
Space vehicle control,  guidance,  and  navigation require onboard 
computers.  Mission  safety and success  demand  high  program reli- 
ability  without  preliminary  imflight  testing. 

Interactive  Saturn  Jlight  simulation discussed in this  puper  tests  all 
normal and perturbed launch  vehicle interactions  with  the  mission 
computer  and  programs  to ,find and  correct  programming  problems. 
Using a graphics  console,  Jlight  analysts  execute  mission  programs, 
muke  programming  changes,  and observe and  document  the .simulated 
reactions of the  launch vehicle. 

Interactive Saturn flight program simulator 
by  J. H. Jacobs and T. J. Dillon 

An interactive  programming and flight-control system has  been 
developed’ for  simulating  the  action of a  launch vehicle with all 
of the complex and  stringent  requirements of space flight. The 
simulation  program exercises a  Saturn mission program by inter- 
actively simulating all normal  and  perturbed  space vehicle opera- 
tions  required  for  navigation,  guidance, engine control, event 
sequencing,  and vehicle-ground intercommunication.  Flight  analysts, 
the specialists who  develop  the mission programs, have real-time 
control of the  progress of the flight simulation at a display console. 
The analysts  can  also  modify the  onboard mission program  and 
test the  real-time effects of such modifications. 

In  this  paper, we discuss the  interactive Saturn  program simulation 
system by which flight analysts “fly” all phases of launch vehicle 
missions in real  time  and  through which they make programming 
changes  and analyses. A basic system component discussed is  the 
onboard  digital  computer, which holds and executes the mission 
program.  Also  presented  are system components  through which 
the analyst  interacts  with  the  onboard  program  and  computer: 
interactive  graphics system, laboratory  computer  and  programming, 
and  Saturn simulation  programs.  Interactive Saturn simulation is 
illustrated by a typical mission. 
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If space flight simply involved a ballistic trajectory or preplanned 
phases without  the possibility of variations, no onboard flight com- 
puter  and no program  simulator would be needed. However, launch 
vehicles and space missions have become so complex that  onboard 
flight computers  are required for mission safety, success, and flexi- 
bility. The objective of our  simulation system is to establish the 
reliability of the  onboard  program in performing  the mission of 
injecting a  manned spacecraft into a  trajectory  toward  the  moon. 
Mission program  simulation is the only way  of producing  and 
correcting  programming failures, because no opportunity exists 
prior to a mission for exercising flight programs in the  actual  space 
environment. 

Several simulation techniques have been tried in  the  Saturn  project: 

Interpretive digital 
Analog 
Analog-digital 
Multiple  digital 
Digital, with interactive graphics 

Interpretive  digital  simulation  tends to be inefficient. Analog  and 
multiple-computer  approaches are difficult for  the flight analyst to 
use. We implemented the  last  approach because of its ease of use, 
expandability,  and realistic operation. 

In order to fulfill the needs of the typical engineering-oriented flight 
analyst  and to provide realistic Saturn  launch vehicle simulation, 
we embodied the following capabilities into a  simulation  laboratory: 

Operational simplicity 
Real-time operation  and display response 
Realistic launch  control by the  analyst 
Validation of flight simulation  entries 
Real-time error  indication  and  correction 

The real-time, interactive simulation  laboratory' is shown  in  Figure 1. 
It consists of an IBM System/360 Model 44, the  Saturn flight com- 
puter,  and an IBM 2250 display cons01e.~ A simulation  program 
operates within the  Model 44. The display console is the key element 
of this system because it provides the real-time, man-in-the-loop 
control of all phases of the  Saturn  launch vehicle simulation. 

Saturn computing  system 

Our overall objective is to test Saturn mission programming by 
simulation in the  environment of an actual flight computer with 
realistic input/output signals. Elements of the  simulation  are illus- 
trated in the  right  portion of Figure 2 with a  pointer to their places 
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Figure 1 Interactive simulation laboratory 
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in  the  instrument  unit of a simplified Saturn configuration to the 
left of that figure. The  launch vehicle consists of the three powered 
stages shown  plus the  instrument  unit.  The  Apollo spacecraft  rides 
at  the  top of stage  three  and  the  instrument  unit.  Residing in  the 
instrument  unit,  the  flight  computer  and  the mission program 
together  control  the powered stages with minimum  interaction  with 
the  payload.  In  the Apollo  configuration, the flight computer  per- 
forms  the general functions of prelaunch  checkout, liftoff, guidance 
into  earth  orbit,  orbital checkout,  and  guidance into a  lunar  transfer 
trajectory. 

