
A solution  is  proposed  to  the  problem of optimizing  code  generation 
by a large-Iunguage compiler. 

A high-level definitional  language  is used to &$ne the  code  mappings, 
and M interpreter executes the  routines  in  this language  during the 
one-puss,  text-driven  code-generation  phase. 

The technique  might also be applied to extendable  languages  and 
shared-component  compilers. 

Code-generation  technique for large-language compilers 
by M. Elson and S. T. Rake 

The  design of an  optimizing  compiler  for  a  large  and rich language 
poses  problems  beyond  those of sheer size and  cost.  One of the  most 
serious  is  that  the  wealth  and  variety of the  language  makes it 
possible to express  the  same  logical  function in terms of many 
different  source  constructs.  The  choice  may  be  based  on  naturalness 
of language  use,  program  readability,  ease of debugging,  compile- 
time  or  object-time  space-versus-time  tradeoffs,  or  programmer 
whimsicality. 

The  problem  is  compounded  when  the  target  machine of the  com- 
piler is one  as rich in  function  as  the IBM System/360.'  Again, 
there  are  many  ways of expressing  the  same  function.  And if the 
source  language  is  designed  to  be  highly  machine-independent, 
there  is,  naturally,  no  simple  set of mappings  between  source  and 
target  constructs.  The  problem of optimizing in this  environment 
is  most  strongly  felt a t  code-generation  time,  when  the  mapping 
must  be effected from  a  source-oriented  text to a target-oriented 
one. 

This  paper  describes  a  solution  to  this  problem, in terms of a  code- 
generation  phase  that  features  a high-level, special-purpose,  code- 
generation  language,  and  total  context  sensitivity,  unlimited special 
casing,  and  a  paging  mechanism necessary because of the  resultant 
phase size. The  phase  was  developed  as  part of an  experimental 
optimizing  compiler. 
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I n  this  paper, is used as  an  example  source  language,2  and 
System/360  machine  code is used because it is the  particular  target 
language  for  which  the  technique  was  developed.  However,  applica- 
tion of the  ideas  presented  presuppose  implementation of a  language 
designed to  be  machine-independent,  but do  not  presuppose PL/I 
source  language  or  Systemi360  target  language.  The  code-genera- 
tion  language  was  parameterized  for  different  System/360  models, 
but  not  for  radically  different  machine  languages.  The  authors  feel, 
however,  that  modifications to the  language  and  its use might 
easily be  made  to  accommodate  different  machine  architectures. 

We  first  describe  our  solution  to  the  code-generation  problem, 
then  demonstrate  the  solution  with  a  prototype  compiler. 

The code-generation problem 

The  semantics of PL/ I  are highly context-sensitive, so that  worst- 
case  code  generation is a  more  severe  problem  than  with  simpler 
languages.  For  example,  the  worst-case  and  best-possible  code  that 
could  be  generated  from  the [%/I source  statements 

DCL (CI, C2) C H A R  ( I O )  V A R ;  
I = LENGTH (CI 1 1C2); 

are  shown in Table I .  The  table  shows  how  local  context-free  code 
generation  can  destroy  the  meaning of the  original  source  state- 
ment  and  then  generate  the  only  code  possible.  The  meaning of 
the  statement is-place in  I the  length of the  result of concatenating 
CI and  C2"nol  concatenate CI and C2 and  then  take  the  length 
of  the  result.  The  difference is only  marginal in  appearance  but, 
as  can  be  seen  from  the  code  generated,  is  significant. 

The  example  illustrates  another  problem.  A  programmer  is  usually 
unaware of how  a  compiler  processes  the  statements  he  includes 
in  his  source  program. I f  the  above  statement  had  been  written 
in  some  other  manner,  the  code  generated  might  have been con- 
siderably  improved.  For  example,  the  statement 

I = LENGTH (C11 IC2); 

results  in  poor  code;  the  statement 

I = L E N G T H  (CI) + LENGTH (C2); 

results in  the  best  possible  code. 

Another  problem is evident  from  studies  that  indicate  that  about 
fifteen  times  as  much  code  generation  logic is needed for  unoptimized 
full PL/I as  for  optimized  full FORTRAN. It  was  felt  that,  with 
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Table 1 Naive  and context-sensitive code generation 

Naive Context-sensitice 

LA 1,WSl.1 
L 2,DV.  .C1 
LH 3;DV. .Cl +h LH  14,DV.  .C1+6 
LTR 0,3 AH 14,DV.  .C2+6 
BC 8,CL. 1 ST 14,I 
BCTR 3,O 
EX 3,C.  .048C 
AR 1 ,o 
L  2,DV. . C2 
IC 3,DV.  .C2+6 
LTR 
BC 

333 
8,CL.2 

AR 0,3 
BCTR 3,O 
EX 3,C.  .048C 

STH  D,TMPDV.  .0480+6 
L 14,DV. .TMP. .0444 
L 15,TMPDV.  ,0480 
LH  8,TMPDV.  .0480+6 
STH  8,DV. .TMP. .0444+6 
LTR 8 3  
BC 8,CL.  3 
BCTR 8,0 

LH  14,DV.  .TMP.  .0444+6 
ST 14,l 

CL.  1 EQU * 

CL 2 EQU * 

CL. 3 EQU * 

the use of standard  techniques, about fifty times as much would 
be needed for optimized PL/I as for optimized FORTRAN. 

optimization Multipass  generators  cause  information to be lost between passes. 
problems Multipass  code  generators  are  function  driven;  i.e.,  during  each 

pass, code is generated for  a given set of functions and the passes 
are performed in a set order.  Unless  a  large amount of information 
is retained,  one  phase is aware only of the  data from  a  previous 
phase that  it is to process;  it is not aware of the use to be  made 
later of its  results. The  amount of information  carried  around to 
allow communication from phase to phase is enormous for a  large 
language. 

