This paper describes an experimental algorithm for allocating use of
a central processing unit to perform separate data processing tasks in
a multitasking system. The algorithm, which may control only a sub-
set of the tasks being performed by the system, appears to improve
run time for some work loads.

Tasks with a recent history of using input/output facilities are given
preference. This heuristic treatment of tasks is carried over to the
algorithm itself, which modifies its own characteristics based on its
overall effectiveness in handling the tasks under its control.

A heuristic approach to task dispatching
by K. D. Ryder

In any multiprogramming system, some rule is needed to define
how CPU time is allocated among the tasks' competing for this
resource. The particular form of this rule varies, depending on
the goal of the system. If the goal is simply to guarantee the availa-
bility of the CPU to a few selected tasks whenever they require
this resource, then a priority-based algorithm may suffice. If the
objective is to improve overall throughput by making maximum
use of total system resources, then a diflerent approach is needed.
A variety of techniques and combinations of techniques may be
used.

This paper describes an experimental algorithm for allocating CPU
time among tasks, a process we refer to as dispatching. The algo-
rithm is designed to operate on a subset (or possibly the entire
set) of the tasks that have been initiated in the system. The objec-
tive of this algorithm is to enable this subset of tasks to use system
resources more efficiently, so that more work is completed per unit
of time. One way to improve this rate (throughput) is to distinguish
between those tasks that are dependent primarily on the central
processing unit (CPU) and those tasks that are dependent primarily
on input/output (I/0) operations. By giving preferential treatment
to those tasks that use the 1/0 facilities more heavily, 1/0 and CPU
operations can be overlapped. This phenomenon occurs because
once an I/0 operation has been initiated for a task, the CPU is

No. 3 - 1970 HEURISTIC TASK DISPATCHING




Figure 1 Task queue

GROUP B

GROUP A

generally not needed for that task until the 1/0 operation has been
completed. Thus the CPU is available for use in performing other
tasks. With this increased utilization of computing system resources,
overall system throughput can be expected to improve correspond-

ingly.

Not all tasks need be executed under control of this algorithm;
other dispatching rules may coexist to govern the operation of the
system in performing other tasks.

The dispatching algorithm under discussion has a number of un-
usual features. Foremost among them is its heuristic nature. Not
only does the algorithm alter the handling of each task as the
task’s characteristics are determined, but the algorithm also alters
itself based on its eflectiveness in handling the totality of tasks under
its control.

Algorithm operation

Assume that all tasks form a queue, as shown in Figure 1. We
will call this set of tasks group A. The subset of tasks affected by
the algorithm constitutes group B. The rules governing the posi-
tioning and dispatching of tasks not in group B are of little concern
here, but let us assume that the task queue is in general searched
from left to right. In competing for the CPU, tasks to the left of
group B have preference over group B tasks; tasks to the right of
group B tasks have the lowest preference. Group B tasks have no
preference over each other beyond that inherent from their posi-
tions in the queue. A task is considered to be eligible for dispatching
unless it is awaiting the completion of some event, such as an 1/0
operation.

In the context of this algorithm, the distinction between 1/0-oriented
and CPU-oriented tasks is reflected in the subdivision of group B
tasks into two subgroups, as shown in Figure 2. I/0-oriented tasks
are grouped to the left and CPU-oriented tasks are grouped to the
right. This ensures that 1/0-oriented tasks are offered use of the

IBM SYST J




Figure 2 Group B tasks

/TN

|
o
'
|

(
1
1
|
1

CPU first. After channel activity has been initiated for such tasks,
typically use of the CPU can be relinquished until the channel
operation has been completed.

Previous attempts at designing dispatching algorithms have taken
into account the characteristics of tasks by compiling an historical
record of each task throughout its execution.””* However, task
characteristics may change. It is possible that a long-time historical
record that dictates dispatching decisions may always be out-of-
date and hence incorrect and that only recent history should govern
dispatching decisions. The algorithm described in this paper is
based on that assumption. The 1/0 versus CPU determination is
made as follows. As each task in group B is dispatched, it is moni-
tored for a predetermined time interval. This action has three
possible consequences:

1. The task may use the CPU for the entire time interval.

2. The task may voluntarily relinquish control of the CPU (as
when waiting for completion of 1/0 activity).
The CPU may be preempted for a task higher in the task queue
(for example, after an 1/0 operation for such a higher-priority
task is completed).

Unused portions of time intervals are not saved.