Using  a  stored  program in its  random-access,  magnetic  core  storage, 
the flight computer  operates  in  a  binary-serial  mode.  This  is  the 
first onboard  digital  computer  in which there  has been sufficient 
confidence to  entrust  it  to  control  the powered-flight phase of a 
manned  mission. To achieve its high reliability, a  two-out-of-three 
“voting” system involving triple-modular  redundancy is used for 
the  computer logic circuits. Also, duplexed  storage  modules  detect 
and  correct  errors  in  the  storage  through  the use of two  parity 
bits on each  computer  word.  Although  the flight computer is de- 
signed for  a special application,  the following major system charac- 
teristics  provide  a high degree of mission flexibility within that 
application  area : 

Twenty-six bit, fixed-length words 
Thirty-two  thousand word storage 
Two  instructions per  word 
Eighteen assembly-language instructions 
Fixed-point  arithmetic 
Interruption-oriented system 

The flight computer occupies a  two-and-a-half  cubic  foot  package 
weighing seventy-two pounds.  Through  the use of triple-modular 
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Figure 2 Elements in a Saturn flight simulation 
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input/output As shown in Figure 2, the flight computer is an integral part of 
the  instrument  unit, from which the  computer receives its  inputs 
and to which outputs  are directed.  Some input signals, such as 
attitude angles, are receivedcby the  computer in analog  form  and  are 
converted into digital  quantities  before  storing.  On  the  other  hand, 
digital  inputs, such as those  produced by the  integrating acceler- 
ometers, are periodically received by the  computer.  These  particular 
signals are immediately integrated to  produce  the  launch vehicle 
state vectors, i.e., velocity and  displacement. Typically, outputs  that 
are produced by the  computer  in  digital  form  are  the  event sequence 
commands (engines "on," ''off," stage  separation, etc.). Returned 
signals indicating that the  commanded  action  has  occurred  form 
an additional class of input signals. These stage-sequencing com- 
puter outputs  and  inputs  are received (and  transmitted) by relays 
in the propulsion stages. Ground-Saturn intercommunication is 
handled digitally under computer  control, whereas engine nozzle 
deflection signals are digitally produced by the flight computer  and 
immediately converted to analog signals by internally  contained 
adapters  and  transmitted to the engine control system. 

mission Modularly  structured,  the mission program  consists of two basic 
program program  packages  totaling about 28K words  in  the flight computer: 

application  modules  and  a  control  program.  These are  the  programs 
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that  the simulation system is designed to exercise. (Mission simula- 
tion will be discussed in detail  later in this  paper.)  Application 
modules  are  a collection of relatively independent, closed flight 
programs, each of which performs  a single or  a  number of related 
functions,  e.g., process accelerometer data, compute guidance com- 
mands,  or perform vehicle sequencing. As new requirements are 
defined, new application modules are  added. 

The  application  modules  are divided into distinct segments according 
to vehicle modes of operation. A segment includes all functions 
required within a given phase of a mission, e.g., powered flight 
or  orbital  operation. Independently of the  control  program  applica- 
tion  modules  are scheduled as a  function of time and  are assigned 
definite priorities. Beginning with such engineering requirements as 
guidance equations, mission sequencing logic, limits and tolerances, 
and  performance data, mission program development extends to the 
specification of methods by which the mission program  detects  and 
compensates for equipment  malfunctions in both the  computer  and 
space vehicle. As  the mission program becomes more precisely 
defined, it is optimized to meet the  requirements with minimum 
storage  and execution time. 

Operational linkage, sequencing, and execution of the  application 
modules for a given mission are governed by the  control  program 
through  the use of an executive program  and  a  common  communi- 
cation  area. Whereas the  latter allows for centralization of inter- 
module  communications,  common data,  and mission or vehicle- 
dependent parameters’, the executive program  controls  the execution 
of application modules, services interruptions,  routes  control to the 
appropriate  application  module  on  a  priority basis, and provides 
utility operations. The  control program is a  group of interacting 
subprograms whose primary  purpose is the sequencing of the execu- 
tion of individual application modules. It examines interruptions 
and  priority  control tables to determine  the  order of module execu- 
tion  and provides a  means of transferring  operational  control to 
and  from these modules. Through  a queuing process, these priority 
control tables are modified  in real time. This enables the  control 
program to execute application  programs necessary to perform 
the  functions required in the  various stages of flight. 

