Space vehicle control, guidance, and navigation require onboard
computers. Mission safety and success demand high program reli-
ability without preliminary in-flight testing.

Interactive Saturn flight simulation discussed in this paper tests all
normal and perturbed launch vehicle interactions with the mission
computer and programs to find and correct programming problems.
Using a graphics console, flight analysts execute mission programs,
make programming changes, and observe and document the simulated
reactions of the launch vehicle.

Interactive Saturn flight program simulator
by J. H. Jacobs and T. J. Dillon

An interactive programming and flight-control system has been
developed' for simulating the action of a launch vehicle with all

of the complex and stringent requirements of space flight. The
simulation program exercises a Saturn mission program by inter-
actively simulating all normal and perturbed space vehicle opera-
tions required for navigation, guidance, engine control, event
sequencing, and vehicle-ground intercommunication. Flight analysts,
the specialists who develop the mission programs, have real-time
control of the progress of the flight simulation at a display console.
The analysts can also modify the onboard mission program and
test the real-time effects of such modifications.

In this paper, we discuss the interactive Saturn program simulation
system by which flight analysts “fly” all phases of launch vehicle
missions in real time and through which they make programming
changes and analyses. A basic system component discussed is the
onboard digital computer, which holds and executes the mission
program. Also presented are system components through which
the analyst interacts with the onboard program and computer:
interactive graphics system, laboratory computer and programming,
and Saturn simulation programs. Interactive Saturn simulation is
illustrated by a typical mission.

NO. 2 - 1970 SATURN PROGRAM SIMULATOR

If space flight simply involved a ballistic trajectory or preplanned
phases without the possibility of variations, no onboard flight com-
puter and no program simulator would be needed. However, launch
vehicles and space missions have become so complex that onboard
flight computers are required for mission safety, success, and flexi-
bility. The objective of our simulation system is to establish the
reliability of the onboard program in performing the mission of
injecting a manned spacecraft into a trajectory toward the moon.
Mission program simulation is the only way of producing and
correcting programming failures, because no opportunity exists
prior to a mission for exercising flight programs in the actual space
environment.

Several simulation techniques have been tried in the Saturn project:

Interpretive digital

Analog

Analog-digital

Multiple digital

Digital, with interactive graphics

Interpretive digital simulation tends to be inefficient. Analog and
multiple-computer approaches are difficult for the flight analyst to
use. We implemented the last approach because of its ease of use,
expandability, and realistic operation.

In order to fulfill the needs of the typical engineering-oriented flight
analyst and to provide realistic Saturn launch vehicle simulation,
we embodied the following capabilities into a simulation laboratory:

Operational simplicity

Real-time operation and display response
Realistic launch control by the analyst
Validation of flight simulation entries
Real-time error indication and correction

The real-time, interactive simulation laboratory” is shown in Figure 1.
It consists of an IBM System /360 Model 44, the Saturn flight com-
puter, and an 1BM 2250 display console.® A simulation program
operates within the Model 44. The display console is the key element
of this system because it provides the real-time, man-in-the-loop
control of all phases of the Saturn launch vehicle simulation.

Saturn computing system

Our overall objective is to test Saturn mission programming by
simulation in the environment of an actual flight computer with
realistic input/output signals. Elements of the simulation are illus-
trated in the right portion of Figure 2 with a pointer to their places

JACOBS IBM SYST J

Figure 1 Interactive simulation laboratory

IBM 2250
DISPLAY CONSOLE

SYSTEM/360 SATURN

FLIGHT
MODEL 44 COMPUTER

/O DEVICES
l * PRINTER

COPIER « TAPES

A/N KEYBOARD FUNCTION
KEYBOARD

in the instrument unit of a simplified Saturn configuration to the
left of that figure. The launch vehicle consists of the three powered
stages shown plus the instrument unit. The Apollo spacecraft rides
at the top of stage three and the instrument unit. Residing in the
instrument unit, the flight computer and the mission program
together control the powered stages with minimum interaction with
the payload. In the Apollo configuration, the flight computer per-
forms the general functions of prelaunch checkout, liftoff, guidance
into earth orbit, orbital checkout, and guidance into a lunar transfer
trajectory.