In case number 1, the task is marked as CpPU-oriented; in case
number 2, the task is marked as I/0-oriented; in case number 3,
the previous designation of the task remains unchanged. Hence,
an essentially binary distinction is made among tasks in group B,
and a short-time historical record is used to make this distinction.
The algorithm tracks each task’s activity as closely as possible and
says, in effect, that the most pertinent history is the most recent
history. It assumes that the task most likely to be I/0-oriented
the next time it is dispatched is the task that was [/0-oriented the
last time it was dispatched.

Each time a task in group B relinquishes CPU control, it becomes
a candidate for a change in its relative position within the task

No. 3 - 1970 HEURISTIC TASK DISPATCHING

determining
task
characteristics



Table T Dispatching algorithm behavior

Original
task Reason for loss of New task
status CPU control status Action taken

[/0 voluntary surrender unchanged Search down queue
for new task to
dispatch.

time interval ended Move task to head
of CPU subgroup;
search down queue
from old location
of task.

preemption for another unchanged Dispatch pre-
task empting task.

voluntary surrender Move task to bot-
tom of 1/0 sub-
group; search down
queue from old lo-
cation of task.

time interval ended unchanged Move task to bot-
tom of CPU sub-
group; search down
queue from old lo-
cation of task.

preemption for another unchanged Move task to bot-
task tom of CPU sub-
group; dispatch pre-
empting task.

queue. If a task was previously marked 1/0 and its characteristics
are not changing, no movement occurs. If a task was previously
marked CPU and remains CPU, it is shifted to the bottom of the
CPU subgroup within group B. If a task formerly marked CPU is
now being marked 1,0, it is moved to the bottom of the 1/0 sub-
group within group B. Conversely, an 1/0 task being changed to
CPU status is queued at the top of the CPU subgroup. These situa-
tions are presented in Table I,

Note that the shifting of tasks within group B biases the left-to-
right search of the task queue in a number of ways. First, 1/0
tasks that are marked 1/0 tend to migrate higher in the queue
as other 1/0 tasks change status and drop out to the CPU sub-
group. A task that changes from 1/0 to CPU status is, however,
treated preferentially over all CPU tasks the next time it is dis-
patched. Similarly, a CPU task being switched to the [/0 sub-
group has the lowest preference of all 1/0 tasks. These mech-
anisms aid in making a finer distinction between tasks that have
relatively constant characteristics and those characterized by many

IBM SYST J




status changes. The cyclic movement of tasks within the CPU sub-
group ensures that all CPU-oriented tasks share in any available
CPU time. Such tasks thus have a high probability of being allowed
to exhibit the need for status changes: potential 1/0 tasks are not
locked at the bottom of the CPU subgroup indefinitely.

It may be seen that the relationship of the algorithm to each task
implies an essentially heuristic treatment of that task. The behavior
of the task is observed, and its handling is altered accordingly.
The algorithm itself has important heuristic characteristics. As it
operates on the totality of tasks in the system at any given time,
the algorithm adjusts itself to provide maximum effectiveness rela-
tive to the entire group of tasks under its control.

The self-adjusting characteristics of the algorithm are governed by
six parameters:

1. An initial time interval that is assigned to group B tasks as
they are dispatched

2. An incremental time that can be added to or subtracted from
the original time interval

3. A lower limit on the adjusted time interval value

4. An upper limit on the adjusted time interval value

5. A predetermined value expressing the desired ratio of X to Y,
where X = total number of times group B tasks used their
entire time interval and Y = total number of times group B
tasks have been dispatched (i.e., a ratio indicating whether
enough CPuU-oriented tasks are being identified)
A statistics interval used to determine the frequency with which
the algorithm adjusts itself

Throughout a statistics interval, all group B tasks are dispatched
with the same time interval value. Counts are kept of the X and Y
values. When the statistics interval concludes, the ratio of X to Y
is computed and compared to the value of parameter 5. If the cal-
culated value is lower, the resolution of the algorithm is not ade-
quate to detect enough CPU-oriented tasks. Accordingly, the current
value of parameter 1 is decreased by the magnitude of parameter 2.
The likelihood of identifying CPU tasks is thus increased for the
next statistics interval. In a similar manner, the value of parameter 1
is increased if too few I1/0-oriented tasks are being identified by
the algorithm. An attempt is always made to perform some differ-
entiation relative to any mix of tasks presently in group B. The
upper and lower limits serve to keep the adjusted value of param-
eter 1 within reasonable bounds. The counters X and Y are set to
zero at the start of each statistics interval.