Code in  multipass  generators is usually generated  from  the inside 
out. A suitable form of internal text for multipass  generation is 
triples, or a similar structure. The triples express the  relationships 
among  the different parts of the  source  statement. They generally 
are ordered so that  the  innermost part of any expression occurs 
first. As code is generated by succeeding phases,  the  triples are 







serve  as  input  to  the  code-generation  phase. As an  example,  con- 
sider  again  the  expression LENGTH (C11lC2) but in the  following 
possible  text  forms: 

1 .  Reverse Polish form 

2. Standard Polish form 

3. Multi-address  code  with  named  results 
LENGTH 1 1  C1 C2 

CONCAT t ,  CI C? 
LENGTH t ,   t ,  

4.. Multi-address  code  with  implicit  instruction  results 
1.  CONCAT CI C2 
2. LENGTH I 

5.  Trees (see Figure 1 )  Figure 1 Tree representation 

These  forms  have  much in common.  Number 1 is derived  from 
number 5 by a  top-down,  left-right  tree  walk;  numbers 3 and 4 
are  derived  from 1 by stacking  operands left to  right  and  then 
unstacking  and  producing  code  when  an  operator is encountered; 
numbers 3 and 4 are  derived  from 2 by stacking  operators  and  oper- 
ands  separately  and  unstacking  both,  then  producing  code  when 
all of an  operator’s  operands  have been encountered. In  addition, 
each of these  derivations is logically reversible.  However,  the issue 
here is not one of logical  equivalence  but of practical  ease of pro- 
cessing. Bearing i n  mind  the  above  ground  rule,  consider  now  a 
reasonable  order  for  investigating  the  expression. 

z LENGTH 

CONCAT 

C 1  c2 

1. Invoke  the  length  processor. 
2. Invoke  the  concatenation  processor.  (Normally,  it  returns  both 

a result  and  an  indication of the  length of  that  result. In  this 
case,  however,  it is told to  return  only  the  length.) 

3. Invoke  data  reference  processors for c! and  then ~ 2 ,  telling 

4. Return  the  object  time  locations of the  lengths  to  the  concatena- 

5.  Generate  the  add of  the  lengths. 
6. Return  the  location of the  result  to  the  length  processor. 
7. Return  this  value as the  result. 

I n  considering  the  above  data  formats  for  this  kind of processing 
order,  a  striking  implementation difficulty can  be  seen  with  both 
numbers I and 2. Whether  the  scanning  order is forwards  or  back- 
wards. it is difficult to find all of an  operator’s  immediate  operands. 
They  are  not  adjacent,  but  separated by arbitrary  distances;  the 
location of one  operand  depends  upon  the full content of the  other. 
Form  number 3 has  the  same  problem  to  a lesser degree;  the  scan 
entails  investigating  first  operands of prior  operators.  Numbers 4 
and 5 both give immediate access to  operands.  The  usual  hard- 

l each  to  return  only  the  object  time  location of the  length. 

tion  processor. 

1 
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ware  imposition of a  single-dimensional  addressable  store  implies 
the  same  internal  storage  requirements  for  the  two.  They differ 
then  only  in  external  representation,  and  in  the  fact  that  using 
number 4 requires  a  bottom-up  processing  order to establish  the 
context.  In  addition,  number 5 seems  to  provide  a  more  intuitive 
means of associating  an  operator  with  its  operands  diagramatically. 
Thus we used number 5.  

interrogating A large  set of utility  routines  are  provided  to  interrogate  the  trees 
trees at  code-generation  time.  These  routines  are  also used throughout 

earlier  portions of the  compiler  to  build,  modify,  and  interrogate 
trees.  Figure 2 gives a  general  idea of the  complexity. I t  shows 
the  complete  tree  for  the  assignment  statement X =  I ,  where  both 
X and I are  undeclared,  thus  acquiring  the  usual PL/I  default  char- 
acteristics. 4 

The  most  important  thing  to  note  here  is  that all attribute  informa- 
tion  is  retained in the  text.  During  code  generation, it is never 
necessary to  interrogate  the  dictionary  to  produce  code. 

The code-generation mechanism 

The  production of pseudo-instructions a t  code-generation  time  is 
carried  out by a  set of routines  called OPGEN macro  definitions 
(OMD’S).  They  are  written in our  generate  coding  language (GCL), 
pretranslated  into  a  compressed  internal  form,  and  stored in  a 
library  as  part of the  compiler.  They  are  invoked  and  interpreted 
as  needed  during  code  generation. 