Saturn simulation system 

To provide the analyst with facilities for effectively developing and 
checking out mission programs,  a System/360 Model 44 with 
priority-interruption  and high-resolution timing capabilities are 
linked with a  Saturn flight computer. These features  provide quick 
response to actions  initiated by the flight computer  and allow simu- 
lation in a  multiprogramming  mode.  Another essential element is 
to provide interactive, real-time input  controls to efficiently integrate 
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It is in  the supervisor that additions  and  changes have principally 
been made to the 44%. Control of the  entire  simulation system and 
a  common  interface to all mission programs  are provided by super- 
visor management of input/output devices, data sets, and mission 
programs.  Modules  are  loaded  from  the system program  library 
as required by job control or as requested by other  programs being 
executed. The supervisor handles input/output requirements includ- 
ing error recovery procedures  and  the execution of input/output 
without reference to a  particular device type by the  analyst. AI1 
classes of interruptions  are serviced with transfers to the  appropriate 
simulation system or  application  module  for processing, with input/ 
output channels scheduled for overlapping in these operations. 

The interactive graphics  program is the real-time, interactive link 
between the flight analyst  and  the mission program, whereby he 
executes the flight simulation. Facilities are provided for  the  com- 
plete display of real-time flight information  from both the  simulator 
and  the flight program  and  for  stopping, analyzing, and  perturbing 
the flight action as it is taking place. Flight  setup and post-flight 
analysis are also  provided. 

Because the  graphics  program is  based on a  tree-structure  organi- 
zation,  the  analyst  has available at each stage of the  simulation  a 
hierarchy of options that he selects either through  light pen or the 
alphameric  keyboard  action.  These  actions select programs for 
Model 44 processing from  the  tree  structure, thereby allowing the 
flight analyst to selectively step through many levels  of flight simu- 
lation  detail. 

Illustrated  in  Figure 3 is the first tier of branches  (options) in the 
graphics program. The next level of options is called and displayed 
by touching  the  areas labeled “key” in the  column to  the right in 
the figure. By a system of program linkages, successive  levels  of 
display and  program execution are  initiated.  Currently  there  are 
approximately  three  hundred different displays available to the flight 
analyst. To facilitate rapid display transition  and to minimize the 
CPU time required to move from one display to the next, the set 
of displays is maintained  on direct-access storage in the  form of 
graphic  orders ready for  immediate transmission to the 2250 display 
buffer. 

Each tier of options  contains all relevant information  for that level 
of the  graphics  program  hierarchy, including orders necessary to 
display information  contained in the 2250 display buffer, activate 
light-pen-sensitive areas,  and to enable  inputs  from  the  alphameric 
keyboard  and  the  light pen to select other  branches of the  graphics 
program.  Internally associated with each graphics  program level 
is control  information for indicating  the next display to present 
following a  particular light pen or keyboard  action.  An  indicator 
also specifies the  simulation  program to be activated following 
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an operator  action. Typical of the  simulation  programs specified 
are those for: vehicle simulation  setup  and execution, data reduc- 
tion,  and  hardware  diagnostic testing. 

The graphics  program is linked to the  simulation  programs  through 
an internal  transfer  table of address  constants.  The  graphics  pro- 
gram is resident in  the  control system supervisor and is responsible 
for  initiating  all flight-analyst requests  made  through  the display 
console. After system initialization,  the  graphics  program  presents 
the  initial  options on the display screen, as shown in Figure 3, to 
allow the flight analyst to begin the  simulation. Since the  graphics 
program is operating  in  a  multiprogram  environment, it may  be 
requested to concurrently processes information  from several sources. 
Although  the  graphics  program is not  reentrant,  it accepts multiple 
flight-analyst and  simulation-program  requests by placing them  in 
request queues and processing them in a  first-in/first-out  manner 

Another  input to the  interactive  graphics  program is function-key 
action, which is initiated differently from  that of the light pen and 
alphameric  keyboard.  The  function  keyboard is used primarily for 
analyst  requests that  are independent of the  current display, such 
as, for example, the freezing of the  current  graphic display to  pro- 
duce  a  hardcopy  output.  Function  keyboard  activation is initiated 
by dynamically attaching  a  simulation  program to a  particular 
function key with a special call to the  graphics  program. In the 
same way, the  simulation  program is detached  from  a  function key. 

