
This p r p r  describes un experimentul  algorithm for ~llocc~ting use of 
CI central  processing unit to  perform  sepurute  dutu  processing  tasks  in 
a multitasking  system.  The  ulgorithm, which may control only a sub- 
set of  the  tusks  being  performed  by  the  system,  appears  to  improve 
run  time f o r  some ,vork loud~s. 

Tusks  with u recent  history  of using input;’output .fi~cilitie.s ure gicen 
preference.  This  heuristic  treatment of tusks  is carried mer to  the 
trlgorithm itself; which motlifies its o w x  characteristics  bused on its 
ocerdl  effecticeness  in hlrndling the  tasks rrnder its control. 

A heuristic  approach to task  dispatching 
by K. D. Ryder 

I n  any multiprogramming system, some rule is needed to define 
how CI’U time is allocated  among  the tasks‘ competing  for  this 
resource. The particular  form of this rule varies, depending on 
the  goal of the  system. I f  the goal is simply to guarantee  the  availa- 
bility of the CI’U to  a few selected tasks whenever they require 
this resource, then a  priority-based  algorithm may suffice. If  the 
objective is to  improve overall throughput by making  maximum 
use  of total system resources, then a difTerent approach is needed. 
A variety of techniques  and  combinations of techniques may be 
used. 

This  paper describes an experimental  algorithm  for  allocating CI’U 
time among  tasks,  a process we refer to  as disputching. The algo- 
rithm is designed to  operate on a  subset (or possibly the  entire 
set) of the  tasks  that have been initiated in the system. The objec- 
tive of this  algorithm is to enable  this  subset of tasks  to use system 
resources more efficiently, so that  more work is completed per unit 
of time.  One way to improve  this  rate  (throughput) is to distinguish 
between those  tasks  that  are  dependent primarily on the  central 
processing unit (CPU) and  those  tasks  that  are  dependent  primarily 
on input/output (1/0) operations. By giving preferential  treatment 
to those  tasks  that use the I /O facilities more heavily, 1/0 and CPU 
operations  can  be  overlapped.  This  phenomenon  occurs  because 
once an I/o operation  has been initiated for  a task,  the CPU is 
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I Figure 1 Task queue 

generally  not  needed  for  that  task  until  the I /O operation  has  been 
completed.  Thus  the CPU is  available  for  use  in  performing  other 
tasks.  With  this  increased  utilization of computing  system  resources, 
overall  system  throughput  can  be  expected  to  improve  correspond- 
ingly. 

Not  all  tasks need  be executed  under  control  of  this  algorithm; 
other  dispatching  rules  may  coexist  to  govern  the  operation of the 
system in performing  other  tasks. 

The  dispatching  algorithm  under  discussion  has  a  number of un- 
usual  features.  Foremost  among  them is its  heuristic  nature.  Not 
only  does  the  algorithm  alter  the  handling of each  task  as  the 
task’s  characteristics  are  determined,  but  the  algorithm  also  alters 
itself based  on  its effectiveness in  handling  the  totality of tasks  under 
its  control 

Algorithm operation 

Assume  that  all  tasks  form a queue,  as  shown in  Figure 1.  We 
will call  this  set of tasks  group A. The  subset of tasks affected  by 
the  algorithm  constitutes  group B. The  rules  governing  the  posi- 
tioning  and  dispatching of tasks  not in group B are of little  concern 
here,  but let us  assume  that  the  task  queue is in  general  searched 
from  left to right.  In  competing  for  the  CPU,  tasks to  the left  of 
group B have  preference  over  group B tasks;  tasks to the  right of 
group B tasks  have  the  lowest  preference.  Group B tasks  have  no 
preference  over  each  other  beyond  that  inherent  from  their  posi- 
tions  in  the  queue. A task  is  considered to be eligible for  dispatching 
unless  it  is  awaiting  the  completion of some  event,  such  as  an 1 / 0  
operation. 

In  the  context  of  this  algorithm,  the  distinction  between  ]/@oriented 
and  CPU-oriented  tasks  is reflected in the  subdivision of group B 
tasks  into  two  subgroups,  as  shown  in  Figure 2. [/@oriented  tasks 
are  grouped  to  the  left  and CfIU-oriented tasks  are  grouped  to  the 
right.  This  ensures  that  Iporiented  tasks  are offered  use of the 
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Fiaure 2 G r o w  B tasks I 

CPU first.  After  channel  activity  has  been  initiated  for  such  tasks, 
typically use of the CPU can  be  relinquished  until  the  channel 
operation  has been completed. 