The six parameters used to drive the algorithm appear to be sensi-
tive in some degree to the environment in which the algorithm

is operating. Behavior of the algorithm seems to depend on the

No. 3 - 1970 HEURISTIC TASK DISPATCHING

self-adjusting
characteristics




combination of the values chosen for these parameters and such
other factors as central processing unit speed, job characteristics,
system configuration, etc. Thus, optimum parameter values for one
set of conditions would not be optimum for another. Our choice
of parameter values was largely intuitive, with seemingly satisfactory
if not optimum results. For example, the parameter values used in
making the set of measurements on the System /360 Model 65 were
as follows:

Parameter 1, the initial time interval, was 150 milliseconds. This
value was chosen to allow enough time both to accomplish some
useful work and to monitor task characteristics, but not so long
as to needlessly delay determining the characteristics of other tasks.

Parameter 2, the incremental time, was 5 milliseconds. This value,
which like others is dependent on CPU speed, seemed large enough
to sense changes in task mix at our statistics interval (parameter 6).
Of course, if the algorithm adjusted itself to changing conditions
less frequently, parameter 2 ought to be larger to approach optimum
performance in fewer statistics intervals. But if parameter 2 becomes
too large, there is a loss in resolution in separating I/0-oriented
from CPU-oriented tasks.

We established the lower limit of the time interval (parameter 3)
at 50 milliseconds. Had this interval been too small, excessive
overhead could have been incurred in attempting to distinguish
among tasks that are essentially all 1/0-oriented.

The upper limit on the time interval, parameter 4, was 500 milli-
seconds. A large interval here reduces the overhead involved in
switching among tasks that are all essentially CPU-oriented. How-
ever, unless an upper bound is established, changing the status of
some tasks to [/0 would be intolerably delayed.

We used a task-switching ratio, parameter 5, of 1:2. This provided
a gross sort of control over behavior of the algorithm with changing
characteristics of the entire group of tasks.

A statistics interval, parameter 6, of one second was used. We
felt that this period allowed the algorithm to adjust itself sufficiently
often to respond efficiently to changing characteristics of the task
group. A shorter statistics interval would have allowed a smaller
adjustment value (parameter 2), and thus closer tracking of the
mix of task characteristics, but it would have increased overhead.

Performance testing

A prototype algorithm based on the ideas presented in this paper
has been implemented and incorporated into a System /360 Oper-

IBM SYST J




Table 2 System/360, Model 65 measurements

Percent change with heuristic dispatcher
Simultaneous Run time Total Wuit CcPU CPU-1/0
Job type group B tasks (sec) run time time time overlap time

FORTRAN 4 784 ~16 +1 +47
COBOL 3 1298 41 +2 45
Mixed 4 2154 —11 +2

FORTRAN-
COBOL

ating System capable of multiprogramming with a variable number
of tasks (MVT). Test results obtained using this system in three
models of System /360 computers are summarized in Tables 2, 3,
and 4.

The first column in each of the tables indicates the kind of work
load. The second column indicates the number of group B tasks
that existed simultaneously. The total amount of time required
for a single run of the work load is recorded in the next column.
It should be noted that the described work load was usually exe-
cuted more than once, sometimes as often as four times. The run
times (with one exception noted later) recorded in the tables are
typical rather than average. All run times recorded in the tables
are for systems using multiprogramming but not using the heuristic
dispatcher. The remaining columns all indicate the percent change
in the quantity being considered when the heuristic dispatcher is
used.

Each of the total work loads used to obtain the data in Table 2
were run two to four times, with variations in run time of +2
percent. For example, run times for the FORTRAN work load with
the dispatching algorithm operative were 651, 662, 665, and 667
seconds.

The FORTRAN jobs included 13 different technical programs de-
rived from actual customer work loads. Each job appeared twice
in the work load and was composed of a FORTRAN compilation
step, a linkage editing step, and an execution step. The programs
were designed to solve problems such as: heat transfer, mechanical
design, capacitor analysis, diode curves (including matrix inversion),
banking transactions, missile stability, spectrum analysis, man-
machine interaction, missile range and thrust, double integrals,
missile impact spotting, and transportation analysis.

In order to reveal the type of work involved in this FORTRAN
work load, it was run on a different system configuration using a

No.3 - 1970 HEURISTIC TASK DISPATCHING




Table 3 System/360, Model 50 measurements

Job type

Simultaneous
group B tasks

Run time
(sec)

Percent change with heuristic dispatcher
Total Wait CPU CPU-1/0
run time time time overlap time

FORTRAN
COBOL
© Mixed

FORTRAN-
COBOL

2
3

1649
2178

5584

—63 +1 +71
—29 +4 +16

—43 +2 +28

Table 4 System/360, Model 195 measurements

Job type

group B tasks

Percent change with heuristic dispatcher
Run time Total Wuait CPU CPU-1/0
run fime time time overlap time