An O M D  area  is  provided in  main  storage,  and  OMD’S  are paged 
into  this  area  as  required  during  execution.  The  paging  mechanism 
is invoked  when  a GCL L I N K  command  (bring in a new OMD) 
or an R T N  command  (return  control  to  the L.INKing OMD) is 
executed.  An OMD need  be i n  storage  only  while  it is being  executed. 
At  any  other  time, it may be overwritten if the  space is required. 
OMD’S are  read-only, so they need  never be  written  out.  Each 
(possibly  recursive)  invocation of an OMD involves  a new alloca- 
tion of dynamic  workspace,  which  must  remain  active  until  that 
invocation is terminated. 

The  input  data  for  the  code-generation  phase is the  abstract  tree 
text  produced by the  front  end  and  the  optimizer.  The OMD’S 
scan  this  text  and  produce  from  it  the  pseudo-instructions,  which 
subsequently  become  input  to  the  register-allocation  phase. 

The  compile-time  flow of control  is  best  illustrated by a simple 
example,  as  shown in Figure 3 .  The  text  trees  are  being  processed 
one by one.  Processing  has  just been completed  for  a  statement, 
which  we  shall  assume is GOT0 X. 
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Figure 3 Processing statement GOTO X I 

I f OMD AREA 

I I I 

THE TREE FOR GOTO X LOOKS LIKE  THIS 

(-T> 

'DICTIONARY R ~ F F R E N C E  FOR X 

I n  the  case  shown in Figure 3, the OhlD analyzes  its  first four  argu- 
ments,  possibly  generating  some  code  indicated by them.  Eventually I 
L I N K  ARG(5) 

is executed  (the OMD representing  the  fifth  argument of the STATE- I 
M E N T  node). 

The OMD 61 GOT0 is now brought in and  interpreted.  It  eventually 
generates  the  instruction I 
BC 15, X 

which  goes  into  the  pseudo-instructiol file, and issues an R T N  state- 
ment. OPGEN stores  another  node  pointer,  checks  that  the @ STATE- 
M E N T  is in  main  storage,  and  resumes  interpretation of the ( ( I  

STATEMENT from  the  point followiiig the L I N K .  After Some 
cleaning  up,  the Q .  STATEMENT issues a R T N ,  and OPGEN knows  that 
processing  for  this  statement  has been completed.  It  then  brings in  
the  next  tree  and  the cycle is repeated. 

As is indicated in the  above  example,  there is a  direct  relation 
between  node  names i n  the  text  trees  and  names of the  corresnondine 



procedural 
characteristic 



local An item with the CELL attribute is a 4-byte item that may  be de- 
storage clared in any OMD that requires  it. Cells are local to  the OMD and 

are reallocated if the OMD is invoked recursively. A cell can  hold 
many types of items, which can vary dynamically when the OMD is 
being executed. 

Consider  the following example of the use of a cell 

DCL C CELL 
SET C = LABEL 
GOTO C 

LABEL . . . ,- 

The GOTO passes control  to whatever OMD label is held in  cell c .  
I n  the sequence 

DCL I‘Q CELL 
SET PQ= 1 
SET PQ= 1.3584- 5 

PQ can hold  both integers and  floating-point  numbers. 

Another use  of  cell  is shown in the sequence 

DCL XY CELL 
SET XY = @ PLUS 
L I N K  XY 

Execution of the L I N K  statement passes control  to  the PLUS OMD. 

Cells can also contain  compiler-generated labels to be inserted into 
the  pseudo-code, symbolic registers to be inserted into  skeletons, 
32-bit strings to hold switches, and packed decimal constants of 
up to 5 digits. 

In addition to  the cells, a long cell or string is provided.  This type 
of storage is  used  when dealing with values that will not fit into 
four bytes, such as  long  floating-point  constants,  long decimal con- 
stants,  character  string  constants,  edit  masks for conversion from 
numeric to  character, etc. They are used exactly the  same  as cells, 
and in our implementation  had  a  maximum  length of 50 bytes. 
Use of the  string facility is exemplified by: 

1 

DCL S STRING 
SET S = X’2021204B‘ 
SET s = s I Ix’20’ 
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Another  type of cell  is provided for the  entire  code-generation 
phase. Such cells are  thus  known  to all OMD'S and  are never dy- 
namically reallocated. 

To understand how a set of OMD'S scans a  tree  and  generates 
the  correct  code  for that tree,  it is important  to understand  the 
working of the  cursor.  The  cursor is a  pointer to  the  current node 
in  the  tree and can be altered by execution of certain  statements. 
Before each tree is processed, the  cursor is set to  the  top node. 

Information is extracted  from the tree by use  of attribute expres- 
sions, whose evaluations result in  indications of presence or  absence 
of specified nodes  (Figure 4). An attribute expression is a sequence 
of  node references (node names or  argument indices) separated 
by any of the search specification symbols . , ; or -. Evaluation 
of such an expression proceeds as follows: The first node reference, 
which must be an  argument index, is evaluated,  and  the  cursor is 
pushed to this  location relative to  the old cursor  position. If this 
action is impossible (the  node  indicated by the old cursor  position 
had fewer arguments  than  the index of the  one  requested), then 
evaluation ceases and  the value false (integer 0) is the expression 
result. Otherwise the next search symbol and  the following node 
reference are examined. If  the  node reference is an argument index, 
the  cursor is pushed as  before,  and  the search symbol  disregarded. 
But, if the reference is a  node  name,  an  attempt is made to push 
the  cursor to the indicated node, if found, in  a  manner  depending 
upon the search symbol.  A  period  indicates that only immediate 
arguments of the  current  node  are  to  be examined ; a  colon  indicates 
that only the  current  node itself is to be examined ; an underscore 
indicates that all descendants of the  current  node  are to be examined. 
This process continues  until  either  a  search fails (expression False) 
or  the expression is completed successfully (expression true). At 
completion of evaluation,  the  cursor is returned to  its position 
prior to  the expression evaluation. 