Previous  attempts  at  designing  dispatching  algorithms  have  taken determining 
into  account  the  characteristics of tasks by compiling  an  historical task 
record of each  task  throughout  its  execution.””  However,  task characteristics 
characteristics  may  change.  It  is  possible  that a long-time  historical 
record  that  dictates  dispatching  decisions  may  always  be  out-of- 
date  and  hence  incorrect  and  that  only  recent  history  should  govern 
dispatching  decisions.  The  algorithm  described in this  paper  is 
based on  that  assumption.  The I/O versus CI’U determination is 
made  as  follows.  As  each task in  group B is dispatched, it is moni- 
tored  for  a  predetermined  time  interval.  This  action  has  three 
possible  consequences: 

1.  The  task  may use the CI’U for  the  entire  time  interval. 
‘ 2. The  task  may  voluntarily  relinquish  control of the Cpu (as 

when  waiting  for  completion of 1/0 activity). 
3.  The CPU may  be  preempted  for  a  task  higher in the  task  queue 

(for  example,  after  an I/O operation  for  such  a  higher-priority 
task is completed). 

Unused  portions of time  intervals  are  not  saved. 

I n  case  number 1, the task is marked  as  CPU-oriented; in  case 
number 2, the  task is marked  as  f/o-oriented; in case  number 3, 
the  previous  designation  of  the  task  remains  unchanged.  Hence, 
an  essentially  binary  distinction is made  among  tasks  in  group B, 
and  a  short-time  historical  record is used to  make  this  distinction. 
The  algorithm  tracks  each  task’s  activity as closely as  possible  and 
says, i n  effect,  that  the  most  pertinent  history is the  most  recent 
history.  It  assumes  that  the  task  most likely to  be  r/o-oriented 
the  next  time  it is dispatched is the  task  that  was  rporiented  the 
last  time it was  dispatched. 

Each  time  a  task in group B relinquishes CPU control,  it  becomes 
a candidate  for a change in its  relative  position  within  the  task 



Table 1 Dispatching algorithm  behavior 

Origit~ul 
tusk 

StUtLlS 

I :o 

CPU 

Reusotr /or  loss of 
CPU cotrtr.0l 

voluntary surrender 

time  interval ended 

preemption for another 
task 

voluntary  surrender 

time  interval ended 

preemption  for  another 
task 

New tusk 
StU11IS 

unchanged 

CPU 

unchanged 

I /o 

unchanged 

unchanged 

Actiotr tuketz 

Search down  queue 
for new task to 
dispatch. 

Move task  to  head 
of CPU subgroup; 
search down  queue 
from  old  location 
of task. 

Dispatch pre- 
empting  task. 

Move task  to  bot- 
tom of I 1 0  sub- 
group;  search  down 
queue  from old lo- 
cation of task. 

Move  task to bot- 
tom of CPU sub- 
group;  search  down 
queue  from  old lo- 
cation of task. 

Move task  to  bot- 
tom of CPU sub- 
group; dispatch pre- 
empting  task. 

queue. I f  a  task was previously marked I /O and  its  characteristics 
are  not  changing,  no movement occurs. I f  a task was previously 
marked CPU and  remains CPU, it is shifted to the  bottom of the 
c p u  subgroup within group B. If a  task formerly marked c p u  is 
now being marked 1/0, it is moved to  the  bottom of the I/O sub- 
group within group B. Conversely, an I/O task being changed to 
CPU status is queued at the  top of the CPU subgroup.  These  situa- 
tions are presented in Table 1 .  

Note  that  the shifting of tasks within group B biases the left-to- 
right search of the  task  queue in  a  number of ways. First, I/O 
tasks  that  are marked I/O tend to migrate higher in the  queue 
as  other I/O tasks  change  status  and drop  out  to  the CPU sub- 
group. A task that changes from 1/0 to CPU status is, however, 
treated preferentially over all CPU tasks  the next time  it is dis- 
patched.  similarly,  a CPU task being switched to the l/o sub- 
group  has  the lowest preference of all I/O tasks.  These mech- 
anisms aid in  making  a finer distinction between tasks  that have 
relatively constant  characteristics  and  those  characterized by many 
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status  changes.  The cyclic movement of tasks  within  the CPU sub- 
group  ensures  that all  CPU-oriented tasks  share  in  any  available 
CPU time.  Such  tasks  thus  have  a high probability  of  being  allowed 
to  exhibit  the need for  status  changes;  potential 1/0 tasks  are  not 
locked at  the  bottom of the CPU subgroup  indefinitely. 

I t  may be seen  that  the  relationship of the  algorithm  to  each  task 
implies  an  essentially  heuristic  treatment of that  task.  The  behavior 
of the  task is observed,  and  its  handling is altered  accordingly. 
The  algorithm itself has  important  heuristic  characteristics.  As  it 
operates  on  the  totality of tasks in the system a t  any given time, 
the  algorithm  adjusts itself to  provide  maximum effectiveness rela- 
tive to  the  entire  group of tasks  under  its  control. 