Although  the  light pen is the preferred option-selecting device, we 
often find it necessary to enter  large  quantitites of symbolic and 
numeric data (e.g., the specification of engine thrust  perturbations, 
sequencing failures, etc.) that  cannot be conveniently entered by light 
pen. Such information is entered through  the  alphameric  keyboard. 
Since errors frequently occur when entering alphameric  information, 
the  graphics  program provides a validity check service. As a part 
of this check, additional  information is associated with the displays 
in  the graphics program hierarchy that indicate which alphameric 
input fields are allowable. The added  information specifies the 
length of the fields and  the  type of information that may be  accepted; 
entries  not meeting these specifications signal error conditions to 
the flight analyst. Having determined the validity of the  alphermeric 
input  information,  the  graphics  program  converts  the  input data 
from  the System/360 EBCDIC code to a  format  appropriate to the 
purpose of the  particular data entered (i,e., decimal, floating  point, 
or  binary). Similarly, data  format conversion occurs in the “reverse 
direction”  during  a simulation exercise when display plotting is 
required for evaluating the progress of a flight. Through  requests 
to the  graphics  program, numerical information may be  plotted 
on  the display screen. Data reduction  programs collect the neces- 
sary information  and  formats it in tables to be passed to the  graphics 
program, which translates  the  resultant  tables  into 2250 graphic 
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orders  and  plots  the  information in either point  or vector form. 
An arbitrary  number of plots may be superimposed on a single 
display grid. 

At any time during  the exercising of an application  module,  status 
or  error messages may immediately be presented to the flight analyst. 
In signaling an  error, the  simulation  program activates the display 
program with a  request  indicating  the  status or  error message to be 
presented.  Normally,  this message immediately overrides the exist- 
ing display. If, however, another  status  or  error message is already 
being displayed, further  requests  are placed in  a message-request 
queue  and  a  function key  is activated so that  the flight analyst  may 
step  through  the message queue. Thus neither can  status  and  error 
messages flash rapidly  on  the display screen, nor can the  analyst 
proceed with the  simulation  without examining all such messages 
awaiting his attention in the  queue. 

For  more  routine operations,  the  graphics system has been de- 
signed to operate with an  automatic display sequence program, 
which automatically selects options, executes the  simulation,  and 
records results. To do this, the flight analyst  records  the display 
option selection sequence information on punched  cards  or in 
direct-access storage,  and  the  simulation proceeds according to this 
preplanned selection. Should the analyst later  rerun the same  or  a 
similar job, the system provides for calling up the  information 
previously recorded and then executing the  entire simulation exer- 
cise in a  manual  or  automatic  mode, depending on whether the 
analyst  plans to modify the previous simulation  information. To 
provide the flight analyst with a  complete  record of the display 
actions  taken  during his run,  the system is designed to record all 
significant display events on the  printer. 

Up  to this  point we have introduced  the  programs  and  the simula- 
tion  laboratory  equipment  that  the flight analyst uses  in simulating 
the flight of a  Saturn  launch vehicle. Recall that the objective of 
this  simulation is to test mission programs with all the realism 
necessary to find any programming  and engineering errors  or  anom- 
alies. Underlying mission programming is the  phenomenon of the 
launch vehicle’s motion, which is described in  terms of the vehicle’s 
six degrees of freedom:  roll,  pitch, yaw, and  the three spatial  coor- 
dinates x ,  y ,  and z. These motions  produce  the signals in the accel- 
erometers  and  attitude resolvers in  the inertial platform that  are 
transmitted to the flight computer as previously discussed. We now 
discuss the  program that simulates the  input to the flight computer 
and  accepts the resultant flight computer  output  commands. 

