
A solution is proposed to the problem of optimizing code generation
by a large-Iunguage compiler.

A high-level definitional language is used to &$ne the code mappings,
and M interpreter executes the routines in this language during the
one-puss, text-driven code-generation phase.

The technique might also be applied to extendable languages and
shared-component compilers.

Code-generation technique for large-language compilers
by M. Elson and S. T. Rake

The design of an optimizing compiler for a large and rich language
poses problems beyond those of sheer size and cost. One of the most
serious is that the wealth and variety of the language makes it
possible to express the same logical function in terms of many
different source constructs. The choice may be based on naturalness
of language use, program readability, ease of debugging, compile-
time or object-time space-versus-time tradeoffs, or programmer
whimsicality.

The problem is compounded when the target machine of the com-
piler is one as rich in function as the IBM System/360.' Again,
there are many ways of expressing the same function. And if the
source language is designed to be highly machine-independent,
there is, naturally, no simple set of mappings between source and
target constructs. The problem of optimizing in this environment
is most strongly felt a t code-generation time, when the mapping
must be effected from a source-oriented text to a target-oriented
one.

This paper describes a solution to this problem, in terms of a code-
generation phase that features a high-level, special-purpose, code-
generation language, and total context sensitivity, unlimited special
casing, and a paging mechanism necessary because of the resultant
phase size. The phase was developed as part of an experimental
optimizing compiler.

166 ELSON AND R A K E IBM SYST J

I n this paper, is used as an example source language,2 and
System/360 machine code is used because it is the particular target
language for which the technique was developed. However, applica-
tion of the ideas presented presuppose implementation of a language
designed to be machine-independent, but do not presuppose PL/I
source language or Systemi360 target language. The code-genera-
tion language was parameterized for different System/360 models,
but not for radically different machine languages. The authors feel,
however, that modifications to the language and its use might
easily be made to accommodate different machine architectures.

We first describe our solution to the code-generation problem,
then demonstrate the solution with a prototype compiler.

The code-generation problem

The semantics of PL/ I are highly context-sensitive, so that worst-
case code generation is a more severe problem than with simpler
languages. For example, the worst-case and best-possible code that
could be generated from the [%/I source statements

DCL (CI, C2) C H A R (I O) V A R ;
I = LENGTH (CI 1 1C2);

are shown in Table I . The table shows how local context-free code
generation can destroy the meaning of the original source state-
ment and then generate the only code possible. The meaning of
the statement is-place in I the length of the result of concatenating
CI and C2"nol concatenate CI and C2 and then take the length
of the result. The difference is only marginal in appearance but,
as can be seen from the code generated, is significant.

The example illustrates another problem. A programmer is usually
unaware of how a compiler processes the statements he includes
in his source program. I f the above statement had been written
in some other manner, the code generated might have been con-
siderably improved. For example, the statement

I = LENGTH (C11 IC2);

results in poor code; the statement

I = L E N G T H (CI) + LENGTH (C2);

results in the best possible code.

Another problem is evident from studies that indicate that about
fifteen times as much code generation logic is needed for unoptimized
full PL/I as for optimized full FORTRAN. It was felt that, with

NO. 3 ' 1970 CODE-GENERATION TECHNIQUE

Table 1 Naive and context-sensitive code generation

Naive Context-sensitice

LA 1,WSl.1
L 2,DV. .C1
LH 3;DV. .Cl +h LH 14,DV. .C1+6
LTR 0,3 AH 14,DV. .C2+6
BC 8,CL. 1 ST 14,I
BCTR 3,O
EX 3,C. .048C
AR 1 ,o
L 2,DV. . C2
IC 3,DV. .C2+6
LTR
BC

333
8,CL.2

AR 0,3
BCTR 3,O
EX 3,C. .048C

STH D,TMPDV. .0480+6
L 14,DV. .TMP. .0444
L 15,TMPDV. ,0480
LH 8,TMPDV. .0480+6
STH 8,DV. .TMP. .0444+6
LTR 8 3
BC 8,CL. 3
BCTR 8,0

LH 14,DV. .TMP. .0444+6
ST 14,l

CL. 1 EQU *

CL 2 EQU *

CL. 3 EQU *

the use of standard techniques, about fifty times as much would
be needed for optimized PL/I as for optimized FORTRAN.

optimization Multipass generators cause information to be lost between passes.
problems Multipass code generators are function driven; i.e., during each

pass, code is generated for a given set of functions and the passes
are performed in a set order. Unless a large amount of information
is retained, one phase is aware only of the data from a previous
phase that it is to process; it is not aware of the use to be made
later of its results. The amount of information carried around to
allow communication from phase to phase is enormous for a large
language.