The  self-adjusting  characteristics of the  algorithm  are  governed by 
six parameters: 

1. An  initial  time  interval  that is assigned to  group B tasks  as 

2 .  An  incremental  time  that  can be added  to or subtracted  from 

3. A  lower  limit  on  the  adjusted  time  interval  value 
4. An  upper  limit o n  the  adjusted  time  interval  value 
5. A  predetermined  value  expressing  the  desired  ratio of X to Y ,  

where X total  number of times  group B tasks used their 
entire  time  interval  and Y = total  number  of  times  group B 
tasks  have been dispatched  (i.e.,  a  ratio  indicating  whether 
enough  cru-oriented  tasks  are  being  identified) 

6. A  statistics  interval used to  determine  the  frequency  with  which 
the  algorithm  adjusts itself 

they  are  dispatched 

the  original  time  interval 

Throughout a statistics  interval, all group B tasks  are  dispatched 
with the  same  time  interval  value.  Counts  are  kept of the X and Y 
values.  When  the  statistics  interval  concludes,  the  ratio of X t o  Y 
is computed  and  compared  to  the  value of parameter 5.  If  the  cal- 
culated  value is lower,  the  resolution  of  the  algorithm is not  ade- 
quate  to  detect  enough  CPU-oriented  tasks.  Accordingly,  the  current 
value of parameter 1 is  decreased by the  magnitude of parameter 2. 
The  likelihood of identifying CPU tasks is thus  increased for the 
next  statistics  interval.  In  a  similar  manner,  the  value of parameter 1 
is  increased if too few I/o-oriented  tasks  are  being identified by 
the  algorithm.  An  attempt  is  always  made  to  perform  some  differ- 
entiation  relative  to  any  mix of tasks  presently in  group 9. The 
upper  and  lower  limits  serve  to  keep  the  adjusted  value of param- 
eter 1 within  reasonable  bounds.  The  counters X and Y are  set  to 
zero  at  the  start of each  statistics  interval. 

The six parameters used to  drive  the  algorithm  appear  to  be  sensi- 
tive in  some  degree  to  the  environment in  which  the  algorithm 
is  operating.  Behavior of the  algorithm  seems  to  depend  on  the 
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Table 2 System/360. Model 65 measurements 

Job type 

FORTRAN 

COBOL 

Mixed 
FORTRAN- 
COBOL 

Simulturreolrs Rurr time 
group B tusks (sec) 

784 

1298 

21 54 

Percetlt clutlge with heuristic dispatcher 
Tutu1 Wuir C P U  CPU-110 

 rut^ time  time  time ocerlup time 

- 16 - 45 + I  +47 

tl 0 +2 + j  

- 1 1  - 25 +2 +33 

ating  System  capable of multiprogramming  with a variable  number 
of tasks (MVT). Test  results  obtained  using  this  system in three 
models  of  System/360  computers  are  summarized in  Tables 2, 3, 
and 4. 

The  first  column in each of the  tables  indicates  the  kind of work 
load.  The  second  column  indicates  the  number of group B tasks 
that  existed  simultaneously.  The  total  amount of time  required 
for a single  run of the  work  load  is  recorded in  the  next  column. 
It  should  be  noted  that  the  described  work  load  was  usually  exe- 
cuted  more  than  once,  sometimes  as  often  as  four  times.  The  run 
times  (with  one e'xception noted  later)  recorded  in  the  tables  are 
typical  rather  than  average. All run  times  recorded  in  the  tables 
are for systems  using  multiprogramming  but  not  using  the  heuristic 
dispatcher.  The  remaining  columns  all  indicate  the  percent  change 
in  the  quantity  being  considered  when  the  heuristic  dispatcher is 
used. 

Each of the  total  work  loads used to obtain  the  data in Table 2 
were  run  two to four  times,  with  variations in run  time of f 2  
percent. For example,  run  times for the FORTRAN work  load  with 
the  dispatching  algorithm  operative  were 651, 662, 665, and 667 
seconds. 

The FORTRAN jobs  included 13 different  technical  programs  de- 
rived from actual  customer  work  loads.  Each  job  appeared  twice 
in the  work  load  and  was  composed  of  a FORTRAN compilation 
step,  a  linkage  editing  step,  and  an  execution  step.  The  programs 
were  designed  to  solve  problems  such  as:  heat  transfer,  mechanical 
design,  capacitor  analysis,  diode  curves  (including  matrix  inversion), 
banking  transactions, missile stability,  spectrum  analysis,  man- 
machine  interaction, missile range  and  thrust,  double  integrals, 
missile impact  spotting,  and  transportation  analysis. 