For example, consider the  tree in Figure 4, with the  cursor initially 
as  shown. Let us look at several attribute expressions. 

ARG(2):C (true) 
ARC@), which  is the  node C is examined to determine whether 
its  name is C .  

ARG(2).X or ARG(2)"X (false) 
c has no descendants, so clearly these are false. 

ARG(I):B. ARG(I).H (true) 
ARG(1) is examined and is named B. The cursor is then pushed 
to B's first  argument  and  from  this  point (F) immediate  argu- 
ments of the  current  node (F) are  examined.  One of them is H .  

ARG(l)-I (true) 
All descendants of B are checked. I is such a  descendant. 
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Consider  the  tree  in  Figure 5. The  notation ( ) indicates  a value 
in the  tree  as  opposed to  a node. The  attribute expression 

CURSOR 

ARG(I).ARG(I).VALUE 

returns  the value 6. The VALUE keyword is essential to pick up 
scales and precisions. 

subroutine GCL allows OMD’S to pass control  from  one to another by use 
calls of the LINK statement.  When  the R T N  statement in the LrNKed 

to OMD is encountered,  control is passed to  the  statement following 
the LINK.  The position of the  cursor in the  tree is not altered. 

Figure 6 OMD-linking tree A second type of LINK allows the tree to specify which O M D  is 
invoked.  Consider  the  tree  shown in Figure 6. 

The statement 
CURSOR 

LINK  ARG(2) 

causes  the OMD corresponding to the  node C to be  invoked. The 
cursor is positioned at node c. When the OMD @ c has  been exe- 
cuted  and  returns  control to  the calling OMD, the  cursor is reposi- 
tioned to node A .  This  type of blind linking is used to analyze 
the  shape of the tree while actually  generating  code. 

In either  type of LINK statement,  it is possible to pass arguments 
to the  invoked OMD. The  statement 

L I N K  @ CONMPY (A, B, C, D, E) 

passes to  the CONMPY  OMD the items a,  b, c, d, e. The items are 
passed by name so that  the invoked OMD can pass back  results. 
The invoked OMD must have a similar parameter  list.  Thus, 

L I N K  @ CONMPY  (A,B,C,D,E,) 

A limited variable-length parameter list capability is provided, 
whereby a call to  an OMD may have  any  number of arguments 
not  greater than  the number of parameters  indicated  in  the OMD. 
The items that  can be passed in an  argument list include: cells, 
strings, registers, OMD names, and  parameters.  Results  must be 
returned  in cells or strings. 
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The  language  allows  expressions  that  include all of the PL/r oper- 
ators,  as well as  exclusive or (‘?’). For example,  the  following 
expressions  are  allowed : 

DCL  (X,Y,Z,P,Q)  CELL, S STRING 
SET X=Y**2=(P>4lQ<2)*Z 
SET S = S 1 IX’2O’ 

Logical  expressions  are  evaluated to give an  integer  result (1 or 0). 
A limited  amount  of  conversion is allowed: 

SET X = 1 .OEO 
SET X = X + 1  

Built-in  functions  include  one  called BIT, which  tests  the  referenced 
bit  in a cell and  returns a true or false  indication,  depending  on 
whether it is 1 or 0. The  statement 

IF (BIT(X,S))T.F 

tests  bit 5 of cell X and  branches to T if bit 5 is a 1 .  

The  table  look-up facility allows  an  item  to  be  extracted  from  a 
table  that  can  have  up  to 256 dimensions.  The  look-up is performed 
in  response  to  the LOOK statement. For example,  in  the  statement 

LOOK error  label,  result cell, table  name  (arguments) 

error  label is the O M D  label  to  which  control  is  passed if the  argu- 
ments d o  not specify a  member of the  table.  The  result cell will 
contain  the  item  extracted  from  the  table.  Table  name  is  the OMD 
label of the  table  being  used  in  this LOOK statement. 

I n  the  simplest  case  of  table  look-up,  the  expressions  serve  as 
indices, so that  the  look-up  acts  as  an  array  element  reference. 
In more  complex  cases,  the  evaluated  expressions  may be tree  node 
names,  and  the  indexing  is  done by matching  these  names  against 
the  named  table  projections  (rows,  columns,  etc.) In  the  simple 
case,  a  table  is specified as  follows: 

Table  Name: TBL (dimension I ,  dimension 2, etc.)  type ARRAY 

Type : Describes  the  length  of  each  item  in  the  array. 
Dimension: I ,  2, etc., give the size of  each  dimension. 
I ten1 : I ,  2, etc.,  are  the  elements of the  array in row  major 

item 1 ,  item 2, etc. 

order. 