Using a stored program in its random-access, magnetic core storage,
the flight computer operates in a binary-serial mode. This is the
first onboard digital computer in which there has been sufficient
confidence to entrust it to control the powered-flight phase of a
manned mission. To achieve its high reliability, a two-out-of-three
“voting” system involving triple-modular redundancy is used for
the computer logic circuits. Also, duplexed storage modules detect
and correct errors in the storage through the use of two parity
bits on each computer word. Although the flight computer is de-
signed for a special application, the following major system charac-
teristics provide a high degree of mission flexibility within that
application area:

Twenty-six bit, fixed-length words
Thirty-two thousand word storage

Two instructions per word

Eighteen assembly-language instructions
Fixed-point arithmetic
Interruption-oriented system

The flight computer occupies a two-and-a-half cubic foot package
weighing seventy-two pounds. Through the us¢ of triple-modular

No. 2 - 1970 SATURN PROGRAM SIMULATOR

input/output

mission
program

Figure 2 Elements in a Saturn flight simulation

INSTRUMENT UNIT

INERTIAL PLATFORM
(ACCELEROMETERS
AND ATTITUDE
RESOLVERS)

SATURN FLIGHT
COMPUTER AND
MISSION PROGRAM

INSTRUMENT UNIT
APOLLO WITH SATURN

FLIGHT COMPUTER

GROUND-SATURN
INTERCOMMUNICATION

STAGE 3 : 1

FLIGHT- CONTROL
COMPUTER

STAGE
SEQUENCING

o

|

i

|
"]

|

|

STAGE 2

ENGINE AND

NOZZLE
SATURN CONTROL SYSTEM

STAGE 1

redundant logic, this operational computer has never had a failure
that hampered program execution.

As shown in Figure 2, the flight computer is an integral part of
the instrument unit, from which the computer receives its inputs
and to which outputs are directed. Some input signals, such as
attitude angles, are received: by the computer in analog form and are
converted into digital quantities before storing. On the other hand,
digital inputs, such as those produced by the integrating acceler-
ometers, are periodically received by the computer. These particular
signals are immediately integrated to produce the launch vehicle
state vectors, i.e., velocity and displacement. Typically, outputs that
are produced by the computer in digital form are the event sequence
commands (engines “on,” “off,” stage separation, etc.). Returned
signals indicating that the commanded action has occurred form
an additional class of input signals. These stage-sequencing com-
puter outputs and inputs are received (and transmitted) by relays
in the propulsion stages. Ground-Saturn intercommunication is
handled digitally under computer control, whereas engine nozzle
deflection signals are digitally produced by the flight computer and
immediately converted to analog signals by internally contained
adapters and transmitted to the engine control system.

Modularly structured, the mission program consists of two basic
program packages totaling about 28K words in the flight computer:
application modules and a control program. These are the programs

JACOBS IBM SYST J

that the simulation system is designed to exercise. (Mission simula-
tion will be discussed in detail later in this paper.) Application
modules are a collection of relatively independent, closed flight
programs, each of which performs a single or a number of related
functions, e.g., process accelerometer data, compute guidance com-
mands, or perform vehicle sequencing. As new requirements are
defined, new application modules are added.

The application modules are divided into distinct segments according
to vehicle modes of operation. A segment includes all functions
required within a given phase of a mission, e.g., powered flight
or orbital operation. Independently of the control program applica-
tion modules are scheduled as a function of time and are assigned
definite priorities. Beginning with such engineering requirements as
guidance equations, mission sequencing logic, limits and tolerances,
and performance data, mission program development extends to the
specification of methods by which the mission program detects and
compensates for equipment malfunctions in both the computer and
space vehicle. As the mission program becomes more precisely
defined, it is optimized to meet the requirements with minimum
storage and execution time.

Operational linkage, sequencing, and execution of the application
modules for a given mission are governed by the control program
through the use of an executive program and a common communi-
cation area. Whereas the latter allows for centralization of inter-
module communications, common data, and mission or vehicle-
dependent parameters, the executive program controls the execution
of application modules, services interruptions, routes control to the
appropriate application module on a priority basis, and provides
utility operations. The control program is a group of interacting
subprograms whose primary purpose is the sequencing of the execu-
tion of individual application modules. It examines interruptions
and priority control tables to determine the order of module execu-
tion and provides a means of transferring operational control to
and from these modules. Through a queuing process, these priority
control tables are modified in real time. This enables the control
program to execute application programs necessary to perform
the functions required in the various stages of flight.