In  order  to  reveal  the  type of work  involved in this FORTRAN 
work  load,  it  was  run  on a different  system  configuration  using a 

NO. 3 ' 1970 HEURISTIC TASK DISPATCHING 195 



Table 3 System/360, Model 50 measurements 

Simultatleous 
Job type group B tusks 

FORTRAN 

COBOL 

Mixed 

COBOL 
FORTRAN- 

Rut1 time 
(see) 

- 1 -  

Table 4 System/360, Model 195 measuremen t s  

Job type 

Special 
FORTRAN 
work load A 

Special 
FORTRAN 
work load B 

Special 
FORTRAN 
work load C 

- 1 -  

1649 

21 78 

5584 

Rut1 time 
(see) 

880 

1 I4 

I36 

Percent clluqe with heuristic dispatcher 
Total Wuit CPU c p u - r / o  

rut1 time titne iime ocerhp rime 

-8 - 63 +1 +TI 

- 5  - 29 +4 +I6 

-7 - 43 +2 + 28 

Perceut chut1ge with heuristic disputcller 
Total Wuit CPU  CPU-I/O 

r1u1 time time time ocerlcrp time 

I O  - 57 0 + 60 

- 8  -41 + 3  not 
available 

System/360  Model 65 but  without  multiprogramming.  The  total 
run  time  was 1050 seconds.  The CPU was used for 746 seconds  of 
this  time,  leaving  the CPU in  the  wait  state  for 29 percent of the 
time. 

The COBOL jobs were  intended  to be a  representative  selection 
of commercial  applications.  Each of the six digerent COBOL jobs 
appeared  once in the  work  load,  yielding  a  total of 7 COBOL com- 
pilation  steps, 21 linkage  editing  steps,  and 24 execution  steps 
(including 3 sorting  steps).  Note  the  slight  increase  in  total  run 
time  here.  The COBOL work  load  was also run  on  a  Model 65 
configuration  without  multiprogramming.  In  this  case,  total  run 
time  was 1565 seconds,  and  the CPU was in the  wait  state 76 per- 
cent of the  time. In doing  this  work  load in a  Model 65 configura- 
tion  using  multiprogramming,  it  appears  that  there is insufficient 
demand for the CPU to allow  a  meaningful  increase  in Cpu-rjo 
overlap,  and  overhead  resulting from use of the  algorithm is added 
to run  time. 
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The figures in  the final row of Table  2  are for the mixture of the 
FORTRAN and COBOL work  loads.  This  work  load was also run 
on a  Model 65 configuration  without  multiprogramming. Total 
run  time was 3665 seconds, with the CPU in the wait  state  for 49 
percent of the time. 

Table 3 contains  the  results of running  the  same  work  loads on a 
System/360  Model 50. In this  case, each of the FORTRAN jobs  and 
each of the COBOL jobs was run once. Note  that  run time for  the 
COBOL work  load is improved using the  algorithm in the  Model 
50. Both of these work  loads were then  combined  for  the mixed 
FORTRAN-COBOL run except that  the FORTRAN jobs appeared 
twice. 

For  the System/360  Model 195 runs recorded in Table 4, three 
special FORTRAN work loads were used. Special work  load A con- 
sists of 18 jobs, with each job containing  a FORTRAN compilation, 
linkage  editing  step,  and execution step.  This  total work load was run 
twice. Variations  in  results were about f l  percent, and figures 
in  the  table  are averages. Special work loads  B  and C were each 
run at least twice, but results are  representative  rather than average. 
Special work  load B is a set of twenty more FORTRAN jobs; each 
job includes a FORTRAN compilation  and execution (using the 
System/360  Operating System loader). The ten distinct jobs in 
special work  load C each  appear  three  times; these jobs, which 
each consist of a FORTRAN compilation  and execution, also used 
the  loader.  These  work  loads  are sufficient to avoid trivially short 
throughput times on a  computer  as  fast  as  the  Model 195. 

Special work  load  B was run on  the  System/360  Model 195 without 
multiprogramming.  Total run time was 209 seconds, and the CPU 
was in the wait state  for 64 percent of this time. Thus on this fast 
computer, this work  load  appears to be rporiented.  

Summary comment 

The work described in this  paper suggests that  throughput gains 
are possible for some  work  loads if dispatching is controlled by 
a self-adjusting algorithm  that  takes  into  account  the  changing 
characteristics of tasks  both singly and as a  group.  Minimum 

. benefits can  be  anticipated when the characteristics of the  tasks 
are  homogeneous; if all tasks are heavily Iporiented or all tasks 
are heavily CPU-oriented, no throughput  improvement can be  antici- 
pated. In  fact,  additional  overhead will  be incurred  handling time 
intervals and manipulating  task  queues.  Under  these  conditions, 
the only benefit is the cyclic dispatching of all CPU-oriented tasks, 
which prevents  any single task  from  monopolizing use of the CPU. 

Maximum benefits can  be  anticipated  for  a  mixture of heavily 
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cpu-oriented  and heavily Iporiented tasks. It is under these con- 
ditions that the  algorithm  can strive for maximum CPU-I/O overlap. 
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