in the normal case have been read
by c p prior to the user’s call for it from his virtual machine, or trans-
ferred to that user from another user’s files via the XFER console
function in CP. The card deck in question must be preceded by a
card containing the user identification, so that CP can know by
whom the card-image file is to be read. Later, when the virtual
machine has “read” the card deck, a card reader end-of-file inter-
ruption is simulated. Card-punch and printer output, similarly
spooled, is not queued for physical output until CP is “notified”
of an end-of-file interruption. Further output for a closed device is
assumed to start a new file. So that the system operator can separate
physical output, CP-67 precedes all printed and punched output
files with a record containing the user identification.

A virtual machine can have dedicated unit-record devices instead
of sharing the system’s unit-record devices. With these dedicated

NO. 3 . 1970 VIRTUAL TIME-SHARING

put requests are issued by the virtual machine, intercepted and
translated by CP-67, and then the real input/output sequences are
issued. For example, if OS/360 having multiprogramming with a
variable number of tasks (MVT) is run under CP-67, double spooling
will occur, once for OS/360 and once for CP, if the unit record
devices are not dedicated to the OS/360 MVT virtual machine.

Virtual machine input/output to the on-line terminal console is
simulated, because CP must translate that input/output into se-
quences for the remote terminal from which the user has logged in.

error If input/output errors occur as a result of input/output activity
conditions initiated by the virtual machine, the error conditions are reflected

back to the virtual machine. The error recovery procedures pro-
vided by the virtual machine’s operating system will then handle
the error conditions as they would on a real System/360. Errors
occurring during cp-initiated input/output operations (such as
spooling and paging) are handled by CP itself.

The CP console functions allow the user to control his virtual ma-
chine from the terminal much as an operator controls a real machine.
To perform an initial program load, for instance, the user types
IPL and a device address or the name of a “named” operating
system, such as CMS. The user can stop his virtual machine at any
time by depressing the ATTN key on his console and request dis-
play of any portion of his storage. To start his virtual machine
running again, the user can issue the BEGIN console function of CP.
Each of the CP-67 console functions that can be issued by any
user from a terminal is described in Table 1. The privileged operator
commands are not included in this list.

As well as running single-user systems, CP-67 can run multi-access
systems. The multi-access systems being run under CP can have
high-speed and/or low-speed communication lines. In the case of
low-speed lines, once the multi-access system has been loaded into
a virtual machine and the communication lines prepared, users
at remote terminals can become connected to this virtual machine
by issuing the CP console function DIAL. When the remote terminal
is connected to that system, it is treated by CP-67 as an attached
transmission line. The existence of a terminal is then known only
by the virtual machine, and thus CP-67 console functions are not
available. Only when that multi-access system disables the com-
munication line will CP regain normal control of the terminal.

Some of the multi-access systems that have run under CP-67 are
DOS/APL, RAX, and CPS. Additional operating systems that have
run under CP-67, in addition to CMS and the CMS Batch Monitor,
are OS/360 (with its options such as MVT, PCP), DOS, and many
diagnostic programs. Note that although the basic operating sys-

208 MEYER AND SEAWRIGHT IBM SYST J

Function

BEGIN

CLOSE

DETACH

DIAL

DISCONN

DISPLAY

DUMP

EXTERNAL

IPL

LINK

LOGOUT

MSG

PURGE

QUERY

READY

RESET

SET

SLEEP

SPOOL

STORE

XFER

NO. 3 - 1970

CP-67 is currently totally main-storage resident and is approximately
80K bytes in size. Additional main storage is assigned as CP free
storage areas depending on real memory size. The remaining main
storage is made available for paging the users’ virtual memory.

The minimum configuration required to run CP-67/CMS is a Sys-
tem/360, Model 67. simplex or half-duplex, 256K memory, three
I BM 231 1 disk drives or two IBM 2314 storage modules, a nine-track,
1800 bpi tape drive, a card-reader-punch, and a printer. Typical
configurations also have storage drums plus additional memory
and disk storage module capacity.

system Running an operating system under CP-67 will, of course, add
performance additional overhead, thus increasing the elapsed time in comparison

to stand-alone elapsed time. The primary source of overhead for
a single virtual machine is in the input/output processing function.
As far as degradation is concerned, an input/output bound task
will suffer the most.