Code in multipass generators is usually generated from the inside
out. A suitable form of internal text for multipass generation is
triples, or a similar structure. The triples express the relationships
among the different parts of the source statement. They generally
are ordered so that the innermost part of any expression occurs
first. As code is generated by succeeding phases, the triples are

serve as input to the code-generation phase. As an example, con-
sider again the expression LENGTH (C11lC2) but in the following
possible text forms:

1 . Reverse Polish form

2. Standard Polish form

3. Multi-address code with named results
LENGTH 1 1 C1 C2

CONCAT t , CI C?
LENGTH t , t ,

4.. Multi-address code with implicit instruction results
1. CONCAT CI C2
2. LENGTH I

5. Trees (see Figure 1) Figure 1 Tree representation

These forms have much in common. Number 1 is derived from
number 5 by a top-down, left-right tree walk; numbers 3 and 4
are derived from 1 by stacking operands left to right and then
unstacking and producing code when an operator is encountered;
numbers 3 and 4 are derived from 2 by stacking operators and oper-
ands separately and unstacking both, then producing code when
all of an operator’s operands have been encountered. In addition,
each of these derivations is logically reversible. However, the issue
here is not one of logical equivalence but of practical ease of pro-
cessing. Bearing i n mind the above ground rule, consider now a
reasonable order for investigating the expression.

z LENGTH

CONCAT

C 1 c2

1. Invoke the length processor.
2. Invoke the concatenation processor. (Normally, it returns both

a result and an indication of the length of that result. In this
case, however, it is told to return only the length.)

3. Invoke data reference processors for c! and then ~ 2 , telling

4. Return the object time locations of the lengths to the concatena-

5. Generate the add of the lengths.
6. Return the location of the result to the length processor.
7. Return this value as the result.

I n considering the above data formats for this kind of processing
order, a striking implementation difficulty can be seen with both
numbers I and 2. Whether the scanning order is forwards or back-
wards. it is difficult to find all of an operator’s immediate operands.
They are not adjacent, but separated by arbitrary distances; the
location of one operand depends upon the full content of the other.
Form number 3 has the same problem to a lesser degree; the scan
entails investigating first operands of prior operators. Numbers 4
and 5 both give immediate access to operands. The usual hard-

l each to return only the object time location of the length.

tion processor.

1

I NO. 3 . 1970 CODF-GFNFRATION TFCHNlnIlF 17 1

ware imposition of a single-dimensional addressable store implies
the same internal storage requirements for the two. They differ
then only in external representation, and in the fact that using
number 4 requires a bottom-up processing order to establish the
context. In addition, number 5 seems to provide a more intuitive
means of associating an operator with its operands diagramatically.
Thus we used number 5.

interrogating A large set of utility routines are provided to interrogate the trees
trees at code-generation time. These routines are also used throughout

earlier portions of the compiler to build, modify, and interrogate
trees. Figure 2 gives a general idea of the complexity. I t shows
the complete tree for the assignment statement X = I , where both
X and I are undeclared, thus acquiring the usual PL/I default char-
acteristics. 4

The most important thing to note here is that all attribute informa-
tion is retained in the text. During code generation, it is never
necessary to interrogate the dictionary to produce code.

The code-generation mechanism

The production of pseudo-instructions a t code-generation time is
carried out by a set of routines called OPGEN macro definitions
(OMD’S). They are written in our generate coding language (GCL),
pretranslated into a compressed internal form, and stored in a
library as part of the compiler. They are invoked and interpreted
as needed during code generation.

An O M D area is provided in main storage, and OMD’S are paged
into this area as required during execution. The paging mechanism
is invoked when a GCL L I N K command (bring in a new OMD)
or an R T N command (return control to the L.INKing OMD) is
executed. An OMD need be i n storage only while it is being executed.
At any other time, it may be overwritten if the space is required.
OMD’S are read-only, so they need never be written out. Each
(possibly recursive) invocation of an OMD involves a new alloca-
tion of dynamic workspace, which must remain active until that
invocation is terminated.

The input data for the code-generation phase is the abstract tree
text produced by the front end and the optimizer. The OMD’S
scan this text and produce from it the pseudo-instructions, which
subsequently become input to the register-allocation phase.