Saturn simulation system

To provide the analyst with facilities for effectively developing and
checking out mission programs, a System/360 Model 44 with
priority-interruption .and high-resolution timing capabilities are
linked with a Saturn flight computer. These features provide quick
response to actions initiated by the flight computer and allow simu-
lation in a multiprograinming mode. Another essential element is
to provide interactive, real-time input controls to efficiently integrate

No. 2 - 1970 SATURN PROGRAM SIMULATOR

control
program

control
system

the analyst into the simulation process. Referring to Figure 1, this
is accomplished by interconnecting a 2250 display console equipped
with a light pen, alphameric keyboard, and variable function key-
board to the Model 44, An IBM 2285 display copier provides per-
manent records of display information. The analyst interacts with
the Saturn flight computer via the 2250 and three major programs
that execute in the Model 44:

o Control system
o Interactive graphics program
e Real-time simulation programs

The simulator control system is the Model 44 programming system
(44PS) with additions and modifications to convert it from a sequen-
tial batch job processor to a real-time, multiprogramming processor.
All the original functions and features of 44PS have been retained;
and programs not requiring the elements of a real-time, multi-
programming system operate as though the additional facilities
were not present. The control system consists of a supervisor,
assembler, FORTRAN compiler, linkage editor, and system support
programs. Provision is made for both FORTRAN and assembly
language processing. Program execution in a monitored environ-
ment with automatic job-to-job transition, interruption handling,
and input/output supervision are embodied in the control system.
Facilities for the creation and maintenance of libraries (both pro-
gram and data) and for the manipulation of their contents are
also provided by the control system. This system similarly provides
extensive job control and program segmentation capabilities for
flexibility and versatility in the preparation of programs for execu-
tion.

One of the required functions of the control system is the ability
to activate various computing operations at precise time intervals.
These operations are selected for execution by a time-sequencing
priority scheme. Other operations are designed to execute as a
result of interruptions induced outside of the central processor by
the flight computer. These interruptions are generally of such im-
portance that their priorities are higher than operations initiated
as a result of timing. Multiprogramming functions operate through
a scheme of priority interruptions, with the requirement of real-
time operation being the principal decision criterion for the control
system priority algorithm. To satisfy these requirements, capabilities
in three primary areas have been added to 44PS: multiprogram
scheduling, real-time input/output scheduling, and application pro-
gram overlay control. Also added is a posting function associated
with I/O termination, the purpose of which is to allow higher
priority routines to request 1/0, to relinquish control to a lower
priority level, and then regain control when the higher 1/0 priority
is completed. A comprehensive statistics gathering capability is
used to evaluate the multiprogramming system performance.

JACOBS IBM SYST J

It is in the supervisor that additions and changes have principally
been made to the 44PS. Control of the entire simulation system and
a common interface to all mission programs are provided by super-
visor management of input/output devices, data sets, and mission
programs. Modules are loaded from the system program library
as required by job control or as requested by other programs being
executed. The supervisor handles input/output requirements includ-
ing error recovery procedures and the execution of input/output
without reference to a particular device type by the analyst. All
classes of interruptions are serviced with transfers to the appropriate
simulation system or application module for processing, with input/
output channels scheduled for overlapping in these operations.

The interactive graphics program is the real-time, interactive link interactive
between the flight analyst and the mission program, whereby he graphics
executes the flight simulation. Facilities are provided for the com- program
plete display of real-time flight information from both the simulator

and the flight program and for stopping, analyzing, and perturbing

the flight action as it is taking place. Flight setup and post-flight

analysis are also provided.

Because the graphics program is based on a tree-structure organi-
zation, the analyst has available at each stage of the simulation a
hierarchy of options that he selects either through light pen or the
alphameric keyboard action. These actions select programs for
Model 44 processing from the tree structure, thereby allowing the
flight analyst to selectively step through many levels of flight simu-
lation detail.