The LOOK statement  allows  a  multiple  choice  to be made in one 
statement. As an  example: 
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DCL (X,Y,)CELL 
LOOK  ERROR,X,CONTBL(Y) 
GOTO X 

*GENERATE  CODE  TO  MULTIPLY BY O N E  
ONE 

*GENERATE  CODE  TO  MULTIPLY BY TWO 
TWO 

CONTROL TBL (6)REF 
ARRAY ONE,TWO,THREE,FOUR,FIVE,SIX 

Cell Y contains  the  constant by which a  variable is to be multiplied. 
The LOOK extracts  the O M D  label  from  the  table of the  particular 
section of the O M D  that will generate  the  required  code. A similar 
effect can be achieved by a series of IF statements: 

IF (Y = 1)ONE 
IF (Y = 2)TWO 

Many different types of items  can be held in a table: floating- 
point  constants, integers, symbolic registers, OMD labels, or OMD 
names. 

skeletons Code  skeletons  are similar in  format to System/360 assembler 
language.  When a skeleton is encountered in an OMD, it  is  inserted 
into  the  output file as pseudo-code. The registers used  by the  various 
skeletons  must  be  declared. Thus  the statements 

DCL R REG(F1XED) 
AR  R,R 

cause an AR skeleton to be generated with symbolic registers. 

It is possible to generate  code with absolute registers if these are 
required.  The  statements 

DCL RO REG(FIXED,ABS(O)),R  REG(F1XED) 

LR  RO,R 

cause an LR pseudo-instruction to be generated that  loads  absolute 
register 0 from a symbolic register. 
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In  skeletons  that  require offsets and  lengths, expressions can specify 
the  required values. For example, 

MVC OFF*4= I (L=(L>6)*4=  l ,R) , l (R)  

It is possible to replace a register in  a  skeleton by a cell containing 
a register. Thus 

DCL R REG(FIXED),X  CELL 
SET X = R  
AR x ,x 

I f  a  skeleton refers to  data in  storage  and  the  address of the  storage 
is not  known at code-generation  time,  the  base  and offset fields 
can be replaced by a cell containing  the  dictionary reference of 
the  data. A later  phase adds the  addressabiity  code. Thus the 
statement 

DCL  X  CELL,  R  REG(F1XED) 

is followed by code to pick the  dictionary reference from  the  tree 
and  then by 

L R,O(X) 

The execution of GCL could proceed in either of two ways-translate 
and  interpret or compile  and execute. It was decided to  translate 
and  interpret for several reasons. The translation process can be 
kept fairly simple. The  translator takes G C L  source  code  and  com- 
pacts  it in a  one-for-one  manner. Expressions are  translated into 
reverse Polish notation. 

To compile and execute would require  a second compiler with its 
associated problems of housekeeping,  module  linkages,  etc. Having 
an  interpreter with all executable  code in one place made  the  com- 
piler easier to  debug  and  more reliable. Also, because of the  more 
compact  interpreter  code, it conserved main  storage  space. 

Code-generation examples 

Two  examples of GCL code  illustrate  the  code-generation process. 

The first example, in  Table 3, is of the  complete OMD for  doing 
floating-point  assignment. It is presented to give the flavor of GCL 
and to indicate  the relative ease of generating  code  for  the many 
cases. 

This example also illustrates  some G C L  coding  conventions crucial 
to exploitation of the  code-generation  philosophy.  The  outside-in 
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Table 3 Floating-point assignment 

@,FLOATASSIGN OMD 
START @,FLOATASSIGN 
DCL  (COPT,  LLEN,  RLEN,  WKCELL,  RATR,  LATR, LO, LB. LI,  LL, LR,  RO, RB, RI,  RR,  RL, 

WKCELL)  CELL, GPR  REG  (FIXED) 
*CHECK  GLOBAL  CELL  WHICH  HAS  COMPILER  OPTIONS 

IF  (BIT  (COPT,  OPTT) = 0 1 BIT(GOPT,MGS) = O), OK 
MSG  ‘@FLOATASSIGN  OPTIMIZED  ONLY  FOR  MOD 65, TIME  OPTION’ 

*FIND BYTE LENGTHS OF SOURCE  AND  TARGET 
*@FLOATLENGTH  UTILlTY EXPECTS CURSOR  AT  PARENT O F  ARlTH  NODE 
OK PUSH  ARG ( I )  

LINK  @FLOATLENGTH  (LLEN) 
POP 
PUSH ARC (2) 
LINK  @FLOATLENGTH  (RLEN) 
POP 
IF  (LLEN = 16 I RLEN = 16), NOT16 
MSG ‘DOUBLE  DOUBLE  LENGTH  NOT  SUPPORTED BY @FLOATASSIGN’ 
RTN 

MSG ‘COMPLEX  NOT  SUPPORTED BY @FLOATASSIGN’ 
RTN 

NOT16 IF  (ARG(1).  ARG(1).  COMPLEX I ARC  (2).  ARG(I).  COMPLEX),  NOTCPX 

NOTCPX  SET  LALN  2 - ARG(1).  UNALIGNED 
SET  RALN = 2 - ARG(2).  UNALIGNED 

*NOW  DO  TABLE  LOOKUP  AND GO TO  RESULT LABEL TO 
*SET UP  REQUIREMENTS  FOR  SOURCE  RESULT,  DEPENDING 
* ON  LENGTHS  AND  ALIGNMENTS 

LOOK  ERRI,  WKCELL,  TBLl(LALN,  LLEN,/4,  RALN,  RLEN/4) 
GO TO  WKCELL 

RTN 
ERR1 MSG ‘ERROR  IN  TBLl  LOOKUP  IN  @FLOATASSIGN’ 