The compile-time flow of control is best illustrated by a simple
example, as shown in Figure 3 . The text trees are being processed
one by one. Processing has just been completed for a statement,
which we shall assume is GOT0 X.

172 ELSON AND RAKE IBM SYST J

(-) /

ARITH

PRECISION

Figure 3 Processing statement GOTO X I

I f OMD AREA

I I I

THE TREE FOR GOTO X LOOKS LIKE THIS

(-T>

'DICTIONARY R ~ F F R E N C E FOR X

I n the case shown in Figure 3, the OhlD analyzes its first four argu-
ments, possibly generating some code indicated by them. Eventually I
L I N K ARG(5)

is executed (the OMD representing the fifth argument of the STATE- I
M E N T node).

The OMD 61 GOT0 is now brought in and interpreted. It eventually
generates the instruction I
BC 15, X

which goes into the pseudo-instructiol file, and issues an R T N state-
ment. OPGEN stores another node pointer, checks that the @ STATE-
M E N T is in main storage, and resumes interpretation of the ((I

STATEMENT from the point followiiig the L I N K . After Some
cleaning up, the Q . STATEMENT issues a R T N , and OPGEN knows that
processing for this statement has been completed. It then brings in
the next tree and the cycle is repeated.

As is indicated in the above example, there is a direct relation
between node names i n the text trees and names of the corresnondine

procedural
characteristic

local An item with the CELL attribute is a 4-byte item that may be de-
storage clared in any OMD that requires it. Cells are local to the OMD and

are reallocated if the OMD is invoked recursively. A cell can hold
many types of items, which can vary dynamically when the OMD is
being executed.

Consider the following example of the use of a cell

DCL C CELL
SET C = LABEL
GOTO C

LABEL . . . ,-

The GOTO passes control to whatever OMD label is held in cell c .
I n the sequence

DCL I‘Q CELL
SET PQ= 1
SET PQ= 1.3584- 5

PQ can hold both integers and floating-point numbers.

Another use of cell is shown in the sequence

DCL XY CELL
SET XY = @ PLUS
L I N K XY

Execution of the L I N K statement passes control to the PLUS OMD.

Cells can also contain compiler-generated labels to be inserted into
the pseudo-code, symbolic registers to be inserted into skeletons,
32-bit strings to hold switches, and packed decimal constants of
up to 5 digits.

In addition to the cells, a long cell or string is provided. This type
of storage is used when dealing with values that will not fit into
four bytes, such as long floating-point constants, long decimal con-
stants, character string constants, edit masks for conversion from
numeric to character, etc. They are used exactly the same as cells,
and in our implementation had a maximum length of 50 bytes.
Use of the string facility is exemplified by:

1

DCL S STRING
SET S = X’2021204B‘
SET s = s I Ix’20’

176 ELSON AND RAKE IBM SYST J

Another type of cell is provided for the entire code-generation
phase. Such cells are thus known to all OMD'S and are never dy-
namically reallocated.

To understand how a set of OMD'S scans a tree and generates
the correct code for that tree, it is important to understand the
working of the cursor. The cursor is a pointer to the current node
in the tree and can be altered by execution of certain statements.
Before each tree is processed, the cursor is set to the top node.

Information is extracted from the tree by use of attribute expres-
sions, whose evaluations result in indications of presence or absence
of specified nodes (Figure 4). An attribute expression is a sequence
of node references (node names or argument indices) separated
by any of the search specification symbols . , ; or -. Evaluation
of such an expression proceeds as follows: The first node reference,
which must be an argument index, is evaluated, and the cursor is
pushed to this location relative to the old cursor position. If this
action is impossible (the node indicated by the old cursor position
had fewer arguments than the index of the one requested), then
evaluation ceases and the value false (integer 0) is the expression
result. Otherwise the next search symbol and the following node
reference are examined. If the node reference is an argument index,
the cursor is pushed as before, and the search symbol disregarded.
But, if the reference is a node name, an attempt is made to push
the cursor to the indicated node, if found, in a manner depending
upon the search symbol. A period indicates that only immediate
arguments of the current node are to be examined ; a colon indicates
that only the current node itself is to be examined ; an underscore
indicates that all descendants of the current node are to be examined.
This process continues until either a search fails (expression False)
or the expression is completed successfully (expression true). At
completion of evaluation, the cursor is returned to its position
prior to the expression evaluation.

For example, consider the tree in Figure 4, with the cursor initially
as shown. Let us look at several attribute expressions.

ARG(2):C (true)
ARC@), which is the node C is examined to determine whether
its name is C .