The number of virtual machines supported by CP-67 must
be considered in the context of the type of operating sys-
tems being run from each virtual machine, as different op-
erating systems put different loads on CP. The simpler the
structure of the virtual operating system, the lighter the load
imposed on the CP. OS/360 job streams, for example, may suffer
a degradation in the range of 30 to 100 percent. The way to
maximize total throughput under the CP is to exploit its capa-
bility of efficiently multiprogramming a virtual machine. In
cases where job streams can be run from two virtual machines,
running multiple OS/360 systems can provide under the best
conditions more OS/360 throughput under CP-67 than a single
OS/360 system.

As far as CMS under CP-67 is concerned, CMS is designed to com-
municate with a single user at the console; it knows nothing about
multiprogramming or multiple users. Therefore, because of its
simple design, CMS does not place a heavy load on CP-67. There
are installations currently running 30 to 40 CMS virtual machines
on a 512K Model 67.

The monitor configuration

The Cambridge Monitor System is a single-user, conversational
operating system, capable of running on a real machine as well
as on a virtual machine. It interprets a simple command language

210 MEYER AND SEAWRIGHT IBM SYST J I

The two other disks are known as the “permanent” and “temporary”
disks, The user does not normally share these disks with any other
user, as they are accessible only to him after he has logged in with
the correct user identification and password. The permanent disk
is used for files that are to be saved from one terminal session
to the next. The temporary disk, which is optional, provides space
for work files which need not be retained between sessions. This
disk is erased whenever the user logs out.

All CMS disk files are written in 829-byte physical records. The
system inputjoutput routines place logical records into this format,
and the records are allocated only as needed. CMS maintains chains
of disk addresses to keep track of the files. These chains are linked
to the user file directory, which cMS maintains on each disk to record
information on the file formats, sizes, and locations. The user file
directory is brought into storage when the user logs in and is updated
whenever files are modified. Periodically, and if the files have been
modified, the updated directory is written onto disk, so that the
permanent copy is as current as possible. This ensures an accurate
directory if it is necessary to reload CMS during a terminal session.

The directory handles files up to 25.24 million bytes in length,
which is 203 cylinders of an IBM 2314 disk pack and is beyond the
capacity of a smaller storage unit such as an entire IBM 2311 disk
pack. In practice, the user’s disk will not normally require files of
that length, since the typical user needs less than 25 cylinders.
Whenever CMS detects that only a few tracks are left on the user’s
disk(s), a warning message is typed, and the files currently open
are closed. A program or command in execution is halted, so the
user may create more free space on the disk by erasing some files,
or by copying them from disk to other media.

Although most of the CMS commands operate on disk-resident
files, the user also has access to the card-reader-punch, printer,
and tape drives. The commands, in general, create sequential files
of fixed-length logical records; however, the programmer using
the CMS disk and tape input,/output support routines is able to
use any logical record format with either fixed-length or variable-
length records. Fixed-length record files may also be read or written
by direct access.

Files are automatically “opened” for reading or writing when the
first read or write command is issued. CMS routines automatically
close files after every command. Files must be closed between
writing and reading within the same program.

Figure 4 illustrates the CMS input/output devices and their use.

CMS commands CMS commands fall naturally into five categories: file manipula-
tion, compilation, execution control, debugging aids, and utilities.

212 MEYER AND SEAWRIGHT IBM SYST J

Figure 4 CMS structure and input/output devices
ONLY
READ

USER
AREA

NUCLEUS
CMS

from the OS1360 version of BRUIN developed at Brown University,
Providence, Rhode Island. BRUIN provides both immediate (desk-
calculator-like) and deferred (stored-program) modes. The SCRIPT
processor is designed for text-formatting functions.