Illustrated in Figure 3 is the first tier of branches (options) in the Figure 3 Graphics program
graphics program. The next level of options is called and displayed initial options
by touching the areas labeled ‘“key” in the column to the right in
the figure. By a system of program linkages, successive levels of FEéizghzg:gélégzé:&gﬁg;:;E;YS“”
dlsplay. and program execution are initiated. Currently there are PEecRIPTION. OHERALL SreTeH..
approximately three hundred different displays available to the flight M e ckur mp 1
analyst. To facilitate rapid display transition and to minimize the et g
CPU time required to move from one display to the next, the set posTeRIcESS. |
of displays is maintained on direct-access storage in the form of ¢

RESTART: LOAD RESTART DUMP--

INITIALT
graphic orders ready for immediate transmission to the 2250 display RESET. FLIGHT SIMULATION

13
buﬂél‘. SIGN OFF: RETURN TO 44PS CONTR

SYSTEM/4PE TC-1:
FPDD CHECKOUT AND INIT1

DEMONSTRATION: ENTER MOD:
EXIT MODE

Each tier of options contains all relevant information for that level STILITIES: COMMAND SOFTWARE LTt
of the graphics program hierarchy, including orders necessary to DISPLAY D100
display information contained in the 2250 display buffer, activate

light-pen-sensitive areas, and to enable inputs from the alphameric

keyboard and the light pen to select other branches of the graphics

program. Internally associated with each graphics program level

is control information for indicating the next display to present

following a particular light pen or keyboard action. An indicator

also specifies the simulation program to be activated following

No. 2 - 1970 SATURN PROGRAM SIMULATOR

an operator action. Typical of the simulation programs specified
are those for: vehicle simulation setup and execution, data reduc-
tion, and hardware diagnostic testing.

The graphics program is linked to the simulation programs through
an internal transfer table of address constants. The graphics pro-
gram is resident in the control system supervisor and is responsible
for initiating all flight-analyst requests made through the display
console. After system initjalization, the graphics program presents
the initial options on the display screen, as shown in Figure 3, to
allow the flight analyst to begin the simulation. Since the graphics
program is operating in a multiprogram environment, it may be
requested to concurrently processes information from several sources.
Although the graphics program is not reentrant, it accepts multiple
flight-analyst and simulation-program requests by placing them in
request queues and processing them in a first-in/first-out manner

Another input to the interactive graphics program is function-key
action, which is initiated differently from that of the light pen and
alphameric keyboard. The function keyboard is used primarily for
analyst requests that are independent of the current display, such
as, for example, the freezing of the current graphic display to pro-
duce a hardcopy output. Function keyboard activation is initiated
by dynamically attaching a simulation program to a particular
function key with a special call to the graphics program. In the
same way, the simulation program is detached from a function key.

Although the light pen is the preferred option-selecting device, we
often find it necessary to enter large quantitites of symbolic and
numeric data (e.g., the specification of engine thrust perturbations,
sequencing failures, etc.) that cannot be conveniently entered by light
pen. Such information is entered through the alphameric keyboard.
Since errors frequently occur when entering alphameric information,
the graphics program provides a validity check service. As a part
of this check, additional information is associated with the displays
in the graphics program hierarchy that indicate which alphameric
input fields are allowable. The added information specifies the
length of the fields and the type of information that may be accepted ;
entries not meeting these specifications signal error conditions to
the flight analyst. Having determined the validity of the alphermeric
input information, the graphics program converts the input data
from the System /360 EBCDIC code to a format appropriate to the
purpose of the particular data entered (i.e., decimal, floating point,
or binary). Similarly, data format conversion occurs in the “reverse
direction” during a simulation exercise when display plotting is
required for evaluating the progress of a flight. Through requests
to the graphics program, numerical information may be plotted
on the display screen. Data reduction programs collect the neces-
sary information and formats it in tables to be passed to the graphics
program, which translates the resultant tables into 2250 graphic

JACOBS IBM SYST J

orders and plots the information in either point or vector form.
An arbitrary number of plots may be superimposed on a single
display grid.

At any time during the exercising of an application module, status
or error messages may immediately be presented to the flight analyst.
In signaling an error, the simulation program activates the display
program with a request indicating the status or error message to be
presented. Normally, this message immediately overrides the exist-
ing display. If, however, another status or error message is already
being displayed, further requests are placed in a message-request
queue and a function key is activated so that the flight analyst may
step through the message queue. Thus neither can status and error
messages flash rapidly on the display screen, nor can the analyst
proceed with the simulation without examining all such messages
awaiting his attention in the queue.