ARG(2).X or ARG(2)"X (false)
c has no descendants, so clearly these are false.

ARG(I):B. ARG(I).H (true)
ARG(1) is examined and is named B. The cursor is then pushed
to B's first argument and from this point (F) immediate argu-
ments of the current node (F) are examined. One of them is H .

ARG(l)-I (true)
All descendants of B are checked. I is such a descendant.

NO. 3 . 1970 CODt-GENERATION TECHNIQUE

Consider the tree in Figure 5. The notation () indicates a value
in the tree as opposed to a node. The attribute expression

CURSOR

ARG(I).ARG(I).VALUE

returns the value 6. The VALUE keyword is essential to pick up
scales and precisions.

subroutine GCL allows OMD’S to pass control from one to another by use
calls of the LINK statement. When the R T N statement in the LrNKed

to OMD is encountered, control is passed to the statement following
the LINK. The position of the cursor in the tree is not altered.

Figure 6 OMD-linking tree A second type of LINK allows the tree to specify which O M D is
invoked. Consider the tree shown in Figure 6.

The statement
CURSOR

LINK ARG(2)

causes the OMD corresponding to the node C to be invoked. The
cursor is positioned at node c. When the OMD @ c has been exe-
cuted and returns control to the calling OMD, the cursor is reposi-
tioned to node A . This type of blind linking is used to analyze
the shape of the tree while actually generating code.

In either type of LINK statement, it is possible to pass arguments
to the invoked OMD. The statement

L I N K @ CONMPY (A, B, C, D, E)

passes to the CONMPY OMD the items a, b, c, d, e. The items are
passed by name so that the invoked OMD can pass back results.
The invoked OMD must have a similar parameter list. Thus,

L I N K @ CONMPY (A,B,C,D,E,)

A limited variable-length parameter list capability is provided,
whereby a call to an OMD may have any number of arguments
not greater than the number of parameters indicated in the OMD.
The items that can be passed in an argument list include: cells,
strings, registers, OMD names, and parameters. Results must be
returned in cells or strings.

178 EL.SON AND RAKE IBM SYST J

The language allows expressions that include all of the PL/r oper-
ators, as well as exclusive or (‘?’). For example, the following
expressions are allowed :

DCL (X,Y,Z,P,Q) CELL, S STRING
SET X=Y**2=(P>4lQ<2)*Z
SET S = S 1 IX’2O’

Logical expressions are evaluated to give an integer result (1 or 0).
A limited amount of conversion is allowed:

SET X = 1 .OEO
SET X = X + 1

Built-in functions include one called BIT, which tests the referenced
bit in a cell and returns a true or false indication, depending on
whether it is 1 or 0. The statement

IF (BIT(X,S))T.F

tests bit 5 of cell X and branches to T if bit 5 is a 1 .

The table look-up facility allows an item to be extracted from a
table that can have up to 256 dimensions. The look-up is performed
in response to the LOOK statement. For example, in the statement

LOOK error label, result cell, table name (arguments)

error label is the O M D label to which control is passed if the argu-
ments d o not specify a member of the table. The result cell will
contain the item extracted from the table. Table name is the OMD
label of the table being used in this LOOK statement.

I n the simplest case of table look-up, the expressions serve as
indices, so that the look-up acts as an array element reference.
In more complex cases, the evaluated expressions may be tree node
names, and the indexing is done by matching these names against
the named table projections (rows, columns, etc.) In the simple
case, a table is specified as follows:

Table Name: TBL (dimension I , dimension 2, etc.) type ARRAY

Type : Describes the length of each item in the array.
Dimension: I , 2, etc., give the size of each dimension.
I ten1 : I , 2, etc., are the elements of the array in row major

item 1 , item 2, etc.

order.

The LOOK statement allows a multiple choice to be made in one
statement. As an example:

NO. 3 . 1970 CODE-GENERATION TECHNIQUE

DCL (X,Y,)CELL
LOOK ERROR,X,CONTBL(Y)
GOTO X

*GENERATE CODE TO MULTIPLY BY O N E
ONE

*GENERATE CODE TO MULTIPLY BY TWO
TWO

CONTROL TBL (6)REF
ARRAY ONE,TWO,THREE,FOUR,FIVE,SIX

Cell Y contains the constant by which a variable is to be multiplied.
The LOOK extracts the O M D label from the table of the particular
section of the O M D that will generate the required code. A similar
effect can be achieved by a series of IF statements:

IF (Y = 1)ONE
IF (Y = 2)TWO

Many different types of items can be held in a table: floating-
point constants, integers, symbolic registers, OMD labels, or OMD
names.

skeletons Code skeletons are similar in format to System/360 assembler
language. When a skeleton is encountered in an OMD, it is inserted
into the output file as pseudo-code. The registers used by the various
skeletons must be declared. Thus the statements

DCL R REG(F1XED)
AR R,R

cause an AR skeleton to be generated with symbolic registers.