*FOLLOWING  ARE  THE  RESULT LABELS OF  LOOKUP 
*TARGET  4 BYTES ALIGNED,  SOURCE  ALIGNED. ASK FOR 
*RX REFERENCE OR FLOATING  REGISTER 
RXFRl SET  RATR = M‘F0001000’ 

GOTO LRX 
*8 - BYTE RESULT  NEEDED  IN  FLOATING  REGISTER, SO SOURCE 
*WILL  DO  SDR,  LE or LD or MVC(4), SDR,  LE 
FRFWl  SET  RATR = M ‘30000000’ 
*GET  ADDRESSABILITY OF  TARGET  AS  RX or RS  REFERENCE 
LRX  SET  LATR = M ‘COO00000‘ 

*REQUEST BOTH SOURCE  AND  TARGET AS RS  REFERENCES 
*SINCE MVC WILL BE DONE 
RSI SET  RATR = M ‘40000000’ 

SET LATR = M ‘40000000’ 

GOTO  LINK 

*NOW  LINK  TO EACH ARGUMENT 
*STANDARD  CALLING  SEQUENCE HAS BIT ATTRIBUTE  CELL, 
*OFFSET, BASE, INDEX,  LENGTH,  AND  ONE  EXTRA  CELL 
*FOR  SPECIAL  USE  IN  SOME  CONTEXTS 
LINK  LINK  ARG(1)  (LATR, LO,  LB, LI, LL, LR) 

*NOW  DO  LOOKUP AS BEFORE, BUT THIS  TIME  TO 
*DECIDE  WHERE  TO  GO TO FINISH  WORK 

LINK  ARG(2)  (RATR,  RO, RB, RI,  RL,  RR) 

LOOK ERR2,  WKCELL,  TBL2  (LALN,  LLEN/4,  RALN,  RLEN/4) 
GOTO  WKCELL 

ERR2  MSG  ‘ERROR  IN  TBL2  LOOKUP  IN  @FLOATASSIGN’ 

*FOLLOWING  ARE  THE  VARIOUS LABELS RESULTING 
*FROM  THE  LOOKUP 
*SOURCE IS EITHER  RX  (IF  DATA  REFERENCE)  OR  FLOATING 
*REGISTER (IF EXPRESSION).  IT  HAS  SET  RATR  TO  INDICATE  WHICH 
RXFR2  IF (BIT (RATR,  RXREF) 1 BIT (RATR,  RSREF)) LST 

RTN 
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Table 3 Floating-point  assignment  (cont’d) 

*IN  FLOAT  REGISTER  GIVEN  IN  RB  FIELD 
STE  RB,  LO  (Ll,  LB) 
RTN 

*IN  CORE 
LST  L GPR,  RO  (RI,   RB) 

ST  GPR, LO  (LI,  LB) 
RTN 

*DOUBLE  LENGTH  RESULT  IN  REGISTER,  TARGET  ALIGNED 
FRFUL2  STD  RB,  LO  (LI, LB) 

*TARGET IS SHORT  FLOAT,  EITHER IS UNALIGNED. 
*SOURCE  WAS  RETURNED AS RS  REFERENCE 
RS24  MVC  LO  (4,  LB), RO  (RB) 

*TARGET IS LONG  FLOAT  UNALIGNED,  SOURCE  LONG 
*FLOAT  RS  REFERENCE 
RS28  MVC  LO (8, LB), RO  (RB) 

*TARGET  LONG  FLOAT  UNALIGNED,  SOURCE  SHORT  FLOAT 
*RS  REFERENCE 
RS24XC  MVC LO (4, LB), RO  (RB) 

RTN 

RTN 

RTN 

XC  LO + 4  (4, LB), LO + 4 (LB) 
RTN 

*FOLLOWING  ARE  THE  TWO  TABLES,  GIVEN  IN 
*ROW  MAJOR  ORDER 
TBLl  TBL (2, 2, 2, 2) REF 

ARRY  RXFRI ,   RXFRI ,   RSI ,   RSI ,   FRFULI ,   FRFULI ,   FRFULl ,   RSI ,   RSI ,   RSI ,   RSI ,  
RSI,  RSI,  RSI,  RSI,  RSI 

TBL2  TBL  (2, 2,  2, 2) REF 
ARRY  RXFR2,  RXFR2,  RS4,  RS4,  FRFULZ,  FRFUL2  FRFUL2, RS28,  RS24,  RS24,  RS24, 

END 
RS24,  RS24XC,  RS28,  RS24SC,  RS28 

processing  order  automatically  gives  most of the  context-sensitivity 
required.  In  general,  it is not  further  required  that  the O M D  for a 
node  be  given  the  identity of an  argument  node. I f  this  information 
is needed  for  special  cases,  the O M D  can of course  determine  it. 
But  otherwise,  it  is  able  blindly to  link  to  an  argument  node.  Thus 
common  parameter  passing  conventions  must be  used and  respected 
within  certain  contexts. A common  convention  for  all  calls  to  ex- 
pression  node OMD’S was used  in the  prototype.  The  first  parameter 
is an  attribute cell giving  details of its  requirements for location, 
length,  alignment,  etc., of the  argument  result.  The  subsequent 
parameters  detail  those specified in  the  first.  Often  the  caller  re- 
quests  any  of  several  alternative  result  conditions: in  such  cases, 
the called routine  modifies  the  parameters  to  indicate  which  altern- 
ative  has been  used as  most  convenient. 