For more routine operations, the graphics system has been de-
signed to operate with an automatic display sequence program,
which automatically selects options, executes the simulation, and
records results. To do this, the flight analyst records the display
option selection sequence information on punched cards or in
direct-access storage, and the simulation proceeds according to this
preplanned selection. Should the analyst later rerun the same or a
similar job, the system provides for calling up the information
previously recorded and then executing the entire simulation exer-
cise in a manual or automatic mode, depending on whether the
analyst plans to modify the previous simulation information. To
provide the flight analyst with a complete record of the display
actions taken during his run, the system is designed to record all
significant display events on the printer.

Up to this point we have introduced the programs and the simula-
tion laboratory equipment that the flight analyst uses in simulating
the flight of a Saturn launch vehicle. Recall that the objective of
this simulation is to test mission programs with all the realism
necessary to find any programming and engineering errors or anom-
alies. Underlying mission programming is the phenomenon of the
launch vehicle’s motion, which is described in terms of the vehicle’s
six degrees of freedom: roll, pitch, yaw, and the three spatial coor-
dinates x, y, and z. These motions produce the signals in the accel-
erometers and attitude resolvers in the inertial platform that are
transmitted to the flight computer as previously discussed. We now
discuss the program that simulates the input to the flight computer
and accepts the resultant flight computer output commands.

Relationships among programs and computing system elements
stored and executed by the Model 44 are shown in Figure 4: the
vehicle simulator (which operates in a real-time, multiprogramming
mode with the data acquisition and analysis programs), the graphics

No. 2 - 1970 SATURN PROGRAM SIMULATOR

vehicle
simulator

Figure 4 Saturn simulation programming and equipment

__ MODEL 44

VEHICLE
SIMULATOR
PROGRAM

SATURN
COMPUTER

DATA
ACQUISITION
PROGRAM

GRAPHICS
PROGRAMS DATA

ANALYSIS
PROGRAM

CONTROL SYSTEM
iBM 2250 SUPERVISOR

programs, and the supervisor part of the control system. The major
portion of the vehicle simulator program is the six-degree-of-freedom,
vehicle-response model that closes the loop between engine command
signals from the Saturn flight computer and inertial platform input
data back to the flight computer. The 6-D model also simulates
stage sequencing and the astronaut and ground command systems.

Data from the flight computer intended for transmission to ground
are collected continuously by the data acquisition program. In
parallel with flight computer data, vehicle simulation data are also
picked up by the data acquisition program from the Model 44.
Both kinds of information are stored on direct-access devices for
immediate processing by the real-time data analysis program; these
data are also logged on tape for off-line processing by a post-flight
data analysis program not shown in the figure.

Data analysis routines are designed to access results of all flight
computer and vehicle simulation calculations as they are saved by
the acquisition program for immediate processing, scaling, and pres-
entation in real time during the simulation. Such presentations enable
the analyst to monitor the progress of the simulation and perform
the mission program modification in real time. Numerical data are
processed by the data analysis program for presentation in either
tabular or graphic-plot form. Expected parameter values from the
simulation programs and computed flight parameters are differ-
enced, and the differences are displayed primarily for use as off-
course and out-of-bounds indicators for the Saturn launch vehicle.

In the initialization phase of a simulation exercise, the flight analyst
may specify the required set of real-time presentations. The data
acquisition routines then save all information necessary for analysis
and presentation during the exercise. While the simulation is in

JACOBS IBM SYST J

progress, the system is designed to give the flight analyst the option
of changing from one presentation to another. Of course, flight
status information (velocity, acceleration, and displacement) is avail-
able for display at all times, having been placed in continuously
updated storage by the acquisition program. Data reduction rou-
tines process the status information for display in a predefined
format to inform the flight analyst of the progress of the mission.

Each component of the real-time launch vehicle simulator shown
in Figure 4 is assigned a priority within this multiprogramming
environment. Thus the simulator is implemented according to a
real-time process optimizing algorithm. In general, priorities are
assigned according to the importance of the function being per-
formed, whereby human safety factors have highest priority. Nor-
mally the six-degree-of-freedom functions and hardware indications
occupy the higher priority levels. These are followed in order of
priority by the graphics communication functions. Data analysis
programs use the lowest priority levels. Additionally, high priority
factors have been designed for rapid execution in order to create
a highly responsive system. A higher priority factor preempts one
of lower priority that is being executed; the lower priority factor
resumes execution at the point at which processing was preempted
when all higher priority programs have been executed. Thus the
optimization algorithm embodies value judgments of the relative
importance of the calculations performed by the mission program
while at the same time reckoning with the fact that all factors must
be calculated. For speed, therefore, at each priority level only factors
essential to that level are computed; other items are computed at
the appropriate level. Routines at the highest priority levels require
less than three milliseconds for execution.