It is possible to generate code with absolute registers if these are
required. The statements

DCL RO REG(FIXED,ABS(O)),R REG(F1XED)

LR RO,R

cause an LR pseudo-instruction to be generated that loads absolute
register 0 from a symbolic register.

180 ELSON AND RAKE IBM SYST J

In skeletons that require offsets and lengths, expressions can specify
the required values. For example,

MVC OFF*4= I (L=(L>6)*4= l ,R) , l (R)

It is possible to replace a register in a skeleton by a cell containing
a register. Thus

DCL R REG(FIXED),X CELL
SET X = R
AR x ,x

I f a skeleton refers to data in storage and the address of the storage
is not known at code-generation time, the base and offset fields
can be replaced by a cell containing the dictionary reference of
the data. A later phase adds the addressabiity code. Thus the
statement

DCL X CELL, R REG(F1XED)

is followed by code to pick the dictionary reference from the tree
and then by

L R,O(X)

The execution of GCL could proceed in either of two ways-translate
and interpret or compile and execute. It was decided to translate
and interpret for several reasons. The translation process can be
kept fairly simple. The translator takes G C L source code and com-
pacts it in a one-for-one manner. Expressions are translated into
reverse Polish notation.

To compile and execute would require a second compiler with its
associated problems of housekeeping, module linkages, etc. Having
an interpreter with all executable code in one place made the com-
piler easier to debug and more reliable. Also, because of the more
compact interpreter code, it conserved main storage space.

Code-generation examples

Two examples of GCL code illustrate the code-generation process.

The first example, in Table 3, is of the complete OMD for doing
floating-point assignment. It is presented to give the flavor of GCL
and to indicate the relative ease of generating code for the many
cases.

This example also illustrates some G C L coding conventions crucial
to exploitation of the code-generation philosophy. The outside-in

NO. 3 . 1970 CODE-GENERATION TECHNIQUE

Table 3 Floating-point assignment

@,FLOATASSIGN OMD
START @,FLOATASSIGN
DCL (COPT, LLEN, RLEN, WKCELL, RATR, LATR, LO, LB. LI, LL, LR, RO, RB, RI, RR, RL,

WKCELL) CELL, GPR REG (FIXED)
*CHECK GLOBAL CELL WHICH HAS COMPILER OPTIONS

IF (BIT (COPT, OPTT) = 0 1 BIT(GOPT,MGS) = O), OK
MSG ‘@FLOATASSIGN OPTIMIZED ONLY FOR MOD 65, TIME OPTION’

*FIND BYTE LENGTHS OF SOURCE AND TARGET
*@FLOATLENGTH UTILlTY EXPECTS CURSOR AT PARENT O F ARlTH NODE
OK PUSH ARG (I)

LINK @FLOATLENGTH (LLEN)
POP
PUSH ARC (2)
LINK @FLOATLENGTH (RLEN)
POP
IF (LLEN = 16 I RLEN = 16), NOT16
MSG ‘DOUBLE DOUBLE LENGTH NOT SUPPORTED BY @FLOATASSIGN’
RTN

MSG ‘COMPLEX NOT SUPPORTED BY @FLOATASSIGN’
RTN

NOT16 IF (ARG(1). ARG(1). COMPLEX I ARC (2). ARG(I). COMPLEX), NOTCPX

NOTCPX SET LALN 2 - ARG(1). UNALIGNED
SET RALN = 2 - ARG(2). UNALIGNED

*NOW DO TABLE LOOKUP AND GO TO RESULT LABEL TO
*SET UP REQUIREMENTS FOR SOURCE RESULT, DEPENDING
* ON LENGTHS AND ALIGNMENTS

LOOK ERRI, WKCELL, TBLl(LALN, LLEN,/4, RALN, RLEN/4)
GO TO WKCELL

RTN
ERR1 MSG ‘ERROR IN TBLl LOOKUP IN @FLOATASSIGN’