The  second  example, in Table 4, shows  the  ease of the  required 
context-dependent  generation,  which  results  from  the  outside-in 
processing  order.  This  technique  requires  that  the O M D  for a  cer- 
tain  node  pass  down  certain  requirements to the OMD’S for  process- 
ing its  argument  nodes.  For  example, @ ASSIGN may  preallocate 
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Table 4 length  determination 

START @ LENGTHBIF  (ATR, 0, B, I, L,  ML) 
*SET BIT TO  INDICATE  ONLY  A  LENGTH  REQUIRED 
SET  ATR = ATR j M ‘00000001’ 
LINK  ARC (2) (ATR, 0, B, I, L, ML) 
END 
START  @CONCAT  (ATR, 0, B, I, L, ML) 

1F (BIT  (ATR,  LONLY)),  NORM 
*SPECIAL  CASE IF LENGTH  ONLY  REQUIRED 
*ASK  FIRST  OPERAND  TO  PUT  LENGTH  IN  REGISTER 
SET  LATR = M ‘06004000’ 
LINK  ARG(2)  (LATR, LO, B, LI.  LL,  LML) 

SET  RATR = M ‘C6000000’ 
LINK  ARG(3)  (RATR,  RO,  RB,  RI,  RL,  RML) 
IF  (BIT  (RATR,  EGPR) I BIT (RATR,  OGPR))  RR 

AH B, RO  (RI, RB) 
RTN 

RR AR B, RB 
RTN 

*ASK  SECOND  OPERAND  FR  IN  EITHER  REGISTER  OR  STORAGE 

*SECOND  OPERAND  IN  STORAGE 

*SECOND  OPERAND  IN  REGISTER 

END 

a  target  location  for  an  argument’s  result,  require  a  certain  align- 
ment,  request RX or RS storage  references,  or  any  variety of register, 
etc. In  this  case, @; ASSIGN is  asking  that  only  a  length be returned. 

When @, FLOATASSIGN is  invoked,  the  tree looks as  shown in 
Figure 7. The  sample  tree  in  the  section on tree  text gives a  repre- 
sentative  tree  for  this  case  in  more  detail. 

The GCL cursor is pointing  at  the ASSIGN node.  Prior  to  this 
invocation,  control  had  passed  to  the (@ STATEMENT  OMD, which 
then  stated LINK ARG(5). This  action  brought in the C; a ASSIGN 
OMD and  positioned  the  cursor  at ASSIGN. @ ASSIGN is  a  driver 
OMD that  investigates  the  types of its  arguments,  then  calls  the 
appropriate  assignment  routine  for  the  data-types  found. I n  this 
case,  it  calk @ FLOATASSIGN, leaving  the  cursor  positioned a t  
ASSIGN. 

The  length  built-in  function is trivial  because of the  outside-in  proc- 
essing  order  followed  during  code  generation.  The c) (I LENGTHBIF 
OMD simply  passes to its  argument  expression  a  preassigned  bit on 
the  first  argument,  indicating  that only the  length of the  result  is 
desired,  not  its  value.  The  tree  for  the  example is shown  in  Figure 8. 
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C I  and C2 may, in  general, be string  expressions.  The  following 
recursive  definition of the  result  of  the  length  bit  for CONCAT 
holds  for  the  various  possible  nodes  under  it: 

@> CONCAT simply  invokes  its  two  arguments  with  the  same  bit 
on to indicate  that  only  a  length is required.  These  arguments 
return  their  result  lengths  as  requested. (g, CONCAT subsequently 
adds  those  lengths  and  returns  this  result  to  its  caller  (in  this  case, 
fi LENGTH). 

The  outside-in  processing  order  ensures  that no matter  how  com- 
plicated  the  argument  may  be, no processing is performed  except 
that necessary to establish  the  length  of  the  ultimate  argument to 

LENGTH. The  immediate  argument OMD to @ LENGTH passes 
down  to  each  argument  the  fact  that only a length is required. 
Ultimately no result  expressions  are  evaluated,  only  their  lengths. 

This  example is typical of the  value  of  the  outside-in  processing 
order.  Every  operand i n  a  statement  is  evaluated  only  as  required 
by its  context. 

Compile-time characteristics 

Using a trace facility supplied by GCL, we obtained  the  following 
statistics:  each PL/I  statement  results in  300 GCL statement  execu- 
tions;  33 GCL statement  executions  result  in  one  line of pseudo- 
code;  thus,  each PL/I statement  results  in  nine  lines of pseudo-code. 

Twenty OMD’s were  involved  for  each PL/I  statement.  Forty  per- 
cent of all OMD’S invoked  were  found  to  already be in  main  storage. 

There  were 21 1 OMD’S, totaling 102,000 bytes of GCL code.  Average 
length  of  an OMD was 482 bytes,  the  longest  being 3800 bytes. 
Since it was  estimated  that  this  represented  one-third of the  code- 
generation  phase  of a PL/I  compiler, a complete  compiler  code- 
generation  phase  would  have  required 600 OMD’S totaling  300,000 
bytes. 