The execution control comtnands allow the user to load his pro-
grams from single object decks or from a library of programs.
He can pass a list of parameters to his program from the terminal
and specify the point at which execution is to begin. To avoid
using the relocating loader for each execution of the program, he
can create a file consisting of an image of the portion of main
storage containing his program and load that nonrelocatable copy
back at any time. Since the loading commands can be accessed
by programs being executed, overlay structures may be set up,
and dynamic loading can occur. There is full interactive execution
capability in CMS.

The user can also create a file containing a command structure
ranging from a simple series of consecutive commands to a complex
logical structure and then execute these commands by typing a
single line. This capability is called EXEC and allows a user to
develop his own command language as well as to automate com-
plex tasks.

The debugging command in CMS is called DEBUG. It allows the
user to stop his programs at predetermined points and examine
his registers, program status word, and storage, and modify these
if he so desires. This information may be typed out at his terminal
or printed off-line. A program interruption also gives control to
DEBUG, as does the external interruption caused by the EXTERNAL
console function. The user may invoke routines to trace SVC calls,
as well as the FORTRAN debugging package.

The utility functions in CMS provide tape-copying facilities, disk
file comparing, a disk file sort, and the dumping of files either by
name onto the console or by cylinder locations onto the off-line
printer. There are commands also for converting files of fixed
length records to variable length records and for converting files
in BCDlC code to EBCDIC code.

Other miscellaneous commands give the user the facility to suppress
the typeout at his terminal, to restore typing at his terminal once
the typeout is suppressed, and to terminate program execution.
The user can also obtain statistics on his file space.

System applications

Following are some of the ways to utilize the virtual machine

VM=VIRTUAL MACHINE

216 MEYER AND SEAWRIGHT

Figure 7 Teleprocessing checkout during normal operation of CP-67

r = E MODEL 67 # 1

Y-[OS,360 MFT, fl
VIRTUAL DATA
ADAPTER UNIT

VIRTUAL DATA
ADAPTER UNIT

1 b T C M S

MODEL 67 +2

I
CONTROL UNIT
TRANSMISSION

VM=VIRTUAL MACHINE APL

between Figures 6 and 7 is the different telephone lines used in
the connection. The final communications package, based on OS/360
can, of course, be used under normal System/36O operating con-
ditions without CP-61.

CITED REFERENCES

1. L. W. Comeau, A. B. Lindquist, and R. R. Seeber, “A time-sharing
system using an associative memory,” Proceedings of the ZEEE, 54,
No. 12, 1774-1779 (December 1966).

2. R. J. Adair, R. U. Bayles, L. W. Comeau, and R. J. Creasy, A Virtual
Machine System for the 360/40, Cambridge Scientific Center Report
320-2007, International Business Machines Corporation, Cambridge,
Massachusetts (May 1966).

3. Systeml360 Model 67 Functional Characteristics, A27-2719, Interna-
tional Business Machines Corporation, Data Processing Division, White
Plains, New York.

4. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of
the IBM System/360,” IBM Journal of Reseurch and Development 8,
No. 2, 87-101 (April 1964).

CMS

CMS

OS/360 PCP

NO. 3 * 1970 VIRTUAL TIME-SHARING

GENERAL REFERENCES I
1. J. N. Bairstow, “Many from one: the ‘virtual machine’ arrives,” Com-

putrr Decisions 2, No. 1, 28-31 (January 1970).
2. M. S. Field, Multi Access Systems-The Virtual Machine Approach,

Cambridge Scientific Center Report 320-2033, International Business
Machines Corporation, Cambridge, Massachusetts (September 1968).

3. D. D. Keefe, “Hierarchical control program for systems evaluation,”
IBM Systems Journal 7, No. 2, 123-133 (1968).

4. CP-67/CMS, Program 360D-05.2.005, International Business Machines
Corporation, Program Information Department, Hawthorne, New York
(June 1969).

218 MEYER AND SEAWRIGHT