Special
FORTRAN
work load A

Special
FORTRAN
work load B

Special
FORTRAN
work load C

—10 —57 -+-60

not
available

+28

System /360 Model 65 but without multiprogramming. The total
run time was 1050 seconds. The CPU was used for 746 seconds of
this time, leaving the CPU in the wait state for 29 percent of the
time,

The COBOL jobs were intended to be a representative selection
of commercial applications. Each of the six different COBOL jobs
appeared once in the work load, yielding a total of 7 COBOL com-
pilation steps, 21 linkage editing steps, and 24 execution steps
(including 3 sorting steps). Note the slight increase in total run
time here. The COBOL work load was also run on a Model 65
configuration without multiprogramming. In this case, total run
time was 1565 seconds, and the CPU was in the wait state 76 per-
cent of the time. In doing this work load in a2 Model 65 configura-
tion using multiprogramming, it appears that there is insufficient
demand for the CPU to allow a meaningful increase in CPU-1/0
overlap, and overhead resulting from use of the algorithm is added
to run time.

1IBM SYST J




The figures in the final row of Table 2 are for the mixture of the
FORTRAN and COBOL work loads. This work load was also run
on a Model 65 configuration without multiprogramming. Total
run time was 3665 seconds, with the CPU in the wait state for 49
percent of the time.

Table 3 contains the results of running the same work loads on a
System /360 Model 50. In this case, each of the FORTRAN jobs and
each of the COBOL jobs was run once. Note that run time for the
COBOL work load is improved using the algorithm in the Model
50. Both of these work loads were then combined for the mixed
FORTRAN-COBOL run except that the FORTRAN jobs appeared

twice.

For the System/360 Model 195 runs recorded in Table 4, three
special FORTRAN work loads were used. Special work load A con-
sists of 18 jobs, with each job containing a FORTRAN compilation,
linkage editing step, and execution step. This total work load was run
twice. Variations in results were about -1 percent, and figures
in the table are averages. Special work loads B and C were each
run at least twice, but results are representative rather than average.
Special work load B is a set of twenty more FORTRAN jobs; each
job includes a FORTRAN compilation and execution (using the
System /360 Operating System loader). The ten distinct jobs in
special work load C each appear three times; these jobs, which
each consist of a FORTRAN compilation and execution, also used
the loader. These work loads are sufficient to avoid trivially short
throughput times on a computer as fast as the Model 195.

Special work load B was run on the System /360 Model 195 without

nmultiprogramming. Total run time was 209 seconds, and the CPU
was in the wait state for 64 percent of this time. Thus on this fast
computer, this work load appears to be I/0-oriented.

Summary comment

The work described in this paper suggests that throughput gains
are possible for some work loads if dispatching is controlled by
a self-adjusting algorithm that takes into account the changing
characteristics of tasks both singly and as a group. Minimum
benefits can be anticipated when the characteristics of the tasks
are homogeneous; if all tasks are heavily 1/0-oriented or all tasks
are heavily CPU-oriented, no throughput improvement can be antici-
pated. In fact, additional overhead will be incurred handling time
intervals and manipulating task queues. Under these conditions,
the only benefit.is the cyclic dispatching of all CPU-oriented tasks,
which prevents any single task from monopolizing use of the CPU.

Maximum benefits can be anticipated for a mixture of heavily

No. 3 - 1970 HEURISTIC TASK DISPATCHING




CPU-oriented and heavily 1/0-oriented tasks. It is under these con-
ditions that the algorithm can strive for maximum CPU-1/0 overlap.

ACKNOWLEDGMENTS

Several individuals made significant contributions to the develop-
ment and measurement of the heuristic dispatcher. Of particular
note was the work of Miss M. J. Alleger, who not only contributed
to the detailed design but also implemented the prototype algorithm.
Credit also goes to W. T. Hall and W. O. Birkett, Jr., for independent
measurements of the prototype.

CITED REFERENCES

1. B. I. Witt, “The functional structure of OS/360, Part II, Job and task
management,” IBM Systems Journal 5, No. 1, 12-29 (1966).

2. B. S. Marshall, “Dynamic calculation of dispatching priorities under
08/360 MVT,” Datamation (August 1969).

3. M. Mikelsons, “A flexible task scheduling scheme for a real-time environ-
ment,” IBM Research Report RC 2428, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (March
6, 1969).

. C. R. Attanasio, P. W. Markstein, and C. E. Shanesy, “A dispatching al-
gorithm for a conversational, high-capacity computational subsystem for
0S/360 MVT,” IBM Research Report RC 2483, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
" (May 23, 1969).

IBM SYST J