The  compile  time  appeared  to be slow,  particularly  in  the  code- 
generation  phase,  although no compile  times  are  available.  However, 
we believe that  the  interpreter  and  the OMD loader  could  be  re- 
coded so as  to significantly reduce  their size and  their  execution 
times. 

Another  area  for  inlorovement is the  design  of  the  orototvne  OM^ 

required OMD is  already  in  main  storage. If not,  it  checks  for 
available  unused  storage  space  in  the OMD area. If there is none, 
it  simply  displaces an OMD in  main  storage,  taking  up  the  least 
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space sufficient for  the new OMD. More  sophisticated  techniques 
are available  and  could be  used to advantage. 

Displacement  priorities  should be statistically established, based 
on frequency of execution and size of the OMD’s. Possible pre- 
loading  techniques  should be investigated. I f  a  certain OMD always, 
or  usually, calls a  certain  other OMD, then  loading of the second 
O M D  should  accompany  loading of the first. 

At this  time, effectiveness of these techniques  cannot be quantified. 
The OMD structure,  however,  did obey the following two  encour- 
aging  generalities: frequency of execution of the  various OMD’S 
varied widely, with a small number (@ STATEMENT, @, DATAREF, 
and several others)  requiring  most of the  execution  and  most of 
the  loader invocations-which should  make  a  priority  scheme effec- 
tive. Many  predictable OMD call trees were found,  a result both 
of the OMD structuring  and of the  source  language itself. Large 
high-level languages  are  not so modular  that text-driven processing 
need imply totally  unpredictable process sequencing. The preloading 
technique,  therefore,  should also be exploited. 

Summary Comment 

The  authors believe that using the high-level language (GCL) for 
code  generation  has  advantages in terms of extendability, flexibility, 
and reliability. 

extendable The code-generation  techniques are highly relevant to  an  extendable 
compiler language definition system. In most such systems, definition .of  a 

new type of statement  or  language element involves two specifica- 
tions:  the  information  required  to parse the new language  element 
and  integrate  its  syntax with surrounding  language  elements:  and 
definition of the  semantics of the new element, in terms of the  com- 
piler base  language. 

The second requirement  means  that  the base language  must  theo- 
retically have all power required, since all extensions are ultimately 
reduced to the  base  language.  With  the  introduction of languages 
like PL/I,  it becomes apparent  that the  base  language  required to 
extend to PL/I is very close to PL/I itself. Even if it were theoretically 
possible to extend a FORTRAN-type base to PL/I level, its efficiency 
would be doubtful. 

This  code-generation  technique  lends itself to  a new kind of defini- 
tion  mechanism.  A new language element might be defined in terms 
of its  syntax  and of the  form  the trees take when the element occurs 
in  a  source  program. The trees might  contain new nodes never 
before used. Where new nodes appear, new OMD’S are written  and 
entered  into the system automatically,  causing  the  semantics of 
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the new element  to be defined precisely in a  language very close 
to  machine  code  (in  this  case,  pseudo-code). 

This  possibility  obviates  the  requirement  of  theoretical  adequacy 
of the  base  language  and  makes  it  possible  to  define new language 
with efficient implementation.  The  authors believe that if this sys- 
tem of code  generation  is  adopted by extendable  language  compilers, 
their  efforts  are likely to  lead  to  considerable success. 

One of the  problems  encountered by a  compiler  for  a new language 
is that  the  semantics  of  the  language  elements  tend  to  change. 
Keeping  up  with  these  changes  can  be very expensive  and  time  con- 
suming.  Much of the  compiler  alteration  occurs  at  the  code-genera- 
tion  phase,  since  it is there  that  the new definition of the  language 
element  is finally realized.  The  authors believe that  a  code-genera- 
tion  scheme  like  the  one  described  would  allow  language  changes 
to  be  made easily and  at  small  cost. OMD’S can be added  to a sys- 
tem  almost  ad  infinitum. 

When  writing  an  optimizing  compiler  for  a  large  language,  two 
types of reliability  become  necessary.  The  writer  must  ensure  that 
the  compiler is bug-free  and  produces  code  that  works. All cases 
must  be  covered  with  equal  care to avoid  leaving  traps  and  pitfalls. 

The  experience  gained  during  the  coding  of  the  code-generation 
stage of the  prototype  indicated  that OMD’S are easily debugged, 
requiring  an  average  of  three  machine  runs  to  check  and  debug. 
It  was  easy to think  about  the  special  cases  involved  because  the 
problem  was  to  identify  the  special  cases,  rather  than  code  the 
phase so as  to  generate  the  required  code.  Since  coding  time  was 
so trivial,  effort  could  be  spent  on  ensuring  that all cases  were 
covered  and all pitfalls  removed. 

The  technique  described is a step  toward  providing a common 
component  for  the  code-generation  process.  The  tree  text  format, 
tree  analysis, CXL (including  its  translator  and  interpreter),  and 
the  paging  mechanism  are all language-independent  and  might 
serve  as  common  tools  for use in  other  compilers.  Producing  the 
code-generation  phase  for a new compiler  this  way  then  would 
require  only  the  writing of OMD’S needed  for  that  language.  It is 
probable  that if one  has  available  the  complete  set of OMD’S for 
a  language as rich as PL/I, a  large  number  could be lifted  intact 
and used in new compilers  for  other  languages. 
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