*FOLLOWING ARE THE RESULT LABELS OF LOOKUP
*TARGET 4 BYTES ALIGNED, SOURCE ALIGNED. ASK FOR
*RX REFERENCE OR FLOATING REGISTER
RXFRl SET RATR = M‘F0001000’

GOTO LRX
*8 - BYTE RESULT NEEDED IN FLOATING REGISTER, SO SOURCE
*WILL DO SDR, LE or LD or MVC(4), SDR, LE
FRFWl SET RATR = M ‘30000000’
*GET ADDRESSABILITY OF TARGET AS RX or RS REFERENCE
LRX SET LATR = M ‘COO00000‘

*REQUEST BOTH SOURCE AND TARGET AS RS REFERENCES
*SINCE MVC WILL BE DONE
RSI SET RATR = M ‘40000000’

SET LATR = M ‘40000000’

GOTO LINK

*NOW LINK TO EACH ARGUMENT
*STANDARD CALLING SEQUENCE HAS BIT ATTRIBUTE CELL,
*OFFSET, BASE, INDEX, LENGTH, AND ONE EXTRA CELL
*FOR SPECIAL USE IN SOME CONTEXTS
LINK LINK ARG(1) (LATR, LO, LB, LI, LL, LR)

*NOW DO LOOKUP AS BEFORE, BUT THIS TIME TO
*DECIDE WHERE TO GO TO FINISH WORK

LINK ARG(2) (RATR, RO, RB, RI, RL, RR)

LOOK ERR2, WKCELL, TBL2 (LALN, LLEN/4, RALN, RLEN/4)
GOTO WKCELL

ERR2 MSG ‘ERROR IN TBL2 LOOKUP IN @FLOATASSIGN’

*FOLLOWING ARE THE VARIOUS LABELS RESULTING
*FROM THE LOOKUP
*SOURCE IS EITHER RX (IF DATA REFERENCE) OR FLOATING
*REGISTER (IF EXPRESSION). IT HAS SET RATR TO INDICATE WHICH
RXFR2 IF (BIT (RATR, RXREF) 1 BIT (RATR, RSREF)) LST

RTN

182 E L S O N AND R A K E IBM SYST J

Table 3 Floating-point assignment (cont’d)

*IN FLOAT REGISTER GIVEN IN RB FIELD
STE RB, LO (Ll, LB)
RTN

*IN CORE
LST L GPR, RO (RI, RB)

ST GPR, LO (LI, LB)
RTN

*DOUBLE LENGTH RESULT IN REGISTER, TARGET ALIGNED
FRFUL2 STD RB, LO (LI, LB)

*TARGET IS SHORT FLOAT, EITHER IS UNALIGNED.
*SOURCE WAS RETURNED AS RS REFERENCE
RS24 MVC LO (4, LB), RO (RB)

*TARGET IS LONG FLOAT UNALIGNED, SOURCE LONG
*FLOAT RS REFERENCE
RS28 MVC LO (8, LB), RO (RB)

*TARGET LONG FLOAT UNALIGNED, SOURCE SHORT FLOAT
*RS REFERENCE
RS24XC MVC LO (4, LB), RO (RB)

RTN

RTN

RTN

XC LO + 4 (4, LB), LO + 4 (LB)
RTN

*FOLLOWING ARE THE TWO TABLES, GIVEN IN
*ROW MAJOR ORDER
TBLl TBL (2, 2, 2, 2) REF

ARRY RXFRI , RXFRI , RSI , RSI , FRFULI , FRFULI , FRFULl , RSI , RSI , RSI , RSI ,
RSI, RSI, RSI, RSI, RSI

TBL2 TBL (2, 2, 2, 2) REF
ARRY RXFR2, RXFR2, RS4, RS4, FRFULZ, FRFUL2 FRFUL2, RS28, RS24, RS24, RS24,

END
RS24, RS24XC, RS28, RS24SC, RS28

processing order automatically gives most of the context-sensitivity
required. In general, it is not further required that the O M D for a
node be given the identity of an argument node. I f this information
is needed for special cases, the O M D can of course determine it.
But otherwise, it is able blindly to link to an argument node. Thus
common parameter passing conventions must be used and respected
within certain contexts. A common convention for all calls to ex-
pression node OMD’S was used in the prototype. The first parameter
is an attribute cell giving details of its requirements for location,
length, alignment, etc., of the argument result. The subsequent
parameters detail those specified in the first. Often the caller re-
quests any of several alternative result conditions: in such cases,
the called routine modifies the parameters to indicate which altern-
ative has been used as most convenient.