Relationships  among  programs  and  computing system elements 
stored and executed by the  Model 44 are shown in Figure 4: the 
vehicle simulator (which operates in a real-time, multiprogramming 
mode with the data acquisition and analysis programs),  the  graphics 

NO. 2 . 1970 SATURN  PROGRAM  SIMULATOR 



Figure 4 Saturn simulation programming and equipment 
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programs,  and  the supervisor part of the  control system. The  major 
portion of the vehicle simulator program is the six-degree-of-freedom, 
vehicle-response model that closes the  loop between engine command 
signals from the  Saturn flight computer  and  inertial platform input 
data back to  the flight computer.  The 6-D model also simulates 
stage sequencing and  the  astronaut  and ground command systems. 

Data from the flight computer intended for transmission to ground 
are collected continuously by the data acquisition program.  In 
parallel with flight computer data, vehicle simulation data  are also 
picked up by the data acquisition program from the  Model 44. 
Both kinds of information  are stored on direct-access devices for 
immediate processing by the real-time data analysis program; these 
data  are also logged on  tape  for off-line processing by a post-flight 
data analysis program  not shown in the figure. 

Data analysis routines  are designed to access results of all flight 
computer  and vehicle simulation calculations as they are saved  by 
the acquisition program for immediate processing, scaling, and pres- 
entation in real time during  the simulation. Such presentations  enable 
the analyst to monitor  the progress of the simulation and perform 
the mission program modification in real time. Numerical data  are 
processed  by the  data analysis program for presentation  in either 
tabular or graphic-plot  form. Expected parameter values from the 
simulation programs  and  computed flight parameters  are  differ- 
enced, and  the differences are displayed primarily for use as off- 
course and  out-of-bounds  indicators for the  Saturn  launch vehicle. 

In  the initialization phase of a simulation exercise, the flight analyst 
may specify the required set of real-time presentations. The  data 
acquisition routines  then save all information necessary for analysis 
and presentation during  the exercise. While the simulation is in 
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progress, the system is designed to give the flight analyst  the  option 
of  changing  from  one  presentation to another. Of course, flight 
status  information (velocity, acceleration, and displacement) is avail- 
able for display at all times, having been placed in  continuously 
updated  storage by the acquisition program. Data reduction  rou- 
tines process the  status  information  for display in a predefined 
format to inform the flight analyst of the  progress  of  the mission. 

Each  component of the real-time launch vehicle simulator shown 
in Figure 4 is assigned a  priority within this  multiprogramming 
environment. Thus the  simulator is implemented according to a 
real-time process optimizing algorithm. In general, priorities  are 
assigned according to the  importance of the  function being per- 
formed, whereby human safety factors have highest priority. Nor- 
mally the six-degree-of-freedom functions  and  hardware  indications 
occupy the higher priority levels. These are followed in order of 
priority by the  graphics  communication  functions. Data analysis 
programs use the lowest priority levels. Additionally, high priority 
factors have been designed for  rapid execution in order to create 
a highly responsive system. A higher priority factor  preempts  one 
of lower priority that is being executed;  the lower priority  factor 
resumes execution at the  point at which processing was preempted 
when all higher priority  programs have been executed. Thus the 
optimization algorithm embodies value judgments of the relative 
importance of the  calculations performed by the mission program 
while at  the same time reckoning with the fact that all factors  must 
be calculated. For speed, therefore, at each priority level only factors 
essential to  that level are  computed;  other items are  computed at 
the  appropriate level. Routines at the highest priority levels require 
less than  three milliseconds for execution. 

Flight simulation 

To demonstrate  the system principles discussed, we now step through 
a  hypothetical mis.:ion simulation as  an analyst “flies” it. Before 
executing the flight simulation,  certain initialization procedures 
illustrated in Figure 3 must  be  performed.  This figure is a  photo- 
graph of the display screen presenting the  major  simulation system 
functions,  one of which is “flight simulation initialize.” Using the 
light pen,  the  analyst calls for  the initialization display shown in 
Figure 5 .  At this  point, his primary  actions are loading  the  pro- 
gram into the flight computer,  entering  launch vehicle specifications, 
and specifying the required real-time outputs.  These  are  the  factors 
that change for each simulation, or that  are exercised. or that  are 
expected to yield  new information. 