Flight simulation

To demonstrate the system principles discussed, we now step through
a hypothetical mision simulation as an analyst “flies” it. Before
executing the flight simulation, certain initialization procedures
illustrated in Figure 3 must be performed. This figure is a photo-
graph of the display screen presenting the major simulation system
functions, one of which is “flight simulation initialize.” Using the
light pen, the analyst calls for the initialization display shown in
Figure 5. At this point, his primary actions are loading the pro-
gram into the flight computer, entering launch vehicle specifications,
and specifying the required real-time outputs. These are the factors
that change for each simulation, or that are exercised, or that are
expected to yield new information.

The flight simulation begins executing when the start/resume option
in Figure 6 is selected. With this action, the flight computer begins

active navigation, guidance, and control according to the mission

No. 2 - 1970 SATURN PROGRAM SIMULATOR

Figure 5 Flight simulation

initialization

FLIGHT SIMULATION INITIALIZE

TO SELECT AN OPTION TOUCH LIGHT
PEN TD APPROPRIATE KEY SYMBOL:

OPTION

DESCRIPTION: FLIGHT SIM. INITIALL
CYCLE UP INSTRUCTION!
|24

RECORDED OPTIONS: MODE ENTER/

ACCESS/MODIFY: LVDC PROGRAMS-
$340/44 PROGRAMS-

SIM FLIGHT MODE: SPECIFICATION--
QUTPUT REQUIREMENTS: SPECIFICATION:
SIMULATION_CONTROL ¢

LOAD
Fi

VERICL
PERFORI

RESTART DUMP: SPECIFY---.
RETURN TO MAIN OPTIDNS--
DISPLAY DMOt

Figure 6 Begin simulation
exercise

EXECUTE FLIGHT SIMULATION
TMULATION RUN
WP -

RETURN TO MAIN OPTIONS
DISPLAY DM30

PRRRERRRELOOS

LY SN Y Y YN 9

Figure 7 Tabular display of
velocity components

QUTPUT LABEL - VEL PT PAGE NO
FTASEC XD £ YDs

PA
SELECT/STOP CONTINUDUS PAC

TIE SINCE GRR HH HRS MY MIN SS SEC
vibe TN R RaSE RS S

RETURN TO PRIDR LEVEL DISPLAY PEN KEY- o
DISPLAY DM3T7

Figure 8 Graphic display of
velocity components

FHRE TS TR
DS DRI

Figure 9 Vehicle perturbation
selection display

VEHICLE PERTURBATIONS

ACCELEROMETER ---

SWITCH SELECTO

GIMBAL ANGLE

ENGINE THRUST

STAGING OR EVENT

COMMAND RECETVER

ISSUE DISCRETE DR INTERRUPT
LADDER FAILURES--

SPACECRAFT CONTROL OF L/V

SPECIFY FAST TIME DPTION FOR GFP-.

RETURN TO PRIOR LEVEL DISPLAY PEN KEY o

DISPLAY DM33

specifications, and all the programs previously discussed are running
in a multiprogramming mode. The flight computer requests mission
data and executes its program using the data asynchronously with
the vehicle simulator in the Model 44. The flight computer also
transmits data to the simulator as it is calculated by the mission
program.

While the simulated flight is taking place, the analyst usually moni-
tors the launch vehicle’s progress by means of tables and plotted
outputs. An example of tabular data are the vector components
of velocity shortly after launch shown in Figure 7. Notice that at
the time of the display the table is only partially filled; lines of
information are added as the flight progresses. The same informa-
tion may also be dynamically displayed in graphic form as shown
in Figure 8. Here the three velocity components and the resultant
magnitude are shown superimposed as they are calculated later in
the same launch as that of Figure 7. If the flight analyst retains
this display he observes the motion of the vehicle by the dynamically
changing configuration of the velocity curves. At any time in the
flight, restart information can be captured in the form of restart
dumps. This capability allows the flight analyst to resume the flight
at any restart point rather than starting from launch. Information
is captured by touching the ‘“‘take restart dump” key (shown in
Figure 6.) with the light pen. The analyst can conveniently check
mission program modifications that affect the flight after several
hours into the run without having to begin the run from liftoff
each time a problem is discovered.

During the flight, the analyst may wish to inject one of the vehicle
perturbations illustrated in Figure 9. Such perturbations simulate
performance failures in any vehicle function that interfaces with
the flight computer. The effects of these failures can be viewed in
tables and graphs like those shown in Figures 7 and 8.

If the mission program does not respond effectively, programming
malfunction is apparent in the graphic displays. Unlike actual launch
and flight, the progress of the Saturn space vehicle can be frozen in
space and time by pointing to the “stop” option. At this point the
analyst can review all data so far collected. If necessary, he may
view the flight execution on an instruction-by-instruction basis by
entering a trace mode of operation, whereby the flight computer is
stepped through the program. The system is designed so that pro-
gramming and program modifications may be done on-line by the
analyst’s entering instructions or data modifications through the
2250. Such an instruction modification is shown being made in
Figures 10 and 11, where Figure 10 shows the new instruction just
entered through the keyboard and Figure 11 shows the previous
contents of a storage location and the new contents of that location.
The flight may then be resumed at the point where it was stopped,
or it may be backed up either to a restart point, or it may be re-

JACOBS IBM SYST J

launched. Using these techniques, the entire mission can be executed.
At any point, execution may be suspended and the recorded infor-
mation may be analyzed by post-flight data reduction programs.

Concluding remarks

The graphic simulation system discussed in this paper has been
used extensively in support of the Apollo 8, 9, 10, 11, and 12
flight program developments, and it has met all design objectives.
By providing a new dimension of program visibility and man-
computer interaction, the system has had the effect of stimulating
higher levels of interest and creativity by flight analysts.

Problems of designing a mission program simulation system and
ensuring that the analyst has the capability he requires has been
a complex task. Our experience has shown that simulation tech-
niques, selection of equipment, and methods of man-computer and
computer-computer interaction must be carefully balanced to meet
overall design objectives. Requirements for high precision and safety
of the manned mission introduce elements of realism and urgency
into the abstract problem of space-vehicle control, guidance, and
navigation. The resultant simulation system that combines these
factors in a real-time multiprogramming environment has proved
to be a valuable tool for the development and checkout of mission
programs. The system has thus made possible the development of
mission programs that have been relied upon to a much greater
extent than previous mission programs and has reduced the amount
of time necessary to produce them.

Programming concepts we have used may certainly be applied in
related areas such as process control and other real-time-oriented
technologies. The operating system® and graphics program have
direct conceptual applications in other airborne and space vehicle
simulators.

ACKNOWLEDGMENT

The interactive simulation laboratory is based on the concepts
and original development work of T. H. Witzel, J. O. Thompson,
and J. S. Hughes.

CITED REFERENCES AND FOOTNOTES

1. The work described in this paper was performed under a contract with
the National Aeronautics and Space Administration for the George C.
Marshall Space Flight Center at Huntsville, Alabama.

2. J. S. Hughes and T. H. Witzel, “On-line software checkout facility for
special purpose computers,” AFIPS Conference Proceedings, Fall Joint
Computer Conference, 35, 789-800 (1969).

No.2 - 1970 SATURN PROGRAM SIMULATOR

Figure 10 Entering o new in-
struction in the flight
computer

MODIFY LVDC INSTRUCTION

1--END KEY
YOU HAVE ENTERED 1510020MPY44N
ABBCDDDEFFFGGGH{'

M IS S LOC INSTRUCTION

RETURN TO PRIOR LEVEL DISPLAY PEN KLY o

DISPLAY OMO&BA

Figure 11 OId and new instruc-
tion for the flight
computer

MODLFY LVDC INSTRUCTION

1--END KEY

YOU HAVE ENTERED *éé

NEW CONTENTS
OLD CONTENTS

RETURN TD PRIOR LEVEL DISPLAY PEN KEY e

DISPLAY DMOLBA

3. A. Appel, T. P. Dankowski, and R. L. Dougherty, “Interactive graphics
in data processing: Aspects of display technology,” IBM Systems Jour-
nal, 7, 3 and 4, 176-187 (1968).

4. J. L. Johnstone, “RTOS—extending OS/360 for real time space flight
control,” AFIPS Conference Proceedings, Spring Joint Computer Con-
ference, 34, 15-27 (1969).

158 JACOBS IBM SYST J