The second example, in Table 4, shows the ease of the required
context-dependent generation, which results from the outside-in
processing order. This technique requires that the O M D for a cer-
tain node pass down certain requirements to the OMD’S for process-
ing its argument nodes. For example, @ ASSIGN may preallocate

NO. 3 . 1970 CODE-GtNERATION TECHNIQUE 183

%
Figure 7 Floating-point assign-

ment

STATEMENT

ASSIGN

TARGET EXPRESSIOh

floating
point

assignment

Figure 8 length function

LENGTHBIF

184

Table 4 length determination

START @ LENGTHBIF (ATR, 0, B, I, L, ML)
*SET BIT TO INDICATE ONLY A LENGTH REQUIRED
SET ATR = ATR j M ‘00000001’
LINK ARC (2) (ATR, 0, B, I, L, ML)
END
START @CONCAT (ATR, 0, B, I, L, ML)

1F (BIT (ATR, LONLY)), NORM
*SPECIAL CASE IF LENGTH ONLY REQUIRED
*ASK FIRST OPERAND TO PUT LENGTH IN REGISTER
SET LATR = M ‘06004000’
LINK ARG(2) (LATR, LO, B, LI. LL, LML)

SET RATR = M ‘C6000000’
LINK ARG(3) (RATR, RO, RB, RI, RL, RML)
IF (BIT (RATR, EGPR) I BIT (RATR, OGPR)) RR

AH B, RO (RI, RB)
RTN

RR AR B, RB
RTN

*ASK SECOND OPERAND FR IN EITHER REGISTER OR STORAGE

*SECOND OPERAND IN STORAGE

*SECOND OPERAND IN REGISTER

END

a target location for an argument’s result, require a certain align-
ment, request RX or RS storage references, or any variety of register,
etc. In this case, @; ASSIGN is asking that only a length be returned.

When @, FLOATASSIGN is invoked, the tree looks as shown in
Figure 7. The sample tree in the section on tree text gives a repre-
sentative tree for this case in more detail.

The GCL cursor is pointing at the ASSIGN node. Prior to this
invocation, control had passed to the (@ STATEMENT OMD, which
then stated LINK ARG(5). This action brought in the C; a ASSIGN
OMD and positioned the cursor at ASSIGN. @ ASSIGN is a driver
OMD that investigates the types of its arguments, then calls the
appropriate assignment routine for the data-types found. I n this
case, it calk @ FLOATASSIGN, leaving the cursor positioned a t
ASSIGN.

The length built-in function is trivial because of the outside-in proc-
essing order followed during code generation. The c) (I LENGTHBIF
OMD simply passes to its argument expression a preassigned bit on
the first argument, indicating that only the length of the result is
desired, not its value. The tree for the example is shown in Figure 8.

ELSON A N D RAKE I B M SYST J

C I and C2 may, in general, be string expressions. The following
recursive definition of the result of the length bit for CONCAT
holds for the various possible nodes under it:

@> CONCAT simply invokes its two arguments with the same bit
on to indicate that only a length is required. These arguments
return their result lengths as requested. (g, CONCAT subsequently
adds those lengths and returns this result to its caller (in this case,
fi LENGTH).

The outside-in processing order ensures that no matter how com-
plicated the argument may be, no processing is performed except
that necessary to establish the length of the ultimate argument to

LENGTH. The immediate argument OMD to @ LENGTH passes
down to each argument the fact that only a length is required.
Ultimately no result expressions are evaluated, only their lengths.

This example is typical of the value of the outside-in processing
order. Every operand i n a statement is evaluated only as required
by its context.

Compile-time characteristics

Using a trace facility supplied by GCL, we obtained the following
statistics: each PL/I statement results in 300 GCL statement execu-
tions; 33 GCL statement executions result in one line of pseudo-
code; thus, each PL/I statement results in nine lines of pseudo-code.

Twenty OMD’s were involved for each PL/I statement. Forty per-
cent of all OMD’S invoked were found to already be in main storage.

There were 21 1 OMD’S, totaling 102,000 bytes of GCL code. Average
length of an OMD was 482 bytes, the longest being 3800 bytes.
Since it was estimated that this represented one-third of the code-
generation phase of a PL/I compiler, a complete compiler code-
generation phase would have required 600 OMD’S totaling 300,000
bytes.

The compile time appeared to be slow, particularly in the code-
generation phase, although no compile times are available. However,
we believe that the interpreter and the OMD loader could be re-
coded so as to significantly reduce their size and their execution
times.

Another area for inlorovement is the design of the orototvne OM^

required OMD is already in main storage. If not, it checks for
available unused storage space in the OMD area. If there is none,
it simply displaces an OMD in main storage, taking up the least

NO. 3 . 1970 CODE-GENERATION TECHNIQUE 185

space sufficient for the new OMD. More sophisticated techniques
are available and could be used to advantage.

Displacement priorities should be statistically established, based
on frequency of execution and size of the OMD’s. Possible pre-
loading techniques should be investigated. I f a certain OMD always,
or usually, calls a certain other OMD, then loading of the second
O M D should accompany loading of the first.

At this time, effectiveness of these techniques cannot be quantified.
The OMD structure, however, did obey the following two encour-
aging generalities: frequency of execution of the various OMD’S
varied widely, with a small number (@ STATEMENT, @, DATAREF,
and several others) requiring most of the execution and most of
the loader invocations-which should make a priority scheme effec-
tive. Many predictable OMD call trees were found, a result both
of the OMD structuring and of the source language itself. Large
high-level languages are not so modular that text-driven processing
need imply totally unpredictable process sequencing. The preloading
technique, therefore, should also be exploited.

Summary Comment

The authors believe that using the high-level language (GCL) for
code generation has advantages in terms of extendability, flexibility,
and reliability.

extendable The code-generation techniques are highly relevant to an extendable
compiler language definition system. In most such systems, definition .of a

new type of statement or language element involves two specifica-
tions: the information required to parse the new language element
and integrate its syntax with surrounding language elements: and
definition of the semantics of the new element, in terms of the com-
piler base language.

The second requirement means that the base language must theo-
retically have all power required, since all extensions are ultimately
reduced to the base language. With the introduction of languages
like PL/I, it becomes apparent that the base language required to
extend to PL/I is very close to PL/I itself. Even if it were theoretically
possible to extend a FORTRAN-type base to PL/I level, its efficiency
would be doubtful.

This code-generation technique lends itself to a new kind of defini-
tion mechanism. A new language element might be defined in terms
of its syntax and of the form the trees take when the element occurs
in a source program. The trees might contain new nodes never
before used. Where new nodes appear, new OMD’S are written and
entered into the system automatically, causing the semantics of

186 ELSON AND RAKE 1BM SYST J

the new element to be defined precisely in a language very close
to machine code (in this case, pseudo-code).

This possibility obviates the requirement of theoretical adequacy
of the base language and makes it possible to define new language
with efficient implementation. The authors believe that if this sys-
tem of code generation is adopted by extendable language compilers,
their efforts are likely to lead to considerable success.

One of the problems encountered by a compiler for a new language
is that the semantics of the language elements tend to change.
Keeping up with these changes can be very expensive and time con-
suming. Much of the compiler alteration occurs at the code-genera-
tion phase, since it is there that the new definition of the language
element is finally realized. The authors believe that a code-genera-
tion scheme like the one described would allow language changes
to be made easily and at small cost. OMD’S can be added to a sys-
tem almost ad infinitum.

When writing an optimizing compiler for a large language, two
types of reliability become necessary. The writer must ensure that
the compiler is bug-free and produces code that works. All cases
must be covered with equal care to avoid leaving traps and pitfalls.

The experience gained during the coding of the code-generation
stage of the prototype indicated that OMD’S are easily debugged,
requiring an average of three machine runs to check and debug.
It was easy to think about the special cases involved because the
problem was to identify the special cases, rather than code the
phase so as to generate the required code. Since coding time was
so trivial, effort could be spent on ensuring that all cases were
covered and all pitfalls removed.

The technique described is a step toward providing a common
component for the code-generation process. The tree text format,
tree analysis, CXL (including its translator and interpreter), and
the paging mechanism are all language-independent and might
serve as common tools for use in other compilers. Producing the
code-generation phase for a new compiler this way then would
require only the writing of OMD’S needed for that language. It is
probable that if one has available the complete set of OMD’S for
a language as rich as PL/I, a large number could be lifted intact
and used in new compilers for other languages.

ACKNOWLEDGMENTS

The authors wish particularly to thank Dick Sites for his contri-
bution to our code generation design and development. Helpful
suggestions were also received from the other compiler designers:
Ray Larner, Tom Peters, Dave J . G. Reid, and Eric Souers.

NO. 3 . 1970 CODE-GENERATION TECHNIQUE

188 ELSON AND RAKE