The flight simulation begins executing when the  start/resume  option 
in Figure 6 is selected. With  this  action,  the flight computer begins 
active navigation, guidance, and  control  according to the mission 
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Figure 7 Tabular  display of specifications, and all the  programs previously discussed are running 
velocity components in a multiprogramming mode. The flight computer requests mission 

data and executes its  program using the  data asynchronously with 
the vehicle simulator in  the  Model 44. The flight computer also 
transmits data  to  the simulator as  it is calculated by the mission 
program. 

While the simulated flight is taking place, the analyst usually moni- 
tors  the  launch vehicle’s progress by means of tables and plotted 
outputs.  An example of tabular data  are the vector components 
of  velocity shortly  after  launch shown in Figure 7. Notice  that at 
the time of the display the  table is only partially filled; lines of 
information are added as  the flight progresses. The same informa- 
tion may also be dynamically displayed in graphic form as shown 
in  Figure 8. Here the three velocity components  and  the  resultant 
magnitude  are shown superimposed as they are calculated later  in 
the same launch  as  that of Figure 7. If the flight analyst retains 
this display he observes the motion of the vehicle  by the dynamically 
changing configuration of the velocity curves. At any time in the 
flight, restart  information  can be captured in the form of restart 
dumps.  This capability allows the flight analyst to resume the flight 
at any  restart  point  rather  than  starting from launch.  Information 
is captured by touching the  “take  restart  dump” key (shown in 
Figure 6.) with the light pen. The analyst can conveniently check 
mission program modifications that affect the flight after several 
hours  into  the  run  without having to begin the  run from liftoff 
each time a problem is discovered. 

Figure 8 Graphic  display of 

velocity components 

Figure 9 Vehicle perturbation 

selection display 

During  the flight, the analyst may wish to inject one of the vehicle 
perturbations illustrated in Figure 9. Such perturbations simulate 
performance failures in any vehicle function that interfaces with 
the flight computer.  The effects of these failures can  be viewed in 
tables and  graphs like those shown in Figures 7 and 8. 

If the mission program  does  not respond effectively, programming 
malfunction is apparent  in  the graphic displays. Unlike  actual  launch 
and flight, the progress of the  Saturn space vehicle can  be frozen in 
space and time by pointing to  the “stop”  option. At this point  the 
analyst can review  all data so far collected. If necessary, he may 
view the flight execution on  an instruction-by-instruction basis by 
entering a  trace  mode of operation, whereby the flight computer is 
stepped through  the program. The system is designed so that  pro- 
gramming and  program modifications may be  done on-line by the 
analyst’s entering instructions  or data modifications through  the 
2250. Such an  instruction modification is shown being made  in 
Figures 10 and 11, where Figure 10 shows the new instruction  just 
entered through  the keyboard and  Figure 1 1  shows the previous 
contents of a  storage  location  and  the new contents of that  location. 
The flight may then be resumed at  the point where it was stopped, 
or  it may be backed up either to a  restart  point,  or  it may be re- 
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launched. Using these techniques, the  entire mission can  be executed. 
At any point, execution may be suspended and  the recorded infor- 
mation may be analyzed by post-flight data reduction  programs. 

Concluding remarks 

The  graphic simulation system discussed in this paper has been 
used  extensively in  support of the  Apollo 8, 9, 10, 11, and 12 
flight program developments, and  it  has met all design objectives. 
By providing a new dimension of program visibility and  man- 
computer  interaction,  the system has  had  the effect of stimulating 
higher levels  of interest  and creativity by flight analysts. 

Problems of designing a mission program simulation system and 
ensuring that  the analyst has  the capability he requires has been 
a complex task. Our experience has shown that simulation tech- 
niques, selection of equipment,  and  methods of man-computer  and 
computer-computer  interaction must be carefully balanced to meet 
overall design objectives. Requirements for high precision and safety 
of the manned mission introduce elements of realism and urgency 
into the abstract problem of space-vehicle control, guidance, and 
navigation. The  resultant simulation system that combines these 
factors  in  a real-time multiprogramming environment has proved 
to be  a valuable tool for the development and checkout of mission 
programs.  The system has  thus  made possible the development of 
mission programs  that have been relied upon  to a much greater 
extent than previous mission programs  and  has reduced the  amount 
of time necessary to produce them. 

Programming concepts we have used may certainly be applied in 
related areas such as process control  and  other real-time-oriented 
technologies. The  operating system4 and graphics program have 
direct conceptual  applications in other  airborne and space vehicle 
simulators. 
